- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- The Eilenberg-Moore spectral sequence
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
The Eilenberg-Moore spectral sequence Yagi, Toshiyuki
Abstract
For any two differential modules M and N over a graded differential k-algebra Λ (k a commutative ring), there Is a spectral sequence Er, called the Eilenberg-Moore spectral sequence, having the following properties: Er converges to Tor Λ (M,N) and E2=TorH(Λ) (H(M),H(N)). This algebraic set-up gives rise to a "geometric" spectral sequence in algebraic topology. Starting with a commutative diagram of topological spaces [diagram omitted] where B Is simply connected, one gets a spectral sequence Er converging to the cohomology H*(X xBY) of the space X xBY, and for which E₂=TorH*(B) (H*(X),H*(Y)). In this thesis we outline a generalization of the above geometric spectral sequence obtained, by first extending the category of topological spaces and then, extending the cohomology theory H* to this larger category. The convergence of the extended spectral sequence does not depend, on any topological conditions of the spaces involved. It follows algebraically from the way the exact couple (from which the spectral sequence Is derived) Is set up and from the Suspension Axiom of the extended cohomology theory.
Item Metadata
Title |
The Eilenberg-Moore spectral sequence
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
1973
|
Description |
For any two differential modules M and N over a graded differential k-algebra Λ
(k a commutative ring), there Is a spectral sequence Er, called the Eilenberg-Moore spectral sequence, having the following properties: Er converges to Tor Λ (M,N) and E2=TorH(Λ) (H(M),H(N)). This algebraic set-up gives rise to a "geometric" spectral sequence in algebraic topology. Starting with a commutative diagram of topological spaces [diagram omitted]
where B Is simply connected, one gets a spectral sequence Er converging to the cohomology H*(X xBY) of the space X xBY,
and for which E₂=TorH*(B) (H*(X),H*(Y)).
In this thesis we outline a generalization of the above geometric spectral sequence obtained, by first extending the
category of topological spaces and then, extending the cohomology theory H* to this larger category. The convergence of the extended spectral sequence does not depend, on any topological
conditions of the spaces involved. It follows algebraically
from the way the exact couple (from which the spectral sequence Is derived) Is set up and from the Suspension
Axiom of the extended cohomology theory.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2010-01-22
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.
|
DOI |
10.14288/1.0080115
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Campus | |
Scholarly Level |
Graduate
|
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.