- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Pulsed nuclear magnetic resonance in metal single crystals
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Pulsed nuclear magnetic resonance in metal single crystals McLachlan, Leslie Allan
Abstract
Spin-lattice relaxation times have been measured in metal single crystals with a pulsed nuclear magnetic resonance apparatus at both room and liquid nitrogen- temperatures. The values obtained for aluminum and vanadium agreed well with the values given in the literature for powdered samples. The niobium value was slightly lower than the most reliable powder value, possibly because of impurities. Measurements were made on isotopically pure tin to see if any anisotropy could be detected in the spin-lattice relaxation time. No anisotropy could be detected, but the crystal orientation used was so unfavourable that an anisotropy of less than about 50% could not be detected. The spin-spin relaxation time was measured in the isotopically pure tin for five different magnetic field orientations. These showed that exchange narrowing occurred. With a suitable choice of operating conditions, the apparatus measured the equivalent of the absorption mode in steady state nuclear magnetic resonance as a function of magnetic field orientation. This was combined with the spin-spin measurements to give the complete orientation dependence of the latter. These measurements gave a value of (2.1±0.3)Kc/s. for the pseudo-exchange constant in tin. The pseudo-dipolar second moment was found to be twice the dipolar second moment. Spin echoes were observed in the isotopically pure tin and were used to measure the spin-spin relaxation time. These gave values which were much shorter than those measured by free induction decays. The reason for this was not determined.
Item Metadata
Title |
Pulsed nuclear magnetic resonance in metal single crystals
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
1965
|
Description |
Spin-lattice relaxation times have been measured in
metal single crystals with a pulsed nuclear magnetic resonance
apparatus at both room and liquid nitrogen- temperatures.
The values obtained for aluminum and vanadium agreed well with the values given in the literature for powdered samples. The niobium value was slightly lower than the most reliable powder value, possibly because of impurities. Measurements were made on isotopically pure tin to see if any anisotropy could be detected in the spin-lattice relaxation time. No anisotropy could be detected, but the crystal orientation used was so unfavourable that an anisotropy of less than about 50% could not be detected.
The spin-spin relaxation time was measured in the isotopically pure tin for five different magnetic field orientations.
These showed that exchange narrowing occurred. With a suitable choice of operating conditions, the apparatus measured the equivalent of the absorption mode in steady state nuclear magnetic resonance as a function of magnetic field orientation. This was combined with the spin-spin measurements to give the complete orientation dependence of the latter. These measurements gave a value of (2.1±0.3)Kc/s. for the pseudo-exchange constant in tin. The pseudo-dipolar second moment was found to be twice the dipolar second moment.
Spin echoes were observed in the isotopically pure tin and were used to measure the spin-spin relaxation time. These gave values which were much shorter than those measured by free induction decays. The reason for this was not determined.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2011-08-25
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.
|
DOI |
10.14288/1.0085527
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Campus | |
Scholarly Level |
Graduate
|
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.