- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Some computations of the homology of real grassmannian...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Some computations of the homology of real grassmannian manifolds Jungkind, Stefan Jörg
Abstract
When computing the homology of Grassmannian manifolds, the first step is usually to look at the Schubert cell decomposition, and the chain complex associated with it. In the complex case and the real unoriented case with Z₂ coefficients the additive structure is obtained immediately (i.e., generated by the homology classes represented by the Schubert cells) because the boundary map is trivial. In the real unoriented case (with Z₂ coefficients) and the real oriented case, finding the additive structure is more complicated since the boundary map is nontrivial. In this paper, this boundary map is computed by cell orientation comparisons, using graph coordinates where the cells are linear, to simplify the comparisons. The integral homology groups for some low dimensional oriented and unoriented Grassmannians are determined directly from the chain complex (with the boundary map as computed). The integral cohomology ring structure for complex Grassmannians has been completely determined mainly using Schubert cell intersections (what is known as Schubert Calculus).. In this paper, a method using Schubert cell intersections to describe the Z₂ cohomology ring structure of the real Grassmannians is sketched. The results are identical to those for the complex Grassmannians (with coefficients), but the notation used for the cohomology generators is not the usual one. It indicates that the products are to a certain degree independent of the Grassmannian.
Item Metadata
Title |
Some computations of the homology of real grassmannian manifolds
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
1979
|
Description |
When computing the homology of Grassmannian manifolds, the first step is usually to look at the Schubert cell decomposition, and the chain complex associated with it. In the complex case and the real unoriented case with Z₂ coefficients the additive structure is obtained immediately (i.e., generated by the homology classes represented by the Schubert cells) because the boundary map is trivial. In the real unoriented case (with Z₂ coefficients) and the real oriented case, finding the additive structure is more complicated since the boundary map is nontrivial. In this paper, this boundary map is computed by cell orientation comparisons, using graph coordinates where the cells are linear, to simplify the comparisons. The integral homology groups for some low dimensional oriented and unoriented Grassmannians are determined directly from the chain complex (with the boundary map as computed).
The integral cohomology ring structure for complex Grassmannians has been completely determined mainly using Schubert cell intersections (what is known as Schubert Calculus).. In this paper, a method using Schubert cell intersections to describe the Z₂ cohomology ring structure of the real Grassmannians is sketched. The results are identical to those for the complex Grassmannians (with coefficients), but the notation
used for the cohomology generators is not the usual one. It indicates that the products are to a certain degree independent of the Grassmannian.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2010-03-02
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.
|
DOI |
10.14288/1.0079494
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Campus | |
Scholarly Level |
Graduate
|
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.