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ABSTRACT
A generalized Nash Blow-up M' with respect fo coherent
subsheaves of locally freé sheaves is defined for complex
spaces. It 1is shown that M' 1is locally isomorphic to a
monoidal transformation and hence is analytic. Examples of
M' are given. Applications are given to Serre's extension
problem and reductive group actions. A C* action on
Grassmannians are defined, fixed point sets and
Bialynicki-Birula decomposition is described. This action is
generalized to Grassmann bundles. The Grassmann graph
'construction is defined for the analytic ~¢ase and it is
shpwn that for a compact Kaehler manifold the cycle at
infinity is an analytic cycle. A calculation involving the
localized classes of graph construction Vis given. Nash
resiaue for singular holomorphic foliations is defined and
it is shown that the residue of Baum-Bott and the Nash
residue differ by a term that comes from the Grassmann graph
construction of the singular foliation. As an application
conclusions are drawn about the fationality conjecture of
Baum-Bott. Pontryagin classes in the cohomology of the
splitting manifold are given which obstruct an imbedding of

a bundle into the tangent bundle.
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CHAPTER O

INTRODUCTION

A singular holomorphic foliation 1is defined as an
integrable coherent subsheaf of the tangent sheaf of a
complex manifold. [see BB2]. We find it promising to study
coherent subsheaves of loﬁally free sheaves in order to get
a better wunderstanding of singdlar holomorphic foliations.
This project is carried out in Chapter 1 where a generalized
Nash blow-up 1is defined; the context of this work is the
complex analytic category. Let M be a complex analytic space
with G a complex analytic locally free sheaf on M and F a
complex analytic coherent subsheaf of G. We will drop the
phrase "complex analytic" from now on unless we want to
emphasize it. Assume without loss of generality that M is
connected and that the support of F is M. There is a proper
closed subvariety S of M such that F is locally free on M-S.
Let F have rank k on M-S and G have rank n on M, For every

point xeM-S, Fx defines a k-plane in Gx' hence a point of



the Grassmann manifold G(k,n) of k-planes in n-space. Let
G(k,G) denote the Grassmann bundle of k-planes in G over M,
Thus we have a holomorphic map from M-S into the Grassmann
bundle G(k,G). The topological closure of the image of this
map in G(k,G) is denoted by M' and is called the generalized
" Nash blow up of M with respect to F and G. In the algebraic
category it 1is clear that M' coincides with the Zariski
closure of the image and hence 1is algebraic. It 1is not
however clear that M' 1is a complex analytic space. It is
shown in chgpter 1 that M' is a complex analytic space and
that in fact M' is a monoidal transformation of M whose
centre need not coincide with S§, the singular set of F. This
generalizes works of Nobile on Nash blow-up and Rossi and
Riemenschneider on blowing up coherent sheaves wusing the
structure sheaf [N],[Ro],[Ri]. Counterexamples which yield
non-analytic sets are given along with examples to the
theorem. Conditions on smoothness of M' are also given.
Several applications are given to Serre's extension problem

and to reductive group actions.

One interesting aspect of generalized Nash blow-up 1is
that M' comes equipped with a vector bundle, the restriction
of the tautological bundle on G(k,G), which agrees with the
pull-back of F|M-S. We then want to measure in terms of

characteristic classes how much the tautological bundle



differs from the pull-back of F. For this we employ the
technique of Grassmann graph construction of the algebraic
category [BFM]. It must then be shown that this technique is
valid in the complex analytic category. This is accomplished
in Chapter 2 which starts with C*-actions on Grasssmann
manifolds. We describe the Bialynicki-Birula decomposition
of this action on Grassmann manifolds and give examples.
C*-actions are then used to describe analytically fhe graph
construction which produces 1localized Chern classes. This
localized claés is computed for a special case at the end of

the chapter as an example.

These techniques are collaborated in Chapter 3 to give

a caiculation of Baum-Bott residues. First we define a Nash
residue for singular holomorphic foliations for which -the
Nash Blow-up 1is smooth. Then we consider those singular
holomorphic foliations that are integrable imagesvof vector
bundles in the tangent bundle, 1i.e. 1let E be a vector
bundle, T be the tangent bundle on M and ¥ :E——>T be a
holomorphic vector bundle map; %¥(E) defines a singular
holomorphic foliation if it is integrable. When the Nash
Blow-up of this singular holomorphic foliation is smooth the

Baum-Bott residue is shown to be equal to the sum of the

Nash residue and a term that 1is calculated by using

Grassmann Graph construction on the Nash Blow-up. This



result allows us to conclude that the Rationality Conjecture

of Baum and Bott is true in this set up.

In chapter 4 we continue our investigation of singular
holomorphic foliations by again viewing them as integrable
images of vector bundles in the tangent bundle. We then ask
if any vector bundle E can be imbedded into T, dropping. the
integrability éondition on the image and requiring that ¢ be
injective. Several topological obstructions can be found in
the  literature. Here we 1look at the problem from a
Differential Geometric point of view. The problem is pulled
back to the splitting manifold M, of T, If E imbeds into T
then it is shown that certain Pontryagin classes in the
cohomology ring of M vanish. For this wé need and prove a
general statement of Bott's vanishing theorem [B2]. We
conclude by discussing some future research projects that

follow from this work on singular holomorphic foliations.



CHAPTER 1

NASH CONSTRUCTION

0 : INTRODUCTION

We will be working in the category of complex analytic
spaces. A complex analytic space is locally the variety of
an ideal of holomorphic functions. We will drop the phrases
"complex", "analytic" or even '"complex analytic" from
"complex analytic space" when the reference 1is clear. &ll
sheaves are éomplex analytic and again we will drop "complex
analytic" from their names when the omission causes no

ambiguity.

Let F be a coherent complex analytic subsheaf of a
locally free complex analytic sheaf G on a complex space M.
Outside a closed proper subvariety S of M the sheaf F is
locally free. Assuming that rankG¥n and rankF|M-S=k we can

define a holomorphic map F from M-S into the Grassmann



bundle G(k,G) over M. Let M' be the closure of the image of
this map in the Grassmann bundle. Our contribution 1is to
show that the map F is meromo?phic in the sense of Remmert,
i.e. M' ig complex analytic. This is accomplished in sectioﬁ
3 by showing that M' is locally a monoidal transformation.
The first two sections gather together some facts on
coherent sheaves and monoidal transformations and set up the
notation that is going to be used throughout the. chapter.
The third section describes the <construction of M' and
proves that it is analytic. We then discuss its relation to
the 1literature, in particular to the works of Nobile, Rossi
and Riemenschneider. Smoothness of M' and conditions for M'
to be globally a monoidal transformation are also discussed.
Examples ang counterexamples are given to demonstrate the
theorem and reductfve group actions are discussed as an
application. In the second part of the chapter Serre's
extension problem is stated and Siu's solution is given
along with the necessary terminology. We then give
applications to this problem which follow from the

analyticity of M'.



1 :COHERENT SHEAVES

In this section we collect together some of the facts
oﬁ coherent sheaves 1in the forms that we are going to use
them in the sequel. All sheaves are going to be complex
analytic; in particular "coherent" will mean "complex
analytic»coherent". For further details on coherent sheaves
together with the proofs of the statements of this sectioﬁ
the reader is referred to [GH,p 695 ff], [F,p 1-3,94-95],
[c].

Let M be a complex space and let-OM be its structure
sheaf. A sheaf of OM-modules will be called a sheaf of
modules, the structure sheaf 0M being understood.
Definition: A sheaf of moduleé F over M is called coherent

if for every xeM there is an open neighbourhood U of x such

that there exists an exact sequence

m k R R
0U OU >F; 0
for some integers m and k.
For any epimorphism of the form
" -
0U —>F >0

let RU denote the kernel sheaf;
' k

0 RU OU FU >0,

Then by the above definition of coherence, F is coherent if



RU is finitely generated as a OU—module for all U in M. It

is a classical result of Oka that if F is coherent then RU

is also coherent.

The most common examples of coherent sheaves arise as
the sheaves of holomorphic sections of vector bundles. Such
coherent sheaves are called locally free. For a locally free

sheaf F let Syre+esS be global holomorphic sections. Then

r
Syr--.,5. generate an analytic subsheaf which is coherent.

This example can be generalized as follows; call a sheaf of
modules G of finite type 1if for any xeM there 1is a

neighbourhood U of x and an epimorphism
m &
U s
for some integer m. Then for a coherent sheaf any subsheaf

o >0

of finite type is coherent.

If G is a coherent subsheaf of a coherent sheaf F then
the ‘quotient sheaf F/G is also coherent. In general if there

is a short exact sequence of sheaves

such that any two of them are coherent then the third one is

also coherent.

Support of a sheaf F is defined as
suppF={xeM|Fx#0}.

Assume that F is coherent and that suppF is open in M.



Define a funqtion rk on M as

rk(x)=rank of F_ as an 0,-module.
This is an upper semi-continuous function on M. To see this
let rk(p)=m for some peM. F is coherent so in particular it
is locally of finite type. Hence there |is an open
neighbourhood U of p such that there exists an epimorphism
U Fy 0
for some m. Then there are m sections SyreeerSy 6f FU such

0

that they generate each stalk Fx for all xeU. Clearly this

implies that rk(x)s<m for all xeU.

Since rk takes on nonnegative numbers, it achieves a
minimum. The minimum value of rk is called the rank of F and

is denoted by rankfF.

Define a subset S of M as
S={xeM|rk(x)>rankF}.
S is called the singular set of F and is a closed proper
subvariety of M. Outside S the coherent sheaf F is the sheaf
of sections of a vector bundle of rank=n where n=rankF,i.e.
F|M-S is 1locally free. For this reason rankF is also

referred to as the generic rank of F.

The above definition of rank coincides with the more
usual definition of rank which is given as

r(x)=dimk(x)Fxxoxk(x)
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where.k(x)=0x/mx, m_being the maximal ideal of O,. The fact

that r(x)=rk(x) follows from Nakayama's lemma:

Nakayama Lemma: Let A be a finitely generated module
over the ring of convergent power series C{X1,...,Xn} and
let m be the maximal ideal. Then:

a,,...,8, generate A iff Byreeerdy generate A/mA.

For a proof of Nakayama's lemma see [GH,pp680-681]. For

the equivalence of r and rk see [Ha,p288,(12.7.2)].

1If F is a coherent sheaf, then it admits a local

syzygy; for any point peM there is an open neighbourhood U

_of p such that

k m o
: U > 0y Fiy >0

is exact for some integers k and m. Global syzygies however

0 0

need not exist for complex analytic coherent sheaves. This
difficulty 1is circumvented by Atiyah and Hirzebruch by
passing to the real analytic category [AH]. View M as a real
énalytic space and let A4 be the real structure sheaf of M,
i.e. A 1is the sheaf of complex valued real analytic
functions. A sheaf G of A-modules on M is called a coherent
sheaf of A-modules if for every xeM there 1is an open

neighbourhood U of x and an exact sequence
AU ? AU \IU 70
for some integers p and q. For any coherent sheaf G of
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A-modules and any compact subset X of the real analytic

manifold M, GU has a resolution on open subsets V of X by

locally free 4,-modules, [AH,p29,(2.6)],[BB2,p310,(6.30)].

If M is a compact manifold then every coherent sheaf of
A-modules has a global resolution of locally free sheaves of
A-modules. For a coherent sheaf F of O-modules FEOA is a
coherent sheaf of 4-modules. If M is compact then Fe,4 has a

global resolution

0 >Hm s Ho ,FQA 0

where H, are locally free sheaves of A-modules and m is the
real dimension of M, Let H, be the real analytic complex
vector bundle whose sheaf of real analytic sections is H,.
The Chern class of F is defined in terms of Chern classes of
Hi's as follows; 1let H be the virtual bundle which is

defined as the alternating sums of Hi's

_sm i
H=LZ._o(=1)'H;

Then c(F)=c(H)
_qm p(i)
=I;_c (H;)
where p(i) is +1 if i is even and -1 if i is odd.

For further details on characteristic classes of
virtual bundles see [BB2]. For a proof that c¢(F) depends

only on F see [BS,p106,(lemmatl1)].
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2 :MONOIDAL TRANSFORMATIONS

We will follow the exposition of Hironaka and Rossi
[HR] to remind the reader of the terminology related to

monoidal transformations, also known as Hironaka blow-ups.

We adopt the definition of meromorphic map as
introduced by Remmert. Let X and Y be complex analytic
spaces. A map f:X——Q——>Y is called meromorphic 1if there
exists a proper subvariety V of X such that
i) f|X-V————;>Y is holomorphic
ii) the <closure in XxY of the graph of f|X-V is a complex
analytic variety. ’

It is easy to see that this definition reduces to the
definition of a meromorphic function when X=C, the complex

numbers, and Y=P',the projective line.

Let f:X——>Y be a morphism of complex spaces and let
I be an ideal sheaf on Y. The pull back of I under f is
éenoted by £*(7), and the ideal generated by f*(I) in 0y is
denoted by £-'(/). If D in Y is the variety defined by [
then the variety that corresponds to £-'(/) in X is denoted
by £-'(D). The pair f:X————>Y and D is called the monoidal
transformation df Y with centre D if

i) the 1ideal sheaf f£-'(/) on X is invertible, i.e. locally
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free of rank=1,

ii) if g:Z———>Y is any morphism of complex spaces having
the property' (i) then there is a unique morphism h:Z———X
such that g=f.h.

From the definition it is easy to see that Y-D is isomorphic
to X-f-'(D). It can also be shown that 'the monoidal
transformation is determined by D and not X, see [HR], but

we call X the monoidal transformation of Y.

To construct one such monoidal transformation of Y let
U be an open subset of Y which is isomorphic to c™. Let

f.,+++,f  be holomorphic functions on U, not all identically

0’
equal to zero, and let I be the ideal generated by the fi's.

n

I1f we denote the variety of I as V then we can define a
holomorphic map
F:U-V——>p"

where

F(x)=[fy(x)ze-e2f (x)]. |
We wish to show that F:U——>P" is meromorphic. For this
let J be the ideal generated by the functions

(x, [Bpzee X D> (R £ (x)-XE; (x)), 0%i,j<n, i#j

over the structure sheaf of UxP" where Xi are homogeneous
coordinates on P". The variety that is defined by J in uxp"

is the closure of the graph of F. Let U denote this closure.

We have U=V(J), hence U is analytic and F is meromorphic.
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It can be shown that U is a monoidal transformation of
U, see [HR]. The centre of this transformation is V(I) in U.
This particular description of a monoidal transformation

will be used in the next section on the Nash blow-up.

3:THE NASH CONSTRUCTION

Let F be an analytic coherent subsheaf of a locally
free sheaf G on a complex analytic space M. Let rankF=k and
rankG=n. There is a proper analytic subvariety S of M such
that F|M-S is locally free of rank k. Consider the Grassmann
bundle G(k,G) over M. Each fibre over xeM is the space of
k-planes in G, and is'therefore'isomorphic to G(k,n), the
Grassmann space of k-planes in n-space. De}ine a map

F:M-S—>MxG(k,G)
by

F(x)=(x,[Fx]).

Here [-] is used to denote the point that ":" represents 1in
G(k,n). Let M' be the topological closure of F(M-S) in
MxG(k,G). Let w:M'———>M be the restriction of the natural
projection MxG(k,G)——>M. Then we have the
Definition: n#:M'———>M 1is the Nash blow-up of M with
respect to F and G.
Wé wili sometimes abuse language and call M' the Nash

blow-up of M.



15

Let 7———>G(k,G) be the vector bundle on G(k,G) which
restricts to the tautological bundle of G(k,n) on each
stalk. Pull back 7 to MxG(k,G) by the natural projection
| MxG(k,G)——>G(k,G) and restrict it to M'. Again use "7" to
denote this restriction and call the bundle r———>M' the

tautological bundle on M',

If U is an open subset of M then let U' denote =-'(U)
where #:M'———>M 1is the Nash blow-up of M. Since the Nash
Blow-up is defined as the closure of the 1image of F, it

follows that #~'(U) is the closure of F(U-U~S) in UxG(k,G).

THEOREM 1., M' is locally a monoidal transformation of

M. Consequently M' is a complex analytic space.

Proof: Let U be an open neighbourhocod in M such that

G|U 1is trivial and F|U is finitely generated. Let ST RRRNE

be holomorphic sections of F|U that generate it, where r2k.
If UqS=¢ then U'SU by construction, so we consider the case
when U S#¢. Since F|U is a subsheaf of the 1locally free
sheaf G|U we can write each section f£. as

fi=(fi1""'f ) 1<isr

in

where f are holomorphic functions on U. This defines an

ij
rxn matrix

A=(f..) 1<i<r, 1<j<n.

ij
The row vectors of A generate a k-plane in n-space when A is
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evaluated on U-UQS, since rankfx=k for xeU-URS, i.e. we
have
rankA |U-UpnS=k
and
rankA|U S<k.
Let [A(x)] denote the point [Fx] in G(k,n)SG(k,Gx) that 1is
represented by the k-plane generated by the row vectors of
A(x), with xeU-URS.
[A(x)]=[F JeG(k,n), xeU-UpS.
Introduce an indexing set
Bm={(N1,...,Nk)eZkI1SN1<---<NkSm}.
B will be used to pick k rows of A and B will be wused to
pick k columns of A, If ueBr and BeBn then define
] Auﬁ=det(fij) ieu, jeB.
Let
Au=(fij) ieu, 1<js<n.
A“ is the kxn-submatrix of A formed by choosing only the k
rows'of A that correspond to u. For peB let I‘u be the ideal
generated by {AuﬁlﬁeBn}’ the determinants of all
kxk-submatrices of A Since the rank of A on U-URS is not
zero there exists a meB for which the corresponding Iu is
not triQial. Choose and fix this u for the rest of the
argument. ‘
1,#{0}.

Recalling that V(I“) denotes the proper subvariety of U on
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which Iu vanishes, it can be seen that V(Iu) is not
necessarily équal to UnS. This is the reason why the centre
of the monoidal transformation need not coincide with the
singular set S of F. On U—V(Iu) the rank of A, is k and
therefore it represents a k-plane in n-space which
corresponds to the same plane defined by F, in Gx;
[Au(x)]=[A(x)]=[Fx]eG(k,n), er-V(I“).
We define a new map
H:U-V(Iu)———-—>UxG(k,n)

where

H(x)=(x,[Au(x)]).
Notice that U-V(Iu) and U-U~S are dense in U. Let

z=Y(Iu)LJ(Urjs)

In general Z need not be equal to V(Iu) but since F is a
subsheaf of a locally free sheaf we will assume that Z=V(Iu)

as in [BB2, pp283-284].

First it will be shown that H(U—V(Iu)) coincides with
F(U-UQRS). Clearly
F|lU-V(I )=H|U-V(I ).
u u
U-URS 1is dense in U and contains U—V(Iu). F|U-UpR S extends

FIU—V(Iu). It follows from this that

F{U-V(I ) = F{O-UM~S).
Since F and H agree on U-V(Iu) we conclude that the closure

of the image of H coincides with the closure of the image of
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F, i1.e.

H{O-V(T )] = F(U-US).
One important aspect of this equality is that the right hand
side does not depend on the choice of u. Therefore if the
left hand side is a monoidal transformation then this will

also hold for F(U-UHS) and will be independent of the

choice of wu. To show that H(U—V(Iu)) is a monoidal
transformation order Bn in some fixed manner
—n—
60,31,...,BNeBn, N—Ck 1.
recall that a monoidal transformation 1is defined as the

closure of the image of T;

T:U-V(Iu)—————>UxPN
where
T(x)=(x,[Au60:---:AuﬁN])

Then T(U—VTI“)) =>U is the monoidal transformation of U with

centre V(Iu) and conseqguently U is a complex analytic space

as shown in section 2. It remains to show that U =

H(U—V(Iu)).

For this we use the Plicker imbedding Pl, which 1is an
imbedding of G(k,n) into PN where N=(E)-1. To define Pl let
A be a kxn matrix representing a point yeG(k,n) and 1let
Aﬁ(A) be the determinant of the kxk-submatrix of A
determined by choosing all the rows and f-columns of A for

ﬁeBn.
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Aﬁ(A)=det(Aij) 1<i<k, jepB.

Using the previously fixed ordering of‘Bn we define Pl(y) as

Pl(y)=Pl([A])=[A, (A):-+-:A, (A)].

With the aid of the Plicker imbedding define a new map

(id,P1) :UxG(k, n)——>UxP™
where

(id,P1)(x,[A])=(x,[4a, (A):--:A, (A)]).

8, By

If A=A then
u

Aﬁi(A)=Aﬁi(Au)=Auﬁi

Therefore for er—V(Iu) we have the following equalities;

0<i<N.

(id,pl)°H(x)=(id,P1)(x,[Au(x)])

=(x,[A60(Au(x)):---:ABN(Au(xX)J)
,é(x,[AuBO(x):---:AuﬁN(x)])
=T(x)

i.e. we have
(id,Pl) .H=T.
Since Pl is an imbedding then (id,Pl) is an isomorphism of

H(U-V(Iu)) onto T(U-V(Iu)). Therefore

(id,Pl)(H(U—V(Iu7)) T(U-V(Iu)7.

Finally we 1list the string of equalities that we have
proven; here 5 is the monoidal transformation of U with
centre V(Iu) and U' is the Nash Blow-up of U with respect to

F and G.

U = TYU-V(Iu))

= H(U—V(Iu))
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FZU—UHS;

u'.

Hence U' 1is isomorphic to a monoidal transformation and in
particular U' 1is analytic. 1f V is another open
neighbourhood in M such that G|V is free and F|V is finitely
4génerated with VqU#¢, then U' and V' agree on UpQRV since

~

F(URV-URVRHS) depends only on F and G. U and V are

analytic therefore U' and V' glue together to give a complex
analytic space.
Hence M' is a complex analytic space.

QED

" More can be said about the nature of M' if more data is
available. In chapter 3 we will be interested in the case
when M' is smooth. For this we first give a definition:
Definition: A coherent sheaf F of rank k on M with singular
set S is called rich if for any peS there exist an open
neighbourhood U of p and k sections SyreserSy of F|U such
that
i) s;,...,s, generate F|U-UnRS,
ii)s1,...,sk are linearly dependent on UpQS.

Examples of rich sheaves are easy to find. Complex
actions of reductive groups on complex manifolds give rise.
to rich subsheaves of the tangent sheaf of M. FinitelyA

generated subsheaves of locally free sheaves are rich. For a
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locally free sheaf subsheaves which are locally of finite
type are also rich. Most foliations that will be considered
will be rich. The significance of richness becomes clear in
the next corollary. Let the set up be as before; F 1is a
coherent subsheaf of a locally free sheaf G on a complex

space M with S being the singular set of F.

Corollary 1l: If F 1is rich then M' 1is a monoidal

transformation of M with centre S.

Proof: The notation being as in theorem 1 we have to
establish two facts: (i) locally the centre of the monoidal
transformation coincides with S, and (ii) globally these
local pieces glue together.

(i) This follows easily from the definition of richness.
(ii) Let U and V be open neighbourhoods in M such that u
and V' are monoidal transformations of U and V respectively,
with centres U S and VS respectively. If UpRV#g, then
from the uniqueness of monoidal transformations U' and V'
agree on U~V and hénce glue together. Since a monoidal
transformation is uniquely determined by its centre, (U V)’
is the monoidal traﬁsformation of (U,V) with centre
(U,V) ms.

QED
The above proof showed that if F is rich then the centre of

the monoidal transformation can be explicitly defined.
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Carrying on with this theme we can say more; let the

notation be as before, we have

Corollary 2:'If F is rich and S is smooth then M' is a

complex manifold.

Proof: If F is rich then M' 1is a monoidal
transformation  of M with centre S, by corollary 1. A
monoidal transformation with a smooth centre is smooth.

QED

Remmert has proven the following result; if N is an
analytic subset of an analytic space X and if 2Z 1is an
analytic subset of X-N then the closure of Z in X is an
analytic space if dim(N)<dim(2), see [R]. It is interesting
to relate this result with theorem 1. Let X be the total
space of the Grassmann bundle

1:G(k,G)—>M
and let N be #-'(S) which is an analytic subset of G(k,G).
Let Z be F(M-S) which is also analytic and 1is in
G(k,G)-n-'(S). If dim(nx '(S))<dim(F(M-S)) then Remmert's
theorem assures that M'=F(M-U) is analytic. In general the
condition of Remmert's theorem is not satisfied. For example
take rankF=3, rankG=5, dim(S)=2 and dim(M)=7; then

dim(#-'(S))=2+3.(5-3)=8 and dim(F(M-S))=7.
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As an application of theorem 1 we can retrieve Nobile's
theorem on Nash blowing-up [N]. For this let us define the
usual Nash construction as used by Nobile. Let X be a
'singular subvariety of c” with dimension k. Let S be the set
of singular points of X. Then the tangent sheaf TX of X is a
coherent subsheaf of the tangent sheaf of c". Define

n:X-S——>XxG(k,n)
where
n(x)=(x,[(TX)_1).
The closure 7n(X-S) in XxG(k,n) is called the Nash Blowing-up

of X and is denoted by X*, see [N].

Theorem (Nobile): A Nash Blowing-up 1is 1locally a

monoidal transform (with centre a suitable ideal).

Proof: TX is a coherent subsheaf of the tangent sheaf T
of c" with
suppTX=X.
Let |
F=TX|X, G=T|X.
Then the generalized Nash Blow-up of X with respect to F and
G as in theorem 1 is locally a monoidal transformation.

QED

H. Rossi has proven that for any coherent sheaf F on M

with singular set S, there exists an analytic space N with a
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proper map

¥ ¢ Ne——>-M
such that
(i)y:N-¢-1(S):———>M-S is biholomorphic and
(ii)y*F is locally free modulo torsion..
Rossi constructs this N as follows, see [Ro]. Let peS. Since
F is coherent there exists an open neighbourhood U of p such
that there is an exact sequence
——soh——r,
for some integers m and n, where O is the structure sheaf of

) 0

M. Let I be the image sheaf of the map

Oy——>0

Then I is a coherent subsheaf of O

<3 acao

and is locally free of
rank k on U-Up~S where k is rankF. For each point xeU-URS,
I, defines an (n-k)-plane in the n-space of 08. Define a map
n:U-Up S——>UxG(n-k,n)
where |
a(x)=(x,[1.1).
Then Rossi defines N as, see [Ro],

N|U=7(0-U~S) in UxG(n-k,n).
Theorem (Rossi): 5 is a meromorphic map.

Proof: We have to show that N|U is a complex analytic
space. N|U is the generalized Nash blow-up of U with respect

to 71|U and 08, hence is analytic by theorem 1.
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QED
That N|U's glue together to give a complex analytic space N

follows from the uniqueness of monoidal transformations.

Later O. Riemenschneider has shown that if N,; 1is

another analytic space with a proper map
Xt Ny——>M

such that
(i) x:N,-x"'(S)———>M-S is biholomorphic and
(ii) x*F is locally free modulo torsion,
then there is a unique holomorphic map w:N,———N such that
x=y.w, see [Ri]. He also showed that if F is an ideal sheaf
then N coincides with a monoidal transformation. Our Nash
construction shows that M' 1is always locain a monoidal
transformation. The universal property of M' 1is an

interesting problem which we propose to study elsewhere.

In the next section we will give several examples of

the Nash construction.

4 : EXAMPLES

1) Consider the C* action on P";

a(1)x
1

where AeC*, a(i) are integers with O<a(1)<...<a(n), and

k-[xozo--:xn]=[x0:k ka(n)xn]

[xO:---:xn] are homogeneous coordinates of P". The fixed
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points of this C* action are
[1:0:+++20],[0:12+--:0],[0:0z-2211.

The orbits of this action define a singular hclomorphic

foliation whose set of singularities is the fixed point set

of the C* action. This follows since the isotropy groups are

finite. '

The Nash Blow-up of this singular holomorphic foliation
is a smooth manifold. To see this let wus choose Euclidean
coordinates around the fixed point [1:0:--+:0];

| X1=x1/x0,...,xn=xn/x0.
The above C* action has the following form with respect to
these coordinates;
A(x,,...,x =03 Mg oo 80y,

In this coordinate patch the fixed point set is the origin
0=(0,...,0). Any X=(X1,...,Xn)eCn defines a holomorphic
curve

——rex=(2 g a3 (Mg

The direction of this curve at X, 1i.e. when A=1, is

[a(1)x1:o--:a(n)xn] in p"

. This is the image of X under the
Nash construction; to see why, let P(T) be the projectivized
tangent bundle of Cn,

P(T)=Cc"xp" "',
Define a section S of P(T) as

s:c"-0——>P(T)
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where

S(X)=(X,[a(1)x :...:a(n)Xn]).

1
Then the Nash Blow-up of this coordinate patch with respect
to the above C* action is the closure of S(c"-0) in P(T).
Let M, denote this closure. To show that My is a complex
manifold we construct the following coordinate maps; let

n-1 and let teC. Define a map

e=[e]:---:en] be a point in P
Ai:Pn_1xC—————>Mo
where
Ai(e,t)=((te1/a(1)ei,...,ten/a(n)ei),e)
for ei¢0 and i=1,...,n. Differenﬁ Ai's patch together to
define a holomorphic ' coordinate system. .Hence M, is a
éomplex manifold. Let
T TiMyg—C
be the natural projection. Then the fibre above the singular

set 0 of the singular foliation is w-’(g)=p“".

Similarly we can construct Mi by blowing up that
coordinate patch of P" with {xi¢0}. All these M.'s are
smooth and they glue together to form a complex manifold M.
It is possible to give defining equations for M. . 1f for
example tx,,e00px ), [y t---2y 1) are coordinates for
P(T)|U, then M, is defined by the equations

| a(j)yixj=a(i)iji, i,j¥1,...,n, i#7.

The isomorphism between the Nash Blow-up M, and the monoidal
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transformation of {x0¢0} with centre [1:0:-++:0] is given by
the map
T:P(T)——>P(T)
where
T((x1,...,xn),[y1:---:yn])=
((x1,..;,xn),[a(l)y1:---:a(n)yn]).
2) In this example we will define a rank 2 singular
foliation on P* and construct its Nash Blow-up. Start with
two C* actions on P* defined as
Aelxgrerozxy,)=[AC 0% z--0:nC 0%, ]
and
X-[xo:o--:xq]=[kc2°xo:---:kc2“xu]
where * AeC*, [xXg:-++:X,]eP* and cijez, if1,2 jéo"'f’4'
Define a 2x4 matrix Ck' for k=0,...,4, as follows
Ck=(°ij'°ik) 1<i<2,0<j<4, j#k.
Choose cij such that 1) all the entries of Ck are nonzero
and 2) the determinants of all the 2x2 minors of C, are
noniero. To describe a rank 2 singular foliation on P*
choose Euclidean coordinate patches
Ui={xi¢0} i=0,...,4.

In U, let

X1=X1/X0,e0e,X3=X4/Xo.
On U

0 let aij denote the entries of the matrix C0

C0=(aij) 1<i<2,0<j<4.

Note that by the above conditions on Cy the entries aij are
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nonzero, a; .=cC 1<i<2, 0<j<4. On U, the above C*

ij Cio’

actions take the form

ij- 0
A (Ky, e, X)) = (A8 10K, L0020 00,)

and
ARy, .0, Re)=(MB21x,, .. 2320%,)

At any point X=(X,,...,X,) for each C* action the direction

of the orbit passing through X defines vector fields

Vi(X)=(a11Xy,000,a14%;)
and
Va(X)=(az4Xy,...,824X4).

Notice that Vi i=1,2, is defined for all XeU,=C,. V,(X) and

0
V,(X) together generate a vector subspace of the tangent
space of U, at the point XeUy. Let

v(x)=(aijxj) 1<i<2, 1<j<4,

and '
Sg={XeUy|rank Vv(X)<2}.

On UO—SO, V, and V, span an integrable 2-subbundle of the

tangent bundle. To construct the Nash Blow-up define a map

F:U —SO—————>U

0

0xG(2,4)

where
F(X)=(X,[V(X)]).
The closure MO=FIU0-80) of‘F(UO-SO) in UOxG(2,4) is the Nash

Blow-up of U0 with respect to the above C* actions.
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Let T:Me—>U, be the usual projection. Then as in
the previous example it can be shown that

1) Mo-n-'(0) is a complex manifold.

V,(X) and V,(X) generate a éoherent subsheaf. F of the
tangent sheaf T, of UO-(Q). V,(X) and V,(X) ‘are linearly
dependent along the coordinate axes and by the definition of
rich sheaves F is a rich coherent sheaf with singularities
along the axes. Since the singular set 1is smooth, by
corollary 2 of section 3 the Nash blow-up, Me-7'(0), is
also smooth.

2) n:Mo—n"(So)—————>U0—SO is an isomorphism.

This follows from the the above explanations by observing
that S0 consists of the coordinate axes in U,.

3) For XeS,-0, 7= 1 (X)=P%.

0
4) =#'(0) 1is isomorphic to four copies of P2 in G(2,4),
which touch each other at a single point. Thus four planes
each touching each of the other three at a single point give

six singularities of M,

These last two assertions follow if a matrix
representation for elements of onG(2,4) is used in -
calculating the closure of F(UO-SO). In particular m~'(0) is
obtained-by observing the fibres in M, above the coordinate
axes; the four copies of P? in 7~ '(0) are each contributed

by a coordinate axis at the origin. The fact that they touch
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each other is again found by using the matrix representation
and calculating the limits. These calculations are

straightforward and are omitted.

We can similarly construct M,,...,M, each of which will
satisfy similar conditions 1-4 as above. They glue together

to give an analytic space M with 30 isolated singularities.

3) An example used in [CS1] can be adopted to describe
a graph construction which gives rise to a nonanalytic set.
Let Z act on C? | |
ZxC2——>C?
whefe
n-(z,,zz)=(2nz,,2nzz).
Let H=C?-{(0,0)}/Z and define
7 :H———>P'
as
ﬁ(<z,w>)=[z:w],
where <z,w> dénotes the equivalence class of (z,w)eC? in H.
There is a C* action on H defined as follows
C*xH———>H
where
A+ <2Z,W>=<AZ ,W>,
Similarly we have a C* action on P' defined as
| C*)xp'— P!

where
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Nelxoex,)=[Axo:x,].
7 is equivariant with respect to this C* action. Let T
denote the preimage of [0:1], i.e.
| 4T=1r"‘([0:l]).
T is the fixed point set of the C* action on H,.
H-T is isomorphic to (C*/Z)xC under the map which sends
<z,w> to (<z,0>, w/z). Consider the bundle projection’
pr:H-T—>C*/7
where
pr{<z,w>)——><z,0>.
Let T denote the closure of the graph of pr in Hx(C*/Z), let

r

<z,0> denote the points over <z,0> in T, 1.er if

P2 tHx(C*/Z)——>C* /1

is the natural projection then T =p,~ '(<z,0>). It can be

<z,0>
shown that

r ={(<z,t>,<2z,0>) eHx(C*/2) |teC} , {(<0,A>,<2,0>) | AeC*}

<z,0>
It is clear how to obtain the first component. To obtain the

second component consider
lim(<z,2™>,<z,05)=1im(<2 "z,2),<2 "z, 0>)
n>e_ n>-c
But since <2 "'z,0>=<z,0> on C*/Z, this final 1limit is
(<0,\>,<z,0>) which is our second component. If I is a
subvariety then it must be 1irreducible. But the second
component

{(<0,X>,<2z,0>) eHx(C*/Z) | NeC*}

is a closed subvariety of Hx(C*/Z) whose dimension is equal
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to the dimension of I'. This composition shows that I' is not

analytic.

Recall that our Nash <construction 1is also a graph
closure. In the above example the map pr can not be
meromorphigally extended across T whereas the data that we
supply for the Nash construction guarantees that the map

constructed there is always meromorphic.

Another such example using Hopf manifolds is given in

[G,p29,eqg4].

4) A simple example of nonanalytic graph closure can be

constructed by considering a holomorphic function
f:C*—>C

with an essential singularity at the origin. Since by
Picard's theorem f attains every value infinitely many times
in any ﬁeighbourhood of the singularity, the closure T of
the graph of f in CxC can not be analytic. Otherwise we can
intersect T with Cx{y} for any yeC and we should get an
analytic wvariety as the intersection. But by Picard's
theorem (Cx{+}) T will have infinitely many isolated points,
hence 1is not an analytic variety. This céntradiction shows

that ' is not analytic.

5) Let G be a connected compact Lie group and M a

complex manifold. Let
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¥ :GXM—>M

be a C° action of G by means of biholomorphisms. If V is a
real vector field induced by a 1-parameter subgroup of G and
J is the complex structure tensor of M, then V—iJV=w is a
holomorphic vector field and the fixed point set of ¥ is a
complex submanifold which is the set of common zeros of all
such W, [CS1, page 50]. These W's generate a coherent
integrable subsheaf F of the tangent sheaf.T of M, i.e. F is
closed under the bracket operation. By Richardson's theory G
has a principal orbit type, i.e. on an open dense subset U
of M all orbits have the same rank, see [Rc]. The closure of
an orbit picks up orbits of smaller ranks. Singular set of F
consists of the wunion of all orbits whose ranks are less
than the rank of the principal orbit. Let G be the
integrable 1locally free subsheaf of T|u defined by the
principal orbits of G in U. Then

F|U=G.
Hence the Nash construction defined by using the ©principal
orbits coincides with the Nash construétion of M with

respect to F and T, and consequently is analytic.

6) Consider a C* action on C" as
cxxc'— 5"
where

_yal1) a(n)
x-(x1,...,xn)—(x Xireoosd xn)
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with a(i)ez. The Nash Blow-up of C" with respect to the
orbits of this action is a smboth submanifold M of c"xp" 1,
Let |

7 :M—— "
be the wusual projection. We can define a C* action on M
which extends the C* action on w-‘(c“—g);

C*3xM——>M
where for AeC* and peM define A-p as follows: 1) If

p=((X .,Xn),[a(1)X1:---:a(n)xn]), then

gre
A~p=((ka(1)x1,...,ka(n)xn),[a(1)la(1)X1:---:a(n)ka(n)xn]).
Clearly A-peM.
2) If p=(g,[x1,...,xn]), then
_x-p=(g,[xa(’)x,:---:xa(“)xn]).
This action is the restriction to M of the C? action of
c"xP" "' which is defined as follows |
X-((x1,...,xn),[e1:---:e 1)=

((ka(1)x1,...

*
where AeC*, (x1,.. n

In this example the C* action on c” is lifted up to the
Nash Blow-up that is defined by the C* action. It can be
conjectured that reductive group actions can be lifted to

the Nash Blow-up that is defined in the previous example.

7) Let E and F be vector bundles on a complex space M.

Let rankE=r and rankF=n, Let
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$:E——>F
be a vector bundle map. There exists a proper subvariety S
of M such that
rank®|M-S=k
rank®|S<k
where k is some integer not greater than r. Then we can
define a meromorphic map
F}M—————>MxG(k,F)
as
F(x)=(x,[®(x)]).
The proof that F is meromorphic is guite analogous to the
proof of theorem 1 therefore we do not repeat it here. If M
is a complex manifold and F is its tangent bundle then &(E)
defines a distribution. If in- addition té‘ this, ®(E) is
integrabie then it defines a singular holomorphic foliation
whose singularity set is S, i.e. M-S 1is foliated with
k-dimensional leaves and for any xeM-S the tangent space of
the leaf that passes through x is QX(E). We will return to

this approach to singular foliations in Chapter 3 and 4.

5:SERRE'S EXTENSION PROBLEM

In this section we will give an application of our
theorem to Serre's problem on extending coherent sheaves. In

1966 Serre posed his famous extension problem, [S]. Let M be
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a complex analytic space with a closed analytic subset Z and
a coherent analytic sheaf F defined on M-Z., If i:M-Z—>M
is the usual inclusion then let i, F denote the direct'image
of F, i.e. for any open subset of M the sheaf of sections of
the sheaf i,F on U, T(U,i,F), is defined to be equal to
r(uv-z,F). Serre's problem 1is to determine if i,F is
coherent. This problem has been successfully attacked by
Siu, Trautmann and Thimm, see [ST)], [T]. Serre himself

proved the following, [S];

Theorem (Serre): If M is normal, F if torsion free and
codim(Z)22 then the following are equivalent:
i) i,F is coherent.
ii) There is an analytic coherent sheaf E on M which extends
F.
iii) For all peZ, there is an open neighbourhood U of p such
that for all xeU-Z the image of I'(U-Z,F) generates Fx as an

Ox—module, where O is the structure sheaf of M.

Obviously (i) implies (ii). It 1is surprising however
that (ii) does not imply (i) without the assumptions of the

theorem; for example i,0 is not coherent, [S].

M-2Z
Definition: If i,F is coherent then F is called extendable.

The set up being as above let G be a locally free sheaf on M
and let F be a coherent subsheaf of G on M-Z, Let M' be the

Nash Blow-up of M with respect to F and G. Since F 1is not
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defined ’everywhere theorem 1 of section 3 does not directly

apply. In this case we have the following theorem.

THEOREM 2. Assume that F is torsion free, M is normal
and codim(z)22. Then M' is analytic iff F is extendable as a

coherent subsheaf of G.

Proof: If F is extendable, 1i.e. i*F is a coherent
subsheaf of G, then M' is the Nash Blow-up of M with respect
to i,F and G, and hence 1is analytic by theorém 1 of
section 3. Assume then that M' is analytic. Let rankF=k and
rankG=n. Then let G(k,G)———>M be the Grassmann bundle of
k-planes in G. Let 7———>G(k,G) be that vector bundle which
restricts to the tautolégical vector bundle of G(k,n) on
each fibre of G(k,G). Use the same notation r——>M' to
denote the restriction of this bundle to M'. On M' we have
the following short exact sequence of bundles:

0 T c” O—>0 (*)

where Q is the quotient bundle c"/r. Let m:M'———>M be the
usual projection. On M-Z there is a short exact sequence of
sheaves:

0 —>F >G >K >0

4 (4

where K is the quotient sheaf G/F. This sequence pulls back
by n* to the seqguence of sheaves corresponding to the
sequence of bundles (*) on M'-7-'(Z). Hence on M' the sheaf

of sections of 7, which we denote by 7 is a coherent sheaf
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that extends n*F. This extension lies in gn=n*G. Since 7 is
a proper map w,7 is a coherent sheaf on M and since =z lies
in #*G the coherent sheaf wm,7 lies in G. Then by Serre's
theorem i,F is coherent. Hence F is extendable.

QED

This result not only tells us when M' is analytic but
also provides a solution to Serre's extension problem when F
is torsion free. In general if F has torsion then we can ask
if there exists an analytic cohérent subsheaf E of G which

extends F. In this case E need not be egual to i,F.

.Corollary. 3: Let M be a complex analytic space with a
broper analytic subset Z. Let G be a locallf free sheaf on M
and F————>M-Z be a coherent subsheaf of G|M~Z. Then there
exists an analytic coherent subsheaf E———>M which extends
F 1iff the Nash construction M' of M with respect to F and G

is analytic.

Proof: Using the notation of the above theorem if M' is
analytic then E=7n,7 extends F. If there exists a coherent E
which extends F then the Nash Blow-up of M with respect to F
and G is precisely the Nash Blow-up of M with respect to E
and G and is therefore analytic by theorem 1 of section 3.

QED
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Other solutions to Serre's probiem provide us with
further criteria in deciding when M' is analytic. Let us
revive our set up. M is an analytic space with the proper
closed analytic subset Z. There is a locally free sheaf G of
M and a coherent sheaf F of M-Z. Let F be a subsheaf of G on
M~Z. Let rankF=k, rankG=n and S be the singular set of F.
Then on each point x off Z S, F defines a k-plane in Gx
and this defines an imbedding of M-2.,S into G(k,G). The
closure of the image of this imbedding is denoted by M', and
m:M'——>M is the usual projection. We know. that M'-7-1'(2)
is analytic. However F need not extend coherently over Z and
we can not say much about M' in general., Therefore we 1look
for COndiﬁions on F which make it possible to extend it-
coherently over 2. If F extends coherently then M' |is
analytic. The following theorem is due to Siu and Trautmann,

For the proof see [ST].

Theorem (Siu, Trautmann): Let M be a complex space and
D an open subset which is strongly r-concave at a. point
XoeM. Let G be a coherent analytic sheaf on M and F a
coherent analytic sheaf on D. Let F be a subsheaf of G|D. If
the r-th relative ~gap sheaf of F in G is equal to F, i.e.
Fr=F' then F can ‘be extended coherently to an open

neighbourhood cf x, as a‘subsheaf of G.
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Corollary 4: Let M and D be as above, G a locally free
sheaf on M, F a coherent sheaf defined on D. Let F be a
subsheaf of G|D. If F_=F then M' is analytic.

QED

Let wus briefly describe the terms wused. A twice
differentiable real valued function f is said to be strongly.
r-convex on a subset D of C" if at every point of D the
hermitian matrix'

(aZf/azian)
has at least n-r+1 positive eigenvalues. An open subset U of
a complex space M is strongly r-concave at a point x,eM if
there 1is an open neighbourhood V of x, on which there is a
strongly r-convex function f such that

| f(x)=0 and U V={yeVv| f(y)>0 }.

For a subvariety A of M the gap sheaf F[A] of F in G  with

respect to A is the sheaf defined by the presheaf
U——>{sel'(U,G) | s|U-AeT'(U-A,F) }.

The r-th relative gap sheaf Fr of F in G is the sheaf

defined by the presheaf

U——1im{I'(U,F[A])| A is a subvariety of U, dimA<r}
-

Finally before we <close this chapter we give an
alternate description of Nash construction, borrowing an
idea of Giraud [(Gr]. Let F be a coherent sheaf on M with S

being the singular set of F. Let O be the structure sheaf of
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M. Recalling that F is a sheaf of O-modules construct the
sheaf |

Proj(AkF)———->M
On M-S there 1is a natural imbedding of M into this sheaf.
The closure of the image of this imbedding can be called the
intrinsic Nash construction on M. See also Thimm [T] where

he mentions Pluckerian coordinates of F.
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CHAPTER 2 .

GRASSMANN GRAPH CONSTRUCTION

0:INTRODUCTION

This chapter describes the Grassmann Graph construction
of MacPherson in the analytic category using C* actions. The

details of the algebraic case can be found in [BFM].

In section 1 we summarize the decomposition theorem of
Bialynicki-Birula in the compact Kaehler case, [BBc], [CS1].
Section 2 describes a C* action on Grassmann manifolds and
gives the <corresponding Bialynicki-Birula decomposition,
Examples are given in the next section. In section 4 this C¥
action 1is carried on to Grassmann bundles and Z_, the cycle
at infinity corresponding to a bundle morphism is defined.
It is shown that 1in the compact Kaehler case Z_ is an
analytic cycle. The graph construction is finally

accomplished in section 5. Examples are given in section 6.
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1 :BIALYNICKI-BIRULA DECOMPOSITION

The references for this section are [BBc] for the
algebraic case and [CS1] for the complex case. There is also

a clear summary in [CS2,section Ic].

Let M be a compact Kaehler manifold with a C* action on
it. Let this C* action have nontrivial fixed point set B

with components B1,...,B . The components of the fixed point

m
set are complex submanifolds of M. For AeC* and peM let A-p
denote the action of A on p. The C* action extends to a
meromorphic map
| P'x{p}——>M

hence lim Aep and 1lim A-p exist in M., Clearly these 1limits

>0 A>co .
are 1in B. There are two canonical decompositions of M into
invariant complex submanifolds. Define |
| M;={peM| lim k~peBi}

. + A>0
for i=1,...,m. Each M, is a complex manifold of M and

i
M= M] 1<ism,
This is called the plus decomposition of M. Similarly the
mi nus decomposition is defined as
M.={peM| lim A-.peB.}
i i
_ A>
for i=1,...,m. Bach Mi is a complex submanifold and

similarly
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There are two distinguished components of the fixed point

set B, say B, and B/ which are determined by the property

+

that M, and M; are open and dense in M. B

1 is called the

1
source and Brn is called the sink.

2:C*-ACTIONS ON G(k,n)

In this section we describe a particular C* action on
G(k,n), the Grassménnian manifold of k-planes in n-space.
Fix a coordinate system on c”. We will use the
representation of G(k,n) by matrices. Any point peG(k,n) can
be represented by a kxn-matrix A of rank k. Two such
matrices A and B represent the same point in G(k,n) if there

is an invertible kxk-matrix geGL(k,C) such that gA=B. For a

kxn-matrix A of rank k set [A]=the row‘space of A.

Given a kxn-matrix A=(aij) 1€i<k, 1<j<n define two
submatrices
A‘=(aij) 1<i,3<k
and
A2=(aij) 1€i<k, k+1<j<n.
A, is a kxk-matrix and A, is a kx(n-k)-matrix and
A=(A,,A,) is a partitioning of A. |
Define a C* action on G(k,n)
 c*xG(k,n)——>G(k,n)

by
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A-[Aa]=[(a,,2A2)]

To describe the behaviour of this action define a subset Xij
of G(k,n) as the set of all p in G(k,n) which can be
represented by a kxn-matrix A=(A,,A,) such that rankA,=i andv
rankA,=j where k-min{k,n-k}<i<k and 0<j<min{k,n-k}. Let
B=(B,,B,) be another kxn-matrix representing p. Then there
is an invertible kxk-matrix g such that gA=B.

gA,=B, and gA,=B,.
Hence rankB,=rank(gA,)=rankA,=i and similarly rankB,=j, and
the following definition of Xij is well defined:

xij={[A]eG(k,n)| rankA,=i, rankA,=j }

where k—min{k,n-k}siSF and 0<j<min{k,n-k}. Necessarily we
have i+j2k; to see this recall that A represents a pdint in
G(k,n) hence has rank k and if A, has rank i then A, must

supply at least the remaining k-i ranks.

To describe the behaviour of the C* action that is

defined above we prove the following lemmas.

Lemma 1. X are the fixed point components of the

i k-1
C* action, k-min{k,n-k}<i<k.

Proof: Let [A]exi k=i’

A-[Aa]=[A]. If i=0 then A,=0 and if i=k then A,=0. In both

A=(A,,A,). We first show that

cases A-[Aa]=[A]. Assume O<i<k.. Then there exists an

invertible kxk-matrix g such that gA is of the form
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where B,eGL(i,C) and B,eGL(k-i,C). For AeC* define h, to be
the diagonal matrix [1,...,1,1/7,...,1/X] where the number
of 1/N\'s is k-i. We then have the following sequence of
equalities;

~A-[A]=X-[gA]

—1
B, 0
=A 0 B,
,,_L
B, 0
= 0 AB,
o =t
_ =
B, 0
= |Pa 0 2B,
L _
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=[a].

Thus we have proven that X,

. 1s a subset of the
i k-1

fixed point set. That in fact there are no other fixed

points than Lin k-min{k,n-k}<i<k follows from the

k-1’

results of the following two lemmas.

QED

Lemma 2. If [AleX.., then 1lim A-[AleX; ,_., where
) : _ 13 A>0 i k-1 ,
k-min{k,n-k}<i<k, 0<j<min{k,n-k}, .i+j2k. Inparticular X0 is

the source where m=k-min{k,n-k}.

Proof: If i=0 or i=k then xij is a compohent of the

fixed point set as in lemma 1. Assume O<i<k. There exists

geGL(k,C) such that

.0
B, *
gA= . Bz
‘0 B,
where  B,eGL(i,C), B, eGL(k-1i,C) and B, is  a

(i+j-k)x(n-k)-matrix. Let h, be as in lemma 1. Then
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_ 0
. B,
h)\ng= XBZ
0 B,
and since lim AB,=0 we have
A>-0
lim A-[A]=1lim [hkkgA]
A>0 A>0
~ \ |
B, 0
= 0 B,
L -
This last matrix is clearly in X, y-; as claimed.

QED

Lemma 3. If [A]exij then i;ﬂ )\.[A]exk_j 50 where

k-min{k,n-k}<i<k, 0<j<min{k,n-k}. In particular xk_m m is

the sink where m=min{k,n-k}.

Proof: If 1i=0 or 1i=k then X is a fixed point

ij
component. Assume O<i<k. There exists geGL(k,C) such that

B,

o

L]
L]
.
L
.

gA= B,

o]
w

PPN IR

0 ‘

where B,eGL(k-j,C), B,;eGL(j,C) and B, is a (i+j-k)xk-matrix.

Then‘
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lim A-[A]=1lim [Xh,gA]

A>> A>e
B, 0
=1im )\— 1B2 '
A>= B,
0 ’J
B, 0
0 B,
This last matrix is in xk-j 5 as desired.
QED
These last two lemmas show that X for

) i k-1
k-min{n—k}SiSk are the only fixed point components and thus

complete the proof of lemma 1.

We can apply these lemmas to examine the behaviour of

Schubert cells under the action of C* on the Grassmann
manifold. We will adopt the terminology of Griffiths and
Harris on Schubert cells. For details refer to

[GH,page 195-196].

Let {e1,...,en} be the standard basis for "

and
Vi=span{e1,...,ei}. Then {V1""’Vn} defines a flag. For any
nonincreasing sequence of nonnegative integers between 0 and

n-k define a cell
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)=1i 1}.

The sequence of nonincreasing integers a=(a1,...,ak) with

w_={[A)eG(k,n)| dim(Ar-]Vn_k+i+ai
O<a,;<n-k is called a Schubert symbol. For [AleG(k,n) 1let A
be a kxn-matrix sucﬁ that [Al=[A). 1If [AJewa for some
Schubert symbol a=(a1,...,ak) then thg rank of the first
kx(n—k+i-ai) minor is i and the rank of the last kk(k-i+ai)
minor is k-i. The closure of Wy

W_={[A]eG(k,n)| dim(ARV )2i }

n—k+i-ai
is called a Schubert variety. If A is a matrix representing
[A] as above, then [A] is inAW; iff the rank of the first
kx(n-k+i-ai) minor of A is at least i and the rank of the
last kx(k-i+ai) minor of A is at most k-i. It is well known
that W; is an analytic subvariety of G(k,n) and the homology
class of W; , denoted .by o_, is independent of the flag used
in its definition, [GH,p196]. o  is called the Schubert
cycle corresponding to ' a=(a1,...,ak). Regarding the
behaviour of Schubert cycles under the C* action we give the

following corollary to the above lemmas;

COROLLARY 1. All Schubert cycles 6f positive
codimension in G(k;Zk) lie in xij's‘where j<k. In particular
they do not flow to the sink, i.e. if peW; then iiz \-p is
not in the sink.

Proof: The codimension of W; for a=(a1,...,ak) is Zai,

[GH,page 196]. It suffices to prove the corollary for
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a=(1,0,...,0). For [A]eW; let 'A¥(A,,Az) be a matrix
representation where A is a kxn-matrix of rank k, and A;, A,
are kxk-matrices. The rank of the last kxk minor of A is of
rank at most k-1. Hence in particular the rank of A, is not
k, therefore [A] is not.in Xipe Since the only points that
flow to the sink belong to the components of the form ipr
[A] does not flow to the sink. In general if a=(a1,...,ak)

with a121 then the last kx(k+a1-1) minor has rank at most

k-1. Since k+a,-12k, the rank of A, can not be k. Hence W;
does not flow to the sink. If a,=0 then a=(0,..;,0) and W;
does not have positive codimension.

QED

Using the same notation as in the previous corollary we

can generalize as follows:
Corollary 2. Let W;, a=(a1,...,ak), be a Schubert

variety 1in G(k,n) where a,2n-2k+1. Then W; does not flow to

1
the sink if n22k.

Proof: Let A=(A,,A;) be a kxn-matrix with rank k
representing a point [A] in W;. A, is a kx(n-k)-matrix and

[A]_ will flow to the sink if rank A, is maximal. Since n22k
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means n-k2k, the maximal rank of A, is k. The rank of the
last kx(k+a1-l) minor of A is at most k-1, By assumption
k+a,-12n-k, therefore the rank of A, cannot be k. Hence W;
does not flow to the sink.

QED

3:EXAMPLES

In examples 1 and 2 we assume that the C* action of the

previous section is defined on the spaces G(2,4) and G(4,9).

1) G(2,4) In G(2,4) we have defined thé following sets;
Xa0rX21+,X22, X11,X412, Xo2.

The first three sets are the fixed point sets. As A——>0

the elements of X,, and X,, flow to thé source X,,, and the

eiements of X,, flow to X,,. As A—> the elements of X,,

and X,, flow to the sink X,,, and the elements of X,, flow

tO x110

Xt >

on

X20

Figure 1
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All varieties that lie in X,, flow to X,, as A———>=, See
figure 1 for the direction of these flows for each xij as
A—, .

2) G(4,9) For the direction of flow as A——>= see
figure 2. From the decompgsition-of G(4,9) into X, . it can

]
be seen that the points that lie in

X13[_|X33|_]x31 L_]x32|__]x22 L_Ix23
do not flow to the sink or the source under the action of

é*.

Ry 23! Yy

XAO_ >(OQ

Figure 2
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4:C*-ACTIONS ON GRASSMANN BUNDLES

This section defines in the compact Kaehler case the

Grassmann Graph construction of [BFM,ppt120-121].

Let E,F be vector bundles of ranks k and n respectively
on an analytic 'space M. Let G(k,E®F)——>M denote the
Grassmann bundle whose fibre at each xeM is G(k,ExﬁFx), the
Grassmanian of k-planes in EXQFX. Define a C* action on
G(k,E®F) as the fibrewise C* action. Let

7, :E@F——>FE

ﬂztéﬁF—————>F
and

7:G(k,E8F )——>M
be the projections. Any peG(k,E8F) 1is represented by a
k-plane H in E 6F where x=n(p). m,(H) and 7n,(H) are linear
subspaces of E, and F respectively. The total space
G(k,E8F) can be decomposed into C*-equivariant subbundles.
Xij={[H]eG(k,E®F)|dimw1(H)=i, dimn, (H)=3}
where‘k—min(k,n)SiSk, 0<j<min(k,n) and i+j2k. It is easy to
see that
| %;5%6(1,E)xG(i,F)  i+i=k,

which are the fixed point sets of the C* action. Let
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Hom(E,F)——>M
be the bundle of morphisms from E to F and let
j:Hom(E,F)——>G(k ,E8F)
be the natural inclusion defined fibrewise as
jx(¢)=graph(¢|Ex)={(e,¢(e)eEx®FX}
Recall that C can | be imbedded into P! as
C———>Pp'
A——>[1:2],
[BFM,p120]. Define a C* action on G(k;EQF)xP‘
C*xG(k,E®F)xP'——>G(k ,E8F ) xP"
as
(N, p [ Ao d 1) ———(X-p,[Ap: AN, 1)
where A:p is the C* action which 1is defined above. Also
definelthe C* action on MxC, |
C*xMxC——>MxC
as

(A, x,t)——(x,At).

Every &eHom(E,F) defines an equivariant imbedding s(¢®)
of MxC into G(k,EBF)xP',
s(®) :MXC——>G(k,E8F ) xP'
where
s(é)(x,k)=([jx(k¢x)],[1:R]).
s(®)(M,\) is the graph of A®. Now define

Z_=lim s(&)(M,1).
- A> o
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Theorem 1. If M is a compact Kaehler manifold, then for

any ®eHom(E,F) the corresponding Z_ is an analytic cycle.

Proof: Let p:C*xG(k,E®0F)——>G(k,E8F) be the C* action
defined above. Consider M as a subspace of G(k,E8F) by the
imbedding s(®)(M,1); i.e. identify M and the graph of &.
Define a holomorphic map

A:MxC*——>G(k ,EBF)
as
A(m,t)=s(®)(m,t),
where meM and teC*, This map is equivariant with respect to
p and the trivial action of C* on MxC*, multiplication 'in
the second component; for if AeC* then
A(m,x-t)=s(®)(m,At)
=5(A®) (m,t)
x5 (®) (m,t)
=p(A,s(®)(m,t))
=p(X,A(m,t))
hence equivariance. But Sommese has shown that if
Y:¥xC*———>X is a holomorphic map equivarient with respect
to the trivial action of C* on ¥YxC* and the action of C* on
X with fixed points then Yy extends meromorphically to Y¥YxP',
[So,p111 (lemma II-B)). Thus A extends meromorphically to

A':MxP'— 5G(k,E8F).
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Let T be the closure of the graph of A in MxP'xG(k,E8F),

By the definition of a meromdrphic map, T 1is an
analytic space. Since |
2,=Tr (Mx{=}xG(k,E8F)),
the intersection of two analytic spaces, then 2_ is analytic
as desired.

QED

Z, is called the cycle at infinity corresponding to the

map ¢. Notice that there is an alternate definition of Z_,
see [BFM,p121]; define an imbedding of MxP' into MxP'xG(k,n)

i:MxP'—>MxP'xG(k,n)
as

i(m, [hoshy D=[{(m, [Rozn,1, (e, ) eE 88 (E ) [AgE=),(e)} )
Let W be the closure of i(MxP') in MxP'xG(k,n).
W=1(MxP")

Then

2,=Wr (Mx{=}xG(k,EBF)).
In the algebraic category W is an algebraic variety but in
the analytic category the observation that W can be obtained
through a C* action with fixed points on a compact Kaehler

manifold is crucial in concluding that it is analytic.

Clearly {z,=s(®)(M,\)} defines a family of cycles which
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are algebraically and hence homologically equivalent.

5:GRAPH OF COMPLEXES

In this section we define the Grassmann Graph
construction and the cycle at infinity associated to a
complex of vector bundles. This construction was invented by
MacPherson and used by Baum, Fulton and MacPherson to prove
Riemann-Roch theorem for singular algebraic varieties, [BFM]

and [Mc].

Consider a complex of vector bundles on M,

(E.):0 >E >E 1 >. .. >E

Denote the maps by 7i,i.e.

Y

tE.——>E.
1°71 1-

1
where i=t,...,m.
Assume that there is a subvariety S of M such that (E.) is

exact on M-S,

Let
Gi=G(rankEi,Ei®Ei_1) i=1,...,m.
and let
ri—————>Gi the tautological bundle, i=1,...,m.
Define

G=G0xM...xMG1,

where Xy denotes the bundle product on M. On G let L denote
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the pull back of ri—————aci by the projection pri:G——--——>Gi
of the i-th component, i=0,...,m.
Let

o _ M

T"To T1+.oo+( 1) Tm
be the virtual tautological bundle on G. Recalling the
definition of s from the previous section for any AeC define

an imbedding

as
1o.y2
sk(x)—s(vi)(x,k)
where i=1,...,m. Then define for any AeC an imbedding
by

_¢.0 m
SR(X)-(S)\(X),...,SX(X)).
Let Z, again denote sx(M) for AeC. Then we define
Z2_=lim Zy
A>co
to be the cycle at infinity corresponding to the complex

(E.).

Let m:G——>M be the natural projection. Recalling
that S is the set off which (E.) is exact we have the

following result; for proofs see [BFM,p121].

Theorem (Baum, Fulton, MacPherson): The cycle Z_ has a
unique decomposition Z_=Z,+M,, where

1) = maps M, meromorphically onto M,
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2) miMy-7,(S)——>M-S is a biholomorphism.

3) # maps Z into S.

4) 7 restricts on M, to the zero‘bundle.

REMARK: By theorem 1 of the previous section Z_ is a product
of analytic cycles in the product bundle G hence this
theorem can be stated in the analytic category as above. Any
cycle can be written as a sum of irreducible cycles. The
decomposition of 2 is such a sum. For a proof of (4) see

<o

[BFM,p122].

Finally we define two residues on S. Let E be the
virtual bundle EO—E1+...+(-1)mEm on M. Then -r|Z0 is
isomorphic to E since ZOSM. Since Z, and Z_ are rationally
eguivalent

c(E) q[M]=c(1) qZy=c(r)qZ,
where c(-) denotes the Chern class and [ denotes the cap "
product. Since Z_ decomposes
Ci(T)r12m=Ci(T)r1(Z*+M*)
=c. (1) qZyutc (1) A M,
=c; (1) 2y
where i>0 and the last equality follows since 7|M,=0 by (4)
of the above theorem.
Define
cl(E.)=my (e (1) M Z,) eHy (S5C).

Similarly let ch(:) denote the chern character, then
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ch(E) m [M]=ch(r) 2,
=ch(r) 2
=ch(7) qZ,+ch(7) M,
=ch(7) qZ,
Similarly define
chS(E.)=n*(ch(r)qu*)eH*(S;C).
For basic properties of chs(E.) in the alggbraic category
see [BFM,ppl121-126]. We will use cé(E) for calculating the
Baum-Bott residues of singular holomorphic foliations in the

next- chapter.

6 :EXAMPLES

1) Let M be a compact Kaehler manifold 6f dimension n
with tangent bundle T. Let L be a line bundle.on M and let
aeHom(L*,T) with isolated zeros Z. a is called a meromorphic
vector field. Let peZ. Choose an open neigbourhood U of p
such that (i) there are coordinate functions Ziree0,z 00 U
and (ii) there is a local generator 1* of L* on U and (iii)
U~ 2={p}. Then a(l*) is a holomorphic vector field on U

given as

n
_ 0
a(l*)lx—i§1ai(x)aTi|x, er

where ai(') are holomorphic functions on U. Any element cf

L*|[x is of the form c-(1*|x) for some ceC, and
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n
_ 0
a(cl*)|x=,Z ca, (x)5—|x, xeU.

This defines a point in L*&T|x,
(c1*,a(cl*)[x)=(c,ca (x),...,ca (x))eL*8T|x, xeU.
Hence for xeU-P, the graph I' of a in UxP(L*®T)SUuxp” is given
as . |
I‘={(x,[1:a1(x):...:an(x)])eUxPn
Define a C*-action on UxP(L*8T)ZUxP"
C*xUxP"——>Uxp"
as
(X,x,[yO:...:yn])=(x,[yozky1:...:kyn])}.
Consider lim A-T=Z_.
A>co

)-F={(x,[1:ka1(x):...:kan(x)])eUxPn}
1f xeU-p, then

lim A-T={(x,[0:a,(x):...2a_(x)])eUxP]}

A>o
and hence Z_|U-p=U-p. To find Z_|p, define a holomorphic
function '

F:U—————>bn
as
F(x)=(a (x),...,a_(x)).

Then F(p)=0 and F(U) is an open neighbourhood of the origin;

1

For any point [C1:...:cn]ePn— , let D be the line in c” that
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passes through (c1,...,cn) and the origin. Consider the set
C={xeU|F(x)eUD}.

Then C is a union of holomorphic curves {51,...,$k} péssing

through p. We may assume without loss of generality that

these curves do not intersect in U-p. The number k will be

referred to as the degree of F at p. Let § be one of these

curves. Let {pm}es be a sequence of points such that

lim p_=p.
Asw T

The graph of T on any one of these pm's can be written as

= & . . 4 n
—{(pm,[1oc1.....cn])€UXP }
since F(pm)es. Then
. . _ » . . . R n
lim lim TP|p =lim lim {(p ),[1:dc z...2hc 1) eUxP"}

m>e A>® m>c A>m

=;i2 {(pm,[O:c1:...:cn])eUxPn}
={(p,[1:c1:...:cn])eUxPn}.
On the other hand
Mp={(p,[1:0:...:0])}
and
A-T|p=T|p
Therefore

Zmlpgk-Pn-1+{(p,[1:O:...:O])}
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as cycles. Z_ can be decomposed uniquely into two cycles
Z_=Uyg+Zy,
where U, is bimeromorphic to U and Z, lies over p, i.e. if
11l ——>U
is the usual projection induced by the natural projection
UxPn—————>U,

then 7(Z,)=p. Hence Z*g(k-1)Pn—1+{point} as cycles.

Let 7' be the tautological line bundle on P" and let r
denote the pullback bundle on UxP". Let w be a dual
hyperplane class in H*(P" ';cC).

c(7|Ug)=1-w

since 1 restricts to the tautological bundle on p7!

, Where
c(-) is the total Chern class. Let ch(-) denote the Chern
character. Then

ch(r) qZ,=(e ¥ o[ (k+1)P" '+{point}])

(e Al (k-1)P" 1) +(e ¥ 4 {point}])

n-1 i :
=z, =) A Lk-1)E" T

CemD DT (kD) (<172 02
1

(n-1;. ey rq[Pn—1]+...+(k—1)[pn'1]

Let
Ty tH, (2,;C)——H, (p;C)

be the map induced by = on the homology classes. Notice that
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H,({p};C)=C hence =, is zero on positive dimensional cycles

and maps only the 0—cycleé.

Define a local residue

chp(a)=w*(ch(r)r12*)

Then
k=D (-1
chp(a)-1+ =171 (1)
Define the total residue as:
ch(a)=_Z,ch (a) (2)
It follows that
_ (k(p)-1)(-1)""]

(-1)""]
=#Z+—(F)—!p§z(k(p)-‘1 )

N I N _
#2r -1y pFek (P gk 1)

(-1)"!
(n-1)!

n-1
(-1) Z. k(p)

YTy TR

=#Z-

_ _(_.yn1 _4yn—1
MEGLIRELICIDLRAS PP LY

tm-T1Tprz* (P)

where k(p) is the degree of F at p as described above and #Z
is cardinality of 2, without counting multiplicity. But it

is shown in [GH, page 663-666] that

_ . det A -
pgzk(p)'pézre“{a1...a }

n
where
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A=(aai/azj) and res{+} is the Grothendieck residue symbol.
It is also known that

pezres{—ggg—g—} c, (T- L*).
yeeeap

This 1is the meromorphic vector field theorem of Baum and
Bott, [BB1]. Since n=dimM, we have
“T.%)=
cn(T L*) cn(LaT).
Hence

_ _(_+.yN—1 _ 1
ch(a)=[(n 1%;_$);) ]#Z+£Til—7—c (LeT). - (3)

If L* imbeds into T by a, then Z,=0 and Z=¢. Hence
ch(a)=0 and #2=0. Then equation (3) reduces to
0=cn(LaT)

which exhibits ‘Bott's vanishing theorem, [B2].

If L is trivial and a has only nondegenerate zeroes
then k(p)=1 for all peZ and from equation (1) we find that
chp(a)=1 for all peZ.
Hence by equation (2) A
ch(a)=4%#2.
Then equation (3) becomes
. #2=c_(T)

which is a consequence of the Hopf formula.

2) Let E,F be vector bundles on M and yeHom(E,F). Then

the graph TI'(y) of ¢ gives rise to a cycle at infinity 2_. We
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let By,...,B be the components of the fixed point set B of
G(k,E®F). Then (ZmrqB)p=(Zmr1Bo)pLJ(Zmr1Bi)p for peM, where
i=rank¢p. It is of course possible that (Bo)p' is empty at
that point. This is because I'(y) and z_ intersect E in the
same set, namely the kernel of y. If i 1is the largest
integer for any peM such that (ZmrqB)p=(Zmr1B0)pLJ(ZmrqBi)p,
then we say that "y intersects the fixed point set
generically at 1i". Then the generic rank of ¢y is i. In
particular let K be the curvature of E, then KeHom(E,A?TgE)
and we have its graph in G(rénkE, E®A2T*gE). If K intersects
the fixed point set generically at i then cj(E)=0 for j>i.
Conversely if cj(E)=0 for j>i for some i then K intersects
the fixed point set generically at t for some t<i. This is
because (ZmrqB)p:con£ains (Bi)p iff gank wp is i and rank is

lower semicontinuous.

3) We want to show that the Hironaka Blow-up at a point
can be recovered as a Grassménn Graph construction. The
problem 1is 1local so let M be an open set in c”. Define two
trivial bundles L and F as

L=MxC and F=MxC".
Define a morphism feHom(L,F) as:
6(p,t)=(p,tp) for pec", teC.
The cycle at infinity Z_ corresponding to 6 intersects the

sink of G(1,L8F) in M,, i.e. Z_=M,+Z,. M, is the Hironaka
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Blow-up of M at the origin. We can see this as follows. Let
p=(p1,...,pn)eM=Cn. We also identify P(L®F) with P". There
is a C* action | | |
C*xMxP"—— >MxP"
given as
(l,p,[Y0=Y1='--:yn])=(p,[y0:ky1:---:kyn])
The graph of 6 has the form
F(9)={(p,[1:pl:--':pn])eMxPn}
The C* action moves I'(8) as
AT(0)={(p,[1:2p,:--+:xp 1) eMxP"}

Consider the usual imbedding of C* in P' as A=[1:A]=[2g:0,],
where A=X\,/Ao. Since A———> iff Ag——>0 with A;#0, we
have the following limit

Z_=lim A-T(6)

A>
=lim {(p,[kozk,p1:---:),pn])eMxPn}
)\09'0
={(p,[0:k1p1:---:k,pn])eMxPn}

Clearly [0:k1p1:---:k1pn] can be considered as a point
[x,:e-+:x 1 in P""! such that
pjxi=pix., i#j, 1<i,j=<n.

From here it is easy to see that the intersection of Z_ with
the sink of the C* action is the Hironaka blow-up of M at

the origin.
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CHAPTER 3

SINGULAR HOLOMORPHIC FOLIATIONS

0: INTRODUCTION

Foliations arise naturally in mathematics, such as in

submersions, group actions and differential equations. For
an introduction to the subject we refer to the expository
article of Lawson on foliations, [L]. Lawson claims:
"One of the reasons that foliations interest people in-
geometry is that they constitute a class of structures on
manifolds which is complicated enough to shed light on the
general situation but has certain geometric aspects that
make it tractable", [L].

In this chapter we will investigate residue properties
of singular holomorphic foliations. In Section 1 we
summarize some of the basic ideas. In Section 2 we define

Baum-Bott residues, see [BB2)]. Section 3 gives Suwa's recent

contribution, see [Sul]. The main theme of residues is given
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in Section 4 where we <calculate Baum-Bott residues using

Nash Blow-up and Grassmann Graph construction.

1 :PRELIMINARIES

A holomorphic foliation L of rank k on a complex
manifold M of dimension n is a decomposition of M into
disjoint connected sets L={La},aeA with a in some indexing
set A, satisfying the following condition; for every point
peM there exists an open neighbourhodd U of p with a
holomorphic coordinate map

x=(x ,...,xn):U————-—-:»Cn

i
such that for any aeA, either L, U=¢ or

Lar1U={qu|ki(q)=t?, k+1<i<n}

n-k

where (tz+1,...,tﬁ)ec depends on a and U.

Each La is called a leaf of the foliation. A rank Kk
foliation 1in a complex manifold of dimension n is sometimes
referred to as a cddimension n-k foliation. The 1local
behaviour of a rank k foliation can be visuvalized as the

fibres of a projection

px::Cn—————»Cn—k

k,.n-k

where C" is considered as C*6C and pr is the projection

n-k pr ' (c) is a

on the second component. Then for any ceC
leaf of a rank k foliation {LZ}. Any foliation of rank k is

locally isomorphic to {Lz}. The isomorphism is established
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through the local coordinate system (U,x) which is described
above. Such coordinate systems are called distinguished. Let
(u,x) and (U,y), y=(y1,...,yn) be two N-distinguished
coordinates on U for the foliation {La}. Let Iy be the

transition function between x and y

1 ' 1
Y=(9 °Ysyeee,g Y)-

x=(x1,...,xn)=gxy= Xy xy"*

Then

(agiy/ayj)=o for k+1sisn, i<j<k.

. i i .

i.e. gxy(y1,...,yn)—gxy(yk+1,...,yn) for i=k+1,...,n.

This property of foliations lies at the heart of Bott's
vanishing theorem which we will mention next and its

generalization which we will give in the next chapter.

There 1is also a vector bundle apprbach to foliations.
Let T be the tangent bundle of M, and let E be a subbﬁndle
of T with rank k. In the classical terminology c” subbundles
of T are called smooth distributions. E is called integrable
if at each point peM, there exists a submanifold whose
tangent space at p is Ep' Each such submanifold is part of a
leaf of a foliation on M. It is easy to see that in this
case E is closed under the wusual bracket operation. A
subbundle of the tangent bundle is called involutive if it
is closed under the bracket operation. Integrable and

involutive bundles are related to each other by the
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following classical theorem of Frobenius.

‘Frobenius Theorem: A subbundle of the tangent bundle is

integrable iff it is involutive.

One of the questions asked about foliations was,
whether given a rank k subbundle E of the tangent bundle T,
there 1is an integrable subbundle F of T such that E can be

deformed to F. A necessary condition is given by

Bott's Vanishing Theorem [B2]: If a subbundle E of the
tangent bundle T is integrable, then the real Pontryagin
classes of T/E generate a graded ring Pont*(T/E) such that

pont (T/E)=0 if i>2.rankp (T/E).
Complex case: If a holomorﬁhic subbundle E of the
holomorphic tangent bundle T is integrable then the chern
classes of T/E generate a graded ring Chern*(T/E) such that

Chern®(T/E)=0 if i>rankC(T/E).

The proof of this theorem can be seen as an elegant
exploitation of distinguished coordinates, see [B2]. In the

next chapter we will give a corollary to this theorem,

In general M may not admit any foliation but one may
find a closed subset S of M such that M-S admits a
foliation. R. Thom discusses possible ways of choosing such

S in [Th]. Obviously if the choice of S is not forced by the
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foliation on M-S then this does not lead to an interesting
mathematical concept. If S in some intrinsic way depends on
the foliation on M-S then it is natural to expect that S
will feflect some properties of the foliation. To this end
we adopt the definition of Baum and Bott for a singular
holomorphic foliation; |

Definition [BB2): A singular holomorphic foliation 1is a
coherent integrable complex analytic subsheaf of the tangent

bundle.

If F is a singular holomorphic foliation then S is the
singular set of F as a coherent sheaf. In the next section
we will describe a residue on S coming from the foliation as

given by Baum and Bott, [BB2].
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2: BAUM-BOTT RESIDUES

This section presents a summary of Baum and Bott's work
on singular foliation residues, [BB2). At the end of the
section a residue for vector bundles is defined which is
denoted by BRes and called the generalized Baum-Bott

residue.

For any holomorphic vector bundle E we will wuse the
~notation that
E'=sheaf of holomorphic sections of E.
Then E; will denote the germs of holomorphic sections of E

at x.

Let T be the holomorphic tangent bundle of a complex
manifold M, and let T be the tangent sheaf. With the above
notation T=T'. Let { be a singular holomorphic foliation of
rank k. Then there exists a closed subvariety S of M such
that §£|M-S is locally free, hence there is a vector bundle
E———>M-S of rank k such that

E'=f|M-S.
~ To avoid any artificial singularities for this foliation it
is assumed that ¢ is full, i.e. for every open U in M and
for every vyel'(U,T), if 7(x)eEx.for every xeU-U~S, then the
germ of the holomorphic vector field y at x is in Ex for

every xeUS, [BB2, 9282].
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Baum énd Bott compute the chern polynomials ®(T/¢) in
terms of local information at S, where QeC[X1,...,Xn] is a
symmetric homogeneous polynomial of degree d>n-k. Let Z be a
connected component of S,

it2—M
be the inclusion,
. 1,tH(2;C)—>H, (M;C)
be the natural map induced by i and let
pD':H*(M¢C)——-——>H*(M;c)

be the Poincare duality map.

For any symmetric homogeneous polynomial @eC[X1,...,Xn]
there exists a unique polynomia1.$ éuch that
(o (X, evu B ) eee, 0 (R, uee, B ))=0(X ... K )
where o, are the elementary symmetric polynomials. Let Q=T/&
then the chern polynomial is defined by
(0)=8(c,(Q),...,c_(Q))

where the ci(-) is the i-th chern class.
Then we have

Theorem (Baum, Bott): Assume that Z.is compact. Then
there exists
ResQ(E,Z)eHn_d(Z;C)
such that

i)ResQ(E,Z) depends only on ¢ and the behaviour of ¢ near Z.
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ii) if M is compaét then ZPD'-i*(ReSQ(E,Z))=®(Q) where the
summation is over all the connected components Z of S, [BB2,

pp312-313].

Let E be a vector bundle of rank k on a complex
manifold m of dimension n. Let U be an open subset of M, Let
D be a connection of E|U and K a curvature matrix for D.
Define 01(K),...,an(K) by the equation

det (I+tK)=1+to, (K)+...+t" o (K).
Each ai(K) is a 2i-form on U. It is well known that each
ai(K) is a closed form and defines a unigue cohomology class
[o;(K)] in HZi(M;C). By the Chern-Weil Theory
[0, (K)1=(2n/V-1) e, (B}, i=1,...,n.
For a symmetric homogeneous polynomial QeC[Xl,...,Xn] define
(K)=2( o, (K), ..., "o_(K))
where (=(2n/y-1)-'. Then
[®#(K)]=%(E).
_Assume that M is compact and there exists a closed subset S
of M such that E|M-S has a connection D, with the property
that for any symmetric homogeneous polynomial
@(x)ec[x1,...,xn] with deg®>d, for some do>0 we have
Z(K,)=0 on M-S
where K, is the curvature matrix of D,. Let Z be a closed

subset of M such that S is contained in the interior of I

and let D, be a connection for E|Z. Then there exists a
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connection D for E on M such that D agrees with D1 on M-I,
To construct such a connection let f be a real valued C
function on M such that f vanishes on a neighbourhood "of §
and f=1 on M-Z. Then D is defined as

D=fD1+(1-f)D2,

which extends D [BB2, p300, Lemma 4.41]

1'

Let K be a curvature matrix for D. Then
¢(K)=0 on M-ZL.

Hence $(K) is a differential form with compact support and
defines an element in the cohomology with compact supports,
[#(K)]=8(E) enX(M;C).

Let Z be a connected component of S and U an open
" neighbourhood of Z which deformation retracts to it. Define

a residue

.pPD- (®(E))

BRes,(E,2)=(i,)"
We will call BRes the generalized Baum-Bott residue and use
BRes in Section 4 to describe the Nash residue. Also note
that if F 1is a coherent sheaf and ®(K) is a differential
form such that

[#(K) ]=&(F)

and ®(K) has compact support in U as above, then BRes is
defined for F. In particular if ¢ is an integrable coherent

subsheaf of T -then such a differential form exists for T/&,

[BB2, p313, (7.11)]. Then note that
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ResQ(E,Z)=BRes¢(T/E).

Regarding the <calculation of Resy, Baum and Bott give
the following conjecture:
Rationality Conjecture [BB2, page 287]:If QeQ[Xl,...,Xn] and
deg $>n-k+1, then

Resé(E,Z)eH*(Z;Q).

In the next section we will summarize Suwa's recent
contribution to this conjecture and we will relate his
result to BRes. In section 4 we will give a calculation for

Resg when M is a compact Kaehler manifold.

3:SUWA'S WORK

Let Q@ denote the cotangent sheaf of M and let ¢y be a
subsheaf of Q. Define
£={0eT| w(6)=0 for all wey }.
Then ¢ is an integrable subsheaf of the tangent sheaf iff ¢

is closed under the exterior differentiation. Note

0 3 >T >Q >0 (1)
where Q 1is defined as T/(. Let Qw be defined by the exact
sequence ) i

0——>y SO Q ———>0. - (2)

v

Taking the dual, Hom,(-,0), of (2) we obtain

(0]
0—>Hom0(9w,0)—>Hom0(9,0)—>Hom0(w,0)—>n—>0 | (3)
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where n=Ex’é(9¢'0)' In this sequence
. _g8_
Homo(Qw,O)—w =f
Homo(9,0)=T
Homo(w,0)=w*=dual of V.

Using these identifications (3) can be rewritten as

0 > >T v n >0 (3")

The kernel of the map ——>y* is ¢ by the exactness of

(3'). From (1) T/(=Q, hence these give an exact sequence

0 Q y* —>7 >0 (4)

Assume that ¢ is locally free of rank n-k, where k=rank{ and

n=rank?, then ¢y 1is called a foliation of complete .

intersection type. In this case the sequence (4) can be
interpreted as resolving the coherent 'sheaf Q into a
difference of a vector bundle y* and a skyscraper sheaf 7

which has support in S, the singular set of .

Let a(i;X1,...,Xn) be the i-th elementary symmetric

polynomial on x1,...,xn. For a coherent sheaf E 1let o(i;E)

denote the i-th elementary symmetric polynomial on the Chern

characters of E.
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Theorem (Suwa): Let ¢ be a fdliation of complete
intersection type on M with rank(y)=n-k. Let Z be a
connected component of S, the singular set, and U an open
neighbéurhood of Z which deformation 'regfacts to Z. Let
¢e[x1,...,xn] be a homogeneous symmetric polynomial with

degree m such that

@(X1,...,Xn)=a(j1;x1,...,Xn)---a(Jr;X1,...,X )

n
with
J1+..-+Jr=m
and
jv>n-k for some v. (*)
Then

ReSQ(E’Z)=(i*)-1'PD(cj1(W*‘ﬂ)“‘cjr(¢*'n)).

where i, and PD are as defined in section 2.

Proof: For details of the proof we refer to [Su]. Here
we will concentrate on the main argument. Let wus restrict
all the above sequences to U. From the sequence (4) we have,
as virtual bundles

Q=y*-1
Define
14, ++ood_=(1+a(13n)*-olnin)) 7",
Then
(1+0(1;Q)++-++0(n;Q))

=(1+o(1;w*)+---+o(n-k;w*))(1+d1+---+dn)f
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From this it follows that for j=1,...,n we have
o(j?Q)#o(j;w*)+o(j-1;¢*)d1+--o+o(1;¢*)dj_1+dj . (5)
and hence
(Q)=0(3,;Q)++-0(j_ ;0Q)
=o(j1;w*)---o(jr;w*)+P - (6)
where P is a polynomial in
o(1;¥*),...,0(n-k;y*),d,,...,d

n
such that each monomial of P has at least one d. as a

i
nontrivial factor for 1<i<n. Since jV>n-k for some » by
condition (*), we have a(jv;w*)=0 and hence
®(Q)=P.
By applying (i,) '.PD to both sides of this eguation we get
‘the required result. |
QED
In this proof since each di already represents classes in
H*(Z;C), then P is also in H*(Z;C). Hence the rationality
conjecture directly follows in this case because one did not

have to calculate residues; ResQ(E,Z) is given by the image

of ®(y*-n) in H*(U;Q) see [Su,corollary 3.8].

REMARK: The set up being as in Suwa's theorem drop the
condition (*), then
ResQ(E,z)=BRes¢(w*,z)+(i*)".pD(p)
where P is as in equation (6).

This can be seen as follows; since & is defined as



83

@(X1,...,Xn)=o(j1;X1,...,Xn)---o(jr;X1,...,Xn)
the first term on the left hand side of equation (6) |is
®(y*). Applying (i,)-'.PD to both sides of equation (6)
gives

(i,)"".PD(®(Q))=(i ) '.PD(&(y*))+(i,) '.PD(P)
where by definition

(i,)"".PD(2(Q))=Resy(,2)

and (i,)"'.PD(®(y*))=BResg(y*,Z).

4 :NASH RESIDUE AND REDUCTION

This section culls the results of the previous chapters
to give a new approach to the calcu}ation of Baum-Bott
residues for singular holomorphic foliations on compact
Kaehler manifolds, where the Nash Blow-up gives a smooth
manifold. It will be shown that if in addition the foliation
is defined by a bundle morphism then the Rationality

Conjecture of Baum and Bott holds.

First the Nash Residue is defined for generai singular
holomorphic foliations. Let M be a compact Kaehler manifold
of dimension n with tangent sheaf T. Let F be an integrable
full coherent subsheaf of T with rankF=k, such that the Nash
Blow—up N of M with respect to F and T is smooth. On N there

is a short exact sequence of vector bundles

0 >7T \Cn 5.1 \0
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where T, the‘ tautological bundle, restricts to the
‘tautological bundle of each fibre n~'(x)3G(k,n), xeM. c" s
the trivial n-bundle and W 1is the quotient bundle  which
testricﬁs to the universal quotient bundle of each fibre.
This exact sequence restricts to the following short exact

sequence on N

0 >7 > * T >W. >0
‘'where T is the tangent bundle on M and #*T denotes the pull
back bundle on N. We use the same notation 7 and W for the
restriction of these bundles to N since we will be working
on N from now on and there will be no ambiguity about the

base spaces.

Let S be the singular set of F. On M-S there is a
unigue holomorphic vector bundle Y such that Y'=Q|M-S. By
Bott's vanishing theorem Y has a connection D, such that if

]

K, is the corresponding curvature matrix and ¢ec[x1,...,xn
is a symmetric homogeneous polynomial wifh deg®>n-k then
®(K,)=0 on M-S.
Since a*(Y) and W agree on N-7-'(s), the connection D, of Y
pulls back to a connection 7*D, of W|N-#n-'(S). There exist a
connection D of W on N ahd a compact subset Z of N which
contains 7 '(S) in its interior such that
D|N-Z=7*D, |N-Z,

[BB2,p300]. Let K, be the corresponding curvature matrix.
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Then as above
@(Kw)=0 on N-Z,

i.e. Q(KW) is a differential form on N with compact support.

Let Z be a connected component of S, U be an open
- neighbouhood of Z that deformation retracts to’Z,
$:0—— 7,
and choose Z such that the connected component of i that
contains 7~ '(Z) in its interior is contained in #~'(U). Then
¢(K, |7m-'"(U)) is a differential form on =~ '(U) with compact
support. Hence the chern polynomial &(W|#x-'(U)) 1is a
cohomology class of U with compact support.
Definition: The Nash Residue of F on Z is defined as
NResQ(F,Z)=6*°ﬂ*QPDﬂ_,(U)Q(Wln"(U))
Remark:Let V be an open ngighbourhood of M' such that V
deformation retracts to =-'(2),
piV————>7-1(2Z).
Then choose U to be n(V) and choose é§ such that
S5(x)=mpn~'(x) if xeU-S
8(x)=x if xeS.
Then § is a deformation retraction and
d.m(y)=m.p(y) for yen '(U)=V.
At the homology level this implies that
Oy e MySTy e Pyo

Then we have
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NResé(F,Z)=5*,w*.PD”_1(U)¢(W|w"(U))
=n*5p*.PDﬂ_,(U)Q(Wln“(U))
where
Px-PD__1 () ®(W|n~ 1 (U)) eH, (7~ "(Z);C)
is the BRes of W (see Section 2). Therefore
NResg (F,Z)=m,-BResg(W, 7" '(2)).

Let us summarize the set up:

Let M be a compact Kaehler manifold of dimension n. Let
E be a vector bundle of rank k and
¥ E—>T

be a bundle morphism of maximal rank.

" Suppose that %(E) generates an integrable coherent
subsheaf F of the tangent sheaf of M. Construct the Nash
Blow-up

¢ N—e™—>M

corresponding to F.

Assume that N is smooth. Let S be the singular set of F

and Z a connected component of S.

Lemma 1: Let $':E—>T be the map induced by

$:E—>T at the sheaf level. Then ¥' is injective.

Proof: Let U be an open subset of M such that E and T

are trivial on U. Let € reeer®y and tireeerty be 1local



87

generators for E and T respectively. Then ¥ can be defined
in terms of these basis elements as:
*(ei)=filt1+"°+fintn 1=1,ooo,k
where fijeOU are holomorphic functions on U. If h is a
section of E|U then
=(h1,...,hk)
where hi are holomorphic functions on U. ¥#(h) can then be
defined by
¥(h)=h,%¥(e,)+.--+h ¥(e, )

=(h £, +eeeth £, .00 h £, +eeeth f

k™ k k kn)'

I1f ¥(h)=0 then in particular wx(h(x))=0, i.e.
h1(x)f,i(x)+-'o+hk(x)fki(x)=0 fo; xeU and i=j,...,k.
Since ¥ is injective as a bundle morphism on U-U~S then

h(x)=0 for xeU-UpS, i.e.

h, (x)=0 for xeU-UpnS and i=1,...,k.
Then hi are holomorphic functions on U vanishing on the open
set U-UR S and consequently are identically zero on U. This

proves that ¥' is injective.

QED
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Theorem 1:
Resy(E,2)=NResy(E,2) +m,p
where feH,(n"'(Z);C) and is calculated by a Grassmann Graph

construction. Moreover NResQ(E,Z) and #,f are rational,

hence Res¢CE,Z) is rational.

Proof: On M there is the exact sequence of sheaves

0 >E >T Q >0 (1)
where E———T is induced by ®. This sequence pulls back to
a sequence of sheaves on N

0 >T*E >T*T —>1*0 >0. (2)

On N there is'also the sequence of vector bundles

0 T >7T*T —>W >0 (3)

where 71 1is the tautological bundle and W is the universal

quotient bundle.

Let X=7-'(S) and W'=the sheaf of holomorphic sections
of W. On N-X the sheaves 7*Q and W' are eqQual. Hence the

sequence of sheaves on N

0 >7*E A*— W' ———>0 (4)
is exact on N-X. The underlying vector bundles of this

sequence give a complex of bundles on N

0 >7T*E >g*T— > W— > (5)

which is exact on N-X,.
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Consider on N the virtual bundle ¥
y=n*T-7*E-W.
The chern class of this virtual bundle is
c(y)=c(n*T-a*E-W)
=c(n*(T-E)-W)
=c(7*(T-E))/c(W). (6)
From the exactness of sequence (2) the chern class of 7*Q is
c(n*Q)=c(n*(T-E))
=c{(n*(T-E)) (7)
Combining the results of (6) and (7) one gets
c(y)=c(n*Q)/c(W). - (8)
This equation will be used with the Graph construction on
(5); construct the Grassman Graph co;requnding to the-
complex of vector bundles (5) on N,
p:G———>N. . (9)
Let ¢———>G be the virtual tautological bundle on G and let
{z,},.p1 be the family of rationally equivalent cycles in G
obtained by the Graph construction. Then
£|2o=p*(7) (10)
since Z, is isomorphic to N. The cycle at infinity 2
decomposes as .
Z_=N,+2, (11)
where N, is bimeromorphic to N and Z, is the fibre above S.

It is known that

E|N,=0 (12)
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[BFM,p122], [Fu,pp340-341].

Since Z, 1is rationally equivalent to Z_ we get the
following equalities
Ci(E)nZo=Ci(£);—|Z®
=c; (E) mqNg+e, (E) q 2,
=c. () 2Z,, >0 (13)
~where the last equation follows from (12) . and
ci(E)r1z*eH*(Z*;C). Using (10) and (13) gives
Ci(7)r1[N]=P*(Ci(5)r1zo)
where p,(c;(§) 2,)eH,(X;C). Define a localized chern class
c;eH*(X;C) as
i o .
cx=Ps(c; () n2Z,), i>0. o : (15)
Equation (14) can be rewritten in this notation
R \
01(7)r1[N]-er i>0. (14')
The total chern class of vy is then given by
c(y) qIN]=C1+c, (y)+--4c (7)) 1 [N]
=[N]+c1+--o+cn

X X
where the last equation is written using (14') and [N] 'is

(16)

the fundamental cycle of N. Substitute eguation (8) to the
LHS of equation (16)

{c(ﬂ*Q)/C(W)}rq[N]=[N]+i£1C§. , (16")
Cap both sides of (16') by c(W)

n .
c(W)  ({c(7%Q) /c (W)} q [N])=c (W) 7 [N]+,E,c(W) qcg. (17)
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The LHS of (17) can be written:

(c(W) |, {c(7%0) /c (W) }) 4 [N] (18)
[Sp, p254, (18)]. In this expression the c(ﬁ)'s cancel each
other since the total chern class of a vector bundle is
invertible. Hence (17) takes the form |

i
X (19)
To simplify the'nﬁtatlo? d?f1ne ﬂieHZn_zi(X;C) as

_ i

"Then from (19) and (20) the dual of the i-th chern class of

n
c(n*Q) 1 [N]=c (W) [N]+i§1C(W) mk

7*Q becomes:
ci(n*Q)rq[N]=ci(W)r1[N]+ﬁi, i=1,...,0n. (21)
This will be used to calculate ®(n*Q) which is defined as
(%) =d(c, (1%0),...,c_(7*Q))
where & was defined before. To calculate Q(%*Q) first assume
that
@(ﬂ*Q)=ci(w*Q)cj(n*Q) ' (22)
for some i,j, 0<i,j<n. Cap both sides of (22) by [N]
¢(ﬁ*Q)r1[N]={¢i(n*Q)cj(n*Q)}rq[N]. (23)
The RHS can be written as
feg (7*Q)e (7%Q) 1 1 [N] = (c;(7%Q) q[N]) - (c;(m*Q) M IND)  (24)
where - is the cycle intersection, [GH,p59]. The RHS of (24)
can be rewritten using (21)
RHS(24)=(c; (W) [N]+Bi)-(cj(W) M [N]+Bj)
=(Ci(w)FT[N])'(Cj(w)FT[N])+(Ci(w)r1[N])°ﬁj

By ey (W[N]~ By (25)



92

To shorten the notation define BijeH*(X;C) as

Byy=(cy (W) qIND)-By*By (cy (W) [N +B; -6, (26)
That ﬁij is a cycle in X follows from the fact that each ﬂi
is a cycle in X, see the definition of g, in (20). Then (25)
can be rewritten as

RHS(24)=(ci(W)m[N])-(cj(W)n[N])+Bij. (25').
Use the same computation as in (24) for the first term on’
the RHS of (25');

(c; (W) [N])-(cj(w) "I[N])={°1(W)°j(‘”}ﬂ [N] (27)
Using the assumption of (22) that

Q(*)=ci(*)cj(*)

the RHS of (27) can be written

'{ci(w)cj(w)}rq[N]=¢(w)rq[N]. (28)
These calculations can be put together as follows;

@(W*Q)rj[N]={Ci(ﬂ*Q)'Cj(ﬂ*Q)}rq[N] (from 23)

=(Ci(ﬂ*Q)r1[N])'(Cj(ﬂ*Q)r1[N]) (from 24)

=(ci(w)m[N])-(cj(w)m[N])+Bij (from 25'")
={ci(w)cj(w)}r1[N]+6ij (from 27)
=¢(w)r1[N]+ﬁij. (from the definition of &)
Hence by induction on the size of & we obtain for general ¢
@(ﬂ*Q)r1[Nj=®(W)r1[N]+ﬁ (29)

where BeH*(X;C). Apply =, to both sides of (29),
T, (®(7*Q) { [N]) =7, (®(W) q [N])+7,B. (30)
In the following three steps the terms of this equation will

be examined and will be shown to be related to Baum-Bott and



93

Nash Residues.
1) Notice that
(7*Q)=n*®(Q). . ‘ (31)
Since each term in ®(7n*Q) is a product of chern classes of
7*Q and as is well known
c(n*Q)=n*c(Q) (32)
Then LHS of (30) can be éimplified;
T ((7*Q) q [N]) =7, (2*$(Q) 1 [N])
=$(Q)  mu[N]
=$(Q)  (degn) [M]
=9(Q) 1 [M) (33)
where the first equatiop follows from (31), the second
equation is a property of cap products, [Sp, p254,(16)]. The
third equation holds by definition since [N] and [M] are
fundamental cycles. The last equation follows since degn=1.
Using the Baum-Bott construction more can be said about
$(Q). Let Zyveoes2o be the connected components of S. For
each Z; choose an open neighbourhood Uy of Z; such that U,
deformation retracts to Zi
§;: U —>2Z, _ (34)
and Uiquj=¢, i,j=1,...,m. In each Ui choose a compact set
Zi such that Zi is contained in the interior of Zi'
i=1,...,m. Let
z=z1u...;,zm. (35)

There exists a closed differential form w on M with support
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on Z such that

[w]=2(Q) (36)
where [-] denotes ' the cohomology element defined by that
form, [BB2,p312-313]. Let ws be defined as follows:

w;|U;=w|U; and w; [M-U;=0, i=1,...,m. (37)
Then W=w, .t and [w]=[w1]+...+[wm], hence

[0l M)=[w, 1 M]+.. 4o T (M]. (38)
But since ws is a differential form whose support is compact
and is in U, then

[0, M]=[w, TR (U], i=1,...m. (39)

Then the LHS of (30) can be written, using (33),(36) and

(38) as

| 7, (8(1%0) o [N1)=8(Q)  [M] | (from 33)
={w] H [M] ‘ (from 36)
=lw Jq M+, o+l T [M]. (40)

Substituting (39) into (40) gives
w*(Q(w*Q)rq[N])=[w]]rq[U1]+...+[wm]r1[Um]. (41)
Hence the global expression on the left splits up as the sum
of local expressions.
2) To calcualate the first -term on the RHS of (30) first
recall that T/¥(E) is a vector bundle on M-S and since
¥(E) |[M-S is integrable T/¥(E) has a basic connection, i.e.
if K=K(D) 1is the curvature matrix for this connection on
M-S, then the differential form #(K)=0 on M-S for degd>n-k,

[BB2,p295].
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Since W|N-X=#*(T/¥(E))|N-X, pull the connection D by =*
to a connection on W|N-X. Then there exists a connection 5
for W on N such that D agrees with #*D on N-7-'(Z),
[BB2,p330,(4.41)]). 1If E=E(S) is the curvature matrix for B,
then
#(K)=0 on N-7-'(Z) (42)
since D and 5 agree on N-n-'(Z). From (42) it follows that
we can define closed forms @i on N by
&, |7 (U )=1®(K) [ '(U;), where =(1/2m/-1)%%9% (43a)
and
¢, |N-z-'(U;)=0, i=1,...,m. (43b)
Then
| B(K)=@ +.. .48 (22) .
where ¢ is as in (43a).
By definition
[&(K) 1=3(W) (45)
Using (44) and (45) together gives

&(W)=[8(K) ]

=[& 1+...+[& ] (46)
Cap both sides of (46) by [N], °
(W) [N]=[& 1~ [N]+...+[& 1A IN], (47)

Each Qi is a closed form with compact support, whose support
lies in n“(Ui)=Vi, i=1,...,m, Hence

Then (47) can be written as
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(W) - [N]=[@ 1 [V, 1+, .+ [8 1~V ]. (49)
Notice that Slvi is a connection fof wjv. and K|V, is a
curvature matrix for W|V.. If deg®>n-k, then | |

@(Elvi) has compact support in v,
and |

(8K V,)1=2(H|V,). (50)
Using (50), (43a) and (43b) gives

e(W|v.)=[®,]. | (51)
Each [@i] is a cohomology class with support in w"(zi),
hence has éompact support and is the chern class of a vector
bundle, lei’ i=1,...,n. Then [@i] is in the image of
cohomology with rational coefficients on V..

Using (49) and (51) gives _

(W)  [N]=(W|V ) [V ]+.-r@(W|V ) [V _]. (52)
Apply 7, to both sides of (52),

1r*(<1>(w)n[N])=ir§1w*(<I>(w|vi),-—,[Vi]) - (53)
where m, (®(W|V.) [V,])eH,(U,;C) for i=1,...,m.

3) The last element on the right hand side of (305 is @,B8.
From the construction of g it follows that g naturally
splits as

ﬁ=z1+'”+Em (54)
vhere EieH*(X;C) for i=1,...,m. Since Ei is obtained by
capping chern classes of W with the residue obtained from
Grassmann Graph 'and by intersection of these, then it

~

follows that g, is in the image of homology with rational



97

coefficients in X, see equations (20),(26) and (29).

‘Apply w, to both sides of (54)

~

ﬂ*ﬁ=ﬂ*51+o-o+ﬂ*ﬁm (55)

where n*BieH*(Zi;C), i=1,...,m.
This completes the examination of the terms of (30).

Putting equations (41), (53) and (55) into (30) gives
m m , m ~
From (56) we can now write
(w31 [0 J=m, (B(W[V,)) o [V, 1) +,B5, - (57)

since each summand in (56) is in H*(Ui;C), i=1,...,m.

The deformation retraction §; of (34) induces an

isomorphism
for i=1,...,m. Apply &, to both sides of (57)
for i=1,...,m. For the first term on the LHS of (59) we have
61*([wi]rq[Ui])=Res¢(E,zi), i+1,...,m (60)
[BB2,p313 (7.14)]. The first term on the RHS of (59) is the
Nash Residue by definition
8,4y (B(W|V.) [V, ]=NRes,(E,Z;), i=1,...,m. (61)
Since m,f; is already in H,(Z;;C) by (55), &;, does not
change it;

~ ~

8 xTaBy=myB;, i=1,...,m. (62)
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Substituting (60), (61) and (62) into (59) gives
Resg(E,Z;)=NResg(E,Z; ) +m,B. ‘ (63)

for i=1,...,m as required.

By appealing to the discussions that follow equations
(51) and (54) we conclude that the RHS of (63) is rational,
and hence the LHS is rational,

ResQ(E,Zi)eH*(Zi;Q), i=1,...,m.

QED

REMARKS: 1) Let M be a compact complex manifold with a
positive line bundle. Then M is algebraic by Kodaira
embedding theorem, [GH,p181]. Hence N being a subvariety of
MxG(k,T) is also algebraic. On algebraic manifolds coherent
sheaves have global syzygies, [GH,p701]; Then 7,(F) will
have global syzygies on N assuming that the Nash blow-up N
is smooth. Thus theorem 1 will hold for rich foliations on
algebraic manifolds for which ﬁhe Nash Blow-up 1is smooth
without the further assumption that F be generated by a

bundle morphism.

2) I1f F 1is generated by a bundle morphism ¥:E——>T
but rankE>rankF, then ¥' is not injective. To make theorem 1
work in this case some restrictions mﬁst be imposed on the
kernel of ¥. For example for every connected component Z of

S assume that there exist an open neighbourhood U of Z and a
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vector bundle H on U with a bundle morphism
n:H|U-Z——>E|U-2

such that n is injective. Then theorem 1 holds for F. Note

that n need not be defined on all of U but H should be

defined on U to ensure the construction of Grassmann Graph.

3) Notice that theorem 1 holds for a subclass of rich
foliations. Call a rich foliation very rich if for every
connected component Z of S there exists an open
neighbourhood U of Z such that to F|U there exists a complex
of O-modules on U which give a locally free resolution on
U-Z. Then theorem 1 holds for Qery rich foliations for which
the Nash Blow-up is smooth. It is natural to conjécture that

all rich foliations are very rich.
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CHAPTER 4

OBSTRUCTION CLASSES

0: INTRODUCTION

This final chapter pursues a problem that arises when
singular holomorphic foliations are considered as integrable
images of bundle morphisms. Section 1 defines obstruction
classes in terms of Pontryagin classes which obstruct the
imbedding of a vector bundle into the tangent bundle. Other
topological obstructions in terms of Stiefel-Whitney classes
can be found in the literature, in particular see
Sundararaman [Sr]. Section 2 very briefly ~summarizes
immediate future research projects to which this work leads.
We propose to study the problem of Riemann-Roch as explained

in section 2 as a consequence of this work.
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1 sOBSTRUCTION CLASSES

Most well known examples of singular holomorphic
foliations are meromorphic vector fields. A meromorphic
vector field is defined as follows: Let M be a complex
manifold of dimension n with tangent bundle T and let L be a
line bundle on M. Assume that there is a bundle morphism ¥

¥:L———>T. |
¥ is called a meromorphic vector field. #¥(L) generates a
1 dimensional subsheaf of the tangent sheaf T. By dimension
considerations this coherent subsheaf is integrable,
therefore it defines_a singular foliation, the ‘singularity
set being S, where |

S={xeM| ¥ =0 }

To generalize this concept let E be a vector bundle of rank
k on M and assume that there is a morphism

B:E——>T.
I1f B(E) 1is integrable then it defines a singular foliation
whose singularity set is

S={xeM| rank(ﬁx)<max.rank(ﬁ) }

I1f S=p then B(E) defines a foliatioﬁ if it is integrable, If
max.rank(p)=rank(E) and S=¢ then B is an imbedding of E into
T. For an arbitrary E clearly no such § exists. This section
answers a natural question: "Are there differential

geometric obstruction classes for the existence of an



102

imbedding B:E———T?" For an answer see theorem 2.

First in the following theorem we collect a few facts

about splitting manifolds, [H,1.4.2,111.13.2.1].

Theorem (Hirzebruch): Let E be a vector bundle of rank
k on a complex manifold M with tangent bundle T. There
exists a complex manifold M and a holomorphic map

®:MS—————>M

with the following properties:
i) M, is a fibre bundle over M with the flag manifold
F(k)=GL(k,C)/A(k,C) as fibre, where A(k,C) is the subgroup
of GL(k,C) consisting of triangular matrices.
ii) ®*E splits as a sum of line bundles on M_.

iii) #*T is a quotient bundle of T,, the tangent bundle of
Ms;
TS=(<I>*T)®EA
where EA is the bundle along the fibres. Here the direct sum
need not be holomorphic, it is in general a c” direct sum.
iv) The map induced by ¢
@*:H*(M;C)—————>H*(MS;C)

is a monomorphism.

Remark: To construct M., consider the complex analytic

principal bundle

F——M
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associated to E. Then

MS=F/A(k,C).

The proof of theorem 2 will need a generalized version
of Bott's vanishing theorem, which 1is given next; assume
that M 1is a complex manifold of dimension n+m with tangent

bundle T.

Theorem l:Let T=A8B and E be a subbundle of A. If E and
B are integrable, then the graded . Chern ring Chern*(A/E)
vanishes beyond the corank of E in A, i.e.

Chern®(A/E)=0 if i>rankA-rankE.

Proof: Let rankA=n, rankB=m and rankE=k. It suffices to
show that if P is a  symmetric, homogeneous ad-invariant
polynomial on GL(k,C) of degree greater than n-k, then P

applied to a curvature matrix of (A/E)* is zero.

Let {U} be an open covering of M such that all the
above bundles are trivial on each U, and there 1is a
partition of unity {AU} corresponding to this covering. On U

let

U u U U
X1,...,Xn,y1,...,ym

be local coordinates such that

A* is generated by dx?,...,dxg

U

B* is generated by dy?,...,dym.

Let V be another element of {U}. Then similarly there are
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coordinates

xV xV A% v
i,...' n’yl’...'ym

on V such that

A* is generated by de,...,dx

3404

B* is generated by de,...,dy

1f UQRV#e¢ then there 1is a transition function hgv for A*

such that
U U,_.A v vV .. V. \4
(dx],...,dxn)-hUV(dx1,...,dxn,dy1,...,dym).
B is integrable so by Frobenius
v
n)

A \ V .V V,_.A \'
hUV(dX1,...,an,dy1,...,dym)—hUV(dxl,...,dx .
Since E is integrable we may assume that the «covering is

fine enough so that E* is generated by
8] U

dxn-k+1""'dxn on U
and by
v v
dxn—k+1""'dxn on V,
Then (A/E)* is generated by
U U
dx1,...,dxn_k on U

and by.
v v
dxi"”'dxn—k on V.
If UnhV#p then there is a transition function gyy Such that
U U \' \Y
(dX1,...,an_k)~gUV(dX1,...,dxn).

E is integrable so by Frobenius

v
n-k)

gUV(de,...,dxX)=gUV(de,...,dx
Let

A% \Y
de=(dx?,...,dxg_k)‘and dx =(dx1,...,dxn_k).
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From here on the proof of Bott's vanishing theorem applies,
see [B1]. For completeness we include the main parts of the

- proof.

Let DU be a connection for (A/E)* on U defined as

Ddeti]=0, i=1’...'n—k.
Then

D=ZUXUDU'

is a connection for (A/E)*, The associated connection matrix
OU on U is calculated as follows:
6,,=DAx"=L A D dx"
=Z A Dy (gyax")
zvxv(dguvdxv+guvnvdxv)
=L Aydgy,dx"
=kavdgﬁvgvudxu.
We then have to investigate the nature of ngV to find where
the curvature matrix deU-GUAGU lies. Differentiating - both
sides of

de= dxv

uv
gives
_ A"/
'O—ngde

which implies that dg,y lies in the ideal generated by

\Y A"
dx1’.",dxn_k.
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Consequently the curvature matrix lies in the same ideal.
Any i-fold product of this ideal with i>n-k is clearly zero.
Henée the theorem. |

QED
Notice that when B=0 this theorem reduces to Bott's
vanishing theorem. Also note that the above proof shows that
if pPont*(A/E) is the graded Pontryagin ring of A/E generated
by the real Ppntryagin classes of A/E then ‘

Pontl(A/E)=0 if i>2(rankRA-rankRE)

Before defining obstruction classes let us develop some

notation. Let
a=(a,,...,a,)
be an n-tuple of nonnegative integers and define
lal=a,*2a,+---+na_.
For any vector bundle E, define
c®(E)=(c, (8)) @) . (c_(£))(@n)
and
p?(B)=(p, (&) (?221) ... (p_(£))(?2n)

where ci(-) is the i-th Chern class in Hi(M;C) and pi(-) is
the i-th Ponfryagin class in Hzi(M;C). Also recall that for
any two vector bundles E and F, the Chern class of the
virtual bundle E-F is defined as

c(E-F)=(c(E)/c(F)).
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Theorem 2: Let E be a vector bundle of rank k on a
complex manifold M of dimension n with tangent bundle T. 1If
E can be imbedded into T then the following obstruction
classes in the cohomology of the splitting manifold M, are
zero:

p° (#*1-L,)=0, i=1,...,k., |a|=2n,
where @:Ms—————>M is the natural projection, and L; are line
bundles such that

@*E=L19---®Lk on Ms’

Proof: Recall that TS=¢*T$EA where g? is the - bundle
along the fibres on'Ms and hence is integrable. If E can be
imbedded into T then

$*E=L,®-- - 6L,
can be imbedded into ®*T and hence each L. can be imbedded
into &*T. By dimension considerations each L. is integrable
in Tg. By theorem 1 the Pontryagin ring Pont*(@*T/Li) vanish
above twice the corank of L. in &*T,
Ponti(é*T/Li)=0 if j>2(n-1).
This then completes the proof.
QED

In particular observe that if there are classes 7ieH*(M;C)

such that @*(7i)=p1(Li), then the graded ring P* generated
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in H*(M;C) by {71""'7k} and the Pontryagin classes of T
vanish in the top dimension. This 1is because ¢* 1is a

monomorphism at the cohomology level.

Example:vLet M be a complex manifold of dimension n. Let
Vv=MxC, and #n:V——>M
be the projection on the first component. Let L be a line
bundle on M. Define tﬁo line bundles on V as
Li=7n*L
L,=the line bundle along the fibres.
Then L, 1is fhe trivial 1line bundle. Let E be a coherent
sheaf on M defined by the presheaf
F(E U)=r(L, @Lz, -1(u))
for U open in M. Let T be the tangent sheaf of M. If F can
be imbedded into T then
(T =c _ (T)c (E)+eeor(-1)"c, (E)"=
To see this note that #*F splits on V and
c,(m*E)=c (L,8L;)=c, (L,)+c, (L;)=c,(L,),
and
cM(a*T-L,)=0

by the meromorphic vector field theorem of Baum and Bott,
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see [BB2], or see theorem 1 above.

2:FUTURE RESEARCH PROJECTS

The results of this work naturally 1lead to new

possibilities which are briefly mentioned here.

i) MacPherson has defined Chern classes for singular
varieties wusing Chern-Mather type of characteristic classes
with correction factors, see [Mc]. One interesting problem
is to define a local Euler obstruction for a coherent
subsheaf F of a locally free sheaf G using the associated
Nash Qlow—up as MacPherson defines a local Euler obstruction
using the Nash construction corresponding to the tangent
sheaf of a singular variety. This will define homological
Chern classes for F and it will be interesting to check 1if
these classes correspond to the usual Chern classes of F
obtained through a resolution by locally free real analytic

sheaves.

ii) "It was coﬁjéctured for some time that the Meromorphic
Vector Field theorem of Baum-Bott would imply the
Riemann-Roch theorem as the Holomorphic Vector Field theorem
of Bott did, see [BB1] and [B2]. It will be 1interesting to

see how far the Grassmann Graph construction can be used
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towards a settlement of this conjecture. In the algebraic
case Baum-Fulton-MacPherson used this construction to prove

a Riemann-Roch theorem for singular varieties, see [BFM].
Using the graph of a meromorphic vector field in the compact
Kaehler case promises to be the right way to attack the

above conjecture.

1ii) It will be an interesting problem to concentrate on
calculating Baum-Bott residues using the degeneracy cycles
of the universal quotient bundle W oh the Nash Blow-up N. It
is natural to conjecture that the intersection cycle
corresponding to ;(c1(w),...,cn_k(w)) will be homologous to
the sum of some rational'cyclés that 1lie in #-'(S). This
will then .solve the Ratianality conjecture in the compact

Kaehler case.

iv) Using the knowledge that the Nash Blow-up corresponding
to coherent subsheaves of a locally free sheaf is analytic
one can approach the work of Aznar who 1in the algebraic
category generalizes MacPherson's local Euler obstrucfion,
see [Az]. A  future project is to study Aznar's
generalization in the analytic case 1in terms of Segre
classes as mentioned by Fulton in his 1983 Regional

Conference.



v) The obstruction classes defined in this chapter are open
for further investigation. One particular direction to
continue is to recover the obstruction classes in terms of
the Chern classes of E and T. For this it will be necessary
to classify those cases where on‘Ms the tangent bundle Ts

accepts ®*T as a holomorphic factor in the direct sum

Ts=¢*T@EA.
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