- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Singular holomorphic foliations
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Singular holomorphic foliations Sertöz, Ali Sinan
Abstract
A generalized Nash Blow-up M' with respect to coherent subsheaves of locally free sheaves is defined for complex spaces. It is shown that M' is locally isomorphic to a monoidal transformation and hence is analytic. Examples of M' are given. Applications are given to Serre's extension problem and reductive group actions. A C* action on Grassmannians are defined, fixed point sets and Bialynicki-Birula decomposition is described. This action is generalized to Grassmann bundles. The Grassmann graph construction is defined for the analytic case and it is shown that for a compact Kaehler manifold the cycle at infinity is an analytic cycle. A calculation involving the localized classes of graph construction is given. Nash residue for singular holomorphic foliations is defined and it is shown that the residue of Baum-Bott and the Nash residue differ by a term that comes from the Grassmann graph construction of the singular foliation. As an application conclusions are drawn about the rationality conjecture of Baum-Bott. Pontryagin classes in the cohomology of the splitting manifold are given which obstruct an imbedding of a bundle into the tangent bundle.
Item Metadata
| Title |
Singular holomorphic foliations
|
| Creator | |
| Publisher |
University of British Columbia
|
| Date Issued |
1984
|
| Description |
A generalized Nash Blow-up M' with respect to coherent subsheaves of locally free sheaves is defined for complex spaces. It is shown that M' is locally isomorphic to a monoidal transformation and hence is analytic. Examples of M' are given. Applications are given to Serre's extension problem and reductive group actions. A C* action on Grassmannians are defined, fixed point sets and Bialynicki-Birula decomposition is described. This action is generalized to Grassmann bundles. The Grassmann graph construction is defined for the analytic case and it is shown that for a compact Kaehler manifold the cycle at infinity is an analytic cycle. A calculation involving the localized classes of graph construction is given. Nash residue for singular holomorphic foliations is defined and it is shown that the residue of Baum-Bott and the Nash residue differ by a term that comes from the Grassmann graph construction of the singular foliation. As an application conclusions are drawn about the rationality conjecture of Baum-Bott. Pontryagin classes in the cohomology of the splitting manifold are given which obstruct an imbedding of a bundle into the tangent bundle.
|
| Genre | |
| Type | |
| Language |
eng
|
| Date Available |
2010-06-13
|
| Provider |
Vancouver : University of British Columbia Library
|
| Rights |
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.
|
| DOI |
10.14288/1.0080149
|
| URI | |
| Degree (Theses) | |
| Program (Theses) | |
| Affiliation | |
| Degree Grantor |
University of British Columbia
|
| Campus | |
| Scholarly Level |
Graduate
|
| Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.