UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Singular holomorphic foliations Sertöz, Ali Sinan

Abstract

A generalized Nash Blow-up M' with respect to coherent subsheaves of locally free sheaves is defined for complex spaces. It is shown that M' is locally isomorphic to a monoidal transformation and hence is analytic. Examples of M' are given. Applications are given to Serre's extension problem and reductive group actions. A C* action on Grassmannians are defined, fixed point sets and Bialynicki-Birula decomposition is described. This action is generalized to Grassmann bundles. The Grassmann graph construction is defined for the analytic case and it is shown that for a compact Kaehler manifold the cycle at infinity is an analytic cycle. A calculation involving the localized classes of graph construction is given. Nash residue for singular holomorphic foliations is defined and it is shown that the residue of Baum-Bott and the Nash residue differ by a term that comes from the Grassmann graph construction of the singular foliation. As an application conclusions are drawn about the rationality conjecture of Baum-Bott. Pontryagin classes in the cohomology of the splitting manifold are given which obstruct an imbedding of a bundle into the tangent bundle.

Item Media

Item Citations and Data

Rights

For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.