The Open Collections site will be undergoing maintenance 8-11am PST on Tuesday Dec. 3rd. No service interruption is expected, but some features may be temporarily impacted.

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

On the Whitehead groups of semi-direct products of free groups Choo, Koo-Guan

Abstract

Let G be a group. We denote the Whitehead group of G by Wh G and the projective class group of the integral group ring Z(G) of G by K₀Z(G). Then Wh G = 0 if G is free abelian (Bass-Heller-Swan), free (Gersten-Stailings) or a semi-direct product of a free group and an infinite cyclic group (Farrell-Hsiang) and K₀Z(G) = 0 if G is free abelian (Bass-Heller-Swan), free (Bass) or a direct product of a free abelian group and a free group (Gersten). In this thesis, we extend these results to a wider class of groups. Let α be an automorphism of G and F a free group. We denote the semi-direct product of G and F with respect to a by- G x[sub α] F. New, let D be a direct product of n free groups and α an automorphism of D which leaves all but one of the noncyclic factors in D pointwise fixed. First, by using techniques of Bass-Heller-Swan on Whitehead groups of certain direct products, together with techniques of Stallings on Whitehead groups of free products, we prove Wh D = 0 and K₀Z(D) = 0. Next, we establish a fundamental theorem for coherent rings : If R is a (right) Noetherian ring and if G₁ and G₂ are groups such that the group rings R(G₁) and R(G₂) are (right) coherent, then R(G₁ * G₂) is (right) coherent, where G₁ * G₂ is the free product of G₁ and G₂. A similar theorem has been anounced by Fi Waldhausen. From this fundamental theorem, we deduce that if A is a free abelian group and F is a free group, the integral group ring Z(A x F) of A x F is (right) coherent. If A is of finite rank, then Z(A x F) has finite right global dimension. Combining these facts with techniques of Farrell-Hsiang on Whitehead groups of certain semi-direct products of groups and using the triviality of Wh D and K₀Z(D), we show that Wh(D x[sub α] T) = 0 and K₀Z(D x [sub α] T) = 0. The first result generalizes that of Farrell-Hsiang on semi-direct product F x[sub α] T, and the second result implies, in particular, that for the fundamental group π₁(M) of a closed surface M (other than the real projective plane), the projective class group of Z(π₁ (M)) is trivial. If M is a closed surface (other than the real projective plane) and (S¹)[sup k] is the k-dimensional torus, the fundamental group of M x (S¹)[sup k] Then the triviality of Wh(D x[sub α] T) implies the following result in topology : If N is a differentiable or PL manifold of dim ≥ 5 which is h-cobordant to M x (S¹)[sup k], then N is actually i diffeomorphic or PL-homeomorphic to M x (S¹)[sup k] respectively. Finally, by adapting Gersten's discussion on Whitehead group of free associative algebra to the case of a twisted free associative algebra, and by using the facts that Wh(D x[sub α] T) =0 and K₀Z(D x[sub α] T) = 0, we prove Wh((D x[sub α] T) x [sub αxid[sub T]] F) = 0. The factor T can presumably be dropped, although this is not entirely obvious. There is also a separate chapter on combinatorial group theory in which we give certain necessary and sufficient conditions for a given one relator group to be of the form F x [sub α] T.

Item Media

Item Citations and Data

Rights

For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.