"Science, Faculty of"@en . "Zoology, Department of"@en . "DSpace"@en . "UBCV"@en . "Pedlow, Jane C."@en . "2010-01-21T22:41:53Z"@en . "1974"@en . "Master of Science - MSc"@en . "University of British Columbia"@en . "Studies were undertaken to determine the effect of Kraft mill effluent (KME) on a representative species of the aquatic environment. By transplanting a population of Pacific oysters (Crassostrea gigas) to the Port Mellon area (the site of a Kraft mill), the effect of varying concentrations (on a distance from the mill basis) of the pulp mill waste was monitored in terms of changes in shell dimension, body mass (meat) weight, visual observation of the oysters' physiological state and oyster mortality. A seasonal hydrographic survey was conducted at three regions within the study area to monitor changes in water quality imposed by the effluent. In the areas of effluent imposition (oyster stations 1, 2 and 3) the oysters decreased or showed little gain in shell dimension. The body mass of those oysters nearest the mill outfall began to decline (on a weight basis) shortly after placement. At Station 2 and 3 the deterioration in body mass due to changes in water quality began a short time after the decline at Station 1. Changes in the physiological state of the oyster expressed as a darkening of the gills and mantle edge and variations in body mass texture, can be correlated to an oyster's distance from the mill for each collection timei A mortality rate was calculated at each station for all collection times. The mortality rates at Station 1 (100% in 12 months), Station 2 (50% in 20 months),\r\n\r\n\r\nand Station 3 (20% in 24 months) were extensive and proportional to effluent levels. Several of the changes in water quality (increased temperature, reduced salinities, low oxygen contents, variable pH, dissolved and particulated organic matter and chemical additions) imposed by the effluent\r\nwere individually tested as the major cause of oyster deterioration. Firstly, the critical oxygen tension (the P02 where V02 declines below the routine rate) was determined as 40 mmHg. Correlating this to the range of 02 levels at each station during a tidal cycle, the oxygen demand of the effluent was not considered as a major cause of oyster mortality. A range of filtered, neutralized (pH 7.0 at 22\u00B0C) and aerated percentage KME/volume (0-50%) test solutions were monitored in terms of their effect on the percentage time of shell closure. In these experiments\r\npercentages above 20 greatly increased the time of shell closure. The effect of shell closure on oysters was tested by continual (up to 28 days) periods of air exposure. In these experiments the P02, zC02 and pH of the pallial fluid was monitored (from time 0 to 28 days) to determine if anaerobic metabolism was undertaken and if it was, the time span of anaerobic life in juvenile oysters. Anaerobic metabolism was concluded to maintain life in juvenile oysters for 22 days. These results were consistent with the hypothesis that KME is deleterious to oyster populations. At high concentrations of effluent the duration of shell closure is extensive such that an anaerobic death results. At lower concentrations the effluent imposed changes in water quality are responsible for the gradual decline in oyster well-being."@en . "https://circle.library.ubc.ca/rest/handle/2429/18886?expand=metadata"@en . "KRAFT MILL EFFLUENT AND THE PACIFIC OYSTER by JANE C. PEDLOW B.Sc. Hons., U n i v e r s i t y of B r i t i s h Columbia, 1972 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTER OF SCIENCE i n the Department of Zoology We accept t h i s t h e s i s as conforming to the r e q u i r e d standard THE UNIVERSITY OF BRITISH COLUMBIA August 1974 In p r e s e n t i n g t h i s t h e s i s in p a r t i a l f u l f i l m e n t o f the r e q u i r e m e n t s f o r an advanced degree at the U n i v e r s i t y of B r i t i s h Co lumb ia , I ag ree that the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e and s tudy . I f u r t h e r agree t h a t p e r m i s s i o n f o r e x t e n s i v e c o p y i n g o f t h i s t h e s i s f o r s c h o l a r l y purposes may be g r a n t e d by the Head o f my Department o r by h i s r e p r e s e n t a t i v e s . It i s u n d e r s t o o d that c o p y i n g o r p u b l i c a t i o n o f t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l not be a l l o w e d w i thout my w r i t t e n p e r m i s s i o n . Depa rtment The U n i v e r s i t y o f B r i t i s h Co lumbia Vancouver 8, Canada ABSTRACT Studies were undertaken to determine the e f f e c t of K r a f t m i l l e f f l u e n t (KME) on a r e p r e s e n t a t i v e s p e c i e s o f the a q u a t i c environment. By t r a n s p l a n t i n g a p o p u l a t i o n of P a c i f i c o y s t e r s ( C r a s s o s t r e a gigas) to the Port Mellon area (the s i t e o f a K r a f t m i l l ) , the e f f e c t o f v a r y i n g c o n c e n t r a t i o n s (on a d i s t a n c e from the m i l l b a s i s ) of the pulp m i l l waste was monitored i n terms o f changes i n s h e l l dimension, body mass (meat) weight, v i s u a l o b s e r v a t i o n of the oysters' p h y s i o l o g i c a l s t a t e and o y s t e r m o r t a l i t y . A seasonal hydrographic survey was conducted at three regions w i t h i n the study area to monitor changes i n water q u a l i t y imposed by the e f f l u e n t . In the areas o f e f f l u e n t i m p o s i t i o n ( o y s t e r s t a t i o n s 1, 2 and 3) the o y s t e r s decreased or showed l i t t l e g a i n i n s h e l l dimension. The body mass of those oysters nearest the m i l l o u t f a l l began to d e c l i n e (on a weight b a s i s ) s h o r t l y a f t e r placement. At S t a t i o n 2 and 3 the d e t e r i o r a t i o n i n body mass due to changes i n water q u a l i t y began a s h o r t time a f t e r the d e c l i n e at S t a t i o n 1. Changes i n the p h y s i o l o g i c a l s t a t e of the o y s t e r expressed as a darkening o f the g i l l s and mantle edge and v a r i a t i o n s i n body mass t e x t u r e , can be c o r r e l a t e d to an o y s t e r ' s d i s t a n c e from the m i l l f o r each c o l l e c t i o n t i m e i A m o r t a l i t y r a t e was c a l c u l a t e d at each s t a t i o n f o r a l l c o l l e c t i o n times. The m o r t a l i t y r a t e s a t S t a t i o n 1 (100% i n 12 months), S t a t i o n 2 (50% i n 20 months), - i i -and S t a t i o n 3 (20% i n 24 months) were ext e n s i v e and p r o p o r t i o n a l to e f f l u e n t l e v e l s . Several o f the changes i n water q u a l i t y ( i n c r e a s e d temperature, reduced s a l i n i t i e s , low oxygen c o n t e n t s , v a r i a b l e pH, d i s s o l v e d and p a r t i c u l a t e d o r g a n i c matter and chemical a d d i t i o n s ) imposed by the e f f l u -ent were i n d i v i d u a l l y t e s t e d as the major cause of o y s t e r d e t e r i o r a t i o n . F i r s t l y , the c r i t i c a l oxygen t e n s i o n (the P0 2 where V0 2 d e c l i n e s below the r o u t i n e r a t e ) was determined as 40 mmHg. C o r r e l a t i n g t h i s to the range of 0 2 l e v e l s a t each s t a t i o n during a t i d a l c y c l e , the oxygen demand o f the e f f l u e n t was not con s i d e r e d as a major cause o f o y s t e r m o r t a l i t y . A range of f i l t e r e d , n e u t r a l i z e d (pH 7.0 at 22\u00C2\u00B0C) and aerated percentage KME/volume (0-50%) t e s t s o l u t i o n s were monitored i n terms of t h e i r e f f e c t on the percentage time of s h e l l c l o s u r e . In these e x p e r i -ments percentages above 20 g r e a t l y i n c r e a s e d the time of s h e l l c l o s u r e . The e f f e c t of s h e l l c l o s u r e on o y s t e r s was t e s t e d by c o n t i n u a l (up t o 28 days) periods o f a i r exposure. In these experiments the P0 2, zC0 2 and pH of the p a l l i a l f l u i d was monitored (from time 0 to 28 days) to determine i f anaerobic metabolism was undertaken and i f i t was, the time span o f anaerobic l i f e i n j u v e n i l e o y s t e r s . Anaerobic metabolism was concluded t o maintain l i f e i n j u v e n i l e o y s t e r s f o r 22 days. These r e s u l t s were c o n s i s t e n t with the hypothesis t h a t KME i s d e l e t e r i o u s to o y s t e r populations. At high c o n c e n t r a t i o n s o f e f f l u e n t the d u r a t i o n of s h e l l c l o s u r e i s e x t e n s i v e such t h a t an anaerobic death r e s u l t s . At lower c o n c e n t r a t i o n s the e f f l u e n t imposed changes i n water q u a l i t y are r e s p o n s i b l e f o r the gradual d e c l i n e i n o y s t e r w e l l - b e i n g . TABLE OF CONTENTS Page ABSTRACT i i LIST OF TABLES . . . . v i LIST OF FIGURES v i i ACKNOWLEDGMENT v i i i INTRODUCTION 1 METHODS 5 I. F i e l d I n v e s t i g a t i o n s 5 A. The Oyster 5 B. Water Q u a l i t y Determinations 8 I I . Laboratory Experiments 12 A. Oxygen Requirements 12 B. KME and Gape Time 14 C. Anaerobic Death 15 RESULTS 1 6 I. F i e l d I n v e s t i g a t i o n s 16 A. The Oyster 16 B. Water Q u a l i t y Determinations 30 I I . Laboratory Experiments 35 A. Oxygen Requirements 35 B. K r a f t M i l l E f f l u e n t and Gape Time 40 C. Anaerobic Death 47 - i v -DISCUSSION I. The K r a f t Process . . . I I . An Oysters' Preference . I I I . KME and the Oyster . . . IV. Oxygen Uptake V. T o x i c i t y o f the E f f l u e n t VI. Anaerobic R e s p i r a t i o n . CONCLUSIONS LITERATURE CITED APPENDIX A . . . . . . . . . . APPENDIX B APPENDIX C APPENDIX D LIST OF TABLES Table Facing Page 1 S a l i n i t y , temperature and pH ranges f o r a l l % KME t e s t s o l u t i o n s 45 2 The r e s u l t s o f the seasonal hydrographic survey . . .77 3 O p t i c a l D e n s i t i e s of the water samples from the s p r i n g and summer (72) surveys 109 - v i -LIST OF FIGURES Figure Facing Page 1 The study area 6 2 An o y s t e r s t a t i o n 9 3 Changes i n s h e l l dimensions over 2 years . . . . . . 17 4 Average dry body mass weight per c o l l e c t i o n .... 21 5 A comparison o f o y s t e r s from S t a t i o n 1 and 6 a f t e r one y e a r 26 6 The m o r t a l i t y r a t e s at each s t a t i o n 28 7 0 2 uptake upon s h e l l opening 36 8 0 2 uptake over the P0 2 range 17 - 155 mmHg ...... 38 9 R e l a t i o n s h i p o f Vg to P 0 2 41 10 R e l a t i o n s h i p between s h e l l gape and %KME/volume . . 43 11 Changes i n p a l l i a l f l u i d P0 ?, EC0 ? and pH over 28 days 7 . . 7 48 12 Metal ( z n + + , C u + + and C d + + ) concentrations i n oysters from the study s t a t i o n s a f t e r one y e a r 74 N 13 Water q u a l i t y a n a l y s i s a t the o y s t e r s t a t i o n s (August, 1972) 117 - v i i -ACKNOWLEDGMENT I wish to thank Dr. David R a n d a l l , Dr. John Davis and Barbara Mason. - v i i i -INTRODUCTION The o b j e c t o f t h i s study was to determine the e f f e c t o f K r a f t m i l l e f f l u e n t (KME) on the marine environment. Rather than l o o k i n g at the e f f e c t on a p a r t i c u l a r ecosystem i n i t s e n t i r e t y , an i n d i c a t o r s p e c i e s was chosen and the e f f e c t o f KME on the animal determined i n d e t a i l . The animal s e l e c t e d to assess the e f f e c t s o f KME i n the a q u a t i c environment was a b i v a l v e mollusc, the P a c i f i c o y s t e r C r a s s o s t r e a g i g a s . I t was chosen f i r s t l y because i t i s a s e s s i l e animal. As such t h i s animal remains i n the p a r t i c u l a r environment s t u d i e d and cannot avoid t h e e e f f l u e n t by locomotion. This i s o b v i o u s l y necessary f o r long term s t u d i e s over a p e r i o d of years and avoids the problems of enclosure r e q u i r e d i f a more mobile i n d i c a t o r s p e c i e s was chosen. The P a c i f i c o y s t e r i s a l s o r e a d i l y a v a i l a b l e and e a s i l y handled. F i n a l l y t h i s animal i s o f commercial value. Several s t u d i e s have been undertaken concerning the e f f e c t o f pulp m i l l e f f l u e n t on the o y s t e r . Hopkins, G a l t s o f f , and McMillan (1931) considered the s u l p h i t e waste i n Long I s l a n d Sound to be d e l e -t e r i o u s to the o y s t e r ( C r a s s o s t r e a v i r g i n i c a ) p o p u l a t i o n which i n h a b i t e d the area. A ten year p r o j e c t conducted by G a l t s o f f ert al_. ending i n 1947 was concerned with sulphate p o l l u t i o n i n the York r i v e r and i t s e f f e c t on the n a t i v e o y s t e r (C. v i r g i n i c a ) p o p u l a t i o n . In 1949, McKernan, - 1 -- 2 -T a r t a r , and T o l l e f s o n e s t a b l i s h e d an a d m i s s i b l e c o n c e n t r a t i o n of s u l -p h i t e waste l i q u o r f o r s u c c e s s f u l Olympia o y s t e r (Qstrea l u r i d a ) c u l t u r e . A l s o , i n Washington,Woelke (1956, 1958) c o r r e l a t e d e x c e s s i v e m o r t a l i t i e s , reduced growth, poor c o n d i t i o n and r e p r o d u c t i v e anomalies to s u l p h i d e wastes. In B r i t i s h Columbia, Quayle (1964, 1969) introduced o y s t e r s (C. g i g a s ) to areas where KME i s discharged ( C r o f t o n and Harmac). Poor c o n d i t i o n and high m o r t a l i t i e s were evi d e n t i n those o y s t e r s nearest the waste o u t f a l 1 . In my f i e l d experiments the e f f e c t of the e f f l u e n t on o y s t e r s planted around the m i l l a t Port Mellon was monitored i n terms of changes i n s h e l l dimensions ( l e n g t h , width, and depth), t o t a l meat weight, the p h y s i o l o g i c a l s t a t e of the animal from v i s u a l o b s e r v a t i o n s and the mor-t a l i t y r a t e over a two y e a r p e r i o d . E f f l u e n t r e l e a s e d from the m i l l caused a l o c a l i n c r e a s e i n tem-per a t u r e , a r e d u c t i o n i n s a l i n i t y , v a r i a b l e pH, and an i n c r e a s e i n wood f i b r e and v a r i o u s chemicals i n the r e c e i v i n g waters. The e f f l u e n t a l s o u t i l i z e s oxygen (C^) such t h a t , i n some in s t a n c e s l e v e l s i n the water were reduced to zero. In order to separate the t o x i c e f f e c t s o f various components o f the e f f l u e n t on o y s t e r s some o f these f a c t o r s were t e s t e d independently. Owing to the high chemical and b i o l o g i c a l oxygen demand (Waldi-chuk, 1967; Howard and Walden, 1965, 1969; Marier, 1973) o f the KME,the c r i t i c a l oxygen t e n s i o n f o r o y s t e r s ( G a l t s o f f , 1964) was determined. This c r i t i c a l l e v e l has already been determined f o r s e v e r a l o y s t e r s p e c i e s , C r a s s o s t r e a v i r g i n i c a ( G a l t s o f f , 1964; G a l t s o f f and Whipple, - 3 -1931), 0. e d u l i s (Sparck, 1939; Pedersen, 1947; Gaarder and E l i a s s e n , 1955), and many other i n v e r t e b r a t e s (Mangum and Van Winkle, 1973; Sassa-man and Mangum, 1973; Newell, 1973; Baynes, 1973) with v a r y i n g e x p e r i -mental techniques. The c r i t i c a l oxygen l e v e l , having been determined f o r the j u v e n i l e P a c i f i c o y s t e r , was then compared with oxygen l e v e l s i n the e f f l u e n t . K r a f t m i l l e f f l u e n t was f i l t e r e d t o remove wood f i b r e , the pH adjusted to 7.0 (temp. = 22\u00C2\u00B0C) and then aerated. The e f f e c t o f a range of seawater d i l u t i o n s o f t h i s e f f l u e n t on the opening and c l o s i n g o f o y s t e r s h e l l , was monitored. The p e r i o d the s h e l l was open was recorded by d i r e c t v i s u a l o b s e r v a t i o n . The hours of s h e l l opening/day have been c a l c u l a t e d p r e v i o u s l y f o r s e v e r a l o y s t e r s p e c i e s by a number of i n v e s -t i g a t o r s ( G a l t s o f f and Whipple, 1930; G a l t s o f f , 1937, 1964; Hopkins, 1931 and Nelson, 1936). A range o f e f f l u e n t c o n c e n t r a t i o n s have not however, to my knowledge, been p r e v i o u s l y t e s t e d . The e f f e c t o f e x t e n s i v e periods of s h e l l c l o s u r e on the o y s t e r i n terms o f the d u r a t i o n o f anaerobic metabolism was i n v e s t i g a t e d . Several r e s e a r c h e r s have p o s t u l a t e d t h a t anaerobic metabolism occurs i n s e v e r a l s p e c i e s (Dugal, 1939; Mangum and Van Winkfce, 1973; Hochachka, 1971; Hochachka and Mustafa, 1972; Mustafa and Hochachka, 1971, 1973a, 1973b, 1973c; Stokes and Awapara, 1968; Chen and Awapara, 1969; Simpson and Awapara; Saz, 1971; Newell, 1973). Varying pathways have been sug-gested by Awapara and Campbell (1964) and Hammen (1969) with the r e c e n t l y proposed route of Hochachka and Mustafa (1973) who agree with Hammen, as the most l i k e l y to occur i n the c l o s e d o y s t e r . Several parameters - 4 -(P0 2, pH, and t o t a l C0 2) o f the p a l l i a ! (the e x t r a c e l l u l a r f l u i d compart-ment between the mantle and the main body mass) were monitored over 28 days to i n d i c a t e i f anaerobic metabolism was indeed o c c u r r i n g and i t s p o s s i b l e d u r a t i o n . METHODS I. Field Investigations A. The Oyster The area under investigation spanned a one mile distance from Port Mellon, B.C. southward. F i r s t l y , the general conditions and types of f lora and fuana in the intert idal zone of the study area were noted. This was not an extensive numerical evaluation of the populations within the region but did indicate a species presence or absence and approximate density. The area to be studied was subdivided into six stations on the basis of this survey and the topography of the shoreline (Fig. 1). Station 1 was where, owing to the pulp m i l l ' s presence, three feet of lime mud.covered the foreshore. Aquatic fuana in this area was absent and the f lora consisted of only one species, the green filamentous alga Enteromorpha sp. . Station 2 possessed a few species (the barnacle, Balanus glandula; the mussel, Mytilus edulis; the isopod, Anisogammarus sp . ; the amphipod, Ignorimosphaeroma sp . ) , as well as Enteromorpha sp., whose densities were sparse. At Station 3 the densities of the latter species become abundant. McNair Creek provided suff ic ient runoff to divide Stations 4 and 5. The surface freshwater stimulated various planktonic algae species and the fuanal species were diverse and abundant. At Station 6 the reduced surface sa l in i t ies increased and a corresponding change in f lora species was noted. - 5 -- 6 -Figure 1. The study area. Each r e g i o n (ABC of the hydrographic survey)was sampled every f o u r months over a 13 hour < \u00E2\u0080\u0094 p e r i o d . Oysters were c o l l e c t e d from the s t a t i o n s (1-6) IOI M-l, i x l IOI, CM CN CN O CN 00 \u00E2\u0080\u00A2o IOI I O \u00E2\u0080\u0094 I l@l I I I CN CO '1 -o CN iO O \"O CUJD) a6uoip Ljjdap - 21 -Figure 4. The average dry weight (g) of the o y s t e r s (devoid o f i t s s h e l l ) from each c o l l e c t i o n are presented i n h i s t o -gram form. A f t e r 12 months S t a t i o n 1 contained no o y s t e r s and a f t e r 15 months S t a t i o n 2 was a l s o devoid o f o y s t e r s . s t a t i o n n u m b e r - 23 -S t a t i o n 4. In area 6 the o y s t e r s d i s p l a y e d a decrease i n meat weight from the winter 73-spring 74. In the second s p r i n g the meat weight i n c r e a s e d . Several v i s u a l o b s e r v a t i o n s of p h y s i o l o g i c a l c o n d i t i o n of the sampled o y s t e r s were noted immediately a f t e r s h e l l opening. These i n c l u d e d c o l o u r a t i o n of the mantle edge and g i l l s , meat c o l o u r and tex-t u r e , and the presence or absence of gonads. At S t a t i o n 1, the p h y s i o l o g i c a l s t a t e , determined from the above f a c t o r s , d e t e r i o r a t e d r a p i d l y . By the f i r s t c o l l e c t i o n time (two months) the mantle edge and g i l l l a m e l l a e were s t a i n e d a dark brown. T h i s s t a i n was so i n t e n s e t h a t no f u r t h e r darkening was noted over the l i f e span. C o n s i d e r i n g the remaining f a c t o r s , wood f i b e r was lodged i n the g i l l l a mellae of those o y s t e r s a f t e r f o u r months placement. A f t e r ten months the meat c o l o u r and t e x t u r e was t r a n s p a r e n t green-grey and j e l l y - l i k e . The meat q u a l i t y continued to d e t e r i o r a t e u n t i l a l l o y s t e r s were dead. At no time over the study p e r i o d was there any evidence of gonad f o r -mation. A f t e r ten months those o y s t e r s at S t a t i o n 2 possessed s e v e r e l y darkened mantle edges and g i l l s . The s h e l l s were e a s i l y opened and t h e i r meat q u a l i t y ranged from t r a n s p a r e n t grey-green to creamy white with some evidence of gonad formation. These ranges i n meat c o n d i t i o n f o r the sampled o y s t e r s occurred over the e n t i r e study time (to A p r i l 1/74). I t should be mentioned t h a t though some evidence of gonad f o r -mation was i n d i c a t e d a f t e r the f i r s t winter none was present a f t e r the second. Within ten months o f the study a change i n the p h y s i o l o g i c a l s t a t e o f the o y s t e r s at S t a t i o n 3 was noted as a darkening of the g i l l ; - 24 -however, gonad formation appeared to be normal. By the eleventh month the mantle edge was black and the g i l l s darker s t i l l . The meat though remained creamy and the s h e l l s were not opened e a s i l y . T h i s darkening o f the mantle edge and g i l l s continued, and the animals began to smell o f hydrogen s u l p h i d e . A f t e r t h i r t e e n months s e v e r a l o y s t e r s possessed a t r a n s p a r e n t grey meat. The degree of transparency was c o n t i n u a l l y ob-served i n the l a t t e r c o l l e c t i o n s with no creamy o y s t e r meats noted. The observations at S t a t i o n 4 were s i m i l a r during a l l c o l l e c t i o n s , t h e r e f o r e the o y s t e r s ' p h y s i o l o g i c a l s t a t e could be termed s t a b l e . On the average f o r each c o l l e c t i o n the mantle edge was a l i g h t brown and g i l l s a s l i g h t l y grey-brown. The meat i t s e l f was creamy with a green t i n g e and gonads were ev i d e n t . The s h e l l s were d i f f i c u l t to open i n d i -c a t i n g a high l e v e l of adductor muscle t e n s i o n . Also, no hydrogen s u l -phide smell was detected. Over the f i r s t twelve months of c o l l e c t i o n s a t S t a t i o n 6 a few o f the o y s t e r s possessed a t r a n s p a r e n t meat, dark c o l o u r a t i o n of t h e i r g i l l s and a dark veined mantle edge. The remaining o y s t e r s were l a r g e with a creamy r e p r o d u c t i v e l y maturing meat and a l i g h t coloured g i l l and mantle edge. A f t e r one y e a r the number o f healthy o y s t e r s i n each c o l l e c t i o n i n c r e a s e d . C o n s i d e r i n g now the o y s t e r s h e l l , i t was noted t h a t w i t h i n two months the s h e l l s of the o y s t e r s at S t a t i o n 1 were s t a i n i n g 3 b r o w n under a l a y e r o f lime mud. This s t a i n i n g i n t e n s i f i e d with time. A f t e r e i g h t months o f study b l e a c h i n g was noted r e s u l t i n g i n a p a t c h - l i k e (dark brown and pearl-white) d i s c o l o u r a t i o n . In t e x t u r e these s h e l l s were extremely b r i t t l e and f l a k e d a p a r t on touch. - 25 -At S t a t i o n 2, though s h e l l s t a i n i n g d i d occur, i t s i n t e n s i t y was l e s s and i t was not e v i d e n t u n t i l the t h i r d c o l l e c t i o n ( s i x months). A f t e r one ye a r the s h e l l s , due to the t h i c k accumulations o f lime mud (beyond t h a t noted f o r S t a t i o n 1), were coated i n patches with a brown scum. T h e i r t e x t u r e having been extremely b r i t t l e was now chalky. The s t a i n i n g and b r i t t l e n e s s i n c r e a s e d i n extent u n t i l the o y s t e r s ' deaths. The o y s t e r s ' s h e l l s a t S t a t i o n 3 appeared normal i n c o l o u r and t e x t u r e f o r s i x months. By c o l l e c t i o n 4 ( e i g h t months) s l i g h t s h e l l b l e a c h i n g but no s t a i n i n g was e v i d e n t and a tr a n s p a r e n t s h e l l f i l m was noted. The lime mud c o a t i n g the o y s t e r s ' s h e l l s was t h i c k but l e s s than t h a t on the o y s t e r s a t S t a t i o n 2. The c o a t i n g o f lime mud seen on the s h e l l s o f those o y s t e r s i n the preceding s t a t i o n was r e p l a c e d a t S t a t i o n 4 by a l a y e r o f f i n e mud. No s h e l l c o l o u r a t i o n was noted i n t h i s area over the experimental p e r i o d . A s i t u a t i o n s i m i l a r to t h a t observed a t S t a t i o n 4 e x i s t e d a t S t a t i o n 6. The sediment noted on these o y s t e r s though, was of a d i f f e r e n t t e x t u r e . An o v e r a l l comparison between o y s t e r s from S t a t i o n 1 and 6 a f t e r one year i s i n d i c a t e d i n F i g . 5. A f t e r s i x months ( t h a t i s a f t e r the f i r s t w inter) 35% o f the oy s t e r s had d i e d a t S t a t i o n 1 ( F i g . 6). The m o r t a l i t y r a t e i n c r e a s e d to 100% between the t w e l f t h and t h i r t e e n t h month of the experimental p e r i o d . At S t a t i o n 2 a m o r t a l i t y was not observed u n t i l ten months had lapsed. The percentage m o r t a l i t y was s l i g h t over the summer but i n c r e a s e d r a p i d l y over the second win t e r . By the twentieth month the m o r t a l i t y - 26 -Figure 5. After one year a comparison was made between an oyster from Station 1 and one from Station 6. The original photo (in colour) indicated the variation in colouration between the g i l l s , mantle edge and body mass of the two oysters. Br ie f l y , in the Station 6 oyster the g i l l s and mantle edge were l ight brown and the meat a creamy white. The g i l l s and mantle edge of the Station 1 oyster were dark brown and the meat area a transparent brown. O y s t e r A (from s t a t i o n 1) and o y s t e r B (from s t a t i o n 6) were a p p r o x i m a t e l y e q u a l i n s h e l l dimensions and t o t a l weight when p l a c e d at t h e i r r e s p e c t i v e s t a t i o n s . A f t e r twelve months the o y s t e r s were compared f o r the photo below. C o n d i t i o n s o f A : 1) s h e l l growth was not i n d i c -a t e d . 2) food r e s e r v e was a b s e n t . 3) the o y s t e r ' s body was t r a n s p a r e n t . B C o n d i t i o n s of B : 1) s h e l l growth o c c u r r e d i n a l l d i m e n s i o n s . 2) the edges o f new s h e l l growth were f l u t e d . 3) the meat was creamy i n c o l o u r and t e x t u r e . 4) gonad f o r m a t i o n was e v i d e n t . ro - 28 -Figure 6. The m o r t a l i t y r a t e was c a l c u l a t e d as a percentage of the unsampled o y s t e r s . At s e v e r a l c o l l e c t i o n s a l l t r a y l e v e l s were not checked f o r o y s t e r deaths owing to t i d a l h e i g h t s . In these cases the m o r t a l i t y r a t e was c a l c u l a t e d on the t o t a l number o f o y s t e r s i n the t r a y l e v e l sampled. stat ion 1 lOOi 50 OH \u00E2\u0080\u0094 0 s t a t i o n 2 1001 10 15 20 50 s t a t i o n 3 100i 10 15 20 50 10 15 20 s t a t i o n 4 lOOi 50 25 0 \u00E2\u0080\u00A2 \u00E2\u0080\u009E 5 s ta t ion 6 100. 10 15 20 25 50 ro WD 25 10 15 20 25 25 time (months) - 30 -r a t e was 50%. The number o f deaths a t S t a t i o n 3 over the f i r s t y e a r t o t a l l e d only f o u r . By the f i f t e e n t h month the r a t e was beginning to i n c r e a s e and a f t e r two years of study the m o r t a l i t y r a t e was 19%. S t a t i o n s 4 and 6 were s i m i l a r and low i n t h e i r m o r t a l i t y r a t e s . The f i n a l r a t e over the two years a t both s t a t i o n s was 9%. The metal c o n c e n t r a t i o n s [ z i n c ( Z n + + ) , copper ( C u + + ) , and cadium ( C d + + ) ] i n o y s t e r s from a l l s t a t i o n s d i d not d e v i a t e to extreme l e v e l s ( G a l t s o f f , 1953; Calabrese e t a l _ . , 1973; Huggett, e t a l _ . , 1973) nor was a. s i g n i f i c a n t d i f f e r e n c e noted between the o y s t e r s t a t i o n s f o r each metal (Appendix A). B. Mater Q u a l i t y Determinations The r e s u l t s of the seasonal hydrographic survey, i n terms of pH, 0 2 (ml/L), s a l i n i t y (0/00), and temperature (\u00C2\u00B0C) over standard depths, are i n d i c a t e d i n Appendix B. The t i d a l h eight o f each c a s t i s a l s o shown i n Appendix B. For the s p r i n g sampling the pH ranged from 7.8-8.5 at a l l depths at regions B and C, and from 10-30 M a t r e g i o n A. The pH was high (9.4) i n the s u r f a c e waters of r e g i o n A (bucket sample)on the ebbing t i d e . A d i f f e r e n c e i n the two s u r f a c e samples (bucket - 0M 7.8 and Nansen -.3M 8.3) was a l s o recorded a t region 2. On the f l o o d t i d e the pH f e l l , a t region A, being 8.5 f o r both s u r f a c e samples. The t r e n d of the 0 2 values with depth f o r t h i s sampling p e r i o d were d i f f e r e n t a t a l l three areas t e s t e d . F i r s t l y , a t r e g i o n A on the ebbing or low t i d e s the 0 ? content of the uppermost waters was f a r below - 31 -t h a t obtained j u s t below the s u r f a c e , with r e s p e c t i v e extremes of 3.4-8 ml/L. This was not noted on the f l o o d t i d e where values o f 8 ml/L were obtained f o r the s u r f a c e samples. During a l l c a s t times the 0 2 l e v e l a t depths below 8 M ranged from 5.6-6 ml/L. At r e g i o n 2 the 0 2 content decreased with depth over a l l t i d a l h e i g h t s . At the t h i r d r e g i o n f o r the lowest t i d a l h eight a below the s u r f a c e maximum was i n d i c a t e d . This p a t t e r n d i d not hold on the f l o o d t i d e where the hi g h e s t 0 2 content was a s u r f a c e value. G e n e r a l l y the s a l i n i t y i n c r e a s e d with depth at a l l t i d a l h e i g h t s . Extremely low s u r f a c e s a l i n i t i e s were observed i n bucket samples obtained on the lowest t i d e s a t regions A and B. The temperature was the hi g h e s t i n the s u r f a c e samples a t low water a t regi o n A and decreased with depth. T h i s temperature d i f f e r e n c e was removed on the f l o o d t i d e and r e i n s t a t e d on the ebb. On the other hand, a below the s u r f a c e (.3 M) temperature maximum was recorded a t low water a t regi o n B. The d i f f e r e n c e i n temperature between the s u r f a c e and depth was 2 or 3\u00C2\u00B0C. Beyond t h i s and f o r a l l other c a s t s the tem-perature decreased with depth. During the summer the pH at regi o n A ranged from a s u r f a c e value o f 10.2 to 7.4 at 30 M. On the other hand, the pH change with depth a t region B was s l i g h t with a s u r f a c e value o f 8.0 to 7.6 at 30 M. As with the s p r i n g sampling, each re g i o n i n d i c a t e d a d i f f e r e n t 0 2 t r e n d with depth during the summer. At the f i r s t r e g i o n f o r a l l c a s t s the uppermost water contained no oxygen. The content i n c r e a s e d to 6.8 ml/L a t 10 M and from there decreased to 5 ml/L. At r e g i o n B two - 32 -trends were noted. F i r s t l y , a subsurface maximum f o l l o w e d by a lower subsurface minimum back to the normal 5 ml/L a t 30 M and, secondly, a r e d u c t i o n i n 0^ content with depth. T h i s decrease with depth t r e n d was a l s o e v i d e n t a t region C. The s a l i n i t y i n c r e a s e d with depth and gave lower s u r f a c e values i n the area of region A. The temperature a l s o decreased with depth and gave abnormally high readings i n the uppermost waters of region A. For the f a l l sampling, l a r g e f l u c t u a t i o n s i n v a r i a b l e values were not noted with depth. For example, over the t i d a l c y c l e at r e g i o n C the pH range f o r a l l depths was 7.4 ( s u r f a c e ) to 7.6 (30 M), the 0^ content 5.6 ( s u r f a c e ) to 4 (30 M) m^L, the s a l i n i t y 28 ( s u r f a c e ) - 31 (30 M)0/00 and the temperature 7.5 ( s u r f a c e ) - 8.5 (30 M)\u00C2\u00B0C. The e f f e c t of the e f f l u e n t on a l l v a r i a b l e s was detected at r e g i o n A. The s u r f a c e pH values decreased as the t i d e ebbed and i n c r e a s e d g r e a t l y on the f l o o d . No Or, was measured i n the s u r f a c e water as the t i d e ebbed. An 0 2 content of approximately 4 ml/L was noted when the t i d a l height was a t i t s maximum and minimum. The s a l i n i t y was reduced by 5 0/00 as the t i d e ebbed. High temperatures were i n d i c a t e d i n the uppermost waters a t most t i d a l h e i g h t s . Subsurface r e d u c t i o n s i n 0 2 content and temperature were observed at r e g i o n B as well as lower s u r f a c e s a l i n i t i e s . The pH was uniform with depth i n a l l regions B and C. G e n e r a l l y f o r the winter sampling the pH was uniform with depth, the 0 2 decreased from a s u r f a c e value of 7.6-7.8 ml/L to 4.8-5.0 ml/L at 30 M, the s a l i n i t y was low and v a r i e d with the t i d e a t the s u r f a c e - 33--to a 18 0/00 minimum to 30 0/00 at 30 M, the temperature a t s u r f a c e was low a t 5\u00C2\u00B0C but rose to only 8\u00C2\u00B0C a t 30 M. The s u r f a c e waters a t region A again i n d i c a t e d the e f f e c t o f m i l l o u t f a l l . The pH i n the uppermost waters rose to a 9\u00C2\u00A3 maximum as the t i d e f e l l . No 0 2 was recorded a t the lowest t i d a l height a t the s u r f a c e and the s a l i n i t y decreased to 10 0/00. The temperature was hig h e s t a t 11\u00C2\u00B0C and a subsurface minimum of 5\u00C2\u00B0C was c o n t i n u a l l y observed. The O.D.'s of the water samples from the hydrographic survey are i n d i c a t e d i n Appendix C. The O.D. readings were used to i n d i c a t e the presence or absence of KME. For the May 72 c o l l e c t i o n s a t reg i o n A the O.D. of the s u r f a c e bucket sample was c o n t i n u a l l y high, with the g r e a t e s t absorbance readings d i s p l a y e d a t low water. The uppermost waters at r e g i o n B gave c o n t i n u a l l y low values with g r e a t e r o p t i c a l d e n s i t i e s i n d i c a t e d a t reg i o n C as the t i d e rose. During the summer sampling both s u r f a c e samples a t r e g i o n A were high. The readings over a depth of 30 M were constant and maximal f o r these depths over a l l o p t i c a l d e n s i t i e s recorded. At reg i o n B and C though the samples to 10 M gave measurable O.D.'s, these values were not l a r g e and co u l d be termed i n s i g n i f i c a n t r egarding waste l i q u o r concen-t r a t i o n s . In Appendix D the r e s u l t s of water q u a l i t y survey a t the o y s t e r s t a t i o n s themselves are presented. The r e s u l t s i n d i c a t e d t h a t the o y s t e r at S t a t i o n 1 experienced higher temperatures than other s t a t i o n s over a l l depths of the f l o o d t i d e . An extremely low s a l i n i t y was recorded when the t r a y a t S t a t i o n 1 was a t the water's s u r f a c e . The 0/00 though - 34 -in c r e a s e d a t t r a y l e v e l as the t i d e rose. At a l l s t a t i o n s over the depths t e s t e d the s a l i n i t i e s were low (< 11 0/00). The 0^ content (ml/L) was n e g l i g i b l e when the t r a y a t S t a t i o n 1 was at the s u r f a c e . The value remained low (-4 ml/L) as the t i d e rose and i n c r e a s e d a t t r a y l e v e l when the t i d a l h eight was maximal. The O.D.'s a t S t a t i o n s 1 and 2were equal and maximal f o r the s u r f a c e t r a y l e v e l readings. The high O.D. at S t a t i o n 2 d i d not continue as the t i d e rose above the t r a y but at S t a t i o n 1 the O.D. reading was high u n t i l the t i d e was maximal. At a l l o t h er s t a t i o n s the O.D. readings were low (< .1) a t a l l t i d a l h e i g h t s . The c h l o r o p h y l l a c o n c e n t r a t i o n s were g e n e r a l l y low when the t i d e was low and i n c r e a s e d at t r a y l e v e l as i t rose. S t a t i o n 3 d i s p l a y e d maximal c h l o r o p h y l l a c o n c e n t r a t i o n s whereas the s u r f a c e t r a y l e v e l c o n c e n t r a t i o n s at S t a t i o n s 1 and 2 were n i l . An i n c r e a s e was noted a t S t a t i o n 2 a t a t r a y depth o f .9 M but no i n c r e a s e was i n d i c a t e d a t S t a t i o n 1. The p a r t i c u l a t e matter (seston) was, as expected, maximal a t S t a t i o n 1 when the t r a y was at the s u r f a c e . As the t i d e rose the p a r t i c u l a t e matter decreased but was s t i l l above the l e v e l s obtained f o r other s t a t i o n s a t a l l t i d a l h e i g h t s . The paraphyton s t r i p s placed a t t r a y l e v e l a t a l l o y s t e r s t a t i o n s v i s u a l l y d i s p l a y e d an i n c r e a s e i n attached algae growth as the d i s t a n c e from the m i l l i n c r e a s e d . G e n e r a l l y i t may be s t a t e d t h a t the e f f l u e n t imposed v a r i a t i o n s o f high temperature, reduced s a l i n i t y , v a r y i n g pH, low oxygen and i n c r e a s e d o p t i c a l d e n s i t i e s measured i n the above surveys occur i n the s u r f a c e waters o f S t a t i o n 1, 2, 3 and 4 (regions A and B). This s u r f a c e i n t e r f e r e n c e - 35 -i s f e l t mainly on the ebbing t i d e and i s removed as the t i d e f l o o d s . V a r i a t i o n s i n the s u r f a c e values were a l s o noted to be more extreme i n the s p r i n g and summer which may be c o r r e l a t e d to t i d a l p a t t e r n s . I I . Laboratory Experiments A. Oxygen Requirements Figure 7 i n d i c a t e s t h a t during the f i r s t 5 hours of r e s p i r a t o r y a c t i v i t y i n the respirometer f o l l o w i n g valve opening the average r a t e o f 0 2 uptake (V0 2 i n ml/oyster/hour) i s constant. The standard d e v i a t i o n about each mean i s l a r g e and s i m i l a r f o r t h e f f i r s t f o u r hours o f v e n t i -l a t i o n . The d e v i a t i o n begins to d e c l i n e by hour f i v e and w i t h i n s i x hours the average V0 2 i s low and d e v i a t i o n about t h i s average s l i g h t . Valve c l o s u r e was noted.in s e v e r a l oysters a f t e r the s i x t h hour. The V0 2 has been measured over a P0 2 range o f 0-160 mmHg. In order to reach the P0 2 where 0 2 uptake ceased the oy s t e r s remained i n the respirometers f o r 92 hours. Figure 8 d i s p l a y s the V0 2's over the P0 2 range. I t may be s t a t e d t h a t above 40 mmHg the V0 2 i s h i g h l y v a r i -able and independent o f P0 2- Below 40 mmHg the V0 2 decreases as the P0 2 d e c l i n e s . V0 2 f e l l to zero a t P0 2's between 17-25 mmHg. Using the Fick p r i n c i p l e (Van Dam, 1938): . v o 2 c r c 0 where V0 2 = r a t e o f 0 2 uptake ml0 2/oyster/hour V,, = v e n t i l a t i o n r a t e L/hr - 36 -Figure 7. The rate of CL uptake upon shell opening in the respiro-meter is represented as average + standard deviation. Shell closure began to occur in most oysters by hour s ix . - 37 -IT) 0 E CN CO CN ( jno^ajsAo/j iu) 2 Q A - 38 -Figure 8. The 0 2 uptake over the P O 2 r a n 9 e i n d i c a t e d may be d i v i d e d i n t o two r a t e types. Zone A represents those P U 2 ' s where O 2 uptake i s p o s s i b l y dependent on P O 2 40 mmHg). Zone B may i n d i c a t e the P O 2 range where V0 ? i s independent o f P O 2 (> 40 mmHg). - 39 -\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2\u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 \u00E2\u0080\u00A2 00 \u00E2\u0080\u00A2o CN o in o .\u00E2\u0080\u0094. 2 CO X E E^ Q. O in (jnoijy/j94sXo/|iu) 2 O A - 40 -Cj = O2 content o f water i n the i n h a l e n t c u r r e n t m ^ / L C Q % Or, content of water i n the exhalent c u r r e n t ml O 2 / L The v e n t i l a t i o n r a t e (Vg) (the amount o f h^O passing over the g i l l s per u n i t time) has been c a l c u l a t e d over the P O 2 range o f 20-150. I t appears from F i g . 9 that the v e n t i l a t i o n r a t e remains r e l a t i v e l y con-s t a n t over the P0 2 range. At the P0 2 (40 mmHg) where the V0 2 ( F i g . 8) begins to d e c l i n e the v e n t i l a t i o n r a t e remains constant i n d i c a t i n g a red u c t i o n i n O2 u t i l i z a t i o n from the water passing over the g i l l s ( C j -C Q ) . Though F i g . 9 i n d i c a t e s most v e n t i l a t i o n r a t e s to be 4 L/hr o r l e s s , higher V Q ' S are noted a t 1s above 100 mmHg. This i n c r e a s e i n volume could be c o r r e l a t e d to food i n t a k e and/or (from F i g . 8) an i n c r e a s e i n v o 2 . B. K r a f t M i l l E f f l u e n t and Gape Time Concentrations o f 201 KME or l e s s d i d not reduce the time o f s h e l l opening compared with the c o n t r o l s ( F i g . 10). Beyond 25% KME by volume the time t h a t the s h e l l i s open i s s e v e r e l y reduced. At a c o n c e n t r a t i o n of 30 percent the time spent open i s only 25% o f the t o t a l time p e r i o d . The s a l i n i t i e s , pH, 0^ c o n c e n t r a t i o n s and temperature o f a l l t e s t s o l u t i o n s were measured (Table 1). In general the s a l i n i t y decreased as the KME percentage i n c r e a s e d . The s a l i n i t i e s ranged from 29.5 0/00 to 19.7 0/00. The pH o f the n e u t r a l i z e d e f f l u e n t v a r i e d with pH of the sea water. The O2 content was always s a t u r a t e d or su p e r s a t u r a t e d . The temperatures i n c r e a s e d slowly due to room heating o f the t e s t e f f l u e n t s i n the carboys. - 41 -Figure 9. The ventilation rate (V-) is expressed over the P(L range of 0 2 uptake. Water samples were extracted from the inhalent and exhalent currents as close to the animal as i ts sensit iv i ty would allow. The V0? water sample was taken directly above the oyster. Tne water in the tank was not s t rat i f ied according to 0 2 tension when the oyster was venti lating. - 42 -o in o \u00E2\u0080\u0094-o D) *~ X E E o CN O CN 00 - 43 -Figure 10. The gape time i s expressed as an average percentage +_ standard d e v i a t i o n of the t o t a l o b s e r v a t i o n time f o r each t e s t s o l u t i o n . The f i l t e r e d ! ? n e u t r a l i z e d , and aerated e f f l u e n t i s expressed i n %/volume (1 ul/IL = 1 ppm). - 45 -Table 1. Sa l in i ty , temperature and pH ranges for a l l % KME test solutions. KME co n c e n t r a t i o n (%/volume) V a r i a b l e range 0 10 15 20 25 30 35 40 50 PH 7.75-6.90 7.35-7.28 7.30-7.10 7.50-6.88 7.00-7.21 6.66-7.46 7.41 7.20 7.32 0/00 26.5-29i5 26 23.9-24.6 21.3-23.9 20.5-21.4 19.7-20.8 19.4 18.0 15.2 \u00C2\u00B02 s a t u r a t e d s a t u r a t e d s a t u r a t e d s a t u r a t e d s a t u r a t e d s a t u r a t e d s a t u r a t e d s a t u r a t e d s a t u r a t e d \u00C2\u00B0C 14.0-18.0 14.0-15.0 14.0-16.0 14.0-17,-0 16.0-18.0 16.0-18.0 13.0-15.9 13.6-16.2 13.0-16.0 4= cn - 47 -Evidence o f s t r e s s f u l c o n d i t i o n s were noted i n oysters'in the higher KME s o l u t i o n s . As the percentage KME i n c r e a s e d so d i d the observed coughing behavior p a t t e r n . Due to the s u r f a c e on which the o y s t e r s were placed the degree or amount o f coughing could be measured by noting the p o s i t i o n o f the o y s t e r i n the tank. Several complete r o t a t i o n s were d i s p l a y e d by oyster s i n c o n c e n t r a t i o n s o f KME of 25% and g r e a t e r . C. Anaerobic Death When the o y s t e r was submerged and i t s s h e l l s open, i n s e r t i n g the sampling apparatus between i t s s h e l l s caused c l o s u r e to occur a l l o w i n g a p o r t i o n o f the pal 1 i a l f l u i d to be withdrawn. The average pH, E C O ^ and POg o f the ten o y s t e r s sampled was 7.50 + .066, 1.636 + .519 mm/L and 159.4 +_ 31.44 mmHg r e s p e c t i v e l y . Removing the animal from the water caused s h e l l c l o s u r e and the retainment o f a c e r t a i n volume o f f l u i d around the o y s t e r i t s e l f . I f the o y s t e r ' s pal 1 i a l f l u i d was e x t r a c t e d immediately a f t e r c l o s u r e a pH o f 7.35 + .061, a zC0 2 o f 1.519 + .087 and a P0 2 o f 44.95 +48.80 mmHg was obtained. The pal 1 i a l f l u i d was sampled from an average o f 10 o y s t e r s a t each o f the time periods i n d i c a t e d i n F i g . 12. The oy s t e r s i n a i r d i e d a f t e r approximately 22 days (the time o f s u r v i v a l out o f water i s s i z e or food reserve dependent) and changes i n P02, zCO^ and pH i n the pal 1 i a l f l u i d were f o l l o w e d d u r i n g the time p e r i o d . From F i g . 11, the pH o f the f l u i d f e l l to between 7.0 and 6.7 f o r the f i r s t 6 days. A f t e r t h i s time the pH drops to approximately 48 -Figure H i I n d i c a t e s the pH, P O 2 , and 2 C O 2 of the p a l l i a l f l u i d o f j u v e n i l e o y s t e r s when a i r exposed. The d u r a t i o n of t h i s study was 28 days. To express t h i s the x-axis has been s h i f t e d from minutes-hours ( a f t e r 600 minutes) and from hours to days ( a f t e r 190 hours). The \u00C2\u00A3C02 i s expressed i n mM/L, the P O 2 i n mmHg and the pH i s the hydrogen ion c o n c e n t r a t i o n . m i n u t e s h o u r s d a y s 120 2 4 0 360 480 600 8 10 30 50 70 9 0 110 130 150 170 190 ^ 8 16 24 30 - 50 -6.1 between days 7 and 14. A f u r t h e r decrease i s observed between days 14 and 21 to a pH of 5.4. The P0 2 (mmHg) drops immediately upon s h e l l c l o s u r e remaining a t a constant l e v e l between 40-50 mmHg f o r the f i r s t 14 days. The P0 2 drops s h a r p l y a f t e r 14 days to 0 mmHg a t 21 days. The zC0 2 (mM/L)rremains low, between 5-10, f o r the f i r s t 10 hours. A f t e r the f i r s t day the i C 0 2 begins to i n c r e a s e and continues to r i s e s t e a d i l y to ~ 35 mM/L i n 14 days. A f t e r 2 weeks the EG0 2 i n c r e a s e s h a r p l y to a value o f 55 mM/L a f t e r 21 days. Death occurred between days 21-28 as i n d i c a t e d by s h e l l gape, s m e l l , the o y s t e r s c o n d i t i o n once open and/or by a r e d u c t i o n i n i C 0 2 and incre a s e s i n P0 2 and pH. S h e l l degradation was ev i d e n t as inc r e a s e d transparency of the middle ( p r i s m a t i c ) l a y e r . At no time over the 28 days was s h e l l degra-d a t i o n e x t e n s i v e enough to cause s h e l l fragmentation or holes through the s h e l l . S h e l l b r i t t l e n e s s was though i n c r e a s e d and on the average the s h e l l weights decreased. DISCUSSION I. The K r a f t Process In essence a p u l p i n g process, such as K r a f t which u t i l i z e s an a l k a l i n e mixture ( s u l p h i d e , hydroxide, sulphate and carbonate) o f sodium s a l t s f o r d i g e s t i o n , removes the l i g n i n s and p o l y s a c c h a r i d e s from the c e l l u l o s e f i b e r s of the wood. The e f f l u e n t composition r e s u l t i n g from such a process w i l l vary with r e s p e c t to the wood type pulped. For example, pine which i s a wood high i n r e s i n adds a l a r g e c o n c e n t r a t i o n of turpenes to the e f f l u e n t ( N i l s s o n and R e n n e r f e l t , 1971). This major i n t r a m i l l v a r i a t i o n i n e f f l u e n t may be f u r t h e r emphasized by d i f f e r e n c e s i n d i l u -t i o n , and d i g e s t i o n and b l e a c h i n g wastes. Nonetheless, K r a f t m i l l e f f l u e n t may be g e n e r a l l y s t a t e d to add to the r e c e i v i n g waters: 1) a l a r g e q u a n t i t y of high temperature f r e s h water, 2) dissolvedEdegraded sugars (Bhaskaran and von Koeppen, 1970; C o l l i n s ejt a l _ . , 1971), l i g n i n d e r i v a t i v e s , r e s i n and f a t t y a c i d s ( A l d e r -d i c e and B r e t t , 1957; Haydu ejt a l _ . , 1952; Howard and Walden, 1965; Werner, 1963), terpenes (Hynninen, 1971) and tetrachlorobenzoquinone (Das e t a l . , 1969)]and p a r t i c u l a t e wood products ( f i b e r ) , and 3) pH a l t e r i n g chemicals l o s t from d i g e s t i o n [ a l k a l i n e sewer-hydrogen s u l p h i d e , dimethyl s u l p h i d e , disodium s u l p h i d e , methyl mercaptan, t h i o s u l p h a t e and s u l p h i t e (Hynninen, 1971; Werner, 1963)jand b l e a c h i n g [ c h r l o r i n e or z i n c h y d r o s u l p h i t e (Katz, 1971; Nemerow, 1971; Waldichuk, 1966c and 1971)]. The two processes, wood - 51 -- 52 -chip d i g e s t i o n and b l e a c h i n g are separate. The d i g e s t i o n or p u l p i n g process i s f o l l o w e d by b l e a c h i n g to improve the pulp q u a l i t y . The b l e a c h i n g process r e s u l t s i n an a c i d e f f l u e n t whereas the p u l p i n g pro-duces an a l k a l i n e waste. The wastes from the two processes are u s u a l l y combined upon l e a v i n g the m i l l , and the e f f l u e n t i s a dark brown. Each of the above components of the combined e f f l u e n t imposes a g r e a t change on t h e a q u a t i c environment. The e f f l u e n t being composed of f r e s h hot water reduces the s a l i n i t y and i n c r e a s e s the temperature of the r e c e i v i n g waters. The suspended s o l i d s r a i s e the t u r b i d i t y of the r e c e i v i n g waters and thereby reduce the depth of l i g h t p e n e t r a t i o n (Waldi chuk, 1971) which i s a l s o p a r t i a l l y reduced by the e f f l u e n t ' s c o l o u r . Such a r e d u c t i o n decreases p h o t o s y n t h e t i c a c t i v i t y and c o r r e s p o n d i n g l y the \" n a t i v e \" phytoplanktoners d e c l i n e . In t h i s l i g n o t r o p h i c c o n d i t i o n ( E l o r a n t a , 1970) b a c t e r i a ( S p h a e r o t i l u s ) produced s l i m e accumulates. The benthal d e p o s i t s are g r e a t l y i n c r e a s e d by the settlement of t h i s p a r t i c u l a t e matter (McKeown et_ ajL , 1968). Continual s e t t l e m e n t leads to anaerobic c o n d i t i o n s where sulphur reducing b a c t e r i a f l o u r i s h (Waldi-chuk, 1962; Werner, 1963; Brown et a l _ . , 1970). The high oxygen demand of the e f f l u e n t stems from two f a c t o r s . F i r s t l y , the chemical (COD) (Hennequin, 1970; Howard and Walden, 1971) r e a c t i o n between the reduced s u l p h u r compounds from d i g e s t i o n and b l e a c h i and secondly, the b i o l o g i c a l demand (BOD) (Howard and Walden, 1963) of the d i s s o l v e d and p a r t i c u l a t e wood products. The chemicals added f o r d i g e s t i o n and l o s t as waste have at the present time an apparent but i l l - d e f i n e d t o x i c i t y . Though the chemicals - 53 -used i n K r a f t p u l p i n g have rendered the term a l k a l i n e d i g e s t i o n to the process, t h i s term i s m i s l e a d i n g . The pH of the a c i d bleach e f f l u e n t ranges from 1.9-2.6 (Howard and Walden, 1965; Waldichuk, 1966c). Com-b i n i n g the a c i d bleach waste with the a l k a l i n e waste from wood pul p i n g does not r e t u r n the pH to a c c e p t a b l e l e v e l s (5-9). The pH of the whole e f f l u e n t upon l e a v i n g the m i l l i s 2.6-3.2. According to Howard and Walden (1965), 75% o f the e f f l u e n t s t o x i c i t y stems from t h i s low pH. Three types of r e c e i v i n g waters e x i s t i n B r i t i s h Columbia: i n l e t , r e s t r i c t e d embayment, and w e l l - f l u s h e d channels (Waldichuk, 1959). The means of d i s p o s a l , e i t h e r on the s u r f a c e or i n deep water ( v i a d i f f u s e r ) should be r e g u l a t e d to the type o f r e c e i v i n g water. At Port Mellon the e f f l u e n t i s discharged on the s u r f a c e i n t o r e l a t i v e l y stagnant waters. I I . An Oysters' Preference The P a c i f i c o y s t e r , C r a s s o s t r e a g i g a s , a sessile b i v a l v e i n i t s a d u l t stage must encounter p a r t i c u l a r p h y s i c a l (bottom c o n d i t i o n s , tem-pe r a t u r e , t i d a l a c t i o n , and s i l t a t i o n ) , chemical ( s a l i n i t y , oxygen, pH, carbon d i o x i d e , n u t r i e n t s and t r a c e elements), and b i o l o g i c a l (food, crowding, waste accumulation, p r e d a t o r s , p a r a s i t e s and d i s e a s e ) c o n d i t i o n s to ensure p o p u l a t i o n s u r v i v a l (Gunter and McKee, 1970; G a l t -s o f f , 1964). An o y s t e r p r e f e r s a hard substratum (Gunter, 1949), a p p r o x i -mately 5-10 hoursoof exposure d a i l y (Quayle, 1964), s i l t a t i o n below 250 mg/L (Loosanoff and Tommers, 1948), and a temperature range of 6-18\u00C2\u00B0C ( G a l t s o f f , 1947). Optimal s a l i n i t i e s are 18-20% o(Gunter, 1950, 1955) - 54 -adequate oxygen is 5 mg/L and a pH range of 7.2-8.4 is preferred (Pry-therch, 1934). A carbon dioxide concentration of 1.00 ml/L is necessary as are divalent cations for shell growth (Dugal, 1939; Wilburn, 1964). In terms of food preference the oyster assimilates only a portion of the total food ingested. Several poss ib i l i t ies for the ingested ma-ter ia l have been proposed from organic detritus (Savage, 1925), various plant forms (Yonge, 1926), carbohydrates (Coll ier e_t aj_., 1953) to nanno-planktoners (Davis, 1950). The flagellated nannoplanktoners with no cel l wall or spines such as Monochrysis sp. appear to be the food preferred by the oyster (Davis and Gui l lard, 1958). The area of oyster larvae settlement must be suff ic ient ly flushed to remove the faeces and pseudofaeces produced by the oyster population as well as the wastes from other benthic forms (Ito and Imai, 1955). Once settled an oyster grows equally well in length and width, and.the edges are fluted when uncrowded (Quayle, 1969). III. KME and the Oyster In this study region A (of the hydrographic survey encompassing oyster areas 1, 2 and 3) at a l l seasons and Region B (pertaining mainly to oyster station 4 and 5) during the spring and summer only, suffered effluent imposition. These variations in water properties were experienced only at low water. A flooding or ebbing tide provided suff ic ient mixing in the areas of Regions A and B to return the above variables to normal levels. Reductions in O.D.'s at high water also indicated that adequate - 55 -t i d a l mixing had r e s u l t e d . At the s t a t i o n s themselves KME i n t e r f e r e n c e was e v i d e n t a t o y s t e r areas 1, 2, and 3. The e f f e c t a t S t a t i o n 1 was most severe and r e l i e f from the e f f l u e n t occurred only during high water. Taken i n d i v i d u a l l y each imposed v a r i a t i o n by the e f f l u e n t on the water q u a l i t y e f f e c t s the o y s t e r s such t h a t s u r v i v a l may be questioned. A P a c i f i c o y s t e r f a t t e n s over a wide range o f temperatures (5-18\u00C2\u00B0C). Beyond 18\u00C2\u00B0C the food reserves are metabolized and at 22\u00C2\u00B0C the o y s t e r s c o n d i t i o n s i s poor and a l l reserves burnt (Gunter and McKee, 1960). Elev a t e d temperatures(greater than 20\u00C2\u00B0C) occurred a t e f f l u e n t areas during the s p r i n g and summer. The c o n c e n t r a t i o n o f p a r t i c u l a t e matter i n the s u r f a c e waters of S t a t i o n 1 was beyond 250 mg/L. At t h i s c o n c e n t r a t i o n the pumping o f water through the o y s t e r has been shown to decrease o r cease (Loosanoff and Tommers, 1948). A r e d u c t i o n i n s a l i n i t y i s o s m o t i c a l l y hazardous to the o y s t e r i n t h a t below 10 0/00 excess water moves i n t o the o y s t e r ' s body. Water r e t e n t i o n leads to a swollen t r a n s p a r e n t grey meat ( S t e i n and C l a r k , 1959; Woelke, 1956b; and Ingle and Dawson, 1962), Low s a l i n i t i e s a l s o cause the g i l l c i l i a t o stop b e a t i n g (Gray, 1928; A i e l l o , 1960). S a l i -n i t i e s below 10 0/00 were noted i n the s u r f a c e waters o f regions A and B i n the s p r i n g and summer. During the f a l l and w i n t e r the s a l i n i t i e s were reduced i n the s u r f a c e waters o f re g i o n A. At oxygen pressures below 40 mmHg the r a t e o f 0 2 uptake begins to d e c l i n e and a r e d u c t i o n i n g i l l c i l i a beating occurs ( A i e l l o , 1960). Within the P0 9 range o f 25-17 mmHg V0 9 ceases. A r e d u c t i o n i n pH has - 56 -been shown to decrease uptake (Galtsoff, 1964; Calabrese and Davis, 1970). An increase in hydrogen ion concentration impedes water trans-port through the pa l l ia l cavity by interfering with the co-ordination of c i l i a movement (A ie l lo , 1960). Low 0^ levels and large pH changes were noted in effluent areas. Not only is there an optimal concentration of food-stuffs above which water flow through the oyster ceases (Loosanoff and Engle, 1947; Walne, 1965) and below which the nutrition obtained is less than the energy expended (Dame, 1972), but also the oyster assimilates only a portion of the food i t ingests. Considering an oysters previously men-tioned preference, i t seems unlikely that the species present at the mil l were u t i l i zed . Chaetoceros sp. (a spiny pseudo-filamentous green), Melosira sp. and Coscinddiscus sp. (both diatoms possessing thick frustules) were in abundance a l l of which the oyster cannot assimilate. A f lagellated spineless unicellular green algae was not evident and as such the oysters from effluent areas were probably starving. This variation in algal species in effluent areas is the result of high temperatures, alterations in the depth of l ight penetration and reduced sa l in i t ies (Gunter, 1956a). The native populations of green algae were unable to adapt to the changed environment or compete with the species now in abundance. The chemicals added to the receiving waters have not been as yet studied individually. The sulphonated lignins have been proposed as possible chelators of divalent cations. This has been thought beneficial to oyster populations in areas of high metal concentrations (Gunter and - 57 -McKee, 1960). On the other hand, e x c e s s i v e c h e l a t i o n may i n t e r f e r e with metals necessary f o r c i l i a rhythmicy ( A i e l l o , 1960), mantle s h e l l s e c r e t i o n ( S i m k i s s , 1965),and enzyme a c t i v i t y . Several o f the added chemicals may be d i r e c t l y t o x i c to o y s t e r l a r v a e , the o y s t e r s most s e n s i t i v e stage (Woelke et al_ . , 1972). IV. Oxygen Uptake The low 0 2 c o n c e n t r a t i o n s of the waters where e f f l u e n t was de-t e c t e d have been t e s t e d as the major cause of o y s t e r m o r t a l i t y . For o y s t e r s from n a t u r a l p o p u l a t i o n s oxygen consumption v a r i e s with s e v e r a l e x t r i n s i c (temperature-seasonal; s a l i n i t y - s e a s o n a l and contaminants-algae, and r u n o f f ) and i n t r i n s i c (water content, glycogen content, r e -p r o d u c t i v e s t a t e and c o n d i t i o n ) f a c t o r s ( G a l t s o f f , 1964). The i n t r i n s i c f a c t o r s are most e v i d e n t , f o r d i f f e r e n t metabolic r a t e s have been obtained f o r o y s t e r s from the same area. 0 2 consumption i s a l s o dependent on water movement over the g i l l s and f o r water pumping to occur the g i l l c i l i a must be beating (Gray, 1926). In t h i s r e s p e c t any i n t e r f e r e n c e with g i l l c i l i a rhythmicy hinders water movement and t h e r e f o r e V0 2. At s a t u r a t e d P0 2's the percentage 0 2 u t i l i z a t i o n f o r water passing over the g i l l s i s l e s s than 10% and i s consumed a t a r o u t i n e r a t e (Bayne, 1971a, 1973). A l a r g e v e n t i l a t i o n volume i s needed to f i l t e r s u f f i c i e n t food and i s known to i n c r e a s e i n the presence of s u i t a b l e food (Walne, 1965; Loosanoff and Engle, 1947). A f t e r i n g e s t i o n of food (approximately twelve hours) 0 ? consumption i n c r e a s e s to what i s termed an a c t i v e r a t e - 58 -(.5 ml/g/hour) (Bayne, 1973). A low r a t e o f 0 2 uptake, termed the s t a n -dard r a t e , occurs i n a l l adverse c o n d i t i o n s ( s t a r v a t i o n , low Or, l e v e l s i n the environment and temperature l e s s than 5\u00C2\u00B0C). The c r i t i c a l oxygen t e n s i o n where 0 2 uptake begins to d e c l i n e to the standard r a t e i s a p p r o x i -mately 40 mmHg. Between 25-17 mmHg 0 2 uptake ceases. The o y s t e r con-serves energy by stopping v e n t i l a t i o n a t low water P0 2's and presumably operates a n a e r o b i c a l l y (Newell, 1970). However, i n my f i e l d experiments, ju d g i n g from the oxygen l e v e l s a v a i l a b l e to the o y s t e r s as the t i d e r i s e s over the t r a y s , i t seems u n l i k e l y t h a t o y s t e r d e t e r i o r a t i o n may be c o r r e -l a t e d to 0 2 l a c k . The l a b experiments were c a r r i e d out a t a temperature 2-3\u00C2\u00B0C above t h a t o f the h o l d i n g tank and i t may be argued t h a t the temperature d i f -ference between the holding tank and the respirometer water was such t h a t the r e s u l t s may be questioned. Newell (1966, 1969, 1973) has proposed that regions o f temperature i n s e n s i t i v i t y occur i n organisms s u b j e c t e d to c y c l i c temperature f l u c t u a t i o n s . The body f l u i d s o f i n t e r t i d a l animals may be 6-10\u00C2\u00B0C above the water temperature when exposed. Regions o f tem-perature i n s e n s i t i v i t y are seen i n the i n t e r t i d a l sea u r c h i n (Stongylocen- t r o t u s p u r p e r a t u s ) , which possesses a metabolic r a t e independent o f tem-peratures between 12-21\u00C2\u00B0C. On the other hand, the s u b t i d a l forms'(S^. f r a n c i s c a n u s ) metabolic r a t e i s temperature dependent. When a c t i v e , a mussel's ( M y t i l u s e d u l i s ) r a t e o f 0 2 consumption i s temperature depen-dent (Bayne, 1973), however, a t r e s t i t i s independent. For the o y s t e r , which i s t o t a l l y q u i e s c e n t i n n a t u r a l s i t u a t i o n s , i t s metabolic r a t e i s probably temperature independent. This thermal independence over normal - 59 -environmental temperatures i s such t h a t the food reserve (glycogen) i s not metabolized at an i n c r e a s e d r a t e during a i r exposure. The range o f temperature (2-3\u00C2\u00B0C) to which oysterswere subjected i n the l a b o r a t o r y i s well w i t h i n the zone o f thermal independence so probably the temperature s h i f t had l i t t l e e f f e c t on Or, uptake. V. T o x i c i t y o f the E f f l u e n t T e s t i n g the t o x i c i t y of the e f f l u e n t by removing the p a r t i c u l a t e matter, n e u t r a l i z i n g the e f f l u e n t and c o n t i n u a l l y a e r a t i n g the t e s t s o l u -t i o n s i n d i c a t e d a c o r r e l a t i o n between i n c r e a s e s i n e f f l u e n t c o n c e n t r a t i o n and the times o f s h e l l c l o s u r e . Knowing t h a t the flow of water over the g i l l s i s produced by the c i l i a on the g i l l l a m e l l a e t h i s i s not s u r p r i s i n g f o r any i n t e r f e r e n c e with c i l i a rhythmicy impedes water movement (Gray, 1928; A i e l l o , 1960). Another f a c t o r to be considered stems from the s e n s i t i v i t y o f the mantle edge. The mantle edge once s t i m u l a t e d by such f a c t o r s as low c o n c e n t r a t i o n s o f t o x i c a n t s s e a l s the o y s t e r from the e x t r a p a l l i a l f l u i d (Quayle, 1964). The s h e l l a t t h i s time may be a gape though the d i s t a n c e the s h e l l s a r e a p a r t may not be c o r r e l a t e d to v e n t i -l a t i o n volume ( G a l t s o f f , 1938). As noted i n the r e s u l t s a 20-?'KME/volume t e s t s o l u t i o n y i e l d e d an above or equal time of s h e l l gape to the c o n t r o l s . Judging from the width of s h e l l opening and the behavior of the o y s t e r s i n the tank the p o s s i b i l i t y o f mantle c l o s u r e at t h i s c c o n c e n t r a t i o n must be c o n s i d e r e d . Expressing the percentage KME/volume i n p a r t s per m i l l i o n i n d i -cates r a t h e r a l a r m i n g l y high values (20% = 200,000ppm) which may appear - 60 -u n r e a l i s t i c as c o n c e n t r a t i o n s encountered i n the f i e l d . From personal o b s e r v a t i o n s i n the areas of S t a t i o n s 1, 2 and i n many i n s t a n c e s 3, I f e e l s a f e i n assuming t h a t 20% KME/volume o r above occurs i n the s u r f a c e waters at these areas. The temperature f l u c t u a t i o n s i n each t e s t tank ranged from 13-18\u00C2\u00B0C. Such v a r i a t i o n s may be considered to e f f e c t s h e l l gape time. Previous t e s t s on periods o f s h e l l opening over 24 hours using v a r i o u s o y s t e r s p e c i e s a t s e v e r a l temperature ranges l i s t e d below have found t h i s not to be so. Temperature Hours open/ range \u00C2\u00B0C 24 hours Author 5-17 x 20 Hopkins, 1931 13-22 x 17 G a l t s o f f , 1926 22-25 x 20 Nelson, 1936 17-28 19-24 G a l t s o f f et al_, 1947 E x t e n s i v e periods o f s h e l l c l o s u r e are then, imposed by high e f -f l u e n t c o n c e n t r a t i o n s . The e f f e c t of these e x t e n s i v e periods s h a l l now be c o n s i d e r e d . VI. Anaerobic R e s p i r a t i o n F i r s t l y , i t must be s t a t e d t h a t though the pH a t the s i t e o f enzyme a c t i v i t y was not recorded, the pH o f the p a l l i a l f l u i d was assumed to i n d i c a t e an i n t r a c e l l u l a r pH s h i f t . In mammalian red blood c e l l s the pH i s a c i d i c (7.2) to t h a t of the plasma (7.4). I n t r a c e l l u l a r pH's have not been recorded f o r o y s t e r s . - 61 -Upon s h e l l c l o s u r e the pH o f the p a l l i a l f l u i d [contained i n the c a v i t y ( p a l l i u m ) between the mantle and the main body mass o f the o y s t e r ] o f the o y s t e r f a l l s , p o s s i b l y r e s u l t i n g from a e r o b i c TCA c y c l e inte r m e d i a t e s accumulating. This decrease i n pH along with adequate d i v a l e n t c a t i o n s ( Z n + + ) and a low c o n c e n t r a t i o n o f phosphoenolpyruvate (PEP) a c t i v a t e s the enzyme phosphoenolpyruvate carboxykinase (PEPCK). (The above f a c t o r s a l s o i n h i b i t the enzyme pyruvate kinase (PK) which converts PEP to pyr u v a t e ) . Once s t i m u l a t e d the enzyme PEPCK converts PEP and Carbon d i o x i d e (C0 2) to o x a l o a c e t a t e (OXA), a member of the t r i -c a r b o x y l i c a c i d c y c l e (TCA c y l e ) . The OXA through reversed r e a c t i o n s o f the TCA c y c l e proceeds to s u c c i n a t e (an end product o f anaerobic meta-bolism) (Mustafa and Hochachka, 1973a, 1973b, 1973c). A l a n i n e , another end product of anaerobic r e s p i r a t i o n r e s u l t s from the transamination o f pyruvate (Hochachka e t a l _ . , 1973). The pyru-vate r e s u l t s not from PEP but from the a c t i v i t y o f the mal i c enzyme which u t i l i z i n g NADP converts malate to pyruvate and C0 2 (Mustafa and Hochachka, 1973a). The reducing e q u i v a l e n t s (NAD +) necessary f o r g l y c o l y s i s to con-NAD -\u00C2\u00BB\u00E2\u0080\u00A2 NADH + H + t i n u e (3PGA \u00E2\u0080\u00A2* 1, 3DPGA) r e s u l t s from two sources. F i r s t l y , the r e d u c t i o n o f OXA to malate u t i l i z e s NADH + H + and t h e r e f o r e regenerates the o x i d i z e d co-enzyme. Secondly, the fumarase step (fumarate to s u c c i n a t e ) y i e l d s the o x i d i z e d p r o s t h e t i c group FAut The FADH 2 necessary f o r t h i s step to proceed stems from a coupled red-ox r e a c t i o n with NADH2. The o x i d i z e d form o f the NADH + H + i s u t i l i z e d i n g l y c o l y s i s . - 62 -The source of C0 2 or HC0 3 necessary to convert PEP to OXA has two p o s s i b l e sources. A minor amount may be d e r i v e d from the a c t i v i t y o f the malic enzyme c o n v e r t i n g malate to pyruvate and C0 2- The major source c o u l d r e s u l t from the c a l c i u m carbonate (CaCOg) of the o y s t e r s h e l l (Dugal, 1939; Simkiss, 1965). Apparently the accumulation of suc-c i n a t e and a l a n i n e causes the p r i s m a t i c (middle) l a y e r of the o y s t e r s h e l l to d i s s o l v e (Wilbur and Jodrey, 1962). The CaC0 3 r e l e a s e d from the d i s s o l v e d s h e l l b u f f e r s the H + buildup and the r e a c t i o n y i e l d s one C0 2 molecule f o r every two molecules o f CaC0 3 (Dugal, 1939). For the f i r s t 7 days of s h e l l c l o s u r e i n j u v e n i l e o y s t e r s , the pH o f the p a l l i a l f l u i d i s a t the pK of c a r b o n i c a c i d [6.3-6.4 (due to 0/00 v a r i a t i o n s ) ] . Between days 7 to 14 the pH of the f l u i d f a l l s and remains a t the pK-| o f s u c c i n i c a c i d (5.3), i n d i c a t i n g a b u i l d u p o f t h i s end product. A f t e r day 14 the pH again f a l l s with f u r t h e r b u i l d u p of C0 2 i n the p a l l i a l f f l u i d . The P0 2 remained constant a t 40-50 mmHg f o r 14 days. This con-s i s t e n c y of the P0 2 i n the p a l l i a l f l u i d i s the r e s u l t of the a e r o b i c shutdown caused by the r e d u c t i o n i n pH. The c e s s a t i o n o f 0 2 u t i l i z a t i o n with an i n c r e a s e i n hydrogenion c o n c e n t r a t i o n has been t e s t e d by decreasing the pH o f sea water and measuring the r a t e o f 0 2 uptake ( G a l t s o f f , 1964 and Calabrese and Davis, 1970). 0 2 consumption was found to decrease to 10% o f i t s normal l e v e l a t a pH of 5.8. I t may be argued t h a t a e r o b i c r e s p i r a t i o n was c o n t i n u i n g and t h a t 0 2 d i f f u s e d through the s h e l l a t the r a t e o f u t i l i z a t i o n m a i n t a i n i n g a constant P0 2 i n the p a l l i a l f l u i d . F o r t u n a t e l y t h i s was shown not to occur i n o y s t e r s , f o r during periods - 63 -of s h e l l c l o s u r e i n a respir o m e t e r the P 0 2 of water remained constant. In order f o r anaerobic r e s p i r a t i o n to be b e n e f i c i a l to natur a l o y s t e r populations the switch from a e r o b i c to anaerobic metabolism must be r a p i d and w i t h i n the time span o f a t i d a l exposure. From the r a p i d d e c l i n e i n the P0 2 i n the p a l l i a l f l u i d f o l l o w e d by a r e l a t i v e l y steady P0 2 over 14 days o f s h e l l c l o s u r e the switch to anaerobic metabolism can be termed immediate and r e s u l t i n g from the d e c l i n e i n pH. The re d u c t i o n i n 0 2 uptake i s not r e l a t e d to the f a l l i n P 0 2 but to the f a l l i n pH. Animals a t pH 7.0 were able to maintain r o u t i n e r a t e s o f 0 2 uptake a t P0 2 o f 40-50 mmHg and 0 2 uptake was not l i m i t e d by 0 2 l e v e l u n t i l P 0 2 was reduced to 17-25 mmHg. E f f l u e n t may cause o y s t e r m o r t a l i t y e i t h e r by causing prolonged s h e l l c l o s u r e o r by d i r e c t l y a f f e c t i n g the o y s t e r because o f changes i n temperature, s a l i n i t y or food a v a i l a b i l i t y . In the case of s h e l l c l o s u r e , the c a p a c i t y f o r anaerobic metabolism determines l i f e span. Anaerobic c a p a c i t y i s c o r r e l a t e d to o y s t e r s i z e . Large o y s t e r s are more t o l e r a n t o f extreme c o n d i t i o n s and were the l a s t to d i e a t S t a t i o n s 1 and 2. A l s o prolonged c l o s u r e r e s u l t s i n a r e d u c t i o n i n s h e l l weight and the s h e l l becomes t r a n s l u c e n t and b r i t t l e . The s h e l l s a t S t a t i o n s 1, 2 and 3 were both t r a n s l u c e n t and b r i t t l e . These o b s e r v a t i o n s are c o n s i s -t e n t with the hypothesis t h a t the e f f e c t o f KME i s to cause s h e l l c l o s u r e and prolonged periods o f anaerobic metabolism i n o y s t e r s . S h e l l c l o s u r e was not the only f a c t o r causing o y s t e r m o r t a l i t y . Increased temperatures, low s a l i n i t i e s and reduced food supply undoubtedly c o n t r i b u t e d to the demise of the o y s t e r populations a t S t a t i o n s 1, 2 and 3. - 64 -Oysters at S t a t i o n s 2 and 3 were t r a n s p a r e n t and bulbous, which has been shown to r e s u l t from low s a l i n i t y exposure (Gunter, 1950). The e f f e c t of KME i s r a p i d l y attenuated with d i s t a n c e from the m i l l . The waters i n the areas of S t a t i o n s 4 and 6 appeared normal such t h a t KME was c o n s i d e r e d absent. The o y s t e r s a t these s t a t i o n s a l s o d i s -played no i l l - e f f e c t s t h a t could be c o r r e l a t e d to changes i n t h e i r en-vironment from KME. Knowing these s t a t i o n s (4 and 6) to be w i t h i n a m i l e of the m i l l , the e f f e c t o f KME, though l e t h a l w i t h i n an approximate 1/2 mile radius to s e v e r a l marine s p e c i e s , seems adequately l o c a l i z e d . CONCLUSIONS 1. Semi-diurnal exposure to high c o n c e n t r a t i o n s o f KME causes 100% o y s t e r m o r t a l i t y w i t h i n one y e a r . 2. At high c o n c e n t r a t i o n s o f KME s h e l l growth i s reduced, meat weight r decreases and the r e p r o d u c t i v e s t a t e i s never reached. 3. The high 0 2 demand o f the e f f l u e n t does not appear to d i r e c t l y e f f e c t the o y s t e r s w e l l - b e i n g . The 0 2 the o y s t e r r e q u i r e s i s p o s s i b l y a v a i l a b l e when submerged below the low d e n s i t y e f f l u e n t l a y e r . 4. Extensive periods o f s h e l l c l o s u r e r e s u l t when oysters are s u b j e c t e d to high percentages o f f i l t e r e d , n e u t r a l i z e d (pH 7.0 at 22\u00C2\u00B0C) and c o n t i n u a l l y aerated KME. 5. Long periods o f s h e l l c l o s u r e may only be r e v e r s i b l y t o l e r a t e d f o r 14-21 days i n o y s t e r s of t h i s s i z e . - : 65 -LITERATURE CITED A i e l l o , Edward L. 1960. Factors a f f e c t i n g c i l i a r y a c t i v i t y on the g i l l o f the mussel M y t i l u s e d u l i s . Phys. Z o o l . Vol. 33:120-135. A l d e r d i c e , D. F. and J . R. B r e t t . 1957. Some e f f e c t s o f K r a f t m i l l e f f l u e n t on young P a c i f i c salmon. J . F i s h . Res. Bd. Canada. 14(5): 783-095. 14 Awapara, J . and Campbell, J . W. 1964. U t i l i z a t i o n of C 0 9 f o r the f o r -mation o f some a.a. i n three i n v e r t e b r a t e s . Comp. Biochem. and P h y s i o l . ]J_:231-235. Barnes, C. A., E. E. C o l l i a s , V. F. F e l i c e t t a , 0. Godschmid, B. F. Hrut-f i o r d , A. L i v i n g s t o n , J . L. McCarthy, G. L. Toombs, M. Waldichuk, and R. Westley. 1963. A s t a n d a r d i z e d pearl-benson, o r n i t r o s o , method recommended f o r e s t i m a t i o n of spent s u l f i t e l i q u o r or s u l f i t e waste l i q u o r c o n c e n t r a t i o n i n waters. Tappi 46(6):347-351. Bayne, B. L. 1971a. Oxygen consumption by three s p e c i e s of l a m e l l i b r a n c h mollusc i n d e c l i n i n g ambient oxygen t e n s i o n . Comp. Biochem. P h y s i o l . 40A:955-970. Bayne, B. 1973. The responses of three s p e c i e s o f b i v a l v e mollusc to d e c l i n i n g 02 t e n s i o n at reduced s a l i n i t y . Comp. Biochem. P h y s i o l . 45(A):793-806. Bhaskaran, T. A., and A. von Koeppen. 1970. The degradation of wood carbohydrates during sulphate p u l p i n g . HolzForschung 24:14-19. Brown, V. M., D. G. Shurben, and D. Shaw. 1970. Studies on water q u a l i t y and the absence o f f i s h from some p u l l u t e d E n g l i s h r i v e r s . Water Research 4:363-382. Calabrese, A. and H. C. Davis. 1970. Tolerances and requirements of embryos and l a r v a e o f b i v a l v e moll uses. Helgolander wiss. Meeres-unters. 20:553-564. , R. S. C o l l i e r , D. H. Nelson and J . R. Maclnnes. 1973. The t o x i c i t y of heavy metals to embryos of the American o y s t e r Crassos- t r e a v i r g i n i c a . Marine B i o l o g y 18:162-166. Cameron, J . 1971. Rapid method o f determining t o t a l carbon d i o x i d e i n small blood samples. J . Appl. P h y s i o l . 31:632-634. - 66 -- 67 -Chen, C , and J . Awapara. 1969. I n t r a c e l l u l a r d i s t r i b u t i o n of enzymes c a t a l y z i n g s u c c i n a t e production from glucose i n Rangia mantle. Comp. Biochem. P h y s i o l . 30:727-737. C o l l i e r , A., S. M. Ray, A. M. Magnitzky and J . 0. B e l l . 1953. A f f e c t o f d i s s o l v e d organic substances on o y s t e r s . F i s h . B u l l . 54:167-185. C o l l i n s , J . W., A. A. Webb, and L. A. Boggs. 1971. C h a r a c t e r i z a t i o n of l i g n i n and carbohydrate r e s i d u e s found i n bleach e f f l u e n t s . TAPPI 54:105-110. Dame, R. F. 1972. The e c o l o g i c a l energies o f growth, r e s p i r a t i o n and a s s i m i l a t i o n i n the i n t e r t i d a l American o y s t e r C r a s s o s t r e a v i r g i n i c a . Marine B i o l . 17.:243-250. Davis, H. C. 1950. On food requirements o f l a r v a e o f o s t r e a v i r g i n i c a Anat. Rec. 108:132-133. , and R. R. G u i l l a r d . 1958. R e l a t i v e value o f ten genera o f micro-organisms as food f o r o y s t e r and clam l a r v a e . V.S. F i s h B u l l . 58: 293-304. Davis, J . C. and B. J . Mason. 1973. Bioassay procedures to ev a l u a t e acute t o x i c i t y o f n e u t r a l i z e d bleached K r a f t pulp m i l l e f f l u e n t to P a c i f i c salmon. 30 (10):1565-1573. Das, B. S., S. G. Reid, J . L. B e t t s , and K. P a t r i c k . 1969. T e t r a c h l o r o -benzoquinone as a component i n bleached K r a f t c h l o r i n a t i o n e f f l u e n t t o x i c to young salmon. JFRBC 26_:3055-3067. Dugal, P. L. 1939. The use o f caecareous s h e l l to b u f f e r the product o f anaerobic g l y c o l y s i s i n Venus mercenaria. J . C e l l . Comp. P h y s i o l . 13:235-251. E l o r a n t a , P. 1970. P o l l u t i o n and a q u a t i c f l o r a o f waters by s u l p h i t e c e l l u l o s e f a c t o r y a t Mantta, F i n n i s h Lake d i s t r i c t . Annales B o t a n i c i F e n n i c i 7_:63-141. G a l t s o f f , P. S. 1926. New methods to measure the r a t e o f flow produced by the g i l l s o f o y s t e r and other m o l l u s c s . Science 63(1626):233-234. . 1947. R e s p i r a t i o n i n o y s t e r s . Natn. S h e l l f i s h Ass., 1947: 33-79. . 1953. Accumulation of manganese, i r o n , copper, and z i n c i n the body o f the American o y s t e r , C r a s s o s t r e a v i r g i n i c a . Anat. Rec. 117:601-602. . 1964. The American o y s t e r C r a s s o s t r e a v i r g i n i c a Gmelin. B u l l . U.S. F i s h . 64:1-480. - 68 -G a l t s o f f , P. S., W. H. Chipman J r . , J . B. Engle and H. N. Calderwood. 1947. E c o l o g i c a l and p h y s i o l o g i c a l s t u d i e s of the e f f e c t of s u l -f a t e pulp m i l l wastes on o y s t e r s i n the York R i v e r , V i r g i n i a . F i s h . B u l l . F i s h and W i l d l i f e Ser. 5J_:Bull. #43. and Whipple, D. V. 1930. Oxygen consumption of normal and green o y s t e r s . B u l l . U.S. Bur. F i s h e r i e s 46_:489-508. Gray, J . 1928. C i l i a r y movement. Cambridge Univ. Press. 89 pp. Gunter, G. 1949. A summary of production s t a t i s t i c s and f a c t s r e l a t e d to the development of the o y s t e r i n d u s t r y i n L o u i s i a n a , with a b r i e f comparison with other G u l f s t a t e s . Texas A and M. Res. Found. Pub. 2:1-28. _. 1950. Seasonal p o p u l a t i o n changes and d i s t r i b u t i o n s as r e l a t e d to s a l i n i t y , o f c e r t a i n i n v e r t e b r a t e s of the Texas c o a s t , i n c l u d i n g the commercial shrimp. Pub. I n s t . Mar. S c i . (Univ. Texas) 1_(2):7-51. . . 1955. M o r t a l i t y of o y s t e r s and abundance of c e r t a i n a s s o c i a t e s as r e l a t e d to s a l i n i t y . Ecology 36(4):601-605. . 1956a. Some r e l a t i o n s o f fuanal d i s t r i b u t i o n s to s a l i n i t y i n e s t u a r i n e waters. Ecology 37(2):616-619. , and J . E. McKee. 1960. On o y s t e r s (Ostrea l u r i d a and Crassos-t r e a gigas) and s u l f i t e waste l i q u o r s . Wash. P o l l u t i o n Control Comm. A r e p o r t to the P o l l u t i o n Control Commission o f the s t a t e o f Wash. Hammen, C. S. 1969. Metabolism of the o y s t e r , C r a s s o s t r e a v i r g i n i c a . Amer. Zo o l . 9;309-318. Haydu, E. P., H. R. Amberg and R. E. Dimick. 1952. The e f f e c t of K r a f t m i l l waste components on c e r t a i n s a l monoid f i s h e s of the P a c i f i c northwest. TAPPI 35:545-549. Hennequin, C. 1970. Les c r i t e r e s a n a l y t i q u e s de l a p o l l u t i o n des eaux. B u l l . Soc. Chim. France 1_:357-364. Hochachka, P. W. 1971. Enzyme mechanisms i n temperature and pressure a d a p t a t i o n o f o f f - s h o r e benthic organisms. The b a s i c problem. Am. Zool. 1J_(3):425-__, J . F i e l d s and T. Mustafa. 1973. Animal l i f e without oxygen: Ba s i c biochemical mechanisms. Amer. Zo o l . 13:543-555. , and T. Mustafa. 1972. I n v e r t e b r a t e f a c u l t a t i v e a n a e r o b i o s i s . Science 178:1056-1060. - 69 -Hopkins, A. E. 1931. Temperature and the s h e l l movements of o y s t e r s . B u l l . Bureau o f F i s h e r i e s 47:1-14. , P. S. G a l t s o f f and H. C. McMillan. 1931. E f f e c t s of pulp m i l l p o l l u t i o n on o y s t e r s . B u l l . Bureau F i s h e r i e s 67_:Bull. #6. Howard, T. E.aand C. C. Walden. 1965. P o l l u t i o n and t o x i c i t y charac-t e r i s t i c s of K r a f t pulp m i l l e f f l u e n t s . TAPPI 48:136-141. and . 1969. E f f l u e n t c h a r a c t e r i s t i c s of bleached K r a f t pulp m i l l s . Conf. Pac. Coast and West Branches Tech. Sect. Can. Pulp and Paper Assoc., P r i n c e George, B.C. September 27, 1967. Pulp and Paper Magazine o f Canada 77:73-79. and . 1971. E f f l u e n t c h a r a c t e r i s t i c s o f bleached K r a f t pulp m i l l s . Pulp and Paper Magazine of Canada 72: 73-79. Huggett, R. J . , M. E. Bender and H. D. Slone. 1973. U t i l i z i n g metal c o n c e n t r a t i o n r e l a t i o n s h i p s i n the e a s t e r n o y s t e r ( C r a s s o s t r e a v i r g i n i c a ) to s e l e c t heavy metal p o l l u t i o n . Water Research 7_: 451-460. Hynninen, P. 1971. On the r e a c t i o n s of methyl-mercaptan and i t s o x i -d a t i o n products i n a i r - or s t e a m - s t r i p p i n g o f s u l f a t e m i l l conden-s a t e s . Paperi j a Pmm-Papper oc T r a . 53:159-169. In g l e , R. M. and C. E. Dawson, J r . 1952. Growth o f the American o y s t e r , C r a s s o s t r e a v i r g i n i c a (Gmelin) i n F l o r i d a waters. B u l l . Marine S c i . G u l f and Caribbean 2.(2) :393-404. I t o , S. and T. Imai. 1955. Ecology of o y s t e r beds. I. On the d e c l i n e o f p r o d u c t i v i t y due to repeated c u l t u r e s . Tohoku Journ. A g r i c . Res. 5(4):251-268. Katz, M. 1971. In: Water and Water P o l l u t i o n Handbook, V o l . 1, e d i t e d by L. L. C r a c c i o . Marcel Dekker Inc., New York. pp. 297-328. Loosanoff, V. L. and J . B. Engle. 1947. The e f f e c t o f d i f f e r e n t concen-t r a t i o n s o f micro-organisms on the f e e d i n g o f o y s t e r s . F i s h . B u l l . 42:52-67. and F. D. Tommers. 1948. E f f e c t o f suspended s i l t and other substances on r a t e o f f e e d i n g of o y s t e r s . S c i e n c e , 107:69-70. McKeown, J . J . , A. Benedict, and G. Locke. 1968. J . Water P o l l . Control Fed. 40:R333-353. McKernan, D. L., V. T a r t a r and R. T o l l e f s o n . 1949. An i n v e s t i g a t i o n of the d e c l i n e o f the n a t i v e o y s t e r i n d u s t r y o f the S t a t e of Washing-ton, with s p e c i a l r e f e r e n c e ' t o the e f f e c t s of s u l f i t e pulp m i l l waste on the Olympia o y s t e r (Ostrea l u r i d a ) . Wash. S t a t e Dept. F i s h . B i o l . B u l l No. 49-A:117-165. - 70 -Manquor, C. P. and W. Van Winkle. 1973. Responses o f a q u a t i c i n v e r t e -brates to d e c l i n i n g 0^ c o n d i t i o n s . Amer. Z o o l . 13:529-541. Marier, J . R. 1972. The e f f e c t s o f pulp and paper wastes on a q u a t i c l i f e , with p a r t i c u l a r a t t e n t i o n to f i s h and bioassay procedures f o r assessment o f harmful e f f e c t s . Prepared f o r the \"Working Group on E f f l u e n t T o x i c i t y Requirements\" o f the Environmental P r o t e c t i o n S e r v i c e and the F i s h e r i e s S e r v i c e o f Environment Canada. Mustafa, T. and P. W. Hochachka. 1971. C a t a l y t i c and r e g u l a t o r y pro-p e r t i e s o f pyruvate kinases i n t i s s u e s o f a marine b i v a l v e . J . B i o l . Chem. 246(10) 3196-3203. and . 1973. Enzymes i n f a c u l t a t i v e a n a e r o b i o s i s o f mollus c s . I. M a l i c enzyme o f o y s t e r adductor muscle. Comp. Biochem. P h y s i o l . 45B:625-637. and . 1973b. Enzymes i n f a c u l t a t i v e a n a e r o b i o s i s o f mollus c s . I I . B a s i c c a t a l y t i c p r o p e r t i e s o f phosphoenolpyruvate carboxy kinase i n o y s t e r adductor muscle. Comp. Biochem. P h y s i o l . 45B:639-655. and . 1973c. Enzymes i n f a c u l t a t i v e a n a e r o b i o s i s o f mollus c s . I I I . Phosphoenolpyruvate carboxy kinase and i t s r o l e i n ae r o b i c - a n a e r o b i c t r a n s i t i o n . Comp. Biochem. P h y s i o l . 45_B:657-667. Nelson, T. C. 1936. Water f i l t r a t i o n by the o y s t e r and a new hormone e f f e c t upon the r a t e o f flow. Proc. Soc. Exp. B i o l , and Med. 34(2):189-190. Nemerow, N. L. 1971. In \" L i q u i d Waste o f Industry\" - T h e o r i e s , Prac-t i c e s and Treatment. Addison-Wesley Publ. Co., Don M i l l s , O n tario, pp. 365-397: \"The M a t e r i a l s I n d u s t r i e s . \" Newell, G. E. 1964. P h y s i o l o g i c a l aspects o f the ecology o f i n t e r t i d a l m o l l u s c s . In The Physiology o f Mollusca ( e d i t e d by Wilburn, K. M. and Yonge, C M . ) V o l . 1, pp. 59-81. Academic Pr e s s , New York. Newell, R. C. 1966. The e f f e c t of temperature on the metabolism o f p o i k i l o t h e r m s . Nature (London) 212:426-428. . . 1969. E f f e c t s o f f l u c t u a t i o n s i n temperature on the metabolism of i n t e r t i d a l i n v e r t e b r a t e s . Amer. Zo o l . 9_:293-307. . 1970. Biol o g y o f i n t e r t i d a l animals. E l i t e Books (Logos Press) London. . 1973. Factors a f f e c t i n g the r e s p i r a t i o n o f i n t e r t i d a l i n v e r -t e b r a t e s . American Z o o l o g i s t 13(2):513-528. - 71 -N i l s s o n , B. and J . R e n n e r f e l t . 1971. Te c h n i c a l ane economic e v a l u a t i o n o f i n t e r n a l versus e x t e r n a l pulp and paper m i l l waste treatment. Pulp and Paper Magazine o f Canada 72:84-88. P r y t h e r c h , H. F. 1934. The r o l e o f copper i n the s e t t i n g , metamorphosis and d i s t r i b u t i o n o f the American o y s t e r , Ostrea v i r g i n i c a . E c o l . Monogr. 4:47-107. Quayle, D. B. 1964. The e f f e c t o f K r a f t m i l l e f f l u e n t on the P a c i f i c o y s t e r ( C r a s s o s t r e a gigas) with p a r t i c u l a r r e f e r e n c e to C r o f t o n , B.C. Manuscript r e p o r t s e r i e s ( b i o l o g i c a l ) No. 765. . 1969. P a c i f i c o y s t e r c u l t u r e i n B r i t i s h Columbia. F i s h e r i e s Research Board of Canada, B u l l e t i n 169, pp.193. Savage, R. E. 1925. The food o f the o y s t e r . M i n i s t r y A g r i c . and F i s h . , F i s h Investns. Ser. 8 _ ( l ) : l - 5 0 . Saz, H. J . 1971. F a c u l t a t i v e a n a e r o b i o s i s i n the i n v e r t e b r a t e s : pathways and c o n t r o l systems. Amer. Z o o l . 11_: 125-135. Simkiss, K. 1965. The organic matrix o f the o y s t e r s h e l l . Comp. Biochem. P h y s i o l . 16(4):427-435. Simpson, J . W. and J . Awapara. 1965. B i o s y n t h e s i s o f glucose from pyru-vate 2-C14 and a s p a r t a t e - 3 - C 1 4 i n a mollusc. Comp. Biochem. P h y s i o l . 15.: 1-6. Sprague, J . B. 1969. Measurement o f p o l l u t a n t t o x i c i t y to f i s h . I. Bioassay methods f o r acute t o x i c i t y . Water Research3_:793-821. S t e i n , J . E. and G. M. C l a r k . 1959. E f f e c t o f low s a l i n i t y on the c o n d i t i o n f a c t o r ( f a t n e s s ) and the h i s t o l o g y of the o y s t e r , Crassos- t r e a gigas. Rayonier, Inc. Olympia Res. Div. Rept. No. E360(2-2): 7 pp. Stokes, T. and Awapara, J . 1968. A l a n i n e and Su c c i n a t e as end-products o f glucose degradation i n the clam Rangia cunneata. Comp. Biochem. P h y s i o l . 25_:883-892. S t r i c k l a n d and T. Parsons. 1968. A P r a c t i c a l Handbook of Seawater A n a l y s i s . B u l l e t i n No. 167 . FRBC. Utermohl, H. 1931. liber das umgekehrte Mikroskop. A r c h i v Hydro B i o - l o g i e Planktonkund, 22^:643-645. . 1958. Zur vervol1kommnungder q u a n t i t a t i v e n Phytoplankton-Methodik. I n t e r n a t . v e r e i n . l i m n o l o g i e m i t t . #9_, 38 pp. - 72 -Van Dam, L. 1938. On the u t i l i z a t i o n of oxygen and r e g u l a t i o n of some aqua t i c animals. D r u k k e r i j \"Volharding,\" Groningen, H o l l a n d , 143 pp. Waldichuck, M. 1959. E f f e c t s of pulp and paper m i l l wastes on the marine environment. Trans. 2nd Seminar on B i o l . Problems i n Water P o l l . A p r i l 20-24, 1959. U.S. P u b l i c Health S e r v i c e , Robert A. T a f t S a n i t a r y Eng. Center, C i n c i n n a t i 26, Ohio. . 1962. Some water p o l l u t i o n problems connected with the d i s -posal o f pulp m i l l wastes. Canadian F i s h C u l t u r i s t , No. 3J_, October, pp. 3-34. . 1966c. Foams i n K r a f t pulp and newspring e f f l u e n t s . In \"Aquatic P o l l u t i o n S t u d i e s , 1902-1966,\" commenorating the 50th anniver-sary of the National Research Council o f Canada. Paper No. 24 ( i n 2 p a r t s ) . H pp. . 1967. The Detection and Measurements of Water P o l l u t i o n -chemical a n a l y s i s . Canadian F i s h e r i e s Reports No. 9_, J u l y . . 1971. Problems a s s o c i a t e d with waste d i s p o s a l o f the pulp and paper i n d u s t r y . Manuscript Report, 13pp., FRBC, Vancouver. Walne, P. R. 1965. Observations on the i n f l u e n c e of food supply and temperature on the f e e d i n g and growth of l a r v a e of Ostrea e d u l i s L. F i s h . Invest. Min. A g r i c . F i s h . Food. London, S e r i e s I I , 24:1-45. Wenner, A. E. 1963. Sulphur compounds i n K r a f t pulp m i l l e f f l u e n t s . Canada Pulp and Paper Industry 1_6(3) :35-43. Wilbur, K. M. 1964. In Physiology of Mollusea, K. M. Wilbur and C. M. Younge, eds. (Academic P r e s s , New York, 1964), VosL I, p. 243. and L. Jodrey. 1955. Studies on s h e l l formation. V. The i n -h i b i t i o n of s h e l l formation by c a r b o n i c anhydrase i n h i b i t o r s . B i o l . B u l l . 108:359-365. Woelke, C. E. 1956a. A d u l t Olympia o y s t e r m o r t a l i t i e s 1929-1956. Olympia Oyster Problems. Dept. F i s h . S t a t e o f Wash. B u l l . No. 2. . 1956b. Adult Olympia o y s t e r m o r t a l i t i e s 1929-1956. Olympia Oyster Problems. B u l l . S t a t e Dept. o f F i s h e r i e s No._2_, 2 pp. . 1958. Growth of Olympia o y s t e r s . Olympia Oyster Problems. Dept. F i s h . S t a t e of Wash. B u l l . No. 6. pp. 13. , T. Schink, and E. Sanborn. 1972. E f f e c t o f b i o l o g i c a l t r e a t -ment on the t o x i c i t y of three types of p u l p i n g wastes to P a c i f i c o y s t e r embryos. Dept. of F i s h . S t a t e of Wash. Yonge, C. M. 1926. S t r u c t u r e and physiology o f the organs of f e e d i n g and d i g e s t i o h s t n e Q s t r e a i e d u l i s . J . Mar. B i o l . Ass. U.K. 15:295-386. APPENDIX A Howe Sound c o n s i s t s o f two, an upper deep and a lower shallow ( r e l a t i v e l y ) , b a s i n s . A shallow s i l l separates the upper and lower basins and another s i l l occurs a t the mouth o f the sound. Mixing occurs as deep water moves over the s i l l s and s i n k s , to i t s d e n s i t y l e v e l owing to r e l a t i v e l y f r e s h upper l a y e r (Squamish River r u n o f f ) . At the head o f Howe Sound a copper mine e x i s t s and c o n s i d e r i n g c u r r e n t trends i n the Sound, i t s wastes (known to accumulate i n oyst e r s (Huggett e t a l . , 1973; Pentreath, 1973)) were questioned to e f f e c t the w e l l - b e i n g o f the oyster s i n the study area. The a n a l y s i s f o r z i n c (Zn ), copper (Cu ) and cadi urn ( C d + + ) was c a r r i e d out on ten oy s t e r s from each s t a t i o n a f t e r one year. The c o n c e n t r a t i o n s o f z i n c and copper though high according to p o l l u t i o n standards have been considered normal f o r B r i t i s h Columbia waters (personal communication with the s t a f f o f the Environmental Pro-t e c t i o n S o c i e t y ) . A d u l t o y s t e r s i n the area of Gambier I s l a n d possessed metal c o n c e n t r a t i o n s i n excess o f those i n the oy s t e r s from the study area. The cadi urn values were a l s o w i t h i n normal l e v e l s . - 73 -- 74 -Figure 12: The metal c o n c e n t r a t i o n s are expressed on a dry body mass b a s i s . The average c o n c e n t r a t i o n f o r each metal type i s i n d i c a t e d with the range obtained f o r t h a t s t a t i o n . - 75 10004 73 CO >3 c M 5004 1000+ X ^cn 500+ CD u 0-I \"D CD u 30+ 20+ 104 0-station number APPENDIX B The regions (A,B,C) t e s t e d to determine v a r i a t i o n s i n water q u a l i t y r e s u l t i n g from e f f l u e n t d i s c h a r g e i n the immediate area were l o c a t e d i n the f o l l o w i n g p o s i t i o n s : S.W. corner dock Bearing (T) x Depth Region L a t i t u d e Longitude Range (miles) (p)' D e s c r i p t i o n A 49\u00C2\u00B031.00N 123.29.28W 0 3 1 x 0 . 2 25-32 Near m i l l o u t f a l l B 49\u00C2\u00B030.58N 123.29.32W 010 x 0.55 42 O f f the mouth of McNair Cr. C 49\u00C2\u00B030.25N 123.29.2W 006 x 0.85 47-50 Off the north edge o f the gravel p i t The t i d a l c y c l e sampled at each re g i o n f o r each survey time as well as the t i d a l height o f each case i s presented i n the f o l l o w i n g t a b l e s . The measurement taken and the a n a l y t i c procedures have been d e s c r i b e d i n the methods s e c t i o n - water q u a l i t y d e t e r m i n a t i o n s . 76 - 77 -Table 2. The r e s u l t s ( d e n s i t y (sigma-T anomaly), s a l i n i t y (0/00), temperature (\u00C2\u00B0C), oxygen content (ml/L, mg/L and % s a t u r a t i o n ) , and pH)) from a l l depths sampled (OB, ON, 2, 4, 6, 8, 10, 15, 20 and 30M) f o r each c a s t together with the t i d a l h e ight o f the c a s t are presented. The e n t i r e t a b l e c o n s i s t s of the r e s u l t s from each c a s t at the three regions f o r the f o u r hydrographic surveys. /\u00C2\u00AB -P O K T Ml: I..! . O N , M A Y \"72 S T A A - 3 I G M A - - T S A L I N I T Y T E W MI. M G P C T A N O M P P T D E G C: D X Y / I . Q X Y / L S A T \" N 4 . 4 3 7 . 3 9 1 7 . 1 3. A . 3 6 2 1 . 5 9 1 1. 2 4 3.3. 1 4 2 3 . 7 1 0 . 2 5 1 9 . 2 6 2 4 . 9 4 9 . 1 8 1 9 . 5 6 2 5 . 2 3 3 . 6 8 2 0 . 4 4 2 6 . 2 9 8 . 2 7 2 1 . 6 7 2 7 . 7 1 7. A 2.2. 7 1 2 8 . 9 6 6 . 8 5 2 2 . 9 5 2 9 . 2 6 6 . 8 4 2 3 . 0 4 2 9 . 3 7 6 . 8 3 3 . 5 2 5 . 0 2 5 5 . 9 8 8 . 1 1 1 . 5 / 1 2 4 . 1 8 8 . 1 M . 5 7 1 2 3 . 1 2 7 . 8 6 1 1 . 2 3 1 1 7 . 5 2 7 . 6 6 1 0 . 9 4 3 1 3 . 4 2 7. 0 2 3 0 . 0 3 3 0 3 . 6 9 5 . 9 5 8 . 5 8 6 . 9 8 5 . 5 4 7 . 9 3 8 0 . 5 8 5 . 5 9 7 . 9 9 8 1 . 5 5 . 6 3 8 . 0 5 8 2 . 1 3 D E P T H S ( M ) 0 0 2 4 6 8 1 0 1 5 2 0 3 0 8 Phi 8 . 4 5 8 . 8 5 7. 9 7 . 9 5 0 -0 0 0 6 -\u00E2\u0080\u00A2+ \u00E2\u0080\u0094 1 2 3 8 2 4 H K P O R T Ml:.I. L O N J M A Y \" 7 2 S T A A - - 2 S I G M A - T S A L I N I T Y T E W Ml.. M G P O T A N O M PP\"I D E O 8 O X Y / L O X Y / I . S A T ' N 9 . 1 2 1 6 . 0 3 1 7 . 3 9 1 8 . 3 4 2 0 . 0 1 2 0 . 5 3 2 1 . 5 2 2 2 . 9 1 0 4 1 2 . 13 2 1 . 0 1 2 2 . 8 4 2 4 . 0 1 2 5 . 9 8 2 6 . 4 4 2 7 . 5 9 2 8 . 7 7 2 9 . 2 1 2 9 . 3 7 1 0 . 6 1 0 . 4 2 1 0 . 8 1 0 . 5 5 9 . 6 2 tt. A9 7. 8 1 7 . 1 3 6 . 8 9 6 . 8 2 4 . 2 4 7. 8 2 tt 2 7 . 9 6 7 . 2 5 6 . 8 9 5 . 9 9 S 6 2 5 . 2 9 4 . 2 4 6 . 0 5 3 3. 3 7 3 3. 7 2 3 1. 3 8 3 0 . 3 5 9 . 8 4 8 . 5 6 8 . 0 3 7 . 5 5 6 . 0 5 6 0 . 3 1 7 . I 2 5 . 1 2 2 I I 0 . I O ; 2 5 5 9 1 7 i. 3 6 8 8 . 3 6 8 2 . 1 5 77. 3 3 6 1 . 7 3 D E P T H S ( M ) P H F T 1.5 0 9 . 2 5 a A 0 o . o 8 . 5 5 l O - i -4 8 . 5 6 8 . 3 .-fc\u00C2\u00BB 8 . 2 5<-1 0 7. 9 5 3 5 7. 9 5 2 0 7. 9 5 0 - \u00E2\u0080\u0094 7 9 5 0 0 0 6 \u00E2\u0080\u00A2\u00E2\u0080\u00A2+ 3 2 ..|. _ 1 : ; : 2 4 H H - 79 -P O R T M L U . O N . M A Y - 7 2 ST A A-X G M A - T A N O M \u00E2\u0080\u00A2;AL.]N1.TV P P T I'l-IMP H L G c M L O X Y / L M O O X Y / I P C I ? A T \" N 1 4 . 5 4 \u00E2\u0080\u00A21 nr nr A A \u00E2\u0080\u00A2i / /- ~' A O. 18. O ^1 21 19. 4 5 2.0. 7 6 21 S 3 7 Q;3 0 4 1 9 . 29 20. 6 6 21. 94 23. 76 23. 13 26. 6 5 2 7 . 9 6 2 8 . 9 5 2 9 . 2 3 2 9 . 3 7 I.1. 5 I I . 07 1J. 32 10. 12 0. 9 7. 96 7. 27, 6. 92 6. 85 6. 03 s. 06 7' \u00E2\u0080\u00A2~> \u00E2\u0080\u00A2> ..Tj O S 7. 7 6. 7 1 er 9 9 5 . 7 9 5 . 21 1 1. 5 1 1.1. 7 6 3 1. 7 2 1 1. 5 5 11 9 . 5 9 0 . 5 6 7. 4 4 7. 9 1 2 2 . 4 7 1 2 7 . 2 4 1 2 6 . 3 2 1 2 2 . 6 1 .1.4. 5 3 9 8 . 6 8 8 7 . 4 4 0 4 . 3 9 7 5 . 8 8 0 0 . 5 7 P O R T M L L L O N , M A Y \" 7 2 S i A A - - 4 BIGMA--7 A N O M S A L . I N I I Y P P T T F M P DUG C M L OXY/I.. M G O X Y / I P O T S A T - N 1 i . 5 6 1 3 . 8 2 17. 1 1 8 . 5 1 9 . 7 2 2 0 . 9 2 2 1 . 9 6 2 1 . 1 23. 0 4 1 5 . 7 8 1 8 . 3 2 2 2 . 51 2 4 . 0 8 2 5 . 4 7 2 6 . 8 4 ;/ ;-; . 2 6 . 2 9 . 29 06 9 3 7 1 3 . 2 1 1. 3 2 1 3. 0.1 9 . 8 6 8 7. 7. 6. 6. 6 . 8 7 2 4 8 8 6 . 4 3 7. 7 9 8 . 1 9 8 . 0 7 7. 7 5 6 3 6 5 . 6 9 5 . 3 5 . 5 3 9 . 1 9 1 1 . 1 3 1 1 . 7 1 1. 5 3 3 1. 0 7 9. 4 7 8. 3 3 8. 1 2 7. 5 7 7. 9 9 9 . 2 9 1 1 7 . 2 3 .1 2 5 . 7 1 1 2 1 . 9 3 1 1 5 . 5 6 9 7 . 4 2 8 5 . 11 8 3 . 6 7 7 . 2 3 8 0 . 5 7 D E P T H S ( M ) P H P O R T M E L L O N * M A Y \u00E2\u0080\u00A2\"72 S T A A - 5 ; I G ' M A - T A N O M > A L T N I I Y P P T T E M P Iit'-IG C M L OXY/I.. MG O X Y / L P C T 5AT \" N 1 2 . 0 1 3 . 9 9 1 7 . 5 I S . 6 2 2 0 . 6 2 2 1 . 7 2 9 2 ~'8 2 2 . 7 6 2 2 . 9 4 2 3 . 0 5 1 7 . I S I S . 6 2 2 . 9 4 2 4 . 2 6 . 2 7 . \u00E2\u0080\u00A2./ y 4 9 7 0 3 9 2 9 . 0 2 2 9 . 2 5 2 9 .3 ft 1 2 . 2 3 1. 6 2 1 0 . 6 4 9 . 7 9 5 . 1 3 7. 4 2 7. 1 4 6. S 5 6 . 8 4 6 . 8 2 7 . 2 1 7. 7 4 8 . 2 3 5 . 2 4 6 . 9 3 6 . 2 3 5 . 9 9 5 . 7 3 5 . 4 6 5 . 6 3 1 0 . 2 9 1 1. 0 5 1 1. 7 6 3 1. 7 8 9 . 8 9 8 . 9 8 . 5 6 S . I S 7 . 8 8 . 0 5 1 0 9 . 7 6 1 1 7 . 4 1 1 2 5 . 6 3 3.24. 4 6 1 0 2 . 1 2 9 1 . 1.6 8 7 . 4 3 S 3 . 3 2 79. 5 6 8 2 . 3 3 D E P T H S ( M ) 0 0 '*y 4 6 1 0 1 5 2 0 3 0 P H T I D E 7. 0 5 9 5 8 . 0 5 8 . 0 5 O 0 0 1-0 6 \u00E2\u0080\u0094 i \u00E2\u0080\u0094 .1 2 2 4 H R P O R T M E L L O N , M A Y ' 7 2 S T A A - 6 O : G M A -ANOM .Al. I N I T Y P P T \"I F M P D E G C M L O X Y / I . MG O X Y / L . P C T 3 A T \" N 8 . 4 1 4 . 2 6 1 6 . 4 9 1 8 . 8 4 2 0 . 3 5 2 0 . 9 6 2 2 . 1 1 2 2 . 7 2 2 2 . 9 2 3 . 0 3 1 2 . 5 2 3 8 . 9 5 2 3 . 7 8 2 4 . 4 7 2 6 . 3 7 2 6 . 8 7 2 8 . 2 4 2 8 . 9 7 2 9 . 3 9 2 9 . 3 6 3.6. 8 3 .1. 6 1 3 1. 3 2 9 . 5 6 8 . 2 7 7. 8 3 7. 1 5 6 . 8 8 6. 6 . 8 4 5 . 0 7 7. 7 8 . 1 4 7 . 0 9 6 . 4 6 5 . 6 7 5 . 6 6 5 . 2 7 5 . 6 5 7. 2 5 1 .1 3 3. 6 2 3 3 . 4 3 0 . 1 9 . 2 3 8 . 3 1 8 . 0 9 7. 5 3 8 . 0 7 8 2 . 7 4 3 1 7 . 0 4 1 2 5 . 1 7 1 2 0 . 4 1 0 4 . 5 9 9 4 . 7 6 8 2 . 7 7 6 : l D E P T H S ( M ) P H F T 1 5 D D E ~ w i \u00E2\u0080\u0094 PORT MLI..L.ON, M A Y - 7 2 S T A B- 7 8I OMA-T SAL 1 N1. T Y T EMP ANOM PPT DEG C 4. 0 4 5. 1 3 6. 5 A3. 6 6 17. 79 9. 5 7 17. 3 7 22. 01 10. 77 17. 91 23. 41 10. 2 0 IS. 9 3 24. 6 9. 6 S 19. 3 5 25. 0 7 9. 26 20. 8 2 26. 71 7. 91 22. 4 28. 5 9 7. 0 4 23. 1 29 . 4 6 6. 8 7 23. 01 29. 3 3 6. 8 3 ML MG P C T OXY/I. OXY/L SAT\"\"N 8. 7 6 12. 5 2 108. 3 7 8. 3 4 11. 91 120. 11 8. 4 4 12. 0 6 129. 15 8. 3 4 1 1 . 9 1 126. 61 8. 15 11. 6 4 123. 0 5 7. 9 6 . 1 1. 3 3 119. 44 6. 8 5 9. 78 100. 5 6 5. 6 2 8. 0 3 31. 91 5. 7 9 8. 2 8 84. 5 9 5. 7 8. 14 83 . 0 7 DEPTHS (M) 0. 0 4 6 10 15 2 0 3 0 PH 7. 8 7. 9 5 7. 8 7. 0 7. 8 0-0 0 0 6 12 =: \"I I D E 0 on O A 1 2 2 4 H R P O R T M E L L O N M A Y \" 7 2 , S T A 0 - 1 3 \u00E2\u0080\u00A2 IC - iMA-T S A L I N I T Y T E M P Ml. MO P C T ANOM P P T I.1EG C OXY/I O X Y / L S A T \" ' N 1 1 . 5 4 3 5 . 4 5 3 3. 7 5 7. 6 4 3.0. 9 2 13 4 . 0 7 i 0 . 9 7 3 4. 7 1 3.3. 7 6 7. 5 6 3 0 . 8 3 1 1 2 . 3 9 i 5 . 9 3 2 3 . 0 3 3.1. 3 3 8 . 3 5 3.1. 9 3 3 2 7 . 2 7 1 6 . 8 7 \u00E2\u0080\u00A2\u00E2\u0080\u00A2y-y 3 1. 0 8 8 . 4 4 1 2 . 0 6 3.29. 5 5 1 7 . 9 5 \u00E2\u0080\u00A2y\"~; 4 6 3.0. 31 8 . 0 4 3 1. 4 9 1 2 2 . 2 8 18. 6 3 2 4 . 8 1 0 . 3 3 8 . 3 4 3 3. 6 2 3 2 3 . 8 7 19. , r - 8 2 5 . 7 9 8 . 7 9 7. 5 1 0 . 7 3 13 1. 7 6 .--j ,y 5 7. 1 2 7 9 8 . !i\u00C2\u00A3W 8 4 . 5 4 ''jt 8 1 2 9 0 9 6 . 8 8 6 2 8 . 0 3 8 1 . 8 7 0 4 2 9 3 7 6 . 8 2 5 . 5 3 7. 8 8 8 0 . 3 6 P O R T M E L L O N MAY \" 7 2 S I A 0 - 3 4 J G M A - T S A L I N I T Y T E M P MI- MG P C T ANOM P P T P E G C OX Y / L O X Y / L S A T - N 7. 6 4 3 0 . 03 9 . 2 5 7. 6 3.0. 8 6 3 0 3 . 6 1 1 . 11 3 4 . 6 5 3 0 . 4 7. 7 8 3 3 . 1 1 1 1 1 . 9 7 1 5 . 2 9 2 0 . 1 9 1 3 . 3 5 6 . 9 8 9 . 9 7 1 0 5 . 9 1 1 6 . 8 2 '\"J 3 6 1 1 . 0 9 8 . 2 7 . 1 1 . 8 1 3 2.6. 7 9 1 7 . 8 6 .\u00E2\u0080\u00A2y .\u00C2\u00AB, 8 6 3 0 . 4 8 . 0 3 3 .1. 4 5 1 2 1 . 9 9 18. 7 5 2 4 . 4 6 1 0 . 3 5 8 . 3 3 1 3. 6 2 1 2 3 . 9 9 1 9 . 4 8 2 5 . 2 4 9 . 3 3 7. 9 9 3 3. 4 1 3 2 0 . 3.2 2 2 . 0 9 V \u00E2\u0080\u00A2 y 7. 2 3. c_- 8 . 3 1 8 4 . 9 3 2 2 . 7 5 2 9 . 0 2 6. 9 1 5 . 6 3 8 . 0 5 8 2 . 0 9 2 3 . 0 3 2 9 . 3 6 6 . 8 2 5 . 5 1 7. 8 8 8 0 . 3 7 D E P T H S (M) 0 0 4 6 1 0 1 5 2 0 3 0 P H T I DE 7. 7. 7. 4 5 4 5 3 5 9 5 9 5 r-> 2 4 HR P O R T MET E O N MAY\"' 7 2 S T A C - .15 .U.. ;MA-T S A L I N I T Y TE Ml'- ML MO P C T ANOM P P T D E G c OXY/I O X Y / L S A T ' N 9 . 5 1 2 . 6 5 1 0 . 7. 9 1 1 1. 3 11.3. 7 8 i 1 ' 2 5 1 5 . 0 4 1 1 . 5 9 8 . 01 1 1. 4 5 1 1 8 . 8 5 1 3 . 4 3 1 5 . 2 7 1 1. ! i - i O 1 1 . 4 3 1 1 8 . 8 5.6. 6 1 2 1 . S 3 1 1 . 0 9 2 7 1 1. 8 1 1.26. 5 6 I S . 1 2 2 3 . 6 6 1 0 . 21 8 1 3 1 1. 6 2 3 2 3 . 5 3 18 . 8c: 2 4 . 5 6 9. c ' 7 9 2 1 1 . 3 2 1 3 9 . 9 4 2.0. 1 7 2 6 3 . 6 7 2 7 1.0. 3 9 14 2 2 . 3 4 2 8 . 5 3 7. 11 5 7 8 . 1 4 8 3 . 1 7 2 9 . 1 6 . .'E 9 5 5 3 7. 9 7 8 1 . 3 2 2 3 . 0 2 2 9 . 3 5 6. \u00C2\u00A3 5 5 4 7. 9 2 8 0 . 7 7 DEPTH:;;; (M) 0 0 4 6 1 0 P H 9 . 4 S 8. 4!f 4^ 4 ^ ... 1 5 7. 9 2 0 7. 9 5 0 r- 1 1 3 0 7. 9 5 00 0 6 1 2 3 8 2 4 HR P O R T M E L L O N M A Y - ' 7 2 S T A C - 3 6 S I G M A - T SAL. I N I T Y T E M P ML MG P C T ANOM P P T D E G 0 OXY/I... O X Y / L S A T \" N y. o* 1 1. 0 2 1 0 . 1 5 8. 0 8 1 1 . 5 4 1 1 3 . 1 3 S. 8 3 1 1 . 6 2 9. 8 6 8 . 1 7 3 1. 6 3 1 1.4. 0 7 1 2 . 6 3 1 6 . 8 6 1 1 . 3 8 8 . 1 5 1 1 , 6 4 3 2 3. 6 1 1 6 . 9 7 2 2 3 6 1 1 . 1 8 . 2 7 3 1. 3 1 1 2 6 . 9 9 1 8 . 11 2 3 . 6 7 1 0 . 2 9 8 . 0 3 1 1 . 4 7 3 2 2 . 3 3 5 3 . 9 6 2 4 . 6 6 9 . 7 4 7. 9 3 1 1 . 3 4 3 2 0 2 0 . 0 6 2 5 . 8 9 3 . 7 6 7. 3 3 1 0 . 4 7 1.09. 2 2 2 . 1 5 2 8 . 2 9 7. 1 9 5 P; 8 . 31 3 4 . 9 3 2 2 . 7 1 2 8 . 9 7 6. 9 5 5 . 6 2 8 . 0 3 3 1 . 9 4 2 3 . 0 3 2 9 . 3 6 6. 8 2 5 . 4 7 7. 8 2 7 9 . 7 9 D E P T H S ( M ) ' P H F\"l I ] D E 3 5\u00E2\u0080\u0094-=\u00E2\u0080\u00A2\u00E2\u0080\u0094\u00E2\u0080\u00A2\u00E2\u0080\u00A2+-0 0 4 6 1 0 1 5 2 0 3 0 \u00E2\u0080\u00A2:>. o 3 . 4 8 . 5 8 . 4 5 9 . 4 7. 9 10- ) 0 0 0 \u00E2\u0080\u0094 + . 0 6 \u00E2\u0080\u009EH 1 2 2 4 HR - 86 -P O R T M E L L O N MAY' 7 2 S T A C 1 7 1 G M A - T ANOM l A L I N I T Y P P T T E M P P E G C M L OXY/I. MG OXY/I P C T 5 A T-N 9 . 2 7 9 9 1 2 . 81 1 7 . 2 8 1 8 . 5 2 1 9 . 3 6 2 0 . 7 5 2 2 . 1 8 2 2 . 7 3 2 3 . 0 5 1 2 . 41 1 3 . 21 1 7 2 2 . 7 2 2.4. 1 6 2 5 . 11 2 6 . 6 7 2 8 . 3 4 2 8 . 99 1 1 . 2 1 1. 0 9 1 1. 2 4 1 0 . 91 1 0 . 1 9. 4 2 7. 2 5 6. 9 2 6. 8 1 8 . 0 4 8 . 0 1 8 . 2.5 7. 8 6 . 3 4 61 5 7 1 1 . 4 9 1 1. 6 2 1 1 . 4 5 1 1 . 7 9 1 1. 4 3 1 1 . 1 5 9. 7 7 8 . 01. 7. 9 5 11 6 . 1 1 7 . 1 1.9. 1 2 6 . 1 2 1 . 1 1 7. 1 0 1 . 3 1 9 3 3 7 5 4 6 4 8 . 1 2 7 31. 7 S I . ' 1 3 D E P T H S (M) 0 0 .y 4 / o 1 0 1 5 2 0 3 0 P H 8. 4 5 8 . 4 5 9. 5 8 . 5 3 . 4 5 8 . 1 5 7. 9 5 7. 9 5 0 -0 0 0 6 2 4 HR S I G M A - I ANOM J A L I N I T Y P P T P O R T M E L L O N M A Y \" 7 2 S T A 0 - 1 8 T E M P DEO 0 M L O X Y / L MG O X Y / I P C T ; : A T \" N 1 0 . 1 3 . 9 1 1 . 5 7. 5 9 1 0 . 8 4 1 1 1 . 5 6 1 0 . 9 2 1 4 . 5 / 1 1. 3 7 7. 9 9 1 1 . 4 1 1.17. 5 4 1 6. 4 3 21. 7 2 1 1 . 1 2 8 . \u00E2\u0080\u00A2 ~ i I~I 1 1 . 9 8 1 2 8 . 3 4 1 7 . 2 6 *'/ 'V 7 2 1 1. 0 7 \u00E2\u0080\u00A2~< o 1 1. 9 1 2 8 . 2 2 1 8 . 8 8 4 .10. 3 7 8 . 0 7 1.1. 5 2 1 2 3 . 1 1 9 . 1 6 2 4 . 8 9 9 . 6 5 7. 9 1 1 1 . 3 1 3 9 . 5 3 2 0 . 5 4 2 6 . 4 3 8 . 3 4 7. 0 6 1 0 . 0 9 1 0 4 . 6 9 2 2 8 4 5 7. 1 3 6. 1 5 8 . 7 3 8 9 . 7 2 \"\u00E2\u0080\u00A2'/ 9 2 9 . 1 6. 9 c_- 6 1 S . 0 1 3 1 . 7 3 0 4 2 9 . 3 7 6. 8 2 5 . 5 5 7. 9 3 8 0 . 9 5 D E P T H S ( M ) 0 0 \u00E2\u0080\u00A2y 4 6 1 0 1 5 2 0 P H 6 8 . 4 5 8 . 4 8 . 3 5 7. 9 P O R ' I M E L L O N \u00E2\u0080\u00A2 J U L Y - ' 7 2 S T A 3 S I G M A - T ' A N O M \">'AL1 N I T Y P P T T E M P D E G C M L O X Y / L M G O X Y / I . . P C T S A T \" N 3 . O t : 6 . 0 4 1 3 . 8 2 1 9 . 2 3 2 0 . 6 2 1 . 7 9 2 2 . 3 1 2 2 . 7 3 5 . 6 5 6 . 6 9 1 0 . 1 7 1 9 . 2 6 2 5 . 3 5 2 6 . 8 5 2 7 . 4 4 2 8 . 1 5 2 8 . 7 2 9 . 1 . 5 2 6 2 0 . 9 1 1 9 . 5 I. 5 . 4 2 I I . 4 1 1 0 . 1 7 7. 9~ 0 0 6 . 3 4 6 . 2 5 5 . 6 6 5 . 1 3 5 . 0 7 4 . 9 9 5 . 0 1 5 . 0 5 O 0 9 . 0 5 3 . 9 3 8 . 0 9 7 . 3 4 7 . 2 4 7 . 1 3 7 . 1 5 7 . 2 1 0 0 1 0 7 . 3 5 1 0 3 . 2 = 3 9 . 3 4 7 9 . 5 8 7 5 . 8 9 7 5 . 3 7 7 5 . 8 7 D E P T H S ( M ) 0 0 '~y 4 6 1 0 1 5 2 0 3 0 P H 9 . 7 9 . 5 5 S . 2 5 7 . 3 7 . 6 5 7 . 6 7 . 5 5 7 . 5 7 . 4 5 7 . 4 F T .1 5 \u00E2\u0080\u0094 -1 . 0 + 5 + 0 0 0 T I D E 0 6 (._ i ; \u00E2\u0080\u0094 j . . . l : ' 4 H K P O R T M E L L O N . J U L Y \" 7 2 S T A 2 O ' l ' s M A - T S A L I N I T Y T E M P M L M G P C T A N O M P P T D F G 0 O X Y / L O X Y / L S A T - ' N 2 . 1 6 6 . 1 4 'PP. 0 0 0 4 . 5 7 6 9 2 1 . 4 . 5 5 6 . 5 7 3 . 4 9 i.: i~i -~. O O .-\u00E2\u0080\u00A2 * 9 6 1 9 . 7 4 5 . 2 6 7 . 5 2 8 9 . 4 1 1 5 . 0 1 2 . 0 . . 4 9 1 4 . 3 4 6 . 2 6 8 . 9 4 3 0 1 . 4 ' 1 9 . 3 3 2 5 , . 5 2 1 1 . 3 5 . 6 9 1 3 8 9 . 6 8 2 0 . 4 7 2 6 . . 7 1 1 . 0 . 2 7 4 . 9 3 7 . 0 4 7 6 . 5 \u00E2\u0080\u0094 2 7 5 8 ... 4 . 9 9 7 . 1 3 -2 1 . 9 1 8 . 8 7 4 . 9 8 7 . 1 1 7 5 . 6 1 2 2 . 2 4 2 8 * . 6 3 8 . 4 8 5 . 0 4 7 . 7 5 . 9 9 2 2 . 6 7 2 9 . 0 8 7 . 9 2 5 . 0 7 7 . 2 4 7 5 . 6 6 D E P T H S < M ) 0 0 \u00E2\u0080\u00A2~/ 4 6 P H 7 . 8 7 . 6 5 1 0 1 5 2 0 3 0 7 . 5 7 . 5 7 . 4 ! : 7 . 4 0 \" 1- \u00E2\u0080\u0094 0 0 0 6 2 4 H R P O R T MELI. ON \u00E2\u0080\u00A2JLH...Y \u00E2\u0080\u00A2\" 7 2 8 T A I G H A ~ T A N O M S A L I N I T Y P P T T E M P P E G MI-OX Y / L MG O X Y / L P C T S A T - N 2 . 7 4 6 . 7 8 2 2 . 6 0 0 0 4 . 8 5 8 . 8 7 2 0 . 3 9 1. 9 5 2 . 7 8 3 3 . 2 6 1 4 . 6 5 2 0 . 1 2 .14. 5 4 6. 1 8 . 7 2 9 9 . 5 5 1 7 . 1 5 2 3 . 0 1 1 3 6 . 1 8 9 9 . 4 2 1 9 . 5 3 2 5 . 69 1 1 . 2 5 . 4 2 7. 7 4 8 5 . 2 7 2 0 . 4 4 7.6. 69 1 0 . 3 9 nr 0 9 7. 2 7 7 9 . 1 3 2 7 . 2 4 ... 1 1 7. 2 9 _ 2 1 . 8 7 2 8 . 2 5 8 . 9 5 4. 9 7 7. 1 7 5 . 5 9 y P 2 8 . 6 8 \u00E2\u0080\u00A2~; 4. 9 8 7. 1 1 7 4 . 9 5 2 2 . 5 6 2 8 . 9 7 8 . 0 7 4. 9 8 7. 11 7 4 . 5 6 D E P T H S ( M ) 0 0 4 6 1 0 1 5 2 0 3 0 P H 1 0 . 0 5 9 . 4 7. 9 5 7. 7 7. 6 5 7. 5 7. 5 7. 4 5 7. 4 5 7. 4 o-0 0 0 6 12 2 4 H R P O R T M E L L O N J U L Y \" ' 7 2 S T A 4 I G M A - T S A L I N I T Y T E M P M L MG P C T ANOM P P T D E G 0 OXY/I... O X Y / L S A T - N 1. 6 5 5 . 6 7 2 3 6 0 0 0 6 . 0 1 1 0 . 3 1 2 0 1. 4 . 9 7 1 8 5 . 1 6 1 5 . 0 1 2 0 . 5 4 1 4 6 . 4 4 Q 1 9 1 0 4 . 8 1 8 . 6 7 2 4 . 6 9 1 1 7 2 5 . .85 8 . 3 6 9 2 . 5 1 9 . 4 6 2 5 . 6 11 2 4 5 . 7 1 O 1 6 3 9 . 9 2 2 0 . 1 2 6 . 3 1 0 6 5 5 . 3 6 7 6 6 8 3 . 6 6 - 2.6. 9 6 - 5 7 1 4 2 1 . 7 3 2 8 . 0 9 Q 0 7 4 . 9 2 7 0 3 7 4 . 9 7 2 2 . 1 9 2 8 . 5 8 5 5 4 . 9 3 7 0 4 7 4 . 4 6 2 2 . 4 8 2 8 . 8 9 8 . 1 8 5 . 0 2 7 1 7 7 5 . 3 D E P T H S ( M ) P H F T T I D E P O R T Ml: LI. ON J U L Y 7 2 S T A 5 : I G M A - ' I ANOM 4. 6 6 4. 0 5 5 . 9 5 9 . 4 JO. 0 7 5.9. 9 2 2 3. 67 2 2 . 1 5 2 2 . 6 4 S A L I N I T Y TEMl - ML D E P T H S (M) (.) 0 '~J 4 6 1 0 1 5 2.0 SO P P T P E G C O X Y / L S . S I 2 1 5 . 8 3. 7. S I 2 0 4 5/ 9 3 3 0 . 3 7 2 0 5 4 6. 42. 3 4. 2 2 1 8 23 6. 5 2 4 . 0 4 3 2 3 6. 0 9 2 6 . 1 3 1 0 9 3 8 . 4 1 2 7 . 0 6 ... . 3 . 23 2 0 . 0 2 3 3 4. 9 5 2 8 . 5 2 52. 4 . 8 9 2 9 . 0 5 7. 9 9 5 . 0 5 P H F T T I D E 7. 6 3 8 . 3 5 8 . 0 5 8 . 0 5 7. 9 7. 9 5 7 , 8 5 7. 7 5 7. 7 5 7. 7 5 3 0 + MG O X Y / L 0 . 4 4 9. 1 7 9 . 2 9 8 . 7 4. 8 8 4. 5 8 7. 0 7 6. 9 9 \u00E2\u0080\u00A2/. 2 3 0 H 0 0 0 6 1 2 P C T S A T ' N 3.00. 3 4 1 0 0 . 8 6 1 1 0 . 8 8 1.3 O. 1 9 7 . 1 8 7 5 . 4 9 7 3 . 7 9 7 5 . 4 8 2 4 HR I G M A - T ANOM S A L I N I T Y P P T P O R T M E L L O N ..JULY'\" 7 2 , S T A B - 6 T E M P P E G C MI-OX Y / L MG OXY/I. P C T S A T ' N 4. 3 4 4. 2 7 5 . 2 1 1 6 . 6 4 1 8 . 8 3 2 0 . 1 6 2 3 . 9 3 2 2 . 2 6 8. 1 6 8 . 3 3 9 . 4 4 2 4 . 2 6 . 9 6 4 3 9 2 3 9 9 7 2 9 6 5 2 0 . 3 2 0 . 4 2 2 0 . 7 1 3 . 3 1 3 . 8 3 3 0 . 6 7 8 . 8 1 8 . 4 4 6. 2 6 6 . 4 3 6 . 3 8 6 2 6 5 . 9 6 5 . 33 5 . 3.6 4 . 9 4 4. 9 4 5 . 0 6 8 . 9 4 9. 3 9 8 . 9 4 8 . 52. 7. 5 9 7. 3 7 7. 0 6 7. 0 6 7. 2 3 1 0 6 . 3 1 1 0 9 . 4 9 1 0 6 . 5 2 1 0 0 . 8 8 9 4 . 7 8 3 . 0 1 7 4 . 9 7 7 4 . 53 7 5 . 6 6 D E P T H S 9 S . 2 5 5 . 4 3 7 . 7 5 8 1 . 6 4 *',/ -If 2 5 \u00E2\u0080\u00A2\"J C; 6 0 . 2 1 5 . 7 . 4 8 7 8 . 4 3 \u00E2\u0080\u00A2'.\"/ 6 7 \"\u00E2\u0080\u00A2'/9' 1 0 . 0 5 5 . 3 7 . 5 7 7 9 . 3 7 7 4 2 9 . 0 . 1 1 1 7 . 2 9 7 6 . 6 3 7 2 2 9 . \u00E2\u0080\u00A2\t 8 . 2 4 5 . \u00E2\u0080\u00A27 '7' 7 . 4 6 7 8 . 6 2 0 3 2 9 . 6 8 . 2 4 4 . 9 1 7 . 0 1 7 4 . 1 5 \u00E2\u0080\u00A2y 6 4 3 0 . 4 8 . 3 6 4 . 1 8 5 . 9 1 . 6 2 . 9 7 9 3 0 . 8 8 . 6 9 4 . 0 7 5 . 8 1 6 2 . 6 4 2 4 . 1 2 3 1 . 3 8 . 7 6 6 8 5 . 2 6 5 6 . 8 8 D E P T H S C M ) PI- T H IE 0 7 . LI' I\"I 0 7 . 5 2 7 . C i~. 4 7 . 6 8 6 7 . 8 7 . 7 1 0 7 . 7 1 5 7 . 6 8 2 0 7 . 7 2 4 H R P O R T M E L I. O N N O V \" / : ; A A -S I G M A - T A N O M S A L I N I T Y P P T T E M P l . i E G C M L O X Y / L . M G O X Y / L P C T S A T ' N 1 4 . 5 9 2 0 . 3 3 4 . 7 5 0 0 0 2 3 . 7;:.; 1 S . 7 8 4 3 ' 9 6 . 2 8 6 6 . 5 \"7 O 9 5 2 9 . . 8 . 2 4 CT 7 . 3 4 7 5 . 4 6 y p . 2 9 . 8 . 2 2 ...1. 1 7 . 7 6 . \u00E2\u0080\u00A27 '\u00E2\u0080\u00A2> 8 2 9 . 3 3 . 2 4 0 5 7. 2. ? 7 6 . 3 4 7 9 2 9 . 8 . 2 8 4 . 9 1 7 . 0 3 7 4 . 0 7 9 4 2 9 . 5 . 3 3 ' 4 . 9 9 7 . 1 3 7 5 . 4 3 2 3 . \u00E2\u0080\u00A2t; 3 0 8 . 5 5 4 . 7 3 / 7 6 7 2 . 1 .4 2 ' \u00E2\u0080\u00A2 \u00E2\u0080\u00A27/ ;-j 3 0 8 . 6 ? 4 . 4 8 6 . 4 1 6 8 . 6 2 P O R T M E L L O N N O V \" 7 2 , S T A A -: I G M A - - T ANOM S A L .INT TV P P T T E M P l.iLO C ML OXY/I MG O X Y / L P C T S A T ' N 2 0 . 9 19. 4 9 2 2 . 4 5 \u00E2\u0080\u00A2'.V jj? 73 8 7 '-i 9 '7. v y v \"\u00E2\u0080\u00A2'9. 2 2 9 . 4 2 9 . 6 30. 3 30. 6 JO 1 0 . 0 4 7. 9 1 8 . 1 4 8 . 2 4 3. 4 9 S. 5 5 8 . 6 7 4 . 0 7 3 . 4 4 5 . 2 5 5 . 2 5 4. 3 5 4. 7 3 4. 3 3 5 . 8 1 4 . 9 1 7. 4 9 7. 4 9 6. 9 2 6. 7 6 6 . 1 8 5 . 6 5 5 . 11 6 2 . 9 8 5 2 . 6 7 8 . 1 8 7 8 . 5 6 7 2 . 8 7 1 . 3 2 6 5 . 7 6 6 0 . 4 4 5 4 . 9 3 D E P T H S (M) 0 0 \u00E2\u0080\u00A2~r 4 6 \u00E2\u0080\u00A2:r> 1 0 1 5 2 0 P H 6. 5 6 . 6 3 7. 5 5 7. 6 1 7. 6 5 7. 6 1 7. 5 8 7. 6 5 7. 5 2 2 4 HR P O R l M E L L O N I G M A - - T S A L I N I T Y T E M P ANOM P P T DEO 0 1 5 . 0 7 2 0 . 6 1 4 . 2 5 2 2 . 5 2 9 S . 7 2 2 . 5 9 8 . 0 5 2 2 . 7 2 2 9 . 2 8 . 2 3 2 2 . 8 7 2 9 . 4 3. 2 9 2 3 . 4 2 3 0 . 1 8 . 2 7 2 3 . 3 3 3 0 8 . 3 6 2 3 . 61 3 0 . 4 8 . 5 5 2 3 . 7 7 3 0 . 6 3 . 5 3 NOV ' \" 7 2 , S T A A - 4 ML MO P C T OXY/I... O X Y / L S A T ' N 0 0 0 4. 6 5 6. 6 5 7 0 . 7 2 5 . 0 9 7. 2 7 7 6 . 4 . 9 1 7. 01 7 3 . 9 3 4 . 7 8 6 . 8 3 7 2 . 1 8 4 . 6 5 6 . 6 5 7 0 . 5 4 4 . 6 5 6. 6 5 7 0 . 6 4 4 . 0 1 5 . 7 2 6 1 . 2 7 4. 0 1 5 . 7 2 6 1 . D E P T H S (M) 0 0 4 6 1 0 1 5 2 0 P H 1 0 . 2 6 7. 3 7. 7 5 7. 7 1 7. 7 3 7. 71 7. 71 7. 7 7 0 5 2 4 HR PORT M E L L O N NOV \" 7 2 , S T A A -J . G H A - T SAL.Th L P ! Y T E M P ML MG P C T ANOM P P \" DEG C O X Y / L O X Y / L S A T ' N 1 9 . 4 9 A -..'. 7 1 1 . 5 8 . 7 6 5 . 3 7 5 9 . 5 7 2 2 . 7 2 2 9 . \u00E2\u0080\u00A2\u00E2\u0080\u00A2;/ 4. 9 9 7. 1 3 7 5 . 0 8 2 2 . 91. 2 9 . 4 7. 9 9 5 . 1 6 7. 3 7 7 7 . 2 9 2 2 . 7 5 2 9 . \u00E2\u0080\u00A2y 8. 0 2 5 . 1 3 7. 3 3 7 6 . 8 5 2 2 . 7 4 2 9 . \u00E2\u0080\u00A2y 8 . 1 4 . 5 9 6. 5 5 6.8. 8 5 2 3 . 1 3 2 9 . 7 8. 11 4. 9 2 7. 0 3 7 4 . 1 7 2 3 . 1 6 2 9 . 8 8 . 4 5 4. 5 6 6 . 5 2 6 9 . 3 2 2 3 . 5 3 3 0 . 3 8 . 5 5 4. 0 8 i^: i'-. \u00E2\u0080\u00A2-*! \u00E2\u0080\u00A2_'. O O 6 2 . 4 2 2 3 . 8 3 3 0 . 7 8 . 6 2 3 . 81 5 . 4 5 5 8 . 5 3 0 0 0 6 1 2 1.8 2 4 HR P O R T M E L L O N NOV \"7:1 : :TA H 1 '.t G M A - T ANOM S A L I N I T Y P P T TEMI-' D E G 0 ML O X Y / L MG OXY/I P C T S A T ' N .y.-y 7. y 5. 5 2 7. 8 8 8 1 . 6 7 2 8 . 6 7. 7 2 \u00E2\u0080\u00A2-\u00C2\u00BB. 4 1 7. 7 3 8 0 . '\"j 4 2 3 0 7. 6 9 CT 3 6 7. 6 6 8 0 . 1 6 \u00E2\u0080\u00A2'./ \u00E2\u0080\u00A2\"/ 7 9 2 9 . 2 7. 7 3 5 . 3 9 7. 7 8 0 . 1 7 \u00E2\u0080\u00A2y-y 6 2 9 7. 9 9 5 . *-I 7. 4 8 7 8 . 2 4 '?'~? 7 5 2 9 . 2 8 . 01 5 . 1 7 . 2 9 7 6 . 4 5 .\u00E2\u0080\u00A2 y .\u00C2\u00BBy 72 2 9 . 2 8. '\"7 4. 8 5 6 . 7 2 . 9 .\u00E2\u0080\u00A2j .y 7 2 9 . 2 8 . 3 7 4 . 6 5 6 . 6 5 7 0 . 2 7 '\"/ m~y 9 9 2 9 . 6 8 . 4. 5 2 6 . 4 6 6 8 . 8 '\"/;~; 7 6 3 0 . 6 8 . 5 7 4. 4 4 6 . 3 5 6 8 . 1 2 D E P T H S (M) P H 0 7. 5 6 0 7. 5 8 7. 6 1 4 7. 6 4 6 7. 7 4 y 7. 6 9 1 0 7. 6 5 1 5 7. 7 2 2 0 7. 6 8 3 0 7. 6 9 POR'I M E L L O N N O V \" 7 7 S T A B -I G H A - T S A L I N I T Y T E M P ML MO P C T ANOM P P T DEO C OXY/L . OXY/L . S A T ' N 1 1 \u00E2\u0080\u00A2~lr JZJ \u00E2\u0080\u00A2*.> 6. 9 5 6. 5 5 9 . 3 6 9 5 23. 6 7. 7 4 5 . 6 5 0. 0 7 S 3 . 6 9 2 3 . 4 2 3 0 7. 67 6. 1 4 0 . 7 7 9 1 . 7 2 2 . 7 9 2 9 . 2 7. 7 2 6. 0 9 0 . 6 9 9 0 . 5 3 22. 63 2 9 7 7 3 5 . 9 4 3 . 4 9 3 3 . 3 2 22. 7 0 2 9 . 2 7, 7 7 5 . 0 9 3 . 4 2 3 7 . 7 5 2 2 . 7 7 2 9 . 2 7. 0 6 4 . 6 6 6 . 6 6 6 9 . 6 2 2 2 . 69 2 9 . 2. 3 . 4 ' 4 . 5 6 . 4 2 6 7 . 9 7 2 2 . 99 2 9 . 6 S . 5 5 4 . 2 9 6. 3 3 6 5 . 2 6 2 3 . 7 7 3 0 . 6 0. 5 5 . 3 6 7. 6 6 32. 0 4 D E P T H S (M) 0 0 4 6 1 0 1 5 2 0 3 0 P H 7. 6 7. 7 7. 7 4 7. 7 4 7. 7 0 7. 7 4 7. 7 4 7. 7 6 7. 7 4 7. 7 4 HR P O R T M E L L O N NOV \" 7 2 S T A B-I G M A - T S A L I N I T Y T E M P ML MG P C T ANOM P P T DEO 0 O X Y / L O X Y / L S A T ' N 1 9 . 9 1 2 5 . 6 O 5 . 3 6 7. 6 6 7 8 . 7 2 21. 8 4 ;~; 7. 01 5 . 2 1 7. 4 4 7 6 . 9 9 2 3 . 5 6 3 0 . 2 7. 8 3 5 . 6 9 8 . 1 2 8 5 . 3 9 2 2 . 9 3 2 9 . 4 7. 8 6 5 . 6 5 8 . 0 7 8 4 . 3 9 2 2 . 5 3 2 9 3 . 1 5 . 61 8 . 0 1 8 4 . 0 6 2 3 . 0 5 2 9 . 6 8 . 0 9 5 . 0 4 7. 2 7 5 . 8 3 2 3 . 51 SO 2 3 . 1.9 5 . 0 4 7. 2 7 6 . 3 3 2 4 . .1 31 8 . 4 3 4. 4 7 6 . 3 9 6 8 . 4 8 2 4 8 0 . 9 8 . 5 2 4 . 4 6 6. 3 7 6 8 . 3 8 2 3 . 9 2 3 0 . 8 3. 5 4 4. 3 9 6 . 2 8 6 7 . 3 7 PORT M E L L O N NOV \" 7 2 S T A B~ 4 H G M A - T ANOM SAL. I N I T Y P P T T F M P DEO C MI-OX Y / l MO OXY/I P C T S A T - N 2 0 . 0 9 2 2 . 6 3 2 2 . 6 2 2 2 . 69 2 2 . 7 1 2 2 . 0 7 2 3 . 0.1. 2 3 . 6 3 2 4 . 2 4 y-i 2 9 2 9 . 1 2 9 . 2 2 9 . 4 2 9 . 6 3 0 . 4 3 0 . S 3 1 . 2 7. 7 4 7. 7 0 7. 91 S. 2 7 0 'VQ 5 1 5 . 7 6 5 . 2 5 b. 5 9 5 . 4 9 5 . 1 3 4. 9 2 4 . 7 4 4 . 5 9 4 . 2 0 4 . 3 3 4 9 9 9 0 4 7 7. 7. 7. 0 3 6 . 7 7 6 . 5 5 6 . 1 I 6 . 1 0 8 4 . 3 2 7 7 . 9 7 7 7 . 7 4 . 7 1 . 6 9 . 6 5 . 6 6 . 3 1 92. 5 4 51 DEPTHS 0 0 '7/ 4 6 1 0 1 5 2 0 3 0 (M) P H 7. 5 7 7. 6 8 7. 6 6 7. 6 4 7. 6 4 7. 6 2 7. 6 3 7. 6 7. 6 T I D E >4 HR P O R T M E L L O N N O V \" 7 2 S T A B - 5 ; IGMA\u00E2\u0080\u0094T S A L I N I T Y T E M P ML MG P C T ANOM P P T D E G C OXY/I.. OXY/I.. S A T - ' N 2 0 . 8 7 2 6 . 5 6 . 1 8 . 5 3 1 2 . 1 8 1 1 9 . 7 2 2 1 . 9 9 2 8 . 2 7. 8 6 5 . 4 3 7. 7 5 8 0 . 4 4 2 2 . 6 3 2 9 7. 7 7 5 . 5 7 7. 9 6 8 2 . 3 3 2 3 . 5 7 3 0 . 2 7. 7 3 5 . 5 6 7. 9 4 8 3 . 2 5 2 2 . 9 4 2 9 . 4 7. 7 4 5 . 5 6 7. 9 4 v 8 2 . 8 1 2 2 . 9 2 9 . 4 8 . 0 2 5 . 3 4 7. 6 2 3 0 . 0 6 2 3 . 4 9 3 0 . 2. 8 . 2 8 4. 9 4 7. 0 5 7 4 . 9 2 2 3 . 9 5 3 0 . 8 8 . 3 7 4. 5 2 6 . 4 6 6 9 . 0 8 2 4 . 2 5 3 1 . 2 8 . 4 8 4. 6 5 6. 6 5 7 1 . 4 4 2 4 . 5 6 3 1 . 6 8 . 4 9 4 . 2 6 6 4 . 6 9 D E P T H S (M) 0 0 4 6 1 0 1 5 2 0 :-:0 P H 7. 5 2 7 3 5 7. 5 8 7. 5 9 7. 6 5 7. 6 5 7. 6 7 7. 6 2 7 6 9 2 4 HR PORT' M E L L O N N O V \" ' 7 2 , S T A C- 1 I G M A - T S A L ] N I T Y T E M P ML MO P C T ANOM P P T DEO 0 OXY/I.. O X Y / L S A T ' N 2 2 . 26 2 8 . 5 7. 6 5 . 1 .1 7. 3 7 5 . 4 3 22. 86 2 9 . 8 7. 7 8 5 . 5 5 7. 9 3 3 2 . 7 6 22. 8 7 2 9 . 3 7. 6 9 5 . 4 3 7. 7 5 8 0 . 7 1 2 2 . 6 3 2 9 7. 71 5 . 5 5 7. 9 3 8 2 . 4 5 2 2 . 6 2 9 7. 9 7 5 . 11 7. 3 7 6 . 3 6 '.'\u00E2\u0080\u00A2' 8 2 9 . 4 8 . 1 6 4 . 9 6 7. 0 8 7 4 . 6 4 2 3 . 0 1 2 9 . 6 8 . 3 b 4 . 6 9 6 . 71 7 1 . 0 7 2 3 . 0 1 2 9 . 6 8 . 4 1 4. 54- 6 . 4 9 6 8 . 8 7 2 3 . 6 1 3 0 . 4 8 . 5 4 4 . 6 . 1 6 6 5 . 9 9 2 4 . 22. 3 1 . 2 8 . 6 3 4. i 5. 8 6 6 3 . 2 D E P T H S (M) 0 0 \u00E2\u0080\u00A27/ 4 6 1 0 1 5 2 0 3 0 P H 7. 4 7. 4 7. 5 5 7. 6 7. 6 5 7. 6 5 7. 6 7. 6 5 7. 6 7. 6 24 HR P O R T M E L L O N NOV \" 7 2 , S T A C -I G M A - T ANOM S A L I N I T Y P P T T E M P DEG C ML O X Y / L MG OXY/L. P C T S A T ' N 1 8 ~y;-; 4 7. A 6 . 0 2 8 . 6 8 8 . 7 3 .y sy \u00E2\u0080\u00A2 y j-| 6 7. 6 3 9 9 8 . 5 6 fe 'z>. 5 9 '\> \u00E2\u0080\u00A2\"/ 9 6 2 9 . 4 7. 61 6. 1 8 o. 8 3 9 1 . 8 6 '/ 6 4 2 9 7. 6 8 6 8 8 . 11. 8 4 . 2 6 7 8 2 9 . 7. 7 9 5 . 7. 5 7 7 8 . 9 6 7 7 2 9 . 7. 8 7 5 . 1 7 7. 3 9 7 7 . *'/ ' 3 5 3 0 8 . 1 8 4 . 8 7 6 . 9 6 7 3 . 6 5 6 4 3 0 . 4 3 7 4 . 6 7 6. 6 7 7 1 . 11 6 2 3 0 . 4 4 6 4 . \u00E2\u0080\u00A2~. \u00C2\u00BB~r 6 . 2 5 6 6 . 2 4 . 2 4 8 1 . O. 4 9 4. 6 . 0 4 6 4 . 9 3 D E P T H S (M) 0 0 4 6 1 0 1 5 2 0 3 0 P H 7. 7 7. 7 7. 7 5 7. 7 7. 7 7. 6 5 7. 6 5 7. 7 7. 6 5 7. 7 2 4 HR P O R T MEL I..ON NOV \" 7 2 , OTA 0 I G M A - T ANOM ;A!...1.NTTY P P T T E M P DEO C ML O X Y / L MO-OX Y / L PCT S A T ' N 2 1 . 0 0 2 2 . 0 2 '\"/' y '-| '7' 2 2 . 4 6 2 2 . 61 2 3 . 1 9 2 3 . 6 4 2 3 . 9 4 2 4 . OS 2 7 . 4 2 0 . 6 \u00E2\u0080\u00A27/;~; ',-; 2 9 2 9 . 7 ? 2 9 . 3 3 0 . 4 3 0 . S 3 1 7. 7 7. 6 5 7. 7 4 7. 3 6 7. 3 9 7. 9 6 3 . 2 1 0. 3 5 O. 4 6 5 . 4 9 5 . 8 7 5 . 6 8 5 . 0 5 4 . 9 8 4. 7 3 4. 3 5 4. 1 7. 7 7. 5 7. 8 4 8 . 11 7. 21 7. 1 2 6 . 7 6 6 . 2 2 5 8 6 7 9 . 1 2 7 7 . 4 1 8 1 . 3 5 8 4 . 6 9 7 5 . 7 9 7 5 . 7 2 . 6 6 . 0 6 0 4 6 3 6 2 . 9 9 PORT M E L L O N N O V \" ' 7 : i n A C I G M A - - T ANOM S A L I N I T Y T E M P EiEO 1:: ML O X Y / L MO O X Y / L P C T S A T \"N 2 2 . 0 2 2 2 . 6 4 2 2 . 6 2 2 3 . 6 4 2 3 . 4 5 2 3 . 5 7 2 3 . 5 6 2 3 . 7 1 2 4 . 0 9 2 4 . 2 4 2 9 2 9 3 0 . 3 0 . 3 0 . 3 0 . 3 0 . 3 1 3 1 . 7. 6 5 7. 7 7. 7 8 7. 8 3 8 . 0 5 8 . 2 6 8 . 3 7 8 . 41 8 . 4 8 5 . 5 6 5 . 5 5 4 . 2 9 5 . 1 4 4 . 8 8 4 . 5 2 4. 5 8 4. 2 9 4. 0 2 7. 6 . 7 . 6 . 6 . 6 . 6. 11 9 5 9 3 1 3 3 4 9 8 4 5 5 4 1 3 7 5 8 3 . 7 4 8 2 . 6 2 8 2 . 5 9 6 4 . 4 7 7 7 . 4 7 7 4 . 1 4 6 8 . 6 9 . 6 5 . 61. . 7 6 7 9 8 7 3 0 7. 7 0 0 0 6 1 2 1 8 2 4 HR P O R T Ml:I..!..ON NOV '72, S T A 0 - 5 I G M A - T S A L I N I T Y T E M P MI- MO P C T ANOM P P T U E G C OX Y / L OXY/I.. S A T - N 19. 3 9 24. 8 7. 3 5 5. 9 7 8 5 . 3 9 2 1 . 3 9 2 7 . 4 7. 6 7 5. 5 5 7. 9 3 3 1 . 4 7 -~t 'It 2 3 . 6 7. 7 7. 9 7 3 2 . 5 8 22. 77 29. 2 7. 39 5. 7 3 8. 18 8 5 . 5 6 ' y \u00E2\u0080\u00A2-i '~f 29. 8 8. 15 5. 17 7. 3 9 78. 0 7 \u00E2\u0080\u00A2~f~t 29. 4 3. 2 3 4. 9 6. 9 9 73. 31 2 3 . 17 29. 3 8. 3 6 4. 54 6. 4 9 6 3 . 8 9 2 3 . 6 3 8 0 . 4 8. 41 4 2 5 6. 0 7 64. 8 3 2 3 . 6 3 30. 4 8. 4 3 4 2 9 6. .13 6 5 . 44 24. 2 4 3 1 . 2 8. 51 4 0 6 c >~. . O 6 2 . 4 4 P O R T M E L L O N \u00E2\u0080\u00A2JAN'\"73 S T A A - :! I G M A - - T S A L I N I T Y T E M P ME. MO P C T ANOM P P T I IEO 0 O X Y / L OXY/L . S A T ' N 1 5 . 8 1 1 5 . 9 3 2 0 . 0 2 2 0 . 7 2 2 0 . 7 9 2 1 . 4 9 2 2 . 1 8 2 3 . 1 3 2 4 . 12. I'O. 2 2 0 . 3 2 5 . 3 2 6 . 2 2 6 . 3 2 7 . 2 2 8 . 1 2 9 . 4 3 0 . 8 8 0 . 4 7. 8 6 3 1 7 2 8 5 3 4 4 8 6 3 2 7 5 1 8 7 8 6. 4 7 7. 0 4 7. 02. 6. 9 8 7. 0 5 6 . 8 8 6 . 0 3 5 . 4 4 6. 2 1 8 . 3 6 9. 2 4 1 0 . 0 6 1.0. 0 2 9. 9 7 1.0. 0 3 9 . 8 2 8 . 6 9 7. 7 7 8 . 8 7 7: 8 1 9 5 . 8 9 6 . 3 2 9 5 . 9 9 9 7 . 9 9 9 6 . 4 6 3 7 . 4 9 8 0 . 31. Q'-l 7;-; P O R T M E L L O N J A N \" 7 3 S T A A -; 1 GMA- -T ANOM S A L I N I T Y P P T T E M P U E G C ML O X Y / L MG OXY/L . P C T S A T \" N 1 1 . 4 2 1 6 . 3 9 1 9 . 8 6 2 0 . 3 2 2 0 . 5 5 2 1 . 01 2 1 . 4 7 2 3 . 1 7 2 3 . 4 7 1 5 1 0 . 1 5 6. 2 4 8 . 91 8 9 . 4 7 2 0 . \u00C2\u00A3: 6. 1 5 6 . 3 2 9 . 0 4 8 5 . 5 5 2 5 . 1 5 . 2 7. 2 6 1.0. 3 7 9 8 . 7 2 5 . 7 5 . 3 6 7. 11 1 0 . 1 5 9 7 . 4 2 6 5 . 3 9 6 . 9 4 9 . 9 1 9 5 . 3 8 2 6 . 6 5 . 4 9 7. 4 4 1 0 . 6 3 1 0 2 . 9 3 2 7 . 5 . 6 6 A . 7 2 9 . 6 9 3 . 7 9 2 9 6. 4 2 6. 1 5 8 . 7 8 8 8 . 4 7 \u00E2\u0080\u00A2y c/ 6 7. 2 5 LL* 3 4 7. 6 3 7 8 . 7 5 3 0 . 1 7. 9 1 4 . 6 5 6. 6 4 6 9 . 8 9 PORT MELLON .JAN\"' 7 3 STA A- 3 : IGMA-T S A L I N I T Y TEMP Ml. MO PCT ANOM P P T DEO C OXY/L OXY/L S A T ' N 10. 5 7 j 7. 17 19. 8 6 20. 0 8 2 0 21. 21. 0 9 c r n r 0 4 0 7 7 7 21. 9 25. 1 25. 4 2 6 .26. 7 27. 3 29. 3 29. 5 30. 5 10. 6! 13 6. y 7. 3 6 0 6. 61. 7. 2 3 6. 81 6. 7 2 6. 7 3 5. 2 4. 61 4. 61 0 9. 4 4 1.0. s: 9 EL' 6 6 2 4:-: 0 91. 3 8 98. 3 94. 0 2 93. 6 2 93. 21 94. 01 74. 8 6 68. 12 69. 5 7 DEPTH:;;.' (M) 0 0 4 6 10 1 5 2 0 3 0 PH 9. 6 6. 7 7. 7 7. 7 5 7. 8 7. 7 8 7. 7 5 7. 7 2 7. 7 O-oo 0 6 12 .1 2 4 HR PORT MELLON .JAN \" 7 3 STA A- 4 \u00E2\u0080\u00A2\u00E2\u0080\u00A2IGMA-' ANOM :AI. I N I T Y P P T TEMP DEG 0 ML n X Y / l MO OXY/L PCT S A T ' N 12. 4 2 17. 41 20. 01 20. 8 4 20. 5 5 21 21. 9 3 2'\"' 5:-! 23. 5 23. 51 16. 26. 5 26. 3 26. 6 27. 8 28. 7 29. 9 30. 2 9. 6 6. 9 2 5. 2 5 6. 3 6 7. 4 6 5. 6 3 5. 7 6 6. 2 5 6. 4 6 8. 14 4. 6 5 7. 0 7 7. 2 7 6. 8 2 6. 9 5 6. 5 7 6. 5 8 6. 1.1 5. 0 3 4. 7 4 6. 6 4 10. 1 10. 3 9 9. 7 5 9. 9 3 9. 3 8 9. 4 8. 7 2 7. 19 6. 77 66. 3 3 98. 3 4 99. 13 96. 4 2 100. 7 5 91. 2 9 2 8 7 7 2 71 4 4 3 7 9 7 6 7 D E P T H S (M) PH T I D E 0 9 0 2 0 6. 7 7. 7 4 7. 8 6 7. O '7/ 8 7. 8 2 10 7. 8 2 15 7. 2 0 7. 7 8 3 0 7. 7 5 0 +\u00E2\u0080\u0094 00 0 6 12 1:; \"'4 HR P O R T Mk-.l .(..ON . JAN \" 7 3 , A 3 J G M A - T S A L I N I T Y T E M P ML MG P C T ANOM P P T I.iEG 0 O X Y / L O X Y / L S A T - N 7. 1 9 9 3 6 . 3 9 9. 1 3 0 4 . 4 9 1 9 . 4 6 2 4 . 6 5 . \u00E2\u0080\u00A27/ 'Z\ 6. 9 0 9 . 9 7 9 4 . 6 3 2 0 . 4 0 2 5 . 9 L_-._t. \u00E2\u0080\u00A2~\u00C2\u00BB 7. 0 2 1 0 . 0 2 9 6 . 2 3 2 0 . 2 3 2 5 . 6 5 . 41 6. 0 9 . 7 2 9 3 . 3 20. 7 0 2 6 . 3 5 . e_-,\u00E2\u0080\u009Et 6. 6 9 . 4 3 9 1 . 1 0 2 1 . 7 2 7 . 5 7 2 6. 3 6 9. 0 9 0 9 . 1 2 1 . S 3 2 7 . 7 nr 7 7 6 . 3 9 9 . .13 0 9 . 6 9 2 3 . 1 4 2 9 . 4 6 . 1 6 6. 0 4 8 . 6 2 0 6 . 5 8 2 3 . 0 7 2 9 . 5 7. 41 5 . 31 7. 5 0 7 8 . 5 2 2.3. 5 4 S O 7 7. 9 5 4. 5 5 6 . 5 6 8 5/-, DEPTH: ! ; (M) (.) P H 0 7. 9 7. \u00E2\u0080\u00A280 4 6 7. 7. 8 7 8 5 8 7. 8 5 1 0 y i\" IL7. '?.'' :.' 1 5 7. 2 0 3 0 7. 7 5 0 ^-00 0 6 +_.. 1 2 \u00E2\u0080\u0094 i -2 4 HK \u00E2\u0080\u00A2\u00E2\u0080\u00A2'ORT MLI.J..ON . J A N \" 7 3 , ; J G H A - T A N O M S A L I N I T Y P P T T E M P DEC? c ML O X Y / L MG OXY/I P C T S A T - N 1 7 . 9 1 ' 7 6 4. 9 3 7. 1 1 0 . 1 5 9 4 . 3 7 1 0 . 4 7 *7' 3 4. 9 8 7. 1 1 0 . 1 5 9 4 . 7 7 1 0 . 4 6 ' 7 ' -| 3 . 0 3 7. 6 7 1 0 . 9 6 i o : ?. 5 3 1 9 . 4 3 2 4 . c ._ r 4. 7 2 6. 9 . 8 3 ' 0 1 i . \"'3 2. ; 15 1 2 6 . 7 9 9 . 7 7 9 . 7 8 '\".('7 0 6 o 6. 0 3 4 1 . 7. 7 2 7 6 . 6 \u00E2\u0080\u00A27 \"/ 2 6 ' / j~j 3 6. 2 9 81 3 . 3 C; *7 9 6 o ' 7 '7' Q 7 6. .87 5 . 3 4 7. 6 8 . 7 8 . 1 7 3 0 . 7. 6 5 4 . 4 9 6. 41. 6 7 . 1.4 2 3 . 7 6 \u00E2\u0080\u00A230. 3 8 . 0 7 4. 1 5 5 . 9 3 6 2 . 81. 8 7. 5 5 5 + + 1 0 7. 6 1 5 7. 51 3 0 7. 5 0 0 0 6 1 2 1 8 2 4 H R PORT M E L L O N J A N \" ' 7 3 , OTA B 2 I O M A - T S A L 1 N I T Y T E M P ML MO P C T ANOM P P T DEO 0 O X Y / L O X Y / L S A T ' N 1 9 . 2 4 2 4 . 3 5 . 0 5 19. 0 1 2 4 5 . 0 2 1 9 . 4 2 4 . 5 5 . 0 0 2 0 . 3 2 2 5 . 7 5 . 3 2 2 1 . 3 2 2 7 5. 5 4 2 1 . 4 6 2 7 . 2 5 . 7 2 2 . 9 7 2 9 . 2 6 8 2 0 . 3 0 2 9 . 0 6. 0 4 2 3 . 5 0 3 0 . 2 7. 6 5 2 3 . 5 2 3 0 . 2 0 . 0 7 7. 17 1 0 . 2 5 9 6 . 6 3 7. 11 1.0. 1 5 9 5 . 4 0 7 1.0 9 4 . 5 2 6. 0 4 9 . 7 0 9 3 . 7 2 6. 71 9 . 5 9 9 3 . 2 5 6 . 5 4 9 . 3 5 9 1 . 3 7 9 9 0 . 5 6 0 6 . 0 0 5 . L-\"cr '...' 7. 9 4 0 1 . 2 4 4. 6. 0 6 7 1 . I~I tzr 4. 2 4 6. 0 5 6 4 . 0 2 DLI (M) 0 4 6 7. 6 0 7. 5 5 7. 5 7. 61 7. 6 7. 6 FT 1 5 .1.0-1-r.i-i-1 0 7. 51 1 5 7. 6 5 2 0 7. 6 2 o \u00E2\u0080\u00A2\u00E2\u0080\u00A2-\u00E2\u0080\u00A2+\u00E2\u0080\u00A2-3 0 7. 6 0 0 0 6 1 2 1 0 2 4 P R PORT MI-LI .ON ..IAN \" ' 7 3 , S T A B 3 X O M A - T S A L 1 N I T Y T F M P ML MG P C T ANOM P P T DEO 0 O X Y / L OXY/I.. S A T \" ' N 1 7 . 2 9 \u00E2\u0080\u00A2'.' 1 9 5 . 0 6 . 6 5 9. 5 8 9 . 7 3 1 0 . 2 8 9 8 . 1 5 . 2 3 6. 9 0 9 . 9 7 9 3 . 6 3 1 0 . 3 5 2 3 . 0 5 . 0 5 7. 1 .1 1 0 . 1 5 9 5 . 4 2 2 0 . 0 6 2 6 . 4 5 . 4 2 6 . 0 4 9. 7 8 9 4 . 4 1 2 1 . 3 9 2 7 . 1 5 . 6 2 6. 5 0 9. 4 9 1 . 6 7 2 1 . 9 9 2 7 9 5 . 9 6. 4 5 9. 21 9 0 . 9 7 2 2 . 2 1 \u00E2\u0080\u00A2'/;-'; '? 6. 0 3 6 . 3 2 9. 0 3 8 9 . 5 9 2 3 . 5 2 3 0 6. 9 5 . 4 7. 7.1 7 9 . 1 5 7. 6 7 4. 0 6 . 0 6 -9 8 3 7 3 0 8 . 0 5 4. 2 0 6. 1 1 6 4 . 4 9 D E P T H S < M) 0 o 7. 7. fc\u00C2\u00AB5 cr ._ r '7/ 7. 6 5 4 7. 7 5 6 7. V 7 /. 'r. 1 0 7. 6 1 5 7. 6 9 2 0 7. 5 5 3 0 7. 5 1 1 O-i-5-1-n-O O I-0 6 T I D E \u00E2\u0080\u00A2I - -!\u00E2\u0080\u00A2\u00E2\u0080\u00A2 1 2 1 2 4 HR F O R ] Ml :L I .ON .. . IAN'\"70, S T A ft 4 ; l OMA- ' I S A L TNT TY T E M P ML MO P C T ANOM P P T D L O 0 O X Y / L O X Y / L S A T ' N .1.4. 1.0 1 7 . 9 5 . 3 5 7, . 4 10 . 5 7 9 6 . 2 2 10 . 2 \u00E2\u0080\u00A2.. ' , \u00E2\u0080\u00A2_ ' 7. . 0 4 .1 0 . 0 6 9 4 . 6 2 18 . 0 2 5 . 3 5 7 . 0 7 1 0 . 1 9 5 . 61 2 0 . 3 7 2 5 8 5 . 6 5 6 . 7 0 . 9 . 6 0 9 3 . 6 5 2 1 . 5 3 2 7 . 3 5 . 8 3 6. . 7 1 9 . 5 9 9 4 . 1 3 2 0 . 1 5 . 9 4 6 5 2 9 . 31 9 2 . 1 2 2 2 . 1 2 8 . 1 6. 8 8 6 \u00E2\u0080\u00A2Z1 sL 9. 0 3 9 0 . 3 2 3 . 3 1 2 9 . 7 6. 7 . 0 0 8 . 41 8 5 . 7 2 3 . 4 4 3 0 7. 5 9 5 . 0 7 7. 2 4 7 5 . 4 4 2 3 . 6 6 3 0 . 4 8 . 1 8 4 6 . 1 1 6 4 . 8 7 D E P T H S (M) 0 0 '7/ 4 A 10 1 5 2 0 \u00E2\u0080\u00A230 P H 7. 71 7. 5 9 7. 6 7. 7 7. 7 5 7. 7 7. 6 5 7. 7 1 7. 7 7. 6 5 F T 1 5 - \u00E2\u0080\u0094 T I D E 1 O i -0 0 0 6 -i f.. 1 2 1. ii 2 4 HH P O R T M E L L O N \u00E2\u0080\u00A2JAN-\"73 , S T A B5 S Y H M A - T S A L I N I T Y T E M P ML MO P O T ANOM P P T DEO C OXY/I... O X Y / L S A T - N 1 8 . 9 1 5 . 2 7. 2 4 1 0 . 3 4 9 7 . 6 2 1 0 . 9 3 2 3 . 9 5 . 0 8 7. 2 4 1 0 . 3 4 9 7 . 3 2 1 9 . 2 3 2 4 . 3 5 7 7. 1 1. .10. 1 5 9 6 . 11 2'i 0 7 2 6 . 7 5 . 7 6. 7 4 9 . 6 3 9 3 . S 2 0 . 9 1 2 6 . 5 5 . 7 2 6. 0 4 9 . 7 0 9 5 . 1 0 2 1 . 6 0 2 7 . 5 5 . 9 6. 6 5 9 . 5 9 3 4 9 2 3 . 3 1 2 9 . 6 6 . 1 2 6. 9 . 0 3 9 0 . 6 7 2 3 . 4 6 2 9 . 9 6. 7 9 5 . 6 2 8 . 0 3 0 2 . 1 6 2.8 6 5 3 0 . 8 7. 6 9 4. 6 7 6 . 6 8 6 9 . 9 9 2 3 . 2 3 .29. 9 0. 1 2 4. 3 6 . 1 5 6 4 . 9 5 D E P T H S P H FT T I D E 1 5 - - i \u00E2\u0080\u0094 ;.. 0 7. 8 0 7. 7 7. 6 0 1 Oi- / / + 4 7. 7 o 7. 7 1 x e y 3 7. 7 5 5-1 + 1.0 7. 6 5 1.5 7. . 7 2 ... ... 2.0 3 0 /. / 7. 6 0 0 0 6 1 2 ? 2 4 HR P O R T M E L L O N . J A N \" ' 7 3 , S T A C l : I G M A - - T ANOM SAL I N I T Y P P T I'F-'MP \" C O c ML O X Y / L MO OXY/I. P C T S A T ' N 1 5 . 6 9 1 9 . 3 1 7. E T . _ l 1.0. 7 2 9 8 . 1.9 i 9 . 4 2 4 . 5 5 . 0 3 7. 1 0 . 2.9 9 7 . 1 9 i 9. 4 7 2 4 . 6 !:':'\u00E2\u0080\u00A2. 1 6 7. 2 4 3 0 . 3 4 9 7 . 9 9 'i. 9. 7 7 2 5 5 . 7. 2 4 1 0 . 3 4 9 8 . 6 5 2 1 . \"-\u00E2\u0080\u00A2' 2 6 . 9 \u00E2\u0080\u00A2.. 6 4 6. S 3 9 . S 3 9 5 . 8 2 1 . 3 6 2 7 . 1 9 1 6. 5 2 9 . 3 1 9 1 . 4 1 9 1 6 5 2 7 . 5 6. 1 2 6 . 3 4 9 . 0 6 \u00C2\u00A3;9 7 2 '\"/ 7 2 .-\u00E2\u0080\u00A2 6. 4.1 6 . 0 2 S . 5 9 8 6 . 5 1 1 2 9 ... i 7. 1 3 5 . 3 6 ' 7. 6 5 7 3 . 7 4 9 3 3 0 . 7 7. 9 3 4. 5 7 6 . 5 2 6 9 . 0 8 D E P T H S (M) 0 0 4 A 1 0 1 5 2 0 :-:0 P H 7. 7 3 7 8 7 5 7 4 7. 7 2 7. 7 7. 6 8 7. 6 5 F T 1 5 3. Ow-T ] DE 0 0 OA 3 2 '4 H P ; 'ORT MK-1. L ON .JAN \" 7 3 , S T A C2 : I i :SMA--T ANOM S A L I N I T Y P P T T E M P DEG C Ml. OXY/I MO OXY/I P C T S A T - N 1 4 . 7 8 3.9. A 4. A 7. 3 7 1 0 . 5 3 9 4 . 4 9 1 8 . ._r.j;t ' 7'-! 4 5 . 0 6 7. 2 4 1.0. 3 4 9 6 . 9 5 1 9 . 2 4 . 5 s 5. 2 5 7. 0 4 10 . 0 6 9 5 . 4 7 2 0 . 1 4 2 5 . 5 7 6. 7 4 9 . 6 3 9 2 . 7 3 2 0 . 2 6 . 5 5 . 6 . 6 7 9 . 5 3 9 2 . 9 9 2 1 . 0 4 2 6 . 7 5 . 9 5 A. 6 3. 9. 4 4 9 2 . 5 4 21 3 4 2.7. 1 6. 1 1 6. 4 5 9 . 21 9 0 . 9 4 \u00E2\u0080\u00A2y ''i 2 9 6 . 6 8 5 . 7 9 8 . 2 7 8 4 . 0 8 '- f' \u00E2\u0080\u00A2J '\"7 2 9 6 6. 9 5 ... 5 3 7. 9 8 0 . 9 6 2 4 . 4 9 3 1 . 4 7. 9 4, 6 1 6 . 5 3 6 9 . 8 9 D E P T H S ' (M) PE! E T T I D E 0 7. 4 9 / \ 0 7. 6 4 / \ \"' 2 7. 7.1 10-I--V _ \ / ^ i . 4 7. 7 3 \u00E2\u0080\u00A2\" | \ / 8 7. 7 1 5-i- \u00E2\u0080\u00A2*\"^ -i-3 0 7. 7 3 1 5 7. 6 8 2 0 7. 6 9 0 --I 1 -\u00E2\u0080\u00A2- : -3 0 7. 6 5 0 0 0 6 - 1 2 3 8 2 4 ElK PORT MELLON ...IAN'\"73, STA IGMA-T SALINITY TL'MP ML MO PCT ANOM PPT DF:O C OXY/I.. OXY/I... SAT'N 1 4 . 7 3 1 8 . 6 4. 6 7 c n \u00E2\u0080\u00A2..' O 1 0 . 8 3 9 7 . 1 9 17. 5 2 2 2 . :l 4 , 9 1 7 1.7 1 0 . 2.5 9 4 . 8 7 1 9 9 2 4 5 . 2 1 6 6 7 9. 5 3 9 0 . 0 7 20. 4 5 2 5 . 9 5. 6 2 6 9 8 9 . 9 7 9 6 . 3 7 2 0 . 6 2.6. 1 5. 6 9 6 7 8 9. 6 8 9 3 . 9 4 2 0 . 8 9 7.6. 5 5. 92. 6 6 1 9. 4 4 9 2 . 3 5 1 . 4 3 2 7 . 2 6. 0 3 6 3 4 9. 0 6 3 9 . 3 4 2 2 . 69 2 8 . 9 6. 6 9 5 6 2 8 . 0 3 8 1 . 3 9 2 9 8 7. 2.1. 5 2 7 7. 5 2 7 7 . 6 9 2 4 . OS 3 0 . 9 7. 9 8 4 5 4 6 . 4 9 6 8 . 7 8 APPENDIX C Due to a m a l f u n c t i o n i n g o f the Beckman Model/DU spectrophoto-meter d u r i n g the f i r s t (May 72) hydrographic survey the KME concen-t r a t i o n s are presented as the o p t i c a l d e n s i t i e s ( t o t a l absorbancy) of the water samples. Because the procedure o u t l i n e d by Barnes ejt al_. to determine the Pearl Benson index (PBI) (which gives an e s t i m a t i o n of the s u l p h i t e wastes i n a water sample) was undertaken on each sample the O.D.'s can be c o r r e l a t e d r e l a t i v e l y to the s u l p h i t e waste present i n the water samples from the f i r s t survey. For comparative purposes the o p t i c a l d e n s i t i e s are presented f o r the second survey (August 72) as w e l l . The PBI (A^ (net absorbance) = A x ( t o t a l absorbance) - A D (blank absorbance)) was c a l c u l a t e d f o r each water sample and converted to ppm (A<. of .508 - 5000 ppm KME). - 108 -- 109 -Table 3. Co n s i s t s of the o p t i c a l d e n s i t y of each water sample c o l l e c t e d f o r the s p r i n g (72) hydrographic survey and the o p t i c a l d e n s i t y and KME i n ppm of each water sample obtained on the summer (73) survey,at43omiu. - no -O p t i c a l D e n s i t i e s May 72 - Region A S a m p l e Cast t i d a l h eight ( f t ) Depth (M) 6.6 12 14 14 11 6.6 OB 1.140 1.03 .078 .640 .329 .920 ON .053 .134 .024 .148 .263 .124 2 .025 .033 4 - .028 -6 .018 .024 - - - -8 .01 .026 -10 .025 .029 -15 .015 .0235 -20 .030 .0225 -30 - .024 -- I l l -O p t i c a l D e n s i t i e s May 72 - Region B S a r n p l e Cast t i d a l height ( f t ) Depth (M) 7.4 11.2 14 14 11 5.7 OB .135 .092 .100 .081 .034 .123 ON .070 .062 .078 .066 .022 .078 2 .043 .058 .043 .032 .015 .058 4 .037 .041 .031 .023 - .044 6 .035 .026 .033 .017 - .030 8 .025 .028 .029 .014 .003 .022 10 .021 .033 .031 .010 \u00E2\u0080\u00A2- .019 15 .015 .026 .023 .006 - .015 20 .018 - .018 .007 - .022 30 .016 .024 .005 _ .015 .012 - 112 -Optical Densities May 72 - Region C Cast tidal height (ft) Sample Depth (M) 8.5 12.6 14.4 13.6 6 2.8 OB .092 .295 .108 .071 .123 .118 ON .095 .083 .070 .056 .105 .062 2 .045 .047 .087 .041 .072 .019 4 .028 .028 .036 .034 .032 .014 6 .026 .026 .027 .013 .025 .007 8 .022 .015 .021 .012 .044 .007 10 .018 .016 .019 .015 .008 .013 15 .014 .019 .014 .011 .002 .006 20 .014 .015 .013 .008 - -30 .014 .013 .013 .013 - .004 - 113 -Optical Densities KME (ppm) August 72 - Region A S a m p l e Cast tidal height (ft) Depth (M) 12 15 11.8 7 OB 1.00-9850 .682-6713 1.170-11,516 1.18-11,615 ON .470-4650 .339-3337 .950- 9351 .755- 1432 2 .237-2333 .367-3613 .283- 2786 .253- 2491 4 .206-2028 .281-2766 .233- 2294 .224- 2205 6 .223-2195 .234-2304 .239- 2353 .208- 2048 8 .201-1979 .239-2353 .232- 2284 .214- 2107 10 .205-2018 .239-2353 .232- 2284 .210- 2067 15 .179-1762 .228-2245 .229- 2254 .203- 1998 20 .187-1841 .228-2245 .232- 2284 .192- 1890 30 .180-1772 .230-2264 .233-1 2294 .200- 1969 - 114 -Optical Densities KME (ppm) August 72 - Region B S a m p l e Cast tidal height (ft) Depth (M) 11.2 14.6 9.1 5.3 OB .518-5099 .492-4843 .087-857 .094-926 ON .482-4745 .448-4410 .059-581 .064-630 2 .406-3997 .445-4380 .054-532 .052-512 4 .405-3987 .386-3790 .040-394 .036-355 6 .350-3445 .383-3770 - - 0 .017^ 168 8 .350-3445 .385-3790 .010- 98.5 .001- 10 10 .350-3445 .390-3839 .020-197 .007- 69 15 .349-3435 .382-3760 .008- 79 .005- 49.5 20 .349-3435 .370-3642 .015-148 - - 0.0 30 .336-3308 .367-3613 .018-178 .003- 30 - 115 -Optical Densities (KMEEppm) August 72 - Region C Sample Cast tidal height (ft) 5.8 Depth (M) 11 .4 14.4 10.2 OB .058-3000 .036-354 .058-5000 .123-1211 ON .053- 522 .021-207 .046- 453 .095- 935 2 .046- 453 .009- 89 .056- 561 .084- 827 4 .053- 522 .055- 49 .052- 312 .051- 302 6 .012- 118 .018-177 .014-138 .026- 256 8 .006- 59 .025-246 .013- 128 .013- 128 10 .003- 30 .017-167 .010- 98 .018- 177 15 .004- 39 .028-276 .005- 49 .006- 59 20 .004- 39 .027-266 .011- 108 .014- 138 30 - - .028-276 .003- 30 .008- 79 APPENDIX D Though s e v e r a l water q u a l i t y surveys were conducted on water samples c o l l e c t e d a t o y s t e r t r a y l e v e l over a f l o o d t i d e d u r i n g the summer (72) the trends with t r a y depth a t each s t a t i o n were s i m i l a r such th a t the r e s u l t s o f only a s i n g l e survey have been presented. For the August 72 c o l l e c t i o n , the water samples were c o l l e c t e d a t t r a y l e v e l s o f s u r f a c e , 3 f e e t , 6.5 f e e t and 7.5 f e e t . The t i d a l p a t t e r n d u r i n g the c o l l e c t i o n time was low at 0700 hours (PST) (3.5 f t ) and high a t 1440 hours (PST) (12.5 f t ) . Each sample was analyzed f o r temperature (\u00C2\u00B0C), s a l i n i t y (0/00), oxygen content (ml/L), o p t i c a l d e n s i t y , c h l o r o p h y l l a (mg/m ) and seston (mg/L). The procedures i n v o l v e d i n the a n a l y s i s are o u t l i n e d i n the methods s e c t i o n - water q u a l i t y d e t e r m i n a t i o n s . - 116 -- 117 -Figure 13. Each property measured (\u00C2\u00B0C), 0/00, 0?, O.D. chl a, seston) i s d i s p l a y e d at the depth o f the o y s t e r t r a y , and a l l o y s t e r s t a t i o n s (1, 2, 3 and 6) are shown together f o r comparative purposes. temperature C station: l 15 20 25 D O a \u00E2\u0080\u00A2a 1.2 1.8 / / / l l I I I I I o a a> 1-2 1-8 .6 15 2 20 25 8 10 1.2 1-8 I i t \u00C2\u00AB I i i i i I i t \ i 1 0 15 3 20 25 15 4 20 25 15 6 20 25 1-2 1-8 I salinity ^oo 1-2 1 - 8 1-2 1-8 8 10 1-2 1-8 1-2 1-8 OO I 10 10 V 1-2 1-8 i \ \ \ T \u00E2\u0080\u00A2 i depth of tray(M) depth of tray (M) - 6 L L -depth of tray (M) ob to O1 \ CO rO <> o \" a CO r o O- O t> 6 CO K3 ' 6* O Q \" \u00E2\u0080\u0094 - \u00E2\u0080\u0094 \u00E2\u0080\u0094 f l 00 IO O- O e . 6 u a CD tn O depth of tray (M) 3\" o s ro o. 8 CO - OZ L -"@en . "Thesis/Dissertation"@en . "10.14288/1.0099883"@en . "eng"@en . "Zoology"@en . "Vancouver : University of British Columbia Library"@en . "University of British Columbia"@en . "For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use."@en . "Graduate"@en . "Kraft mill effluent and the Pacific oyster"@en . "Text"@en . "http://hdl.handle.net/2429/18886"@en .