UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Kraft mill effluent and the Pacific oyster Pedlow, Jane C.

Abstract

Studies were undertaken to determine the effect of Kraft mill effluent (KME) on a representative species of the aquatic environment. By transplanting a population of Pacific oysters (Crassostrea gigas) to the Port Mellon area (the site of a Kraft mill), the effect of varying concentrations (on a distance from the mill basis) of the pulp mill waste was monitored in terms of changes in shell dimension, body mass (meat) weight, visual observation of the oysters' physiological state and oyster mortality. A seasonal hydrographic survey was conducted at three regions within the study area to monitor changes in water quality imposed by the effluent. In the areas of effluent imposition (oyster stations 1, 2 and 3) the oysters decreased or showed little gain in shell dimension. The body mass of those oysters nearest the mill outfall began to decline (on a weight basis) shortly after placement. At Station 2 and 3 the deterioration in body mass due to changes in water quality began a short time after the decline at Station 1. Changes in the physiological state of the oyster expressed as a darkening of the gills and mantle edge and variations in body mass texture, can be correlated to an oyster's distance from the mill for each collection timei A mortality rate was calculated at each station for all collection times. The mortality rates at Station 1 (100% in 12 months), Station 2 (50% in 20 months), and Station 3 (20% in 24 months) were extensive and proportional to effluent levels. Several of the changes in water quality (increased temperature, reduced salinities, low oxygen contents, variable pH, dissolved and particulated organic matter and chemical additions) imposed by the effluent were individually tested as the major cause of oyster deterioration. Firstly, the critical oxygen tension (the P02 where V02 declines below the routine rate) was determined as 40 mmHg. Correlating this to the range of 02 levels at each station during a tidal cycle, the oxygen demand of the effluent was not considered as a major cause of oyster mortality. A range of filtered, neutralized (pH 7.0 at 22°C) and aerated percentage KME/volume (0-50%) test solutions were monitored in terms of their effect on the percentage time of shell closure. In these experiments percentages above 20 greatly increased the time of shell closure. The effect of shell closure on oysters was tested by continual (up to 28 days) periods of air exposure. In these experiments the P02, zC02 and pH of the pallial fluid was monitored (from time 0 to 28 days) to determine if anaerobic metabolism was undertaken and if it was, the time span of anaerobic life in juvenile oysters. Anaerobic metabolism was concluded to maintain life in juvenile oysters for 22 days. These results were consistent with the hypothesis that KME is deleterious to oyster populations. At high concentrations of effluent the duration of shell closure is extensive such that an anaerobic death results. At lower concentrations the effluent imposed changes in water quality are responsible for the gradual decline in oyster well-being.

Item Media

Item Citations and Data

License

For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.

Usage Statistics