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ABSTRACT -

Let G be.a groﬁp. We denote the Whitehead group of G by Wh G
and the projective class group of the integral group ring Z(G) of G by
Ko2(G). Then Wh G =0 if G is free abelian (Eass-Hellér—Swan), free
(Gersten—-Stallings) or a semi-direct produét of a free group and an infinite

’cyclic group (Farrell—Hsiéng) and ﬁOZ(G) =0 1f G 1is free abelian (Bass-
Helier-Swan), free (Bass) or a direct product of a free abelian group and a
free group (Gersten). - In this thesis, we extend these resulﬁs to a wider

“class of groups.

Let o be an automorphism of G and F a free group. We denote
the semi-direct product of G and F with respect to o by G Xd F. Ncw,
let D be a direct product of n free groups and @ an automorphism of

D which leaves all but one of the noncyélic factors in D pointwise fixed.

First, by using techniques of Bass-Heller-Swan on Whitehead groups
of certain direct products, together with techniques of Stallings on

Whitehead groups of free products, we prove Wh D =0 and KOZ(D) = 0,

Next, we establish a fundamental theorem for coherent rings : If
R is a (fight) Noetherian ring and if G, and éz - are groups such that
theAgrouﬁ rings R(G;)- and - R(G,) are (right) coherent, then R(G1.¥ Gy)
is (right) coherent, where G; * G, is»ége free product of G, and G,.
A similar theorem has beén anounced by F. Waldhausen. From this
fundamental theorem, we deduce that if A 1is a free abelian group and F

is a free group, the integral group ring Z(A x F) of A x F is (right)



ii

coherent. If A is of finite rank, then.WZ(A x F) has finite rigﬁt globai
dimension. Combining thése facts with ;echniques of Farrell-Hsiang on
Whitehead groups of certain semi-direct products of groups and uéing'the
friviality of Wh bv and ROZ(D), we show that Wﬁ(D Xd T) =0 Vand

KoZ(D Xy T) = 0. The first result generalizes that of Farrell-Hsiang on
sémi-diréct product F X& T, and the second result implies, iIn particular,

- thatffdr»the fundaméntal grouﬁ nl(M)‘ of a closed surface M- (other than
: thé real projeétive plane),.the projeﬁtive class group of Z(nl(M)) is

trivial.

If M is a closed surface (other than fhe reai projective plane)
and (Sl)k bis the k-dimensional torué, the fundamental group of M x (Sl)k
is of the form D %y T.. Then the t;iviality of Wh(D x4 T) implies the
following result in topology : If N is a differentiable or PLY manifold
of dim > 5 thch is h-cobordant to M x (Sl)k, then N is aétually

diffeomorphic or PL-homeomorphic to M X (Sl)k respectively.

- Finally, by adapting Gersten's discussion on Whitehead group of
 ‘free associative algébra to the caséwahéngﬁigfé&_%féé'ésSociative algebra,
and by using the facts that Wh(D xq T) = 0 and ﬁOZ(D xq T) = 0, we

prove Wh((D X& T) x &Xid .F) = 0, The factor T can presumably be

dropped, although this is not entirely obvious.

. There is'alsQ'ahgépérate chapter on combinatorial group theory
“*%éiﬂj&ﬁzéh we give;éertainAQQéessary*and sufficiéﬂtﬁcondi?ions for a given

one féléto:4group"to be of the form F Xq T.”
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INTRODUCTION

This thesis deals with the Whitehead groups of certain semi-direct

products of free groups.

let G be‘a group. We denote the Whitehead group of G by Wh G
and the projective class group of the integral group ring Z(G) of G by
KdZ(G). Wh and Ko are covariant functors from groups to abelian groups.
The problem of computing Wh G is difficult but important in Algebraic
K-theory. It is not even easy to decide when Wh G is trivial. It is

known that Wh G =0 if G is one of the following forms :

(a) infinite cyclic 6r finite_cyclic of order 2, 3 or 4 ([12]) ;

(b) free abelian ([4]) ;

(c) free ([18]) ;

(d) a semi-direct product F Xy T of a free group F and an infinite
cyciic group T with respect to an automorphism o of F ([8]) ;

(e) group of type n; that is semi-direct product of n infinite
cyclic grouﬁs (81 ;

(f) free products of groups as given in (a) - (e) ([18]).

In this thesis, we extend (b), (¢), (d) to a wider class of groups.

‘ Also, it is known that KOZ(G) =0 if G is one of the following

forms :

(a) free abelian ([&4]) ;
(b) free ([3]) ;

(c) direct product of a free abelian group and a free group.([11]).



vi
We also extend these results in the thesis. -

Our work is di&ided into four chapters. In section l,df Chapter 1,
we state those definitions and terminology which are used thréughout the
thesis. We will make use of two techniques in computing Wh G. One of them
is due to Sgallings (I18]) on free products and the other is due to Farrell
and Hsiang ([8]) on semi-direct products G xy T of groups, or Bass-Heller-
‘Swan ([41) when d is the«identity; In fact, Farrell and Hsiang obtained
a decompesition formula for Wh(G Xd T), which is due to Bass-Heller-Swan
- when o is the identity. We recall, in Section 2 aqd Section 3 of

Chapter 1, these techniques and those formulae which will bevsubsequently

used.

Chapter 2 is devoted to the study of a special class of rings,
called coherent rings, which is of some importance in Algebraic K-theory,
eépeciallyvin‘computing Wh G. A ring R is called right coherent if any
finitely generatedvsubmodule of‘a free right R-module ié finitely presented.
The importance of the coherent property can be explained as follows : If
the integral group ring Z(G) of G is right coherent and has fiﬁite right
global.dimension, the exotic summénd C(Z(G),d) in the Farrell;Hsiang (or
Bass~-Heller-Swan when_ o= identity) decomposition formula for Wh(G *u T)
becomes zero ;nd this greatly simplifies the determination of Wh(G-Xd T).
We establish in this chapter the following fundamental theorem for coherent
rings : Let R be a right Néetherian ring and‘let G; and G, be groups
such that the éroup rings R(Gl) and R(G,) are right cohereﬁt. Then

R(G1 %* Gz) is right coherent where G, * G, is the free product of G,
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and G, . A similar theorem has been anounced in ([191). From this
fundamental theorem, we deduce that the ring R(F) of a free group F over
a right Noetherian ring R is right coherent and that the integral group

ring Z(A x F) 1is right coherent for any abelian group A.

“In Chaptef 3, we show the triviality of Wh G and ‘ROZ(G) for .
certain semi-direct products G of free groups. .Let D be a direct
product of n free groups. By using the Bass-Heller-Swan decomposition
formula together with Stallings' technique, we show in Section.l of
Chapter 3 that Wh D = 0-' This extends thg results of Bass-Heller-Swan ([4]).
for free abelian groups and of Gersten-Stallings ([18]) for free groups.,
In addition to the triviality of Wh D, we have K Z(D) = 0. This

generalizes those results for ,Ko previously mentioned.

Next, let o be an automorphism of D -which leaves all but one
of the néncyclic faétors in' D pointwise fixed and D Xd T the semi-~direct
product of D and T with respect to d., In Section 2 of Chapter 3, we
show that Wh(D Xd T) = 0; Iﬁ the proof, we need to use the coherence
property of Z(A x F), which we have established in Chapfer 2.. This
generalizes that of Farrell-Hsiang ([8]) on F xg T. As a consequence,
we have KOZ(D Xq T) = 0. This implies, iﬁ éarticulaf, that for the
. fundamental group m,(M) of a closed surface M (other than the real

projective plane), the projectivé class group of Z(WI(M)) is trivial.

If M is a closed surface (other than the real projective plane)

" and (Sl)k is the k-dimensional torus, the fundamental group of M x (Sl)k
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is of the form D Xd T. Then the triviality of Wh(D Xd T) implies the
followiﬁg result in topology : If N 1is a differentiable or PL manifold

of dim > 5 which is h-cobordant to M X (Sl)k, then_ N is actually

diffeomorphic or PL-homeomorphic to M x (Sl)k respectively.

In the last section of Chapter 3, we establish the result

F) = 0, where F is a free group. This generalizes

Wh((D x4 T) Xy
T ' ..

xid
the result in §3.2. In proving this assertion, we come across the so-called
"twisted free associative algebras'. We adapt Gersten's discussion on free

associative algebras ([1l0]) to this case of twisted free associative algebras

in Section 3 of Chapter 3.

Chapter 4 is a separate chapter dealing with groups with one
defining relator. We obtain certain necessary and sufficient conditions

for such a one relator group to be of the form F xy; T, with F free.



" CHAPTER I

- PRELIMINARIES

§1.1. Definitions and Terminology

Throughout the thesis, a ring R always mean an associative ring
with identity, and ring homomorphisms are assumed to map the identity into
the identity. The ring of integers is denoted by Z. If G 1is a group,

the group ring of G over R is denoted by R(G).

- The purpose of this section is to recall those definitions and
terminology from Algebraic K-theory that will be used in the thesis. A

~general reference for these will be [2], [8] and [14].

The Whitehead group KlR of a ring

Let R be a ring. Denote the group of all nonsingular n x n
matrices over R by GL(n,R). We have a natural inclusion GL(n,R) ¢ GL(n+1,R).
The commutator subgroup of GL(n,R) is denoted by [GL(n,R), GL(n,R)] and

the Whitehead group K,R of R is defined by

KIR = direct limit GL(n,R)/[GL(n,R), GL(n,R)].
. o > o

If a e GL(n,R), denote the corresponding element in KR by [al. Clearly,
K, 1is a covariant functor from rings to abelian groups. " That is, a ring

homomorphism £ : R1 ——>'R2 ~induces a homomorphism fe: KlRl —> Kle.

u



The Whitehead group Wh G of a group

Let G be a group. Let J(G) be the subgroup of K;Z(G)
generated by the elements [(ig)] for g e G where (#g) is the 1 x 1

matrix with single entry g or =-g. The quotient group KIZ(G)/J(G) is

called the Whitehead group of G, denoted by Wh G. Clearly, Wh 1is a
covariant functor from groups to abelian groups. In other words, any group

homomorphism £ : G, —> G, induces a homomorphism fx + Wh G; —> Wh G,.

In general, it is a difficult problem to compute Wh G ; it is even
not easy to determine when is Wh G trivial. In [12], Higman proved that
Wh G=0 if G dis infinite cyclic, or is finite of order 2, 3 or 4. Bass,
_Heller and Swan ([4]) have shown that the Whitehead groupAof any free abelian
group is zero, While Stallings ([18]) and Gersten ([10]) have proved that
the Whitehead group of any free group'is zero. In Chapter 3, we will
determino some classes of groups G in which Wh G = 0, and this will

generalize the results mentioned above.

The Grothendieck group K, R of a ring

Closely related to K, 1is the functor K, which is defined as
follows. Let R(R) be the category whose objects are finitely generated
projective right R-modules and whose morphismé are R linear homomorphisms.
Then K R 1is the Grothendieck group of E(R) ; i.e. K R is the abelian
~ group generated by the isomorphism classes of objects in PB(R) modulo the

. relations (P2 - P - PS) for short exact sequences 0 »> P, > P, » P, > 0



in B(R). The class of P ¢ B(R) in K R is denoted by [P].

The class of the free: right R-module of rank 1 generates a cyclic

subgroup of K R. The quotient

K R/(subgroup generated by free right R-modules)

is called the projective class group KOR of R. Cleérly, .Ko is also a

covariant functor from rings to abelian groups.

Bass, Heller and Swan ([Zr]) i)royed that KOZ(A) = 0 for any free
abelian group A, while Bass ([3]) has shown that KOZ(F) = 0 for any
free group F. Moreover, Gersten ([11]) proved that KOZ(A x F) = 0 where
A is free .abelian and F .is .free. We.will also.obtain .some .generalization

of these results in Chapter 3.

The group C(R,a)

There is another class of group (introduced by Farrell in [9])
associated to a given ring with an automorphism, which is also closely

related to K, and Ky, and is defined as follows.

Let R be a.;ing and o an automorphism of R. First, recall
that an additive map ¢ from a right R-module M, to a right R-module M,
is o~linear if ¢(mr) = ¢(m)a(r) for m.e M, and r € R. Let C(R,d) be
. the category whose objects are pairs (P,@) where P ¢ B(R) and ¢ is an

a-linear nilpotent endomorphism of P, and whose morphisms



g : (P1,¢1) —> (P,,¢,) are R linear homomorphisms g : P, — P, such

that the following diagram

g
1 > P,
4 J%
P1 = > P2

is commutative. We have the forgetting functor F : €(R,a) —> B(R) defined
by F(P,¢) = P for (P,¢) € C(R,0), and the zero functor J : B(R) —> C(R;d)
defined by J(®) = (P,O) for P e B(R). Both F and J are covariant

functors and FoJ is the identity functor of PR(R).

Llet C'(R;a) be the Grothendieck group of the category ¢(R,0).
The class of an element (P,4) € €(R,a) in C'(R,a) is denoted by [P,¢].
The class [R,0] generates a cyclic éubgroup F(R)  of C'(R,d). Let
C(R,0) = C'(R,a)/F(R) and let C(R,a) be the subgroup of C(R,d) generated

by tRn,¢] for (RM,¢) e €R,a).

The following result gives us more precisely the relations between

Ko, C'(R,a0), C(R,a) and C(R,a) :

. Theorem 1.1.1.  ([9]) The following sequences are split exact :
F
5 1 LN
0 —> C(R,a) > C'(R,q) < K,R —> 0,

Ts

0

. F‘ . N
> C(R,a) > KRR —> 0,
Jax

> C(R,a)



‘where Fx and Jx are homomofphisﬁs,iuduced by F and J respectively,

and I[R%,¢] = [R",4] - [R",0].

Semi~direct product of groups

Let G be a group and o an automorphism of G. Let F be a
free group generated by {XA}'. If w dis a word in Xy defining an

element in ¥, we denote by le the total exponent sum of the Xy

appearing in w. The semi~direct product G Xq F of G and F with

respect to o is defined as follows : G X, F =G x F as sets and

multiplication in G x, F 1is given by
(g,w) (g',w') = (ga~

for (g,w), (g',w') € G xy F. In particular, if - F is an infinite cyclic
group T = <t> generated by t, we have the semi-direct product. G X, T

of G and T with respect to «a.

Twisted group rings

Let R be a ring and o an automorphism of R. Let F be a

free group (or free semigroup) generated by {XA}" The a-twisted’ R ‘group

ring of F, denoted by Ra[F], is defined as follows : additively

Ra[F] = R[F] so that its elements are finite linear combinations of
elements in F with coefficients in R. Multiplication in Rd[F] is

given by



(rw)(r'w') = rd_lwl(r')ww'

for any rw, r'w' e R, [F]. In particular, if F is a free group (resp.
free semigroup) generated by t, we have R [T] (resp. Ry[t]) and we

call it the a-twisted finite Laurent series ring (resp. a-twisted polynomial

ring).

Let R = Z(G) and «a an automorphism of G. Then o 1is also

used to denote the induced automorphism on Z(G) defined by

af ) k,gg = ) Aga(g)
geG - geG - ’

where g e G and _Aé e Z. Note that there is a standard isomorphism
between Z(G),[F] (resp.- Z(G)a[T]) and Z(G %y F) (resp. Z(G Xo T))
which is the identity map on Z(G) and maps Xy € Z(G)aLF] (resp. -

t € Z(G)4[T]) onto x, e Z(G xy, F) (resp. t e Z(G Xy T)).

In [8], Farrell and Hsiang obtained a formula for KlRa[T]’ and,
as an application, they deduced a decomposition formula for Wh(G X& T),

which we will review in the next section.



- §1.2, 'The Farrell-Hsiang .Decomposition Formula for Wh(G X, T)

In this section, we recall some of the results in Farrell and
Hsiang ([8]) which will be subsequently used. For more detail, we refer

to [8].

First, we recall the following terminology. If M is a rigﬁt
R-module, we denote by rg : M —> M a right multiplication by s e R, i.e.
ro(m) = ms for all me M. If M is a right module over Rd[T], then

L M ~—> M is an o-linear endomorphism.

The following inclusion maps are ring homomorphisms :

[ Y
'
l
*:

g
[ |
+3

-

i: Rylt] —> RJT] and 1~ : R ItT

] — R,IT]
and the following two ring homomorphisms are augmentations :
e : R,[t] — R defined by e(t) =0,

€™ Rq[

tfl] -—> R defined by e"(t—l) = 0.

For any abelian group'G with an automorphism «, we introduce

the following two subgroups :

¢* =" {g]|a@=2g 886G}

I = {g-al® |sech



Consider now the homomorphism i : Rd[t] —_— Rd[T]. We identify

the element P ¢ E(Ra[t]) with

P 8 [t] R, [t] < P @Rd[t] R, [T],

by sending x to x 8 1 for x e P, We will then give a description of a

homomorphism from KlRa[T] into C'(R,0).

Let a e GL(n, Ra[T]) and let
n n
v : R,IT]" — R, [T]

be the linear isomorphism associated with a. We have the natural inclusion
S o TS
R, IE1™ < RGITI®,

Thus, there is an integer N > 0 such that r Nv(Rd[t]n)C: Ra[t]n. Let
t

Moo= R(’x[t]n/rth(Ra[t]n).

Then M e B(R) and T, induces an a-linear nilpotent endomorphism on M,
i.e. (M,rt) € é(R,a). (cf. [8], Theorem 8 (b)). Let P : Kle[T] — C'(R,d)

be defined by
jéb) ‘ plal = IM,r] - [Rd[t]n/rtN(Rdlt]n), r,l.

Then one can verify that p 1is a homomorphism (cf. [8], Theorem 8 (c)). 1In



particular, if a = (t), the 1 x 1 matrix determined by the generator ¢t
of T, then n=1 and N =0 so that in (1), M= R and the second term

on the right hand side is zero. Thus

p[()] = IR, gl

By combining p with the map Fx : C'(R,a) — K R, we get the homomorphism

Fxp : KR [T] — KR and that

Fxp[(t)] = [R].

(= -1 |
Next, let p' = pi; : K.Ry[t 7] —> C'(R,a). Then

Theorem 1.2.1. ([8], Theorem 13) Image p' = C(R,a) and the following

sequence is split exact :

ky

: ki " )
—_— > — R
0 >,K1R < KlRu[t 1 > C(R,a) > 0
_ €%
Likewise, the sequence
e U
0 > KlR < KIRa[t] —> C(R,a ) —> 0

€x

is split exact. (Here,“we identify E(R,a) with the image I(C(R,a)) in

C'(R?a)‘ where I is given in Theorem 1.1.1.).

Note that the kernel of j, is I(a,) where j, : KR~ KlRa[T]
is the homomorphism induced by the inclusion j : R —> Rd[T]. (cf. [8],

Theorem 14). Moreover, we have :
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Theorem 1.2.2. ([8], Theorem 19 and [4]) (Farrell-Hsiang decomposition for-

mula for Kle[T];.BaSS+HellerfSwan decomposition formula when a = identity)

. 5 5 -1
KlRa[T] = X® CR,a) 8 C(R,a )
and X 1is given by the following exact sequence
14

‘ ¢ Gy ’
0 —> KIR/I(a*) —> X —> (K,R) "~ —> 0,

where ¢ is induced by j, and "y is induced by Fap.

Remark 1.2.3. Note that, in Theorem 1.2.2,

W[()] = I[R].

-+ Finally, we recall :

Theorem 1.2.4. ({8], Theorem 21 and [4]) (Farrell-Hsiang decomposition for-—

mula for Wh(G x, T); Bass-Heller-Swan decomposition formula when a = identity)

Wh(G x; T) = X ® C(Z(G),a) & C(Z(G),a })

where X 1is given by the following exact sequence

¢ Y

0 —> Wh G/I(ay) ——> X ——> (f(oz(c))a*f > 0

in which "¢ and ¢ are induced by the corresponding maps in Theorem 1.2.2.
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Note- that a(Z(G),a) = @(Z(G),a-l) in the case of a group ring

Z(G).

As an application, Farrell and Hsiang have also shown that :

Theorem 1.2.5. ([8], Theroem 31) Let F be a free group. Then

Wh (F Xd T) = 0.

§1.3. Stallings' Decomposition Formula for Free Products

In this section, we recall those definitions and results in [18]

which we need in our later work. For more detail, we refer to [18].

Let R be a ring. A ring A is called an R-ring, if A contains
R, the inclusion i : R —> A 1is a ring homomorphism, and there exists

a ring homomorphism €, : A —> R such that eA(r) = r for all r € R.

A

€, is called an augmentation of A. Any group ring R(G) of a group G
is an R-ring with augmentation €g ¢ R(G) —> R defined by EG(g) =1 for
all ge G, If A 1is an ﬁ—ring, we denote by EiA the cokernel of the

homomorphism 14 : KlR - KlA, induced by the inclusion i : R — A .

and ¢

Let A and T be R-rings with augmentations T

respectively. If a ring homomorphism £ : A —> I' is such that f(r) = r

for all r € R, we call £ a homomorphism of R-rings or simply just

R-homomorphism. We say that the R ring  is the free product of A

and T if there are given R-homomorphisms f : A —> @ and g : T —> Q
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such that for any R-ring I and R-homomorphisms f' : A —> I and

g' ¢+ T —> I, there exists a unique consistent R-homomorphism h : £ —> I,

~ We abbreviate it as £ = A * T. it is clear that R(G, * éz) = R(G;) * R(G,)
for any two groups G, and G,» where G, * G, denotes the free product of

G, and G,. Note that the free product of R-rings is just the coproduct in

the category whose objects are R-rings and whese mofphisms are R-homomorphisms.

Now, let A = KRer €5 and T = Ker €p Then A and T are

R-bimodules and as bimodules

Moreover, the multiplications on A and T define associative maps

A®, A—> K and T 8, T — T. We have the following structure theorem

for A % T ([18], §3.2) :
A*T=ROEABGT & (A @R ry & (T @R A & (A @R}P @R A o (T GR A @R T) ® -

The multiplicative structure is determined by multiplying components by the

tensor product and then collapsing if possible using the multiplications

A @R A—> N and ?.@R.F.—-é T derived from A and T.

Recall that, if M is an R-bimodule, the tensor algebra TR(M)

of M over R is defined to be

TR(M) =R®&M6 (M @R M) & (M @R M @R M & -0 .

T)

It is clear that A % T' contains as a subring the tensor algebra TR(K ®R

-
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of the bimodule  K ®R-f} Moreover, we have :

Theorem 1.3.1. ([181, §5) =~ The group Ei(A % ') 1is generated by the

images, under the obvious maps, of EAA,'EiP and E&TR(K'*R T).

The following result is due to Gersten (cf. [2], p.646). If
-EIR[t] = 0 where R[t] is the polynomial extension of R, (in other words,
if kyx : KjR — KIR[t] is an isomorphism or C(R,id) = 0 by Theorem 1.2.1),

then EATR(M) = 0 for any free R-bimodule M. Therefore :

Theorem 1.3.2. ([18], Theorem 6.2) if  K @R<f- is a free R-bimodule and

if ©(R,id) = 0, then

Finally, let G be a group and R(G) the group ring with

augmentation ¢ It is known that Ker Eg is a free R-bimodule. We close

G
‘our review by the following theorem, which is a direct consequence of

Theorem 1.3.2,

Theorem 1.3.3. Let R be a ring such that C(R,id) = 0 and let G1

and G,  be groups. Then
KIR(G1 *.GZ) = KlR(Gl) ® KlR(Gz).

In particular, if F -is a free group of rank m, we write F =T % ... % T
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"as a free product of m infinite cyclic groups, so that:

=~
=
Ve
)
S’
It
&8
H
~
—
=
lan
=
-t

As an application, Stallings has shown that

Wh (G, % G,) = Wh G, ®WhG,

and so Wh F = 0 for a free group F.



CHAPTER 2

COHERENT RINGS

§2.1. Introduction

The present chapter is devoted to the study of a special class of

rings, called coherent rings, which are of importance in Algebraic K—theory.

We first recall the definition of such rings.

Let R be a ring. A right R-module M is said to bé finitely
presented if there is an exact sequence 0 —> K—> F —> M —> (0 of
right R-modules, where F 1is free and both F and K are finitely
~generated. Notice that if M is finitely presented and if there is another
exact sequence 0 — K' —> F' —> M —> 0 of right R-modules, with F'
free and finitely generated, then K' is necessarily finitely generated.

For a proof, see ([2]).

Definition 2.1.1. A ring R 1is called right coherent if any finitely
~ generated submodule of a free right R-module is finitely presented. An
equivalent property is : Any homomorphism £ : R — R® of right R-modules

R" and R" has finitely generated kermel.

A general reference for coherent rings is Chase [7], Bourbaki [6]

and Soublin {[16]. Of course, any right Noetherian ring is right coherent.
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However, there are important examples of coherent rings, which are not

Noetherian.

Theorem 2.1.2, Let F be a free group. Then the integral group ring

2(F) is rightAcoherent.'

The proof of this theorem is implicitly contained in the argument
of ([8], Theorem 31). We do not reproduce the argument in [8], since the
result will follow from our main theorem in the next section. Note that

Z(F) is not right Noetherian unless F is cyclic.

We caution that there is no "Hilbert basis theorem" for coherent

polynomial extension is not coherent. Nevertheless, we will see in

section 2 that the polynomial extension of Z(F) 1is right coherent.

We have the following result, the proof of which is contained

in [9] (also cf. proof of Theorem 31 in [8]) :

Theorem 2.1.3. If R is right‘coherent and has finite right global
dimension, then ki : K;R —> Kle[t] is an isomorphism for any. automorphism

o of R. 1In other words C(R,0) = 0.

This theorem implies, for example, that for a group G with Z(G)
right coherent>and of finite right global dimension, the exotic summand

@(Z(G),a) in the Farrell-Hsiang decomposition formula for Wh (G xy T)
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becomes zero. This greatly simplifies the determination of Wh (G xy T).

Before proving the coherence of Z(G) for certain classes of
groups G, we close this section with the following result on direct limit

of coherent rings.
Lemma 2.1.4. ([6], p.63) Let '{RA}' be a directed system of rings RA and

let R be their direct limit. Suppose that R 1is flat as a left Rj-module

for each A. If each Ry 1s right coherent, then R is right coherent.

§2.2. The Group Ring of a Free Group over a Noetherian Ring

et R beocar ing and F a free group. The

main purpose of this section is to show that the group ring R(F) is right

coherent. In fact, we will prove the following more general result.

Theorem 2.2.1, Let R be a right Noetherian ring and let G, and G,
be groups such that R(Gl) and R(G,) are right coherent. Let G = G, * G,

be the free product of G; and G,. Then R(G) is right coherent.

Before proving the theorem, we introduce some relevant terminology.

Let R be a ring and N = (r,.) an m X n matrix over R. If f : R® — R™

ij

1s the homomorphism (of right R-modules) associated to N, then the kernel

of f is precisely the solution space of N. We call N a (right) coherent

matrix if its solution space is finitely generated as a right R-module. It
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follows that a ring R is right coherent if and only if all m x n matrices

.over R are (right) coherent.

Now, let N be an m X n matrix over R. Let N1 (resp. NZ)
be the m xn matrix over R obtained from N by an elementary row

operation (resp. elementary column operation) and let N, be the

N | O
(m+ 1) x (n + 1) matrix —-—=4-—- | . Then the following lemma is trivial:
Lo 11
"Lemma 2.2.2. For each i, Ni is coherent if and only if N is coherent.

Let R be a ring. Let G, and G, be groups and G = G} % G,

their free product .so that there._are.natural inclusions
R(Gl)

~
e

R(Gz)

R(G)

.
~

Recall that each element 1 # g e G can be uniquely expressed as a product

(1) g = g1g2 ...gn

where g; 1, 85 is in G; or ‘G2 and ;> 854 2re not in the same |
free factor G, or G,. If ge G is expressed in the form (1), then we

call n the syllable length |g| of g (cf. [13], p.182).
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Our next lemma is a key step towards the proof of Theorem 2.2.1.

Lemma 2.2.3. & Let M, be a submodule of R(G)m (as right R(G)-module)
generated by certain elements in R(Gl)m and M, a submodule of R(G)m

generated by certain elements in R(Gz)m, Let K = (M1 + Mz)'(\ R™. Then
(2) (M, + K-R(G)) N (1, + K-R(G)) = K-R(G).
Here K-'R(G) denotes the right R(G)-module generated by K.

Proof : Let Mg, be the R(Gi)—submodule of R(Gi)m generated by the
same set of elements which generate: Mi (i = 1,2). Then Mg C:Mi (i=1,2).

Let 'KoR(Gi) be the right“R(Gi)—mddule generated by K.

One direction of inclusions in (2) is obvious. So, let
X € (M1 + K*R(G)) N (M, + K*R(G)). Then, considering x as an element in

R(G)m, we can express X uniquely as

(3) x = ) c Wy

with c, e R™  and w, e 6 such that lwll 3_lw2l > e+« . Also, x can

be expressed uniquely as
(4) _ X = ) a,u, ,

and
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(5)

where aj (resp. bk) is in M? + K-R(Gl)

uj (resp. Vk) is an element in G

in G, (resp. G,) for each j (resp. k)

" trivial. We assert that Ci ¢ K for each

to prove that c; € M, + M, for each i.

Without loss of generality, we can assume that Wy

in G

there is a j (say j = 1), such that u,

For this purpose, write

cy1, d, € R" and U

where 0 3

starting with a nontrivial element in G,.

is a nontrivial element in Gy

o o '
(resp. M, + K R(Gz)) and

starting with a nontrivial element

except that one of them may be

m

i. Since ¢y € R°, it suffices

is an element
Then, in the:expression (4),

=W We c¢laim that a, = cy-

1° 1

for each 2.

If d, # 0 for some &, then dzﬁ'w1 must appear in the expression (3),

L
which contradicts the fact that w

all dz = 0 'so that a, = e} =c¢

1 1°

1

(Note that, if W, 1s an element starting with a nontrivial element in G

1 is of maximum syllable length.

Hence,

Therefore

o
c, € Ml + K'R(Gl) CZM1 + MZ'

l,
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then we will consider (5) and it will lead to the conclusion that

Cc

L € Mg + K-R(G,) © M, + M,.) Consequently c, € K.

Having proved ¢, € K, we can apply the same procedure to

x - ¢;w; to conclude inductively that c, € K for all .i. Hence

x € K-R(G). | ‘ -

This completes the proof.

For convenience, we state the following result, the proof of

which is trivial.

-Lemma 2.2.4, et N be an ‘m x n -matrix -over »R(Gl) (resp.-R(GZ)).

Let £ : R(Gl)n —> R(Gl)m (resp. £ : R(GZ)n —_ R(Gz)m) be the homomorphism

associated with N and g : R(G)n - R(G)m the homomorphism associated
with N (considered as a matrix over R(G)). If Ker f is a finitely
generated right R(Gl)—module (resp. R(Gz)—module), then Ker g is a

finitely generated right R(G)-module.
As a consequence, we have :

Corollary 2.2.5. If R(Gl) (resp. FR(GZ)) is a right coherent ring

and if N is a matrix over R(G) with entries from R(Gl) (resp. R(Gz)),

then the solution space of N ic finitely generated as a right R(G)-module.
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Now, we make the following important remark :

Remark 2.2.6. (Modified Higman's trick)

‘Let N' be an m' x n' matrix over R(G). Each entry of N' is

a finite linear combination of the form Z rgg with rg € R and g e G.
. ; .

Note that g is of the form (1). We perform successive simplifications of

N' by changing it to

N' 0

i
i
e e et e o
!
0 : 1 R
an (m' + 1) x (n'" + 1) matrix over R(G), and reduce this matrix by
elementary row and column operations (where we multiply row from the left
and column from the right) so as to (i) make linear combinations shorter

and (ii) reduce the syllable lengths of g. This reduction process can

be illustrated by :

* & % 0 * * % 0 x % % 0

* * *
>l % ) +gig, & O[>« ) +gg, * O|~>|x ) % -8,
x )88, 0 0o o0 1 0 g, 0 1 0 g, 0 1

2

Finally, we reduce N' +to the matrix of the form

(6) - No= [N, ! N, 1,
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where
all e a]_l b]]_ se e blu
N = . . and N = . .
G1 . . G2 .
| ¥m3 amk_J | ml my

are m X A matrix and m X p matrix over R(Gl) and ‘R(Gz) respectively,

and A+ u=n, for some m and n.

Proof of Theorem 2.2.1 :  We need to show that any m X n matrix over

R(G) 1is right coherent.

By Lemma 2.2.2 and Remark 2.2.6, we can assume without loss of

..generality that.the .given .m Xx.n .matrix N .owver R(G) .is of the .form (6).

.,"’,a .) (i:l’---.’)\) and bj= (b .’o-c’bmj)

Now, let a; = (a11 i 14

(j 1,*+-,u). Then let M, be the submodule of rR(G)™ generated by the

elements a sy in R(Gl)m and M2 the submodule of R(G)ml génerated

1,

by the elements bl,---',bu in R(Gz)m. If f : R(G)n —> R(G)m is the

homomorphism associated with N, we have the following presentation for

M1 + M2 :

7 0 —> ker £ —> R(G)™ L M+ M, —> 0.

Next, let K = (M1 + MZ)'(W R". Then K is a submodule of R
(as right R-module) and so K is finitely generated since R is right
Noetherian. Suppose that K is generated by ¢ = (clk,---;cmk) (k = 1,+%+,0)

in R, and let
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cll « s 0 clc
Np = : :
c . 06 @ C
| ml mo |

be the m x ¢ matrix over R determined by the generators of K. Consider

the new m x (n + o) matrix

=
i
=
o
=

i
f——
=

{ N, ] and N, =[N ! N, ]. Since

over R(G),“and let N R No .

G

K‘C.‘M1 + M2, it follows that @157t ts8y5 €yt tsCo, b1"°"bu still

n+o

generate M, + M,. If g: R(G) —> R(G)m is the homomorphism associated

with 'ﬁ; we have another presentation for M; + M, :

(8) | 0 —> Rer g —> R(G)*-E> M+ M, —> 0

To prove that Ker £ din (7) is finitely génerated, we only need
to show that Ker g in (8) is finitely generated (compare remark in §2.1).

For this purpose, let (xl,---,xx, Z)seery 2, yl,---,yﬂ) e Ker g. Then

a,x

1

P F ?l*k + ¢z +""'+,ngc + by, + ﬂ}. + buy =0

u.
so that

9 ayx) + ... + ?A?A +cyz; b cee +ocpzg = - (byy, + -0 + buyu) .

Let X be the element of the left hand side of (9). Then (9) tells us that

X € (M1 + K'R(G)) N (M2 + K*R(G)) and so X ¢ K*R(G), by Lemma 2.2.3. Thus
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— T c e 1
(10) X = cyz) + + cy2Zg

for some =z e,z

1 e R(G). By (9) and (10), we have

ajx; + c°- 4 ax, +cyzy + 0+ ocgzg = eyzp b+ egzg

1 o~0
and
1 ...'. ' = . cee
c,2; + - + cyz} (bly1 + + buyu).
That is,
* o 0 — ! LN ] — ' =
a;x; + + ax, +c,(zy - zj) + +oe,(z, - 25) =0
and
clzi + oo + ccz& + bly1 4+ e+ buyu = 0.
These mean that (x,,+¢+.%X,, 2z, - zk,---, z - 2z') is in the solution space
1 A 1 1 o] o
of ﬁé and (zi,ﬂ--,zé, yi,---,yu) is in that of ﬁé . Since R(Gl)
1 T2
and R(GZ) are right coherent, the solution spaces of ﬁé and ﬁé are
1 2
finitely.generated right R(G)-modules (Corollary 2.2.5).
Finally, note that if (xi,'--,xi, zg,'°-,zg is in the solution
. ¥ terms
— — —
space of NG , then (xi,--~,xi, zq,---,zg, 0,-+-,0) 1is in that of N

1
and if (zg,--e,zg, yi,---,yﬁ) is in the solution space of ﬁé .
: 2.

then

A terms

(0, ++-, 0, Zi”"’zg’ yi,-~-,yﬁ) is in that of N. Since

(Xl’...’xk’ ?1’...’20’ Y1,""yu)
U terms A terms

. e, —A . -
= (X1:'°’sxx’ zl—zi:"',zc—z&s 0,'--,0)'+ (0’°°'30: Zi"“azé’ yl;"'syu),
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and since the solution spaces of ﬁé and ﬁé are finitely generated,
1 2

it follows from the above observation that Ker g is finitely generated.

This completes the proof.

Remark 2.2.7. Waldhausen in [19] considers the question of the coherence

of a group ring Z(G) when G is an amalgamated product. The proof of
Theorem 2.2.1 is partly inspired by his arguments. When suitably adapted,
our present proof will also show the coherence of the free product of two

rings, under appropriate hypothesis.

Corollary 2.2.8. Let R be a right Noetherian ring and F, a free group
of finite rank. 'Then R(Fﬁ) is right coherent. In particular, if A is

a finitely generated abelian group, then Z(A x Fn) is right coherent.

Proof : Since F, dis the free product of a free group F-1 of rank
n -~ 1 and an infinite cyclic group T, the first assertion follows from

Theorem 2.2.1 by induction on n. The second assertion follows from the

first since Z(A x F) = Z(A)(F) and 2Z(A) is Noetherian. -

As a consequéﬁce of Lemma 2.1.4 and Corollary 2.2.8, we have :

Corollary 2.2.9. Let R be a right Noetherian ring and F a free group

Then R(F) dis right coherent. Moreover, if A is a abelian group, then

Z(A x F) is right coherent.
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We will use the following result to prove the triviality of

Wh(G x4 T) for a certain class of groups G.

Corollary 2.2.10. Let F be a free group and A a free abelian group

of finite rank. Then

C(Z(A x F),a) = 0

for any automorphism o of A x F.

Proof : Since rt. gl. dim 2Z(F) <2 (cf. [8], Lemma 33), it follows
that rt. gl. dim Z(A x F) = rt. gl. dim Z(F) + rank of A < o (cf. [1],
Lemma 2). The assertion how follows from Theorem 2.1.3, since Z(A x F)

is right coherent.

We close this chapter by the following remark :

Remark 2.2.11, Let R be a ring and G be a group., Let o : G —> Aut R

be a homomorphism of G into the automorphism group Aut R of R. The
twisted group ring Ry(G) is defined as follows : additively Ra(G) = R(G)

and multiplication is given by

(re) (r'g") = r(alg)) (r")gg'

for any rg, r'g' e Rd(G). Then the results in Theorem 2.2.1 and Lemma 2.2.3
remain true if we replace group rings by twisted group rings. As a consequence,
we see that the group ring Z(A x, F), of a semi-direct product A-Xd F, 1is

right coherent.



CHAPTER 3

WHITEHEAD GROUPS OF SOME SEMI-DIRECT PRODUCTS OF FREL GROUPS

§3.1. The Whitehead Group of a Direct Product

=B

Fi of Free Groups Fi

i=1

Bass, Heller and Swan ([4]) proved that Wh A =0 for a free
abelian group A, and Stallings ([18]) and Gersten ([10]) have shown that
Wh F =0 for a free group F. The main purpose of this section is to

generalize these results to the following :

n
Theorem 3.1.1. Let D= I Fi be a direct product of n free groups Fi'
i=1

Then Wh D = 0.

Proof : Let the number of nonczclic factors in D be k. We will prove

the theorem by induction on k.

For k=0, D is just a free abelian group so that Wh D = O,

This starts the induction.

Now; suppose inductively that the theorem holds for any such group
with k - 1 nonecyclic factors. To show Wh D = 0, write D = D' x F
where F 1is noncyclié, and the number of noncyclic factors in D' is k - 1.
Then, for an infinite cyclic group T, Wh (D' x T) = 0 by induction

hypothesis. It follows from the Bass-Heller-Swan decomposition formula for
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Wh (D' x T) (cf. Theorem 1.2.4) that

(1) ¢(z(p'),id) =0 and K z(D') = O.

Next, suppose that 'F 1is of finite rank m and write
F o= Ti * oo & T~ as a free product of m infinite cyclic groups. Since

C(Z(p'),id) = 0, it follows from Theorem 1.3.3 that

(2) - Elz(n')(p) =

12
I e

K,2(0') (1,).

i=1

Again, using C(Z(D'),id) = 0, we deduce from Theorem 1.2.2 that the sequence

0 — K;Z(d') —> Kz(0")(T;) —> Kz(') —> 0

H

is short exact for each j ; 1i.e. EEZ(D')(Tj) = K,Z(D') for each j. Then

it fqllows from (2) that

ii'lz(D')(F) £ K ,Z(D') ® --- ® K Z(D')  (m copies) ;
i.e., the sequence

(3 00— Kz2®) — X zZO)® Yo x 20" 8 -+ 8 K 2O —> 0

is short exact. Passing to Whitehead groups, we have (cf. Remark 1.2.3)

~

0 —> Wh D' —> Wh (D' x F) v, f(OZ(D') 9 o0 B 1”<oz(D') —s 0

Hence, by (1) and the induction hypothesis for D', we have
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WhD = Wh (D' xF) = 0,

The case when F has infinite rank does not need to worry us
since a matrix over Z(D)(F) involves entries which are sums of words

involving only a finite number of free generators of F.

This completes the proof.

In addition to the vanishing of Wh D, we have the following

vanishing results, as in (1) :

Corollary 3.1.2. C(z(D),id) = 0 and KOZ(D) = Q.

§3.2. The Whitehead Group of 1

Let F be a free group, o an automorphism of F and T an
infinite cyclic group. Then Farrell and Hsiang ([8]) have shown that
wh (F Xq, T) = 0. This section is devoted to the following generalized
result :
n

Theorem 3.2.1. Let D= I Fi be a direct product of n free groups Fi'
i=1

Let a be an automorphism of D which leaves all but one of the noncyclic

T) = 0.

factors in D pointwise fixed. Then Wh (D X%,

Proof :. Let k be the number of noncyclic factors in D. We prove by

. . o
induction on k.
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For k=0, D is just a free abelian group A and so, by the
Farrell-Hsiang decomposition formula for Wh (D x; T) (cf. Theorem 1.2.4),

Wh (D x, T) = 0 since C(Z(A),a) =0, Wh A=0 and K Z(A) = O.

For k=1, D is of the form A x F with A free abelian of
finite rank and ¥ noncyclic. Then, in the Farrell-Hsiang decomposition
formula for Wh ((A x F) x, T), the term Wh (A x F) = 0 by Theorem 5.1.1
and KOZ(A x F) = 0 by Corollary 3.1.2. Also, thanks to the coherence
property of Z(A x F) and the fact that Z(A x F) is of finite right global

dimension, C(Z(A x F),a) = 0 (Corollary 2.2.10). Hence Wh((A x F) x, T) = 0.

Now, suppose inductively that the theorem holds for any such group
with k - 1 noncyclic factors. Let D = H x F with F noncyclic and o
fixed on F while H has k - 1 noncyclic factors. To show that
Wh (D x, T) = 0, write Dx, T=D'xF with D' =H xy T. The situation
is now complefely analogous to Theorem 3.1.1 and the same argument as there

gives Wh (D Xo, T) = 0.

This completes the proof.

In addition to the triviality of Wh (D xy T), we have, by the
Farrell-Hsiang decomposition formula for Wh (D x, T) that C(Z(D),a) = 0.
Moreover, by considering Wh ((D x, T) X Tl) which is just

Wh ((D X Tl) Xux .T), we have the following vanishing results :

1

1dT

Corollary 3.2.2. (1) C(Z(D x, T),id) = 0.

(i1)  K,Z(D x4 T) = 0.
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The result (ii) of Corollary 3.2.2 implies, in particular, that
for the fundamental group wl(M) of a closed surface M (other than the

real projective plane), the projective class group of - Z(ﬂl(M)) is trivial.

We also need the following slight generalization of Corollary 3.2.2 (i)

in §3.4.

Corollary 3.2.3. Let D and o be as given in Theorem 3.2.1l. Then

Tz x4 T),a") = 0
for any integer u, where o' denotes the automorphism oM x idT of
D x4 T induced by " of D.
Proof : Let T, = <t;,> be another infinite cyclic group generated by t,.

Consider the semi-direct product (D x4 T) x ﬁ T,. Then, by change of
a

generators in T X T (D X, T) x T1 can be seen to be isomorphic to

al-l
(D x 8) X axid T, where S = <t;ut1> is an infinite cyclic group generated
S .
by L By Theorem 3.2.1, Wh((D x 8) x _. T) = 0 and so
1 ) GX1dS
Wh((D %, T) x . T,) = 0. Hence C(Z(D x4 T),a!) = 0.

q - -

This completes the proof.

There is a topological application of Theorem 3.2.1l. If M is

a closed surface (other than the real projective plane) and (Sl)k is the

k-dimensional torus, then the fundamental group of M x (Sl)k is of the
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form D xy T. Hence Theorem 3.2:1 implies the following (cf. [14], p.393)

Corollary 3.2.4. If N is a differentiable or PL manifold of dim > 5

which is h-cobordant to M x (Sl)k, then N is actually diffeomorphic or

PL~homeomorphic to "M x (Sl)k respectively,

- §83.3. K, of Twisted Free Associative Algebras

Let R be a ring and X a set of non-commuting variables '{XA}

Ael’

Let R{X} be the free associative algebra on X over R. Gersten has
shown that if K;R —> KlR[t] is an isomorphism, where R[t] is the polynomial
extension of R, then KR —> KIR{X} is an isomorphism (cf. [10] and [2],

p.646) .

This section presents a generalization of Gersten's result to

twisted free associative algebras which we will apply in §3.4.

Let X be a set of non-commuting variables A{XX}AEA and let

a= {a,} be a set of automorphisms ay of R. The a-twisted free

associative algebra on X over R, denoted by Rd{X}, is defined as follows

Additively, Rd{X} = R{X} so that its elements are finite linear

combinations of words w(xk) in XA with coefficients in  R.

If w(x,) = x oo X is a word in x,, we denote the
“A _)‘1 -Ak A '

automorphism o«

cee O
M

o by w(ql). '

k
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Multiplication in R {X} is given by :
(rw(x,)) ("' (%)) = rW(aA)—l(r')W(xx)W'(XX),
for any rw(xx), r'w'(x,) € Rd{X} .

We shall consider Rd{X} as an R-ring with ‘augmentation

ey Rd{X} —> R defined by EX(xX) = 0 for each x) € X. Denote by

o

EiRd{X} the cokernel of the homomorphism i, : K;R —> Kle{X}V induced by -
the inclusion i': R —> Rd{X}.,vNote'that-the augmentation €x induces a

homomorphism ey : KlRa{X} —> K,R which splits i, .

Now, let N" be an invertible matrix over Rb{X}. By Higman's

‘trick, we can make N" equivalent in Kle{X} to
1 — ) T 1
N' = Nl o+ Nix, k.. + Nlxo,
where x,, +++, X, are distinct elements of X and Ni (i =0,1,-++,n) € mm(R)

12 n

for some integer m. (Here m (R) denotes the ring of all m X m matrices

over R). By applying the homomorphism ¢ to N', it follows that NJ

X#*
is invertible. Hence N" can be made equivalent in 'ElRé{X} to

(1) , N=1I+Nx +--+Nx ,

where N = Né-lN' and Ni = Ng—lNi A=1,--4,n).

The inverse of this matrix N exists and can be written explicitly

in the ring of formal power series. Since this inverse exists in Rd{X},
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all but a finite number of its coefficients are zero. That is, if

f
M=M +Mx, + o +Mx + ) M _xx +
o 171 n n i, i :
i,j=1 lSJ 1 J
is a matrix over Rd{X} where all M, Mi o are matrices over
b

such -that MN = NM = I, then there is an integer K > 0 such that

Mi i, i = 0 for all k > K, where il’ i2, ey ik run over
poigseeendy

1, -+.,n respectively. From NM = I, we get, by equating coefficients

of monomials in the x's, the following relations :

M= 1 ;
M, =-N, (i=1, ceeln)
i i
M =N a_l(N ) (i, =1, *++, n) ;
1,5 11 ] T T
2 - -1 - -
Moo L4 T (-1) N, .l(N ) TN ¢ ilo‘ll ail )(Ni )
1772° 171 2 1 g-1 T
(11, 12, LRI i,Q,= l, -..',n).
Hence, for all k > K,
. -1 . -1 -1 ~1
(2) N, o, (N, ) ¢+« (o, a, +++ a, (N, ) = 0.
i1, 4, 1,1, 1k—l lk

Let us call an element P ¢ mm(R) B-twisted nilpbtent (B

any automorphism of R) if there exists an integer k > 0 such that

ety ... 7 ®& Dy - o,
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Hence, it follows from (2) that each Ny (i =1,+++,n) din (1) is ai—twisted

nilpotent.

Our next lemma is ‘the key to the main result:

Lemma 3.3.1. The matrix N in (1) is a product of matrices of the form

I+ Pw(xl,o-i;xn), where P is an w(ul,---,an)—twisted nilpotent matrix

over R. (W(Xl""’xn) denotes a word in xl,---,xn).

"Proof : Recall from (1) and (2) that each Ni (i =1,---,n) in (1) is

ai—twisted nilpotent. Consider
I+Q=(I-0Nyxy) -« (L~ N x IN .

Then Q is of the form X_st. , Where each sj is a monomial of degree
' k|

at least two in the Xys+re,%x, and

(il, i, *0%s iz =1, +++, n) where & > 2, Hence, for k > K/2,

Ly oo. gD -
Q8 (Qj) B Q) 0,

for each j, where B is an automorphism obtained in replacing the Xy
in s, by oy respectively. That is, Qj is ‘sj(al,-.&;an)—twisted'

J

nilpotent for each j. Now, consider
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I+Q'= ? (I - stj)(I + Q).

where each y  is a monomial of degree

Then Q' is of the form ) QY, >
o

at least four in the x,, ..., x, and for k > K/4,

oy @ -e- v E P = o,

for each o, where Y is an automorphism obtained in replacing the X4

in y, by of respectively. That is, Qé is yg(al,---,an)—twisted
nilpotent for each o.
Left multiplying I + Q' by I(I —‘Q;yo)’ and repeating the
o

above argument, we will finally arrive at the conclusion that
(I + Pw(xl,--~,xn))-N =T

where P is an w(al,---,an)-twisted nilpotent matrix over R and

w(x,,-5xy) 1is aword in x;,«--,x%, .

This completes the proof.

The above discussions are modifications of those given in [10]
and ([2], p.647) for (untwisted) free associative algebras ; and the

following result is already contained in the above proof (also, cf [4]).
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Lemma 3.3.2. For any automorphism B of R, E}Rs[t] is generated by
the elements of the form I + Pt where P is an B-twisted nilpotent matrix

~over R.

The following main theorem then follows immediately from Lemma 3.3.1

and Lemma 3.3.2 :

Theorem 3.3.3. The group E&R&{X} is generated by the homomorphic images

of E&Rs[t] undexr the homomorphisms
KiRg[t] —> K R, (X}

induced by the homomorphism Rﬁ[t] — R&{X} which maps t into a word

W(XA) in Xy with B8 = w(ax) and W(xx) runs over all the words in X5 -

Corollary 3.3.4. If R is a ring such that C(R,B) =0 for any

automorphism B of R, then K,R {X} = 0; in other words, if
1%

KR — KIRB[t] is an isomorphism, then KR —> Kle{X} is an isomorphism.

Now, let o be an automorphism of R and for each X € A, let

for some integer m,. In this case, we denote Rd{X} by R&{X} . Thus,

A

we have the following corollaries which will be needed in §3.4.
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Corollary 3.3.5. The group E&R&{X} is generated by the homomorphic

images of EiR ﬁ[t] (0 any integer) under the homomorphisms
a

Kleu[t] —_— KlRa{X}

induced by the homomorphisms R u.[t] — Rﬁ{X} which map t into a word
o

w(xx) such that p is the total exponent sum of o  appearing in

w(al), and w(xx) runs over all the words in Xy

Corollary 3.3.6. If R is a ring such that C(R,0") = 0 for any integer

u, then Ele{X} = 0,

n
§3.4. The Whitehead Group of 0 F X

Let D =

F. be a direct product of n free groups Fi and
i

1

=

1

0. an automorphism of D which leaves all but one of the noncyclic factors

in D pointwise fixed. In Theorem 3.2.1, we proved that Wh(D Xd T) = 0,
where T is an infinite cyclic group. Let F be another free group. The
purpose of this section is to generalize Theorem 3.2.1 to :

Theorem 3.4.1. Wh((D x4 T) XaXidT F) =0.

The factor T in the theorem can presumably be dropped, although
this is not entirely obvious. Compare the results at the end of this section.

&
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From now on, we denote also by a, the automorphism a X idT

of D x4y T induced by the automorphism o on D.

~Suppose that TF is generated by .{ti} and let R [F] be the
o-twisted group ring of F over a ring R with automorphism «. Notice

that, in general, there is no augmentation from Rd[F] into R. Now, let

R = Z(D x4 T). Then Ry[F] is canonically isomorphic to Z((D Xq T) %o F)

(cf. §81.1). Define a mapping €p ¢ R,[F] — R by

EF(;tA) = rt

for all r e R and t) ¢ F, where t is the generator of T. Then it is
:clear that €p is a homomorphism of ‘Ra[F] onto R with eF(r) = r for

all re R, i.e., we can consider R&[F] as an R-ring with augmentation

€ Note that the homomorphism iy : K;R —> K R [F] induced by the

P
inclusion R — Ru[F] is one~to-one, since the homomorphism

Epx. ? K R, [F}] — KR, induced by e splits i, . Moreover, the kernel

F’

of ¢

P denoted by ﬁ&[F], is a free R-bimodule generated by

—

where w runs over all the words in t, and |w| is the total exponent

sum of t, appearing in w, and as bimodules,
R[F]1 = R @ Ry[F].

Also, we have Rd[F % F'].= Ry[F] * Rd[F'] where F' is another free group.
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Lgt TR(E&[F] QR.E&[F']) be the tensor algebra of ﬁﬁ[F] @Rlﬁg[F']

over R. Then it is easy to see that this is nothing but the twisted free
associative algebra R&{X} over a set X of non-commuting variables x

given by

x = (w- tlwl) & (w' - tlw'l)

1 ‘ —
where w - tlwl (resp. |w'| - tIW I) runs over the generators of Ry[F]
(resp. Ry[F']). Since C(R,a™) = T(Z(D %4 T),a") = 0 for any integer u

(Corollary 3.2.3), it follows from Corollary 3.3.6 that
KlTR(Ra[F] 8R R, IF']) = 0.

Hence, by Theorem 1.3.1, we have

i

K Ry[F * F'] = K R,[F] ® KR [F'].

That is,

(1) K Z((D xq T) %o (F % F')) 2 K, Z2((D x5 T) xoq F) ® K Z((D x4 T) x, F').

Finally we give the proof of Theorem 3.4.1. It is similar to that

of Theorem 3.1.1. -

Proof of Theorem 3.4.1 :

First, suppose that F is of finite rank m and write

F = Tl * «.. * T as a free product of m infinite cyclic groups. Then, -



it follows from (1) that

(2)

m
KIZ((D Xo T) X, F) & & Klz((D Xa T) xq Tj).
j=1
Using C(Z(D x4 T),au) = 0 for any integer u, we deduce, from Theorem 1.2.2,
that the sequence
v i , Gy
0 > K 2(D %, T) <__i K Z((D xq T) X0 Tj) — (KOZ(D X, T)) " —> 0
- .
Tj*
is split short exact, for each j. That is
700 x. T x. T.) & (K 7( 7)) **
K17’~(n Xa Tr xa LT A \KO—-'\D XC{, v 7

for each j, and so,

it follows from (2) that

Il

KZ((D xq T) %g F) = (KoZ(D xg TNF @ -+ @ (K Z(D x4 TH* (m copies).

In other words, the sequence

. ix
0 —> Klz(D X, T) :::i Klz((D Xq T) x4 F)

S
€

F'k

(R Z(D xq T % @ ~ov © (RyZ(D x4 T)) ¥

> 0

is short exact. Passing to Whitehead groups (cf. Remark 1.2.3), we have
the short exact sequence
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od
e

0 —> Wh(D xq T) Wh((D xq T) xoq F) —>

. . o
(RZ(D xq TN ® ++v 8 (RZ(D x4 T)) ¥ —> 0.

But Wh(D %3 T) = 0 (Theorem 3.2.1) and ROZ(D Xd T) = 0 (Corollary 3.2.2).

Hence Wh((D x4, T) x4 F) = 0.
This completes the proof..

Finally, since (D.xa T)‘><OindT F and (D %y F) xaxidF T are

isomorphic, we have, in addition to Theorem 3.4.1, that

Corollary 3.4.2. (i)  C(Z(D %y F), a x.ddy) = 0.

. {a x idF)*
(ii) (K,Z(D %o F)) =0 .

(1i1) WR(D g F) /g (, o ). = 0.

§3.5. Concluding Remarks

Let D be ﬁhe direct product of n free groups. We observe
that the condition we igpose on ‘a in §3.2 and §3.4 can be dropéed if one
can prove that the integral group ring Z(D) is right coherent. In fact,
the coherent property of Z(D) will follow from the following conjectural
result : Let R be a ring such that R[T], the Laurent series extension
of R, is right coherent (this implies that R is coherent). Let G,

and G, be groups such that R(Gl) and R(G,) are right coherent. Then
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R(G1 % G2) is right coherent.

Next, let R be a ring and o an automorphism of R. Then it
is an interesting and important question to ask whether the coherence of
R[T] will imply that of Rd[T]. - This result, if true, will give the

triviality of Wh G for'another class of groups G.

Finally, let F,, F,, +-+, F, be free groups. Let 0o; be an

n

automorphism of F.. Form the semi~direct product F, x F,. Then, let
p 1 p 1 Tq. T2 >
1

a, be an automorphism of F, ><0L1 F, and again form the semi-direct

product ('F1 Xal Fz) Xy F . Repeating the same procedure, we arrive at
2 :

the group

It would be useful to have a method of computing Wh G, KOZ(G) and
C(z(G),a). We have proved that Wh G = 0 and KOZ(G) = 0 when

O = Gy = e = Qg = identity and for some other special cases (cf.
Theorem 3.1.1, Theorem 3.2.1 and Theorem 3.4.1), but the general case

remains open.



CHAPTER 4

GROUPS F x5 T WITH ONE DEFINING RELATOR

§4.1. Introduction

In [8], Farrell and Hsiang have shown that the fundamental group
m,(M) of a closed surface M (not-the sphere or the projective plane) is
of the form F Xy T, where F is a free group and T an infinite cyclic
group, and so Wh nl(M) = 0. Their proof is topological. Also, it is well
known that such a group wl(M) can be presented as a group with one

defining relator.

The purpose of this chapter is to obtain certain necessary and
sufficient conditions for a group with one defining relator to be of the
form F %y T. This will give us an algebraic proof of the result for

ﬂl(M) previously mentioned.

Now, let us recall those definitions, terminology and results
from Combinatorial Group Theory which will be subsequently used. For more

details and undefined terms, we refer to Karrass, Magnus and Solitar ([13]).

Let G be a group with generators a, b, ¢, *+- . A word
R(a,b,c,+++) which defines the identity element 1 in G 1is called a
relator. Let P, Q, R, .-+ be any relators of G. If every relator in

G is derivable from P; Q, R, «++, we call P, Q, R, -+ a set of

defining relators for G on a, b, ¢, -+ . If P, Q, R, .i. is a set
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of defining relators for G, we call
< a:b’cy"‘ 5 P(aabsc"")’ Q(a,b,C,"'), R(a)bsc"")s ree >

a presentation of G and write

(1) G = < a’b,c, .o P’Q,R’ cee > .

The free group F, on the n free generators Xjs Ky "0y Xp is

the group with generators Xyy Xy 5 00y Xy and the empty set of defining

1? n

relators. A cyclically reduced word in x cesy X, 1is a word in which the

symbols x;, x.° (e = #1, i = 1,+++,n) do not occur consecutively and it

. . . € . —~€ .
does not simultaneously begin with x; and end with x, (e = #1, i =1 ,¢.e,n),

If w(xl, ~--,xn)~ is a word in Xys *v%s Xp, denote by Ow(xi)

the exponent sum of w on Xy -

Theorem 4.1.1. ([13], Theorem 1.3) Let F. be a free group on the free

n
generators X;, °++-, X, and let w;, w, be two cyclically reduced words.
Then Wis W, define conjugate elements of F, if and only if vy is a

cyclic permutation of w, .

Theorem 4.1.2. ([13], Theorem 4.10) (Freiheitssatz Theorem) Let G be.

a group presented by

G = < Xl’ ey xn 3 R(xl, seey xn) >



1
o
=]
ot

where R(xl, veo, xn) is a cyclically reduced word in X4 (4.

which involves x,. Then the subgroup of G generated by Xps ety X g

is freely generated by them.

Theorem 4.1.3. ([13], Theorem 4,11) (Conjugacy Theorem for Groups with

One Defining relator) Let G = < Xy, <=+, X, 3 R(xl, -eey X,) > and

H= <%, «=oy %3 3 S(Xl’ ceey xn) > . Then G is isomorphic to H wunder

)

the mapping x, —> X if and only if R(Xl’ cee, X

8 * s
i ) and  S®(x, , X

.

are conjugate in the free group on x cevy X, for e =1 or -l.

1’

We close this section by recalling the Tietze transformations

([13], s§1.5).

Let G be a group presented by (1). Then H. Tietze has shown
that any other presentation of G can be obtained by a repeated application

of the following transformations to (1) :

(Tl) If the words S, U, .-« are derivable from P, Q, R, +--, then
add S, U, .-« to the defining relators in (1).

(T2) 1If some of the relators, say, S, U, »++, listed among the
defining relators P, Q, R, «+-, are derivable from the others, delete
S, U, +++ from the defining relators in (1).

(T3) If K, M, .+« are any words in a, b, ¢, *+-, then adjoin the
symbols x, y, <+« to the generators in (1) and adjoin the relations x = K,
y =M, .-+ to the defining relators in (1).

(T4) 1If some of the defining relators in (1) take the form p =V,

q=W, «+« where p, q, *++ are generators in (1) and V, W are words
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in the generators other than P> qs °*+, then delete p, q, +-+ from the
generators, delete p =V, ¢ =W, .-+ from the defining relations, and
replace p, q, ¢+« by V, W, ¢+« respectively, in the remaining defining

relators in (1).

The transformations (T1), (T2), (T3), and (T4) are called Tietze

transformations,

Let G be a group presented by

(2) G =< X1 Xoo ey X 3 R(Xl, Xogs ** % xn) > (n_>_2)

where we assume that R is cyclically reduced and involves all the generators

X‘]_’ X2’ .oq’xn.

Recall that if there is a split short exact sequence

(3) ' 1

> N —— G > T

Lo

> 1,

where T = <t> is an infinite cyclic group, then G 1is the semi-direct

product N x ., T of N and T with respect to the automorphism o : N = N

o
defined by o(g) = tgtm1 for all ge N. If G 1is a group given by (2),
it is easy to find a homomorphism ¢ : G —> T from G onto T. Let

N be the kernel of ¢. Then G satisfies (3) and so is of the form

N x, T. Of course, in general there exist many .such homomorphisms ¢ and

therefore many splittings.



- 49 -

§4.2. Groups with Two Generators and One Defining Relator

Let G be a group presented by
(1) G =< a,b ; R(a,b) >

where R is cyclically reduced and involves both a and b. Then we know

that G is of the form N x4 T.

The purpose of this section is to obtain certain necessary and

sufficient conditions for the factor N in N Xd T to be free corresponding

to certain natural choices of the epimorphism ¢ : G — T.

We distinguish the following three cases.

Case 1 : GR(a) # 0 and GR(b) = 0 or vice versa ;
Case 2 : oR(a) # 0 and cRﬁb) # 0 ;

Case 3

oR(a) = OR(b) = 0.
We are able to settle cases 1 and 2, but not quite case 3.

First, let us consider case 1. 1In this case, the epimorphism

¢ : 6 —> T is uniquely defined up to sign by
(2) $(a) = 1, ¢() =t* (e =1or -1).

Notice that in case 3, the above ¢ (given by (2)) is one of the
choices of the homomorphisms from G onto T. Of course, there are many

other homomorphisms from G onto T ; for example, one of them will be

L
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the homomorphism ¢, : G —> T defined by ¢1(a) t, ¢1(b)-= 1. VWe will

see later, by an example, that in case 3, G may be of the form N x5 T

and N1 Xd T with N free and Nl not free.

From now on, we will consider case 1 or case 3 with the above
homomorphism- ¢. Thus, we may assume that the factor T, din N %X, T, is
just the infinite cyclic group generated by b in G and then N is

nothing but the normal subgroup of G generated by a.

To obtain a presentation.-of N, we make use of a Reidemeister-
Schreier rewriting process, and as Schreier representatives for G mod N
we choose t%, where i runs over all integers ([13], §2.3 and §4.4).

We find that N is generated by the elements a, defined by
(i, any integer).

Now, we rewrite R(a,b) in terms of a; as follows : Every symbol
a® (e = #1) in R(a,b) is‘repléced by ag where s 1is the sum of the
exponents of the b-symbols preceding the particular a® in R(a,b). Thus

R(a,b) can be expressed in terms of a; as :

(3) - R(a,b) = RO(,aA’ 'al_{_ls M au)

with X < <+ <p . Then N 1is generated by a; and has as defining

relators



4) P. = b R(a,b)b”

]

R(

Aati? Fadlei i

(i, any integer), and so N can be presented as

(5) N=<-..’ a—l, ao’ al, see g eee P._l’ Po’ Pl’ ces > .

The following result, mentioned in ([5], §3) gives sufficient

conditions for N to be free.

Lemma 4.2.1. If ay and a, each appears just once in Po (= Ro) with

M

exponent 1 or -1, then N 1is freely generated by a

A S LR R T

Proof : Since a, and a, each appears just once in P, with exponent

1 or -1, it follows from (5) that Aak+i and au+i each appears just

once in Pi with exponent 1 or -1, for each i. Thus, from (5), we

get
€ = ' LAY
(6) At = V@gaare Tt Bg)
for i <0, where € =1 or -1, and
) n = ' . s 0
™ Bty =V @gge e Byy)

for j >0, where n=1 or -1.



Then, by applying Tietze transformation (T4) repeatedly, we can

delete Pi and the corresponding generators a4 for 1 <0 in N,

and we can delete Pj and the corresponding generators a_ for 3 > 0.

ut+j

in N, Hence N = < a >, 1.e. N is freely generated

S ES R Y |

by a

A A T B

p-1

This completes the proof.

We will show that the conditions given in Lemma 4.2.1 are also

necessary for N to be free. The next lemma is the key to our main result.

Lemma 4.2.2. Let H be a group presented by

(8) H=<y19 y2’ *tts Yp > S(yla Yos 7> yn)>

where S is cyclically reduced and suppose that ¥y, appears at least
twice in S. Then y, ¢cannot be expressed as a word in terms of
Yis Yos "tts Yoq in H. (Note that if yi appears in S, then y,  1is

considered to appear twice in 8§).

Proof : Suppose that y_ = V(y,, .--*, yn_l), a word in y,, °--, A

Then Q = ynV_l is a relator in H so that, by Tietze transformation (T1),
H=<yl9'°'iyn;syq>-

Therefore, by Tietze transformation (T4)



’.V(y], Tty Y ) >,

n-i n—1]

H=< yl’ "ty Y H S(Yl, Ty yn-l

Thus, by Freiheitssatz theorem (Theorem 4.1.2), S(y,,*+-,y V(s sy, )

n-1’ 1

must reduce to the empty word and so S is derivable from Q. By Tietze

transformation (T2), we have
H = <y, o y,5 Q>

Hence, by Theorem 4.1.3, QE (e =1o0r-1) and S are conjugate in the

€

free group on Yy "tts Y o Therefore, by Theorem 4.1.1, Q (¢ = 1 or -1)

must be a cyclic permutation of S, which is impossible since Y, appears

at least twice in S.

This completes the proof.

- Now, without loss of generality, we can assume, in (3), that

for some integer k > 1. Let H and H' be the groups presented

respectively by

) H=<a), a, "=+ ; P, Py, Py, *** >
and
(10) H' = < ak.—l’ .a-" al, ao’v a-l’ e s . ; P_l, P_z’ e > .

Then N is the free product of H and H' with amalgamation over the
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common subgroup freely generated by ays s (cf. [13], §4;2), Thus,

H and H' <are subgroups of N. Let

(1) Ao (@) @

Il
[
-
o
S’

Let

F, = Hy= < ays 3,5 Tty 33 P, =Ry >,

Fm=<al+m’ a2+m, tets ak-Hn;Pm> s (m > 0)
H'm=<a].’.a2_’ LRI ak-|—‘m;P0’ Pl’ vee, Pm>’ (m>0).

Then Hj is the free product of Hm— and F, with amalgamation over the

1

common subgroup freely generated by a Hence, we have an:

14w’ 7 qkm-1 C

ascending chain of groups
HOCHIC e CHm C ..

such that H = U Hj ([13], p.33). 1In this way, we regard H as subgroup
' J

of H for each integer m > O.

We will use the following lemma, due to E.S. Rapaport ([15])..

Lemma 4.2.3. Let. E be a group presented by

E = <X, X5, ***5 X 5 Q> .

Then m - 1 is maximal for all presentations of E, that is, the difference



- 55 -

_between the number of generators and the number of relators is always. < m-1.

Next, we are going to determine a necessary condition for H to
be free. The following lemma may relate to case 3 with the homomorphism ¢,

but not to case 1.

Lemma 4.2.4. If all the exponent sums -Aj (i = 1,+++,k) given in (11)
are zero, then H given by (9) cannot be a free group (and so N is not

free).

Proof : Consider the subgroup Hj = < 83y 8y, "ty B 3 Py > of H.

Suppose that H, is free. Then, by Lemma 4.2.3, H, 1is free of rank at

most .k - 1. Now, .since Aj~=-0 Aj =-1, <++,- k), -the -abelianization of

H, can be presented by

1, «++, k), P_>

a MY ak,a, o

2’

)
1l
»

aj (ja L

which is < ays @y, "ty A 3 ajaz (G, 2 =1, +-+, k) > by Tietze

_agaj
transformation (T2). Hence this abelianization is free abelian of rank k

which contradicts the fact that . H0 is free of rank at most k - 1. Hence

H, is not free and so H is not free. This completes the proof.

Thus, we can, in éddition, assume that some of the ,Aj (G =1,-,k)
in (11) are not zero. Let H be the abelianization of H. Then H has

generators
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a‘l’ az, ;
and has a set of defining relators :

a,a, = a.a, i, j > 0),
and

?

k
(12) P! = ) Aa,,,
1 j=1 j it]

where i > 0 and -Aj (j =1, «++, k) are given in (11). (Here, we use

additive notations just for convenience).

Lemma 4.2.,5. If -Aj =0 for all j =1, ***, k except j = j,, then
H is not free abelian {and so H is not free) when Je # 1 or -1i.

Proof : Since , Aj = 0 except j = j,, it follows from (12) that

for i > 0. Since Aj # 1 or -1, the subgroup < aj ; A, a, > of
o : o

H , is clearly not free abelian. Hence H is not free abelian.

Lemma 4.2.6. If -Aj =0 for all j=1, «++, k except j = j, and

A, =1 or -1, then H=<0> or H is free abelian on the generators

a,, <<, a, -1 according as j, =1 or j  # 1.
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Proof .: It follows from (12) that

ea,,, = 0 (e=1or -1, 1i>0).

If j,=1, then a; = 0 for all i>1 and so H = <0> , If i, # 1,

then a; = 0 for all i > j, so that H is free abelian on the generators

al’ sy ajo-—]_

This completes the proof.

Next, suppose that at least two vkgs are not equal to zero.

Without loss of generality, we can assume Al # 0.

Lemma 4.2.7. If H is free abelian, then its rank is at most k - 1.

Proof : Suppose that H is free abelian with generators 'fl,fz,---,fm,- .

If any % elements (& < k - 1) in this set of generators are linearly

dependent, then there is nothing to prove.

Thus, suppose that there are k -~ 1 elements, say

£15 55 tos B,

in this set, which are linearly independent.  Since Al # 0, by applying
the relators (12) repeatedly, we see that there exists some integer Jo > 0

such that
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o m,
A, £ =m,  a, m, a, v +m, a,
LR s S S P PR P B Jotk=2,1 jotk-2
(13) .
M1
f 4+ <o + a
LM T Tk, T My ke g My Hem2, k17 Hk-2
and
M
A, £ = m, a, + m, a, + ees 4+ m, a,
-1 Tk Jo,k io. .Jo+l’k ot Jo+k—2,k Jo+k-—2
where m, (i =1,---,k) are some integers > 0 and all m_, are integers.
b
Since fl’ e, fk—1 are assumed to be linearly independent, the determinant
m, m, . m,
D = .
m, m, . m,
Jo,k—l Jotlsk-1 Jotk-2,k-1

is different from zero. Hence we can express each of the

Da, , D Da

a. s ", . -
io joht 30+k 2

m

and so 'Dklkf can be

in terms of a linear combination of fl’ ooy Xk

fk—l
: v mk :

expressed as a linear combination of fl’ N fk_1 with ‘DAI #0 .

Therefore fl’ ceey fk are linearly dependent and hence 'H is free of

rank at most k - 1.
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Lemma 4.2.8. If a, appears at least twice in R , then the group H

given by (9) is not free (and so N 1is not free).

Proof : Suppose that H is free. Then, by Lemma 4.2.6 and Lemma 4.2.7,
it follows that H is free of rank at most k - 1. Let fl’ ey f2

(2 <k -~ 1) be.a set of free generators for H ; i.e.
(14) H = < f e, f > .,

Note that each fj (j=1, *++-, &) is a word in a; i=1, 2, -++). Let
m be the maximal subscript of all the generators a; that are involved in

f eeey, £, . Then H is finitely generated by aj, °**, ap SO that

(15) H=H , = <aj, =+, a,3 P, -, P >

Thus each a; = U;(fy, *++, £f,) (1 =1, -+, m) is aword in £,, -+, £,

and the relators P_, <+-, P all reduce to the empty word upon replacing
o m—-k pty P

a; by Ui (i=1, «-+«, m) since (15) can be transformed into (1l4). Now

consider

H = < al, LN aIﬂ, an)+l ; PO’ 00-’ Pm—k, Pm—k+l >,

m-k+1

Then H = Hm_k+1 so that H can be presented also by

3 Pm—k+1 7
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where P

m+1

= Q(f,, ***, f,, a_,.) with a _appearing at least twice
m-k+1 1 L L .

in Q. Since H is generated by f£,, ---, f2 ,

a = V(fl’ eeey fz) .

a word in fl, e, fz. But this is impossible by Lemma 4.2.2, Hence_ H

is not free.

This completes the proof.
Similarly, we can prove that :

Ame A as o on e A IR ) .
Lemma 4.2.9, If a appears at least twice im R tnen tne group

given by (10) is not free (and so N is not free).

Hence, we have proved :

Corollary 4.2.10. If the normal subgroup N given by (5) is free, then

each of a; and a must appear just once in R, , with ¢xponent 1 or

-1,

Combining Lemma 4.2.1 and Corollary 4.2.10, we obtain the following :

Theorem 4.2.11. Let G, R, and N be as given by (1), (3) and (5).

Then N is free if and only if each of ay and ag appears just once in

R, with exponent 1 or -I1.
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The following example indicates that in case 3, the suitation is

much less definite.

Example 4.2.12, Let G be a group presented by

G=<a,b; R=abZa b 2>,

Then UR(a) =0, OR(b) = 0.

Choose ¢ : G—> T to be the epimorphism defined by
$(a) = 1, ¢(b) = t.

Then G =N X3 T with N the normal subgroup of G generated by a.

Using the above notations, we see that

N=< ¢es, a_l, a5, Ay,

But Po = RO = aoa;1 so that the conditions in Theorem 4.2.11 are satisfied.

Hence N 1is free.

Next, choose ¢l : G—> T to be the epimorphism defined by

¢,(@) =€, ¢, () = 1.

=
0
s}
[p]
1]

N1 X

o I with N  the normal subgroup of G generated by b.

Rewrite

[
1]
T
o
|

s .
= a'ba (1, any integer). Then N; has generators b;.

R = abza_lb_2 in terms of bi’ we have
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_ 2, =2
R, = b2b,7 .

Thus the conditions in Theorem 4.2.11 are not satisfied. Hence 'Nl is not
free.

Finally, we return to case 2. That is, let
(16) G=<a,b; R(a,b) >

© with OR(a) # 0 and URﬁb) # 0. Let A

1 = oR(a) andAvA2== GR(b). Then

we can write Al = kul and -AZ = kuz with Hy and u, relatively prime.
Then A, = AU = 0. Choose v, and v, with v, the minimum positive

integer such that

a7 Vi, = VU = 0.
In fact, we can just take v, = Iull. (1f A, = k'Al, then u,; =1,
u, = k' so that Uy - k'ul = 0. In this case, v, = 1). Next, since ‘“1

and u, are relatively prime, we can choose m; and m, with m; the

minimum positive integer such that

m + m = 1.

n oMo

In this case, the homomorphism ¢ : G —> Tv is again uniquely defined up
<to exponent sign by

: M ) —M
oCa) = £ 2 and o) =t - .
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It is easy to verify that the elements

-1 v,—-1-

v
1 1
b'Q (2, any integer)

(18) a, +++, a s bz, abz, cee, a
form a Schreier representatives for G mod N. To obtain a presentation
of N, we make use of a Reidemeister-Schreier rewriting process and as

Schreier representatives for G mod N, we choose (18) ([13],§2.3). We

find that N is generated by the elements ay defined by

2—V2

(19) a; = (ajb’L)a(aj—'_lb’z‘)_1 or (ajbz)a(b )'_1

where i is any integer and 0 < j <v. -1 (or j = v, - 1), 2 any

1

integer such that
(20) i = ju2 - lul

Note that aju = (aJ)a(aJ-l_l)_1 =1 for O0<j< v, - 1.
2 .

Now, we rewrite R(a,b) in terms of a, as :
(21) R(a,b) = RO(va)\’ .a}\“l'l’ ctcs au)

with A < cee < (cf..Example 4.2.14). Then N is generated by ay and

has as defining relators aju (0 <j< v, - 1) and
2

la~
|

adb¥R(a,b) (alb¥) 7}

«y a _,.) (i, any integer)

= Ry g i
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where i, j, & satisfy (20), and so

P, (i, any integer) > .

(22) N = <--vsa j,85,8),0005 2 "a(vl—l)uz’ i

O’au.z’
Hence, by the same arguments as for case 1, we have :

Theorem 4.2.13. Let G, R, and N be given by (16), (21) and (22).

Then N is free if and only if each of a, and aﬁ appears just once in

R, with exponent 1 or -1,
We close this section with the following example.
Example 4.2.14, Let G be the group presented by

with Ay + 0, A, # 0, Then G is of the form N Xq T with N free.

Withour loss of generality, we can assume X. > 0. Let xl = kul and

1
-Az = ku2 (k > 0). Then v, =y and v, = ﬁz in (17). We see that

1 1 2 A
A A
N can be presented by (22). Now, we rewrite R =a b in terms of a;
as follows : .
vV, appearances of a
—\ AN
‘ -1 -1 Vil -1, VT Vo
R, = (b a(ab®) "(ab®)a(a?®) ™" ... (@~ b)) (a” bNal® )7 x
v, appearances of a
~ ~
-v, -V -V Y v,-1 -V AV Y Y
2 2 - 2 2, - . 2, -~ 2
x b ala H7Hab Ha@ HT @l v H'a?! v Haw
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X ees X

v,. appearances of a

§ (b-(k-l)ﬁz)a;ab—(k—i)vz)_l(ab—(k—}}vz)a(azb—(k—igvz)_lv...
(o 1"—l'b»_)(k—l‘)Vz)ia(b_kvz)"1b—k\)2 ‘b2
= Bty T Fvmnw v, v,y T a(v141)ﬁ2fv2ﬁl
Lazv,uy T T =1t (1) v,
~kv, 2, - :
(Note that b b =1 since ‘AZ = kvz). It is clear that all the

subscripts are ditterent and hence we can apply Theorem 4.2.13 to conclude

that N is free.

§4,3. Groups with n (n > 2) Generators and One Defining Relators

Let G be a group presented by

(L G=<X1’ "'3Xn;R(x1: Tt Xn)>

where R is cyclically reduced and involves all the generators. Then
G =N Xy T. In this section, we will obtain certain necessary and
sufficient conditions for the factor N to be free corresponding to certain

natural choices of the epimorphism ¢ : G — T.



If all oR(xi) # 0, then the suitation is basically similar to
case 2 of §4.2, but -the number of cases to be treated are so numerous that
we will not detail them here. Rather, we shall take up the case where, say,

oR(xn) = 0. 1In this case, we can choose ¢ : G —> T by defining

¢(XJ) =0 (j = 1323"':11"'1)’ ¢(Xn) = t.

(Note that there are many other choices of ¢). Thus we may assume that
the factor T, in N X4 T, 1is just the infinite cyclic group generated
by x, in ¢ and N is nothing but the normal subgroup of G generated

by - Xps HKph toty X

To obtain a presentation of N, we make use of a Reidemeister-
Schreier rewriting process and as Schreier representatives for G mod N,
i . ; .
we choose x_ , where i runs over all integers (f13], §2.3). We find

that N 'is generated by the elements Xy j defined by

?

i, ~i
X, ., = X X,X
i,] n jn

)

where j =1, *+«+, n-1 and i any integer. Now, we rewrite 'R(xl,--;,xn

in terms of X, § as follows : Every symbol xg (j = 1,--°,n-1; e = 1
R _

or -1) in R(Xl’ e, Xn) is replaced by xg j where s " is the sum
b

of the exponents of the x -symbols preceding the particular x§ in

R(x;, ***, x). Thus R(x,, -+, x) can be expressed in terms of x,

i,

as



(2) R(x 5" %)

= RO(*A st X

1°1

with X, < «.. <y,
B R -]

(j =1,+-+,n-1). Then N is generated by X

X
ulsl,AA
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cee RN 4

b

x cee,X
2: u2,2,- s

2? Apege?T

3

1’ Mooqo071

)

(i runs over all integers and j runs over 1, +-., n-1) and has a set

of defining relators

iR ~-i
i Xn oxn

+d
il

= R0<Xxl+i,1’°"?xu1+i,1’°"’#Az+i,2"."Xu2+i,2’.. ’

(i any integer) and so

. X . ’ . e
+i,n~-1°
An—l i,n~-1

-,X

un_1+1,n—1

(i- runs over all integers and j runs over 1,-:.,n-1) ;

P e >

<+ P _, P 1o

1’ o

By adapting the arguments for the case of two generators, we can

prove :
Theorem 4.3.1. The normal subgroup N is free if and only if one of the
X sy X seey X and one of the =x_ s X s "ty X

) Al’l ) A2,2’ ? ,An_1>n—1 ulal U2,2 un_l’n“l

each appears just once in R,

Corollary 4.3,2. ([8]) Let

orientable surface.

Then G

given by (2), with exponent 1 or -1.

G be the fundamental group of a closed

is of the form N x, T with N _free.'

)
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Proof : ~"Recall that G can be presented by

o= R o= -1 -1 -1-1
= < xl""’xns Yl,"',Yn s = lelxl y]. v XnYnxn_yn .
Then OR(yn) = 0, so that as discussed above, we can take T = <yn5 ~and
N the normal subgroup of G generated by Xys®ttsXps V1o ¥, 4 The

generators for N are given by

i - . . .

X; 5 = Yn¥3n (i, any integer ;3= 1, ++-, n)
Ve o = yiy y_i (i, any integer ; 2 =1 _..' n-1)
j_,,Q, n,Q,n ’ y g ; . y , .

By rewriting R in terms of x, ., and vy , Wwe get
i, ] i, %

R, = x x—1 -1 X x'-1 -1 X x_1
o 0,1y0,1 0,1y0,1 0,n-1Y0,n-1 0,n—1yo,n—1 o,n"1,n °
Since x and x each appears just once in R_ with exponent 1 or
' o,n l,n (o]

-1, the conditions in Theorem 4,3.1 are satisfied. Hence N is free.

Corollary 4.3.3. Let G be the group presented by

G = <¥ys Yo r¥ns R=y, 81y, 1820 S, 1015w (m# 1) >

| ¥ v
v .

m appearances of V-1

vwhere Sl,_S sy, Sm , are words in Vs > Yoo

(some of them may be
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trivial), and Sy 1s a word in Yys *ts Yo 59 Y ‘with the condition that

O (yn) = km for some integer k # 0. Then G is of the form N Xd T,
m

with N free.

. L k
Proof : Let Xj = yj (=1, +y, n—-2, n) and X1 = YpoTn Then,

It

by applying Tietze transformations repeatedly, we see that G can be

presented by

G = < Xy, X5, ***, Xp 3 R' = x

x X X
n-1"n "1 m-1n-1"n m

! ..', 1 i LN ] 1 i i
where Sy, s Sm_1 are words in x,, > X o and S, 1is a word in
Xis T X, Xy with GS&(xn) = km. Hence OR’(XH) = 0. Let N be
the normal subgroup generated by x;, ---, X _, - Then the generators for
N are

~i
X, ., = X X.X
i,] n i n

(i, any integer ; j = 1, --+, n-1). By rewriting R' in terms of x,

i,j °
we get
- - ' ' ees 8! !
RY= Ro = %o,n-151% 1, n-152% 2,01 Smo1*- (m-1)k,n-1"m
where Si,.Sé, e, S&—l’ S, are words in xi,2 (i, any integer ;
= oo -2). i P ] 1 R
L =1, , n-2). Since X5,n-1 and X_(m-1)k,n-1 each appears in R

just once with exponent 1, the conditions in Theorem 4.3.1 are satisfied.

Hence N 1is free.
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Corollary 4.3.4. ([8]) Let G be the fundamental group of a closed

‘nonorientable surface. Then G is of the form N X& T with N free."
Proof : Recall that G can be presented by
G = <y1’ seey yn;_yiyg -.;,y121>‘_

Then apply Corollary 4.3.3.



10.

11.

12.

13.

14,

BIBLIOGRAPHY

S. Balcerzyk, The Global Dimension of the Group Rings of Abelian
Groups, Fund. Math. LV, 293-301 (1964).

H. Bass,. Algebraic K-Theory, W.A. Benjamin, Inc., New York (1968).

H. Bass, Projective Modules over Free Groups are Free, J. of Algebra
1, 367-373 (1964).

H. Bass, A. Heller and R.G. Swan, The Whitehead Group of a Polynomial
Extension, Publ. I.H.E.S. No. 22, 61-~79 (1964). :

G. Baumslag and T. Taylor, The Centre of Groups with One Defining
Relator, Math. Annalen 175, 315-319 (1968).

N. Bourbaki, Algébre Commutative, Chapters 1 and 2 (Fasc. 27),
Pari : Hermann and Cie (1961).

S.U. Chase, Direct Products of Modules, Trans. Amey. Math. Soc. 97,
457-473-7(1960) .

F.T. Farrell and W.C. Hsiang, A Formula for KlRa[T]’ Proc. of
Symposia in Pure Math. 17, 192-219 (1970). :

F.T. Farrell, The Obstruction to Fibering a Manifold over a Circle,
Indiana University Math. J. 21, No. 4, 315-346 (1971).

S. Gersten, Whitehead Groups of Free Associative Algebras, Bull. Amer.
Math. Soc. 71, 157-159 (1965).

S. Gersten, On Class Groups of Free Products, Ann. of Math. 85,
392-398 (1968).

G. Higman, The Units of CGroup Rings, Proc. London Math. Soc. 46,
231-248 (1940).

A. Karrass, W. Magnus and D. Solitar, Combinatorial Group Theory,
Interscience, New York (1966).

J. Milnor, Whitehead Torsion, Bull. Amer. Math. Soc. 72,
358~426 (1966).



15.

16.

17.

18.

19.

- 72 =

E.S. Rapaport, On the Defining Relations of a Free Product, Pacific
J. Math. 14, 1389-1393 (1964). - '

J. Soublin, Anneaux Cohérents, C.R. Acad. Sc., Paris, t. 267 Ser. A,
183-186 (1968). :

J. Soublin, Un Anneau Coh2rent dont 1'anneau des Polyndmes n'est pas
Cohérent, C.R. Acad. Sc., Paris, t. 267 Ser. A, 241-243 (1968).

J. Stallings, Whitehead Torsion of Free Products, Ann. of Math. 82,
354-363 (1965).

F. Waldhausen, Whitehead Groups of Generalized TFree Products,
Preliminary Report.



