- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Radicals in near-rings
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Radicals in near-rings Thompson, Charles Jeffrey James
Abstract
An algebraic system which satisfies all the ring axioms with the possible exceptions of commutativity of addition and the right distributive law is called a near-ring. This thesis is intended as a survey of radicals in near-rings, and an organization of the theory which has been developed to date. Because of the absence of the right distributive law, the zero element of a near-ring need not annihilate the near-ring from the left. If we impose the condition that 0 • p = 0 for all elements p of a near-ring P, then we call P a C-ring. This condition is ensured if we demand that the near-ring P be generated, as an additive group, by a set S of elements of P such that (P₁+ P₂)s = P₁s + P₂S for all P₁, P₂ in P, and s in S. In this case, P is said to be distributively generated by S. The work is divided into three main sections; the first deals with general near-rings, the second with C-rings, and the third with distributively generated near-rings. Appendix I gives a proof of a vital result for distributively generated near-rings, due to Laxton [11]; appendix II introduces a little used radical due to Deskins [6]; appendix III is included as a concrete example of a near-ring and its theory, due to Berman and Silverman [2].
Item Metadata
Title |
Radicals in near-rings
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
1965
|
Description |
An algebraic system which satisfies all the ring axioms with the possible exceptions of commutativity of addition and the right distributive law is called a near-ring. This thesis is intended as a survey of radicals in near-rings, and an organization of the theory which has been developed to date.
Because of the absence of the right distributive law, the zero element of a near-ring need not annihilate the near-ring from the left. If we impose the condition that 0 • p = 0 for all elements p of a near-ring P, then we call P a C-ring. This condition is ensured if we demand that the near-ring P be generated, as an additive group, by a set S of elements of P such that (P₁+ P₂)s = P₁s + P₂S for all P₁, P₂ in P, and s in S. In this case, P is said to be distributively generated by S.
The work is divided into three main sections; the first deals with general near-rings, the second with C-rings, and the third with distributively generated near-rings.
Appendix I gives a proof of a vital result for distributively generated near-rings, due to Laxton [11]; appendix II introduces a little used radical due to Deskins [6]; appendix III is included as a concrete example of a near-ring and its theory, due to Berman and Silverman [2].
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2011-09-14
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.
|
DOI |
10.14288/1.0080605
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Campus | |
Scholarly Level |
Graduate
|
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.