- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Magic pen : a versatile digital manipulative for learning
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Magic pen : a versatile digital manipulative for learning Kianzad, Soheil
Abstract
Digital manipulatives such as robots are an opportunity for interactive and engaging learning activities. The addition of haptic and specifically force feedback to digital manipulatives can enrich the learning of science-related concepts by building physical intuition. As a result, learners can design experiments and physically explore them to solve problems they have posed. In my thesis, I present the evolution of the design and evaluation of a versatile digital manipulative – called MagicPen – in a human-centered design context. First, I investigate how force feedback can enable learners to fluidly express their ideas. I identify three core interactions as bases for physically assisted sketching (phasking). Then, I show how using these interactions improves the accuracy of users’ drawings as well as their authority in creative works. In the next phase, I demonstrate the potential benefits of using force feedback in a collaborative learning framework, in a manner that is generalizable beyond the device we invented and lends insight on how haptics can empower digital manipulatives to express advanced concept by means of the behaviour of a virtual avatar and the respective feeling of force feedback. This informs our device’s capability for learning advanced concepts in classroom settings and further considerations for the next iterations of the MagicPen. Based on the findings of how haptic feedback could assist with design and exploration in learning, In the last phase of my thesis, I propose a framework for physically assisted learning (PAL) which links the expression and exploration of an idea. Furthermore, I explain how to instantiate the PAL framework using available technologies and discuss a path forward to a larger vision of physically assisted learning. PAL highlights the role of haptics in future "objects-to-think-with".
Item Metadata
Title |
Magic pen : a versatile digital manipulative for learning
|
Creator | |
Supervisor | |
Publisher |
University of British Columbia
|
Date Issued |
2021
|
Description |
Digital manipulatives such as robots are an opportunity for interactive and engaging learning activities. The addition of haptic and specifically force feedback to digital manipulatives can enrich the learning of science-related concepts by building physical intuition. As a result, learners can design experiments and physically explore them to solve problems they have posed.
In my thesis, I present the evolution of the design and evaluation of a versatile digital manipulative – called MagicPen – in a human-centered design context. First, I investigate how force feedback can enable learners to fluidly express their ideas. I identify three core interactions as bases for physically assisted sketching (phasking).
Then, I show how using these interactions improves the accuracy of users’ drawings as well as their authority in creative works. In the next phase, I demonstrate the potential benefits of using force feedback in a collaborative learning framework, in a manner that is generalizable beyond the device we invented and lends insight on how haptics can empower digital manipulatives to express advanced concept by means of the behaviour of a virtual avatar and the respective feeling of force feedback.
This informs our device’s capability for learning advanced concepts in classroom settings and further considerations for the next iterations of the MagicPen. Based on the findings of how haptic feedback could assist with design and exploration in learning, In the last phase of my thesis, I propose a framework for physically assisted learning (PAL) which links the expression and exploration of an idea. Furthermore, I explain how to instantiate the PAL framework using available technologies and discuss a path forward to a larger vision of physically assisted
learning. PAL highlights the role of haptics in future "objects-to-think-with".
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2022-01-06
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0406179
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2022-05
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International