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Abstract

When computing the homology of Grassmannian manifolds, the first
step is usually to look at the Schubert cell decomposition, and the chain
complex associated with it. In the complex case and the real unoriented
case with Z2 coefficients the additive structure is obtained immediately
(i.e., generated by the homology classes represented by the Schubert cells)
because the boundary map is trivial. In the real unoriented case (with
Z2 coefficients) and the real oriented case, finding the additive structure
is more comblicated since the boundary map is nontrivial. In this paper,
this boundary map is computed by cell orientation comparisons, usinglgraﬁh
Vcoordinates where the cells are linear, to simplify the comparisons. The
integral homology groups for some low dimensional oriented and unoriented
Grassmannians are determined directly from the chain complex (with the
boundary map as computed).

The integral cohomology ring structure fér complex Grassmamians
has been completely determined mainly using Schubert cell intersections
(what is known as Schubert Calculus). In this paper, a method using
Schubert cell intersections to describe the Z2 cohomology ring structure

of the real Grassmannians is sketched. The results are identical to those

for the complex Grassmannians (with Z_, coefficients), but the notation

2

used for the cohomology generators is not the usual one. It indicates that

the products are to a certain degree independent of the Grassmannian.
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Introduction

A lot is known about the homology of the Grassmannian manifolds in
general; e.g., from Charaqteristic Classes (see [1]) or using algebraic
geomefric methods (see [3] and [4]) and usually the Schubert cell
decomposition is used. However, there do not seem to be readily available
answers to such questions as:

a) Given a finite dimensional oriented or unoriented real
Grassmannian, what is the r-th homology group?

b) Given two cocycles in such a Grassmannian, what is theirp
cup product?

This paper is concerned with developing éomputational mefhods,
using the geometry of the Schubert cell decomposition, by which explicit
answers to the above can be determined.

In Part II, (a) is tackled by constructing two Universal chain
complexes arising from the Schubert cell decomposition of the Universal
oriented (real) Grassmannian and the Universal unoriented Grassmannian.

(The main point is to compute the boundary maps.) From these complexes, the
integral homology groups of some of the finite Grassmannians and, in low
dimensions, for the infinite Grassmannians are calculated. Theoretically,
it should be possible to determine all the homology groups for all the real
Grassmannians (oriented and unoriented) from the formulas given for the
boundary maps, but the amount of calculation required increases rapidly in
the higher dimensions (above 6 for instance). However, by looking at the
lower dimensions, it may be possible to detect patterns and make conjectures

which could be proved by other means, e.g., characteristic classes. On the



other hand, comparing what is known about characteristic classes with what
is obtained here may yield further information about the characteristic
classes, e.g.,which Schubert cells correspond to a given characteristic
class. Homology for arbitrary Schubert varieties can be determined from the
chain complexes also, and some examples are given.

Question (b) is completely solved in integral homology for the
complex Grassmannians in [3] (pages 1072-1073), and the Zn-cohomology ring
for the infinite unoriented Grassmannians is known ([1] page 83 and [5]
page 52) and some of the finite unoriepted Grassmannians ([5] page 51). 1In
Part III it is indicated, using intersection products, that the formulas in

[3] for the complex case are valid also in Z cohomology for the real

2
unoriented case. The 22 cohomology products in the unoriented Schubert
varieties can be determined also, using the induced map in cohomology of
their embeddings in Grassmannians.

The intersection methods used are a first step in finding products
in integral cohomology of oriented and unoriented Grassmannians, but this

is a much more complicated problem (mainly because of signs) and will not

be looked at in this paper.



PART I - DEFINITIONS AND NOTATION

Grassmannian Manifolds and Mappings Between Them

1.1 Definition: 1) The real unoriented finite Grassmannian Gk n is the
]

set of k dimensional planes through the origin (call them k-planes) in

Rk+n, with topology given as follows:

Let Vk 1 be the set of ordered k-tuples of linearly independent
9
vectors in Rk+n. Vk n is an open subset of ka(n+k) amd thus inherits
* ]
its topology. Define an equivalence relation ~ on v as A ~B

ky,n

(where A and B are k x (k + n) matrices) if there is a linear
transformation of the row space of A onto itself which maps the rows of
A to the rows of B (i.e., A ~B if they have the same row space).

Gk,n = the quotient of Vk,r1 by defines the topology for Gk,n .

~

ii) The real oriented finite Grassmannian Gk'n is the set of
E)

oriented k-planes (through the origin) in Rk+n with topology given as
follbws.

~ on V as above except that

ksn

the linear transformation must have positive determinant.

Define an equivalence relation

ék,n = the quotient of Vk,n by #~ defines the topology for ék’n.
1.2 Notation: i) A representation for a k-plane P in Rk+n is a
k x (k +n) matrix A having row space P. .
ii) A representation for an oriented k-plane P in Rk+n is as

above, with the additional condition that the orientation determined by the

ordered row vectors of A coincides with the orientation of P.



1.3 Remarks: i) G is always orientable, but G is not in general

k., n

(from [2] only if k + n is even).

k,n

ii) There is an involution T on é%'rl which takes an oriented
9

plane P to the same plane with opposite orientation.
Notation: Call T the antipodal map, and if Q = T(P) say that
n

Q 1is antipodal to P. (In éi'n =8, T is the usual antipodal map.)
2

iii) There is a double covering V : G -+ G which takes an
k,n k,n
oriented plane P to the same plane P with orientation ignored (V¥
identifies amntipodal points).

Note: (ii) and (iii) show that G is a 22 bundle over G.
(

1.4 Mappings between the Grassmannians:

The notation used here will be used throughout the paper.

i) For i =p, E; will denote the i-th standard basis vector
of Rp.

ii) Define 1§ : RP >R for P =q by 5(;&) = E} » 1 =1 =p.

For-p=k+n and g =k +n' (n'=2n), § induces embeddings

1
Rk+n

. N (P = _ y .
j s Gk,n Gk,n' by Jj(P) = the k-plane 3J(P) in , and
j: @ +G , by 5 (oriented plane P) = the plane g(P) in

k,n k,n :

1)
J(P) in Rk+n with orientation induced by the orientation of P.
iii) pefine I : RP +RY, p=zgq, by I(e) =%
' ‘ ‘ 1% Sqopti

1=i=p. For p=k+n and q = k' +n (k' = k), 1 induces embeddings

1
1:6 + G, , by 1(P) = the k'-plane in Rk o spanned by
k,n k',n

and 1(p)

12 0 - -k



and
~ . ~ ~ o - - - [ -
1: Gk,na' Gk',n by 1 (oriented plane P) the k'-plane in
1 —_ _— A
Rk n spanned by e3, . . . , 3 and 1(P), with orientation
determined by the orientation of <€45 « « « 5 €01 > followed by the

orientation of 1(P) induced by the orientation of P.

Note: if k' 2k and n' =2 n then the diagrams

Gk,n ) ’Gk,n' Gk,n ~ ) Gk,n'

] ~ J ~
ll 1 and ll ll commute.
Gk',n X ’Gk',n' Gk',n 3 !Gk',n'

iv) For each k, n there are homeomorphisms

: G -+ G taking a plane P to its orthogonal complement
k,l’l nak g 2 :

4
P in Rk+n

9

and

L. d

L - ék n é'én‘k taking an oriented plane P to its orthogonal
bl 3
cemplement Pl' oriented so that the product orientation on P x P
%

coincides with the standard orientation on Rk+n.

1.5 Definition: i) The infinite unoriented Grassmannian Gk is the union
limit (via the embeddings j : Ck,n »> Ck,n') @ n === of Gk,n
ii) The infinite oriented Grassmannian ék is the union limit

(via the embeddings j) as n - = of 6k 0
b

Note: These limits exist since for n < ng < n, , the diagrams



Gk,n Gk,n
[j j and 15 5 commute.
Gk,nli"’ Gk ,n, ®x,ny : Ck,n,

[lt]

By the note following 1.4 (iii) above, the embeddings 1 and

induce embeddings
1L : G >Gr and 1 : Gy > Gyr for k = k'.
It is easy to see that here also the diagrams
Gy

{[ 1 and ll

5 G
k ~ k
1 1 2

=2

commute for k =< kl = k2 .

G, ~———ap' G
Thus the following definitions are valid:

iii) The universal unoriented Grassmannian G 1s the union limit
as k » o of Gk .

iv) The universal oriented Grassmannian G is the union limit as

k_>°° of ék.

Schubert Cells and Schubert Varieties

1.6 Definition: i) A Schubert symbol o is a k-tuple of integers
(04, « v ., 0) such that 0 = 0y =. . . =20, . The "dimension" of o
is [cl=ol+...+_ok.

ii) Given a Schubert symbol o such that O = n, define the
k+n

Schubert "cell" es in Gp , to be the set of k-planes P in R
. b

satisfying the following conditions (called the Schubert conditions



associated with o):

.+'
dimension of P N 3(R01 By =i
oi+i-1
and dimension of PN J(R % * ) =1i -1 for i=1, ..., k.
Notation: P5 is the k-plane <e01+1, e e e0k+k> which

lies in ey -

Remark: The validity of the terms "dimensions" and "cell" above will be

shown below.

1.7 Theorem: Let k>0 and n > 0 be given.
i) For any Schubert symbol o = (oq, . . . , O = mn), the set
e; © Gk,n' is an open cell of dimension |of.
ii) The collection of all such -eo gives Gk,n a cell complex
structure.
pf: see [1] Section 6.

(i) is proved in 1.19.

1.8 Proposition: For e; a Schubert cell in Gk,n . w—lﬁeo) is a pair
of antipodal open cells in ék,n s, €each homeomorphic under W to e5 .

pf: 1In general, if f : X - Y 1is a double covering and A Cc Y is
contractible, then f_i(A) is a pair of disjoint sets each homeomorphic
under f to A. The proposition then follows from the fact that e; 1s
- an open cell and thus contractible, and thaf ¥ identifies antipodal points.
Notation: Let ec+ denote the half of w-l(ec) containing the

plane Py with orientation 6601+1, e ,'€0k+k> and eg denote the

other half (T(eg+)).

1.9 Corollary: Let k>0 and n > 0 be given.

The collection of open cells e ' oand e

o o where ¢ runs over



all Schubert symbols of the form (01, <+« 5 O = n) gives ék,n a cell
complex structure.

pf: By 1.8, the cell structure for Gk,n given in 1.7 pulls back via
¥ to a cell structure for ék,n made up of the cells eo+, e; for all

appropriate Schubert symbols.

1.10 Claim: With the above cell structures for Gy n and ék n » the
-] b

maps L., j, l,;i, 5, i, T and V¥ are cellular. Their actions on cells are

Jjeg) = eqy where Ci' = the number of j s.t. Gj > 1
jleg) = eg considered as a cell in Gy v
]
1(eg) = eg where o' = (0, 0, . . . , 0, 0y, Oy, e e s )
k' -k

v o +
J(eoi) eq l(eg") = €ot

g(ec") = e5 and i(eo') =el, , for o' as above
+ - + ' - _

T(eg') = eg » Vley ) = V(ey™) = e

L4 + _ + - .

d(e;") = e5, or egy, from above, depending on o.

The statements about j, j, 1, 1, T and V¥ are easily verified
from the definitions. The statements about L. and . are not so easy to
verify--one way is to go to graph coordinates--but since they are not used

in any important way, they will not be proved here.

1.11 Remark: By 1.10, the cell structures for Gyx,n and ék n vyield in
3

the union limit CW-complex structures for G, and ék which in turn

yield CW-complex structures for G and G. (The CW properties are easy

to check, e.g., [1] page 79.)

1.12 Definition: Let o = (o4, . . ., O =n), a Schubert symbol, be

given. )



i) The unoriented Schubert variety Q(c) in Gy o is the
9
closure of e; in Gk,n
ii) The oriented Schubert variety €(o) in Ek n is
2

v-1(2(c)) = the closure of ec,+ U es” in ak,n

1.13 Remark: 1) Q(o) in Gk,n is the set of k-planes P in g+

satisfying the conditions dimension of P N 5(R0i+l) =z i i=1, ...,k
and é(o) in Gp , 1is the set of oriented k-planes in rk+n
L]
satisfying the same conditions.
ii) if n'=2n then Q(n, n, . . . , n) in Cp,n' = j(Gk,n)

and €(n, n, . .. ,n) in Ck,n' = 3(Ck,n)-

iii) if k' =z k then (0, 0, . . . , O, nD,n, ... ,n) in
' k times
Ggr,n is l(Gk,n) and &(0, . . . , 0, n, n, S n) in Gk',n is
k times

l(Gk,n)‘

iv) Suppose k' Z k and n' = n.
then j : Gk,n - Gk,n' induces a homeomorphism between Q(c) in Gk,n
and Q(o) in Gy,n' and

1: Gk,n > Gk',n induces a homeomorphism between R(o) in Gk,n

and Q(c') in Cgr,n wWhere o' =(0, 0, . . ., 0, 015 Tgs + « =, Op).

«,
k' -k
Similarly in the oriented case.

1.14 Claim: Let o = (01’ % =n) and o' = (o-l" e e, Ok' <n)
be given. Then &(c) € R(o') in Gy = o; < giv Vi

?
and (o) < &) in G eo; So;' Vi

L]

pf: Using 1.13 (i):
Suppose ¢ and o' are Schubert symbols as above and O; =o;' Y i. Then

P € Qo)

o.+i
i

= dimension of P N E(R ) =1 Vi
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oi+i . oi+i . c£+i
= dimension of P N1 j(R ) =i ¥ i, since j(R ) € j(R ).
Thus P € @(c'), i.e., for o; So;' Vi, P € (o)

= P € Q') or (o) c &c'").

Suppose G and ©' are Schubert symbols as in the claim, and Oio > 0. !

Lo
for some iy - Then P € e, € (o)
. 2, Oigtip-1 .
= dimension of PN j(R ) =i -1
1 .

A C. +1 ~ O +i -1 ~ O-! +i
> dimension of PN 3(R 10 9y < i, -1, since j(r 'O ) ¢ 3(r 0770y,
Thus P ¢ Q(c'), i.e., PE€ e, € (o)

= P ¢ ('), or R0o) ¢ Q).

The same arguments work for.the oriented case.
1.15 Remark: We can consider all the Schubert varieties as finite
dimensional subcomplexes of the universal complexes ¢ or 5, since the
inclusion maps 7, 5, 1 and 1 are homeomorphisms on any Schubert variety.
The inclusions between the Schubert varieties can be shown by a diagram
which is called the Hasse diagram. The diagram is valid for both oriented
and unoriented Grassmannians.

Diagram 1.16 shows all Schubert varieties lying in Gu,u up to
dimension 8. Note the horizontal symmetry--it reflects the map | cellwise.
There is also a vertical symmetry--the other half of the diagram for

Schubert varieties in Gy i can be obtained by reflectihg across dimension
k]

8. This comes from Poincaré Duality.

Graph Coordinates and Chain Complexes for the Grassmannians

1.17 Definition: Graph coordinates for Gk .n
9

Fix the standard basis on Rk’n, Let P be a k-plane in RN
3y

Define the graph coordinates centred at P as follows:

let PL be the orthogonal complement of P in Rn+}<

-
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1.16 The Hasse diagram (notation as in 2.13):

NN

\S\s<>A

VAV 0N
/\/X<

123

0L

1l1

WX

1111
1112

1113

1122

112
1223

VWK,
N/

122
2222
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and
h:Px PL-+ RETD the isomorphism
hiv, w) = v +w (vector addition)
Define

kxn
¢p : R ~ Hom(P, PL) - Gk,n by

¢p(f : P~ PL) = h(graph(f)), a k-plane in gk*n

i) This gives the graph coordinates centred at P for Gk,n .
ii) If P 1is an oriented plane, define
ep : Ri*D é'ak,n as above, giving ¢P(f : P~ FL)
the orientation induced by the orientation of P via the isomorphisms
P & graph(f) ~ h(graph(f)). This gives the graph coordinates centred at P

for Gk,n .

1.18 Remark: In the graph coordinates centred at Py , there is a natural

kxn

choice of isomorphism Hom(PG, P, ) ™R as follows. Give P0 the
ordered basis {561+1, 552+2, e ey ébk+k} and give P, the ordered
basis of the remaining basis vectors in rk+n (in increasing order also).

Let f : Py > Py correspond to the matrix of f in the above bases.

" Then with this correspondence, the map 05 (= wPO) : kan - Gy p (or ék n)
9 9

o)

is given by A = (ajj) - the k-plane with representation (see 1.2)

r
11 312 + - ¢ 210y T Foy41 ¢ - ¢ 30y 031041 ¢+ - - 210 031041 -+ ¢ - Agp
a21 322 « e . a201 0 a202+1 « o a20-2 1 320-2+1 « e e aQO-k 0 a20k+1 . e e a2n_

. . . . o . . .

LK1 %2 0 0 0 %o O kot ¢ ¢ ¢ oy O Fopet - - - g L opit ¢ ¢ ¢ Fn
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and wO(kan) is the set of planes having such a representation. (The
above is valid for G, , also.)
£

Notation: Call @c(kan) U, in G, , and Uo+ in ék n e
-] 9

o
Give RK*P  the ordered basis {A A A
112> 12> > p?
Ag1s « « . 5 Agp} where Aij = matrix with 1 in ijth position and zeros
everywhere else.
1.19 Claim: Let o = (01, < e 05 O = n) be a Schubert symbol. Then
i) ey © Uy in Gk,n and w;l(eo) is the plane
<Ayis Bigs o v v s Alol, L A202, Agqs « + « s
Akl’ e v ey Ak0k>
in RN*P. call this plane I .

ii) In G , » est € Uy and wgl(ec+) is the same plane L
b

above.
pf: It is easy to see that a plane P ¢ Gk,n is in

e, © it has a representation of the form

% 2 % 10 0 00 0 - 00
0 % * 10
. 0 = 0 00
o R 0 010, ., .00
ko, L, .k;I%I: ... .kaﬁﬁé. R I T ;Eiii\
column column column

® P = ¢95(A) for some matrix A = (aij) such that

aij

=0 for izo;+ 1+ 1.
This proves part (i). Part (ii) is proved the same way, noting that Py

3 3 +
lies in eg' -
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1.20 Definition: Let o = (01, + + « 5 0 =n) be a Schubert symbol.

Define the orientation of e in Gk n and e t in Gy .p to be that
] ]

c (o}
induced by L, , where L, is given the orientation determined by the

+

ordered basis vectors which span it. Carry over the orientation of e,

1.21 Remark: i) We now have cell structures of oriented cells for Gk,n
and Gk,n .

ii) The maps j, j, 1 and 1 (also V¥ and T) all preserve
the cell orientations, so that these cell orientations induce cell

orientations in Gy » Gk » G and G.

1.22 Definition: 1) Define the graded group C(Gk,n) as Cr(Gk;n) = the
free abelian group generated by the Schubert cells €5 in Gk,n of
dimension r. Define C(Gy) and C(G) similarly.

ii) Define the graded group C(ék,n) as the free abelian group
generated by all the Schubert cells eO+ and e5z” in ak,n of dimension

r. Define C(ék) and C(G) similarly.

Remark: These graded groups are the basis of chain complexes for the

Grassmannians arising from the oriented cell decompositions.
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PART II - ADDITIVE HOMOLOGY STRUCTURE

In this section, the additive structure of the integral homology
of Gk,n and ék,n will be studied by computing directly from cell
orientations the boundary homomorphism . d for the chain complex (Gk,n; Z)
arising from the Schubert cell decomposition.

The formula for d (Theorem 2.9) is the main result aimed for,
and then some low dimensional homclogy groups for Gk,n and ék,n are

derived.

General Theory for Cell Complexes

In general, given a CW-complex X together with an orientation
for each cell in K, there is a homomorphism d : Ci(K; Z)'+Ci'1(K; Z)
making C into a chain complex so that the homology of (C, d) ® G is.
H*(K, G) for any group G. (This can be done, for example, by
tgiangulating K so that the closure of each cell is a finite subcomplex,

and using simplicial methods to define d, see [6].)

2.1 Definition: Let K be a CW-complex with oriented cells, and 4 the
resulting boundary homomorphism. For e, and eg cells of dimension r

and r - 1 vrespectively, define the incidence number [eg» eB] to be the

eB—coefficient of de, .

For the oriented Grassmannians, the only possibilities will be

leqg, eB] = 0 or #1, which the following facts will take care of:
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2.2 Let X be a C(CW-complex of dimension n and €qs ©p oriented cells
of dimension r and r - 1 respectively.

i) If E& N eg = # then [e,, eB] =0

ii) If there is an open set U in k and a homeomorphism
¢ : (RR, HY, 1) - (U, eq NU, ep N U) where HY is a linear r-half space

and L a linear r - 1 space bounding H+, then

legs eB] = (;, if the orientation of H' induced by eq4

< coincides with the orientation of I induced

by e followed by the normal of L in " .

P

-1 otherwise.

iii) Let ey also be an oriented cell of dimension r, and

suppose there is a homeomorphism
+ .
CP:(Rn,H,H,L)‘*(U,eaﬂU,eYﬂU,eBﬂU)
where L 1is a linear r - 1 space and H = H UL UH is a linear r

space. Give ' and H® orientations induced by e, and ey respectively.
. .

Then (eqs eB] = [eY, eB] if there is a change of orientation across

9 3
L in H

—[eY, eB] otherwise.
-

These facts will not be proved here, but can be checked by going

to a simplicial definition of d (see, for example, 6 ).

2.3 If k and k' are C(CW-complexes with oriented cells, and

f : k-=>k' is a cellular continuous map taking r cells to r cells
preserving orientations, then f induces a chain map
fy + C3(k) » C5(k") Vi (di.e., fyood=d o fy)

and if f is surjective or injective then so is fy.
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This is a very weak form of the naturality of the chain complex

Ci(k).

Determining the Incidence Number for the Boundary Map- for Ci(ak,n)

The manner in which the general theory is applied to ék R £
L

best explained by an example.

2.4 Example: The boundary map in Ci(52 0):
>
Rather than use the cell orientations given in 1.20, it is
convenient to define the orientations as we proceed. Consider the graph

coordinates centred at P where

(0,0) »
®(0,0) @11 312 = the (oriented) row space of

apq @y 1.0 a11 ag

It is .easy to see that the cell

0"
+
(0, 1) corresponds to the (0, )\

4———J—£]:‘ﬁ¥

linear half space <A21>|a21>0 g ;22;///
(recall A,. from 1.18), and . /
13 Al
, / /
g /
//////

(0, 1) corresponds to <hAyy> /
|321<O “¢
"

corresponds to <A,q, A22>|a22>0 Fig. 1

(0, 2)F

(1, 1)% corresponds to <Aqq, A21>la <0
11

(1, 1) corresponds to <Aqq, A21>|a11>0

(0, 2) corresponds to <Ayq, A22>|a22<0
Giving these linear half spaces orientations, it is eésy to
determine from them the incidence numbers [(1, 1)F, (o, 1)+],

[(1, 1)*, (0, 1)71, etc. and thus obtain act, v, a1, 1)7, d(o, 20t
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and d(0, 2)". In order to determine d(1, 2)* and da(1, 2)", a more
complicated procedure is needed since (1, 2)¥ is not a linear half space
in these coordinates (it is the set aqq A = A : |A] = 0]. We must
821 222

go to new graph coordinates where the cell (1, 2)+ is linear as well as
(1, ¥ and (0, M (P(O,l) will work), and keep track of the
orientations induced by the cells (1, 1)*, (1, 1), (0, 27 and (o, 2)°
on their corresponding linear subspaces in the new coordinates. This: is
the main technicality in the proof of Proposition 2.8. Here, we can
in a similar manner obtain d(1, 2)+, a1, 2)7, d(2, 2)¥ ana a(2, 2)°
which together with the above will yield the homology of 62,2 stated in
Table II.

Note: The boundary map calculated above will not necessarily be the

same as in 2.9 as the choice of cell orientations might be different.

2.5 Notation: For o = (01, - « « 5 O)) a Schubert symbol, denote by
o - 6, the symbol (o; - B1gs + = « » O = Oig) where ajs is the

Kronecker 6,

Note: o - 6, 1is a Schubert symbol e og S 0g - 1.

2.6 Lemma: Let o= (o4, . . ., Op =n) and o' be Schubert symbols

such that |o} o] + 1. Then in ék n »
°

+ -
[eg, e;.] [egs €5t] = 0 unless o' = o - 68 for some s.

pf: This follows from (the proof of) 1.14 and 2.2 (i) and thé fact

i ! - . = ! >
~ that if o' # 0 - 8, for any s then 0'10 Gio + 1 for some i,
2.7 Lemma: Let O = (O3, « v« 4 o = n) and o' be Schubert symbols
such that o' = o - 65 for some s. Then in ék n » (with cell
]

orientations as defined in 1.20) we have
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= (_1 )Os‘f‘k“s

i) [e;, e;.] [eg, e5r]

1+k-s+0,, 440 nt.e. .+
i1) (e}, efil = (-1) s+170%+27 "%
pf: This is proved by going to graph coordinates where the lemma

takes the following form.

2.8 Proposition: Suppose ¢ and o' are Schubert symbols as above and
|Gﬂ = r. Then in the graph coordinates centred at Po'. we have:

. + . . . kxn .

i) egy € Ugr and is a coordinate r-plane in R . As in 1.19

call this plane L_,

o
ii) eo+ N Ugr and eG' N U, are coordinate r + 1 half planes
(call them H' and H”) such that H' U Ly» UH” is a coordinate r + 1
blane.
iii) The orientations of H' and H™ induced by ec+ and ey

are the same
®og + k - s 1is odd.

iv) The orientation of H' induced by e,' coincides with the

o)

orientation of L; (as defined in 1.20) followed by the normal into H'

@k -85+ 0541+t 0g40+ o . . # O, is odd.
Note: The above, together with 2.2 (ii) and (iii) immediately
proves 2.7
pf: Using the above notation:
i) This is 1.19.
i) P € et N U,

@ it has representations (see 1.2 and 1.18) of the forms
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) " O O\
X, = f« ... x1 0 0
TOW S
o % ., . . 0] 0. ..
) 10
] 0 =
L“"'“O"."" = o = . . . %1 O...OJ
01+1 os+s—1 ogts . ok+k
column column column column
and -~
L) ole ote ..'. ots ate ots ofs ’
= w o, ., . w o, ., . =® 0 v e e e w w ., ., =
X, [ 1 0
row s | . « 0 . . 0
- 1 L] -
0
L.' £ 0 % S 0 oL, . £ 01 0%, ., 0% J
ol+1 c'+s o'+s+1 o'+k
1 s s k
=01+1 =os+s—1 =0gts =ak+k
column column column column

e there is an orientation preserving linear transformation taking the X4
representation of P to an X, representation
@ > 0 in the X1 representation. (This can be seen by looking only at

the columns o; + i Vi, and Og + 8 -1.)

In such a case, the X, representation will have 0's to the right of the
1's except for row s which will have a positive number (1AD) in column
oy + s, and 0's to the right, Thus P = wo,(A) where A = (aj3) 1is a

k xn matrix with
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ajy = 0 for jzo;+1+1 and as,os > 0.

Conversely, for any such matrix A) P = @O.(A) has representations of the
forms Xy and Xp .

Similarly, P € ej; N Ugr = T(P) has a representation of the
form Xq and P has a representation of the form Xy
= there is an orientation reversing linear transformation taking the X4

representation to an X, representation

¢<o=p=<p0,(A) where A = (aij) is a k x n matrix with aj5 =0

for jzo;+1+1 and as,cs > 0. l«r

suLxJ

- of ﬁna?k
0o rd nates
Cen\'reA

& B

This proves (ii).
from (ii) we have the diagram

shown. For (iii) and (iv) we must find

the orientations of H' and H~

induced by ec+,

which can be done by
finding the Jacobian of the maps

-1

P

-1
K (DO_, and (Po_ o T o (PO, .
+ -
(H and H have natural

orientations given by their ordered basis

Brgs oo s Bigs Aogs - e
Akl’ e e Ak0k>' The orientation
induced by eO+ will be the same if
1 Fig. 2
© " o O has Jacobian with positive
o

determinant, and the orientation induced by eo' will be the same if

w;1 o T o ¢ has Jacobian with positive determinant.) To write these maps

coordinatewise, we must see how to go from one representation to another.

Given P € Uy N Ugr , let Vis + + . 5 Vi be rows of the X;

type representation for P. To obtain a representation of the form Xp s
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use rows wy, . . . , W Where the w;'s are obtained in the following
way: write the #'s in X, as aij in the appropriate manner

(A = (aij) will be (p;%(P) and as,os will be @ --see 1.18). Then
wg = VS/aS,US and w; = v; - (aics/ascs)(vs) i# s.

Note: the determinant of this transformation is 1/ags » and
s

thus 1is orientation preserving for a > 0 and orientation reversing if

SO'S

a < 0.
SOg

Working out this linear transformation in coefficients, we get

Q;%(P) = (alm) - (bij) = w;;(P) where

aSGS for i=3s, j= 9
-a.
19 for i #s, J = o
3so
s
a . .
sj for i=s, J# Oé
85
Og
a s a,
sJ 105
as:: - - for i#s, j#o0
1] a ? s
\ Sog
. . . -1
2.8a. TFor convenience call this map f. Then f aso > 0 1is wo, ° wo
. -1 ' ‘ .
and flaSO < 0is T o ¢o' ° ¢G . We must now find the

s

determinant of the Jacobian when we restrict f to Lo .

For fij(alm) = bij » the partial derivatives are

of.

ij _ 4. .. . .
35;;'_ 6i5 8m for 1#s, m# og » 1#s and j # O

Thus restricting to these coefficients gives us the identity
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matrix so for the determinant we need only worry about the

k - s + Oy X k -~ s+ o matrix

and j <o

This matrix is

aas1 aas2 . . . aasos aas+10 . . aakcs
r -1 KN 3
afsl (ascs)
“1 ofe
af82 (aSGS) ( )
' : -1
of 5 (ascs) %
or (a_ )72
stlc aSGs
° # (a7t
B ascs
) O . 1
afkos \ % ) —(asgs)
( the aasos column J
Qé+k—s+1

2.8b. The determinant of J f|L is thus (—1)k_s+1)/(asos)
lo}

2.8(iii). TFrom 2.8b and 2.8a above we have that the orientafions
+ -_—
on H and H agree
® o + k - s 1is odd.

2.8(iv). Comparing first the orientation

+
<A11, e e e, Alol’ A21, e e, A202’ e e e, Akl’ « e e, Ak0k> of H
with the orientation
<Bpgs + o s Bigs Apgs v e e s Ags o e Ascs—l’ Apgs = - s
Ags « o v s Ak0k> of L_, followed by ASOS (the normal into H') we

have agreement

® Og41 T Ogyp t -« . + 0 18 even. Comparing the above orientation for
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+ .
H+, with that induced by €5s by 2.8b we have agreement
o (-1)X"S 35 oad. Combining the two, we have agreement

*k -85 + Og4q ¥ Og4p t + « o o) is odd. Q.E.D.

2.9 Theorem: The boundary map d in the chain complex for ék n with
b

cell orientations as in 1.20 is

- cen k-s+ -
d(e;) - 2 (_1)1+k S+0g41+ +Ok(e;_6 + (-1) Oseo—ﬁ )
s s.t. S 8
08_1508—1
and
d(el) = Td(e})

pf: This follows directly from 2.7 and 2.8 and the fact that T

preserves cell orientations.

2.10 Corollary: The boundary map d in the chain complex for Gy p With
3

cell orientations as in 1.20 is

1+k-s+cs+1+...+ok s+0

k- s
(1 + (-1) )60_58

dleg) = 1 (-1)
s s.t.
<o -1

lo)
s-1""s

pf: This follows from 2.9 and the fact that V : ék n > Gk ., maps
. L] 9

and e. to e

+
€ o

o preserving orientation.

o

2.11 Remark: For j, 1, 5 and I the embeddings in 1.4, the induced
chain maps commute with d (from 1.21 and 2.3) so that the above formulas
are valid in G, and ék , and also in G and G (if we think of each
Schubert symbol o as starting with a nonzero integer 04 to avoid the

problem of having an infinite number of oi).
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Some Low Dimensional Examples

Finding the homologies of the unoriented and oriented Grassmannians
and Schubert varieties reduces via 2.9 and 2.10 to algebraic computation
which will be carried out over Z in some examples below. In general,
homology over other groups can then be determined using the Universal
Coefficients theorem, but in the following case it is easier to compute the

Z, homology directly from the chain complex:

2.12 Theorem: H,(G; Z,) = CP(G; Zo) for all r, and the same is true

for Gk and Gk,n for all k and n.

pf: TFrom 2.10, the boundary map d is 0 mod 2 in all dimensions.

The method used in the examples is to find in dimension r a set
of free generators for the group of cycles (denoted Z,) and write out the
boundaries d(C,,4) (denoted B,) in terms of these generators. The
homology H, = Z,/B, 1is then the set of generators of Zy, together with
relations given by setting the boundary elements to zero. The main
difficulty is in looking for a set of free generators for Z, , as it is
not always clear whether or not a sét of cycles spans the wﬁole of 7,
(although to simplify things, linear independence in the examples given‘is
obvious, and it is easy to determine what the rank of Z, should be). 1In
all the cases worked out, the above point has been settled by inspection,

which in higher dimensions is not possible.

2.12a Note: 1In ék n » When writing boundary elements dot and do”
3
(where o] = v + 1) in terms of generators for 2, , if dot = tdo”

then we need only worry about do”. Thus in writing the boundaries in terms
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of generators of Z, , some Schubert symbols yield two expressions and

some only one.

In Table I and in the examples 2.15, a shortened notation will

be used.

2.13 Notation:

i) Any Schubert symbol o = (09, « « ., o)) will be written
0109 « « . 0 (as O =9 in all cases, this will not give rise'to
confusion) and leading zeros will be omitted. The zero symbol will be
denoted #.

ii) In G, the symbols +-0 (similarly -+0, ++0 and --0)
will refer to a linear combination of antipodal Schubert cells where the
first sign refers to the coefficient of ot and the second sign to that of
o”. A Schubert symbol o with one (or no) sign attached to it will refer

+

to the positive cell o

e.g., +-23 refers to the chain element

23 + 14 vrefers to the chain element

(2, '+ (1, v



TABLE I: THE BOUNDARY MAP IN C(G): (NOTATION FROM 2.13, "-''" REPRESENTS d).
1 2 3 L 5 6 7 8 g 10
G2 2 To—4%) 20—-1| 120--11
? 11+--1 ++ 2
G2 3 -+ 2 13-+ 12 23—+ 22 33-- 23
? -- 3 -+ 13
G2 4 Yr-- 3 14—~ 13 24>-- 231 34+-- 33 Liy»+- 34
? 4 +- 14 ++ 24
G2 5 5+-+ i 15~+-+ 14 25—+ 24 35+-+ 34 45+-+ 4y 55+-- 45
’ - 5 -+ 15 -- 25 -+ 35
G3 3 111->-+11} 112»--111| 113--+ 112} 123»~+ 122] 223+-+4 222| 233+-- 223| 333+-+ 233
? +- 12 -+ 13 -+ 113 + +123 -- 133
122+- 112 +- 23} 133--- 123
-+ 22| 222»-- 122 -+ 33
G3 Y 114»-- 113§ 124->—- 123 134=>-~ 133 144-++- 134{ 244>4- 234
i +- 144 +- 114 ++ 124 -+ Uiy -- 14y
-+ 24 +- 34| 234»-- 233} 334-+-- 333
224+—- 223 ++ 224 +- 234
-- 124 ++ 134
G3 5 115>+ 114§ 125+-+ 124} 135>-+ 134§ 1u45+-+ 14y
’ -+ 15 -+ 115 -~ 125 -+ 135
+- 25 -+ 35 +- 45
225+-+ 224 235+-+ 234
++ 125 - 225
, -- 135
Gu Y 1111+--111}21112--11112113-+4+1112|1114-+--1113}1124>~-1123]1 1134>--1133 |11 4l44>+-11314
’ ++ 112 -- 113 ++ 114 +-1114 ++1124 - 144
112294+-1112]1123+-4+1122 -=- 124} ++ 134 |1234>~-1233
-- 122 -+1113{1133+--1123]1233+--1223 ++1224
++ 123 -- 133 --1133 ++1134
1222+--1122|1223+-+1222 ++ 233 -- 234
++ 222 ++1123|1224+~-122311333>-+1233
; -- 223 --1124 -- 333
2222+-1222 ++ 224]2233+»--2223
2223+-+42222 +-1233
- =-+1223|2224+--2223
+-1223

Le
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2.14 Theorem:

i) Hr(Gl,n; Z) =~I; for r =0 and n

0 otherwise
-
Z) = J; for r =0 and r = n

ii) Hr(Gl,n’

if n 1is odd

Z for r<n and odd

L? otherwise.

ptf:
i) Zr(él,n9 Z) are generated by the chain elements
(r)+ + (r) for r odd, r <n, and (r)+ -(r) for n=2r >0 and
even. For r =0 Z  is generated by (0)Y and (0)7. (This is
easily seen from the Table I.) The boundary gréup B,

(Image of d : C 1 > C is generated by

r+ I‘)

(r)+ +(r) for r odd r<n

(r)+ -(r) for 0<r1r<n.

Thus H, = Z./B, 1is zero except for r = 0 and n where it is 2.

r
ii) From 2.10, the following can be verified

Z, generated by |(r) r odd

4 0 r >0 even

LSO)' (the O0-cell) for r = 0

(
B, generated by |[2(r) r <n odd

r
1~O r .even or Y = n

=
Thus Z,./B, is Z2 for r < n and odd

4 Z for » =0 and r=n if n is odd

0 otherwise.
\.
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2.15 Examples: In these examples, Table I is used by inspection to
find generators for Z, . In labeling the cycles, no distinction is made
between cycles of different dimensions (e.g., both ++1 and +-2 are
labeled "a"). As it will always be clear what dimension is being talked

about, this should not cause any confusion, Notation is as described in

2.13.
i) 6, 3
Dimension: 0 1 2 3 y 5 ’ 6
Generators| a=** a=++1 a=+-2 a=++3 a=++22 a=++23 a=+-33
for 7, :|b=%" b=+-11 | b=+-12 b=+-13

c=2-11 +-22

B :|atb [d(2)=-a|d(3)=-ald(13)*=_b-a|d(23)=-b|d(33)=—a

d(12)= |d(13) =b-a

2c~a-b [d(22)=b

It is easy to see that Z,/B, =<Z r =0, 2, 4, 6
0 otherwise

b. Thus

(In dimension 2, Z,/B,, has the relations a = 0 2¢c

c generates Z./B, and has order O0.)

In the next examples only the first homology groups are

determined, as the rest can then be found using Universal Coefficients and

~

Poincaré duality since Gy , 1is oriented for all k, n.
H



ii) G3,3
A Dimension (r): 0 1 2 3 y
+
Z, | a=% [a=t++1{ a=+-2 [a=++3 |a=++22
b=%" b=+-11| b=+-12 |b=+-13
c=2-11] c=++111 +-22
c=+-112
-+22
Br atb la a bzta b
2c-a-b|b 113: b+c
111: b]112: b#*c|122: ¢
See note 2.8a.
Z,/B, = for »r =0, 4
for r =

30
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iii) 63’4
Dimension (r): 3 y 5 6
Zr : | a,b,c a,b,c a=++23 a=+-33
d=22+13-4 b=++113 b=+-222
e=+-~4 c=++122 c=++123
d=122+113-23 |d=+-114-+24
e=+-14 e=++24--33
Br ] 4 oa, b,c,btc a, 34: e
b*a,b 14: 2d-b+e-a| 24: aze 124: cid
btc 114 bte 133: cz*a
225:10 223: c*b
123: 2d-c-b+a

The unexplained elements in Z_, and B, are from Examples (ii) and (i)

above, using the same labels.

H, = Z,/B, =40 r=3

Z®HZ r=2U4u

22 r =5 and 6.

The homology groups H, , H, and H are the same as in &
0 1 2 3,3
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iv) Q(1, u4):
Dimension (r): |1 2 3 b 5
SR ENI ESAEEASNN CXACEMN CCAE AN COAN
and antipodals N

Zr a=t++1lla=+-2 a=++3 b'=++13--4]e=+-14

b=+-11 b=+-12 {e=+-14

c=2-11
Br 11: a}12: 2c-a-b|13: b*aliu: b’
2: a |3: a 4: a
Hr 0 Z 0 Z Z
v) (1, 2, 3)
Dimension (r):] 1 2 3 by 5 6

+ .t H ot oot | at + +

C, : 1“J 1172 12+’3+;11A1j 137 322 ;112J 237 ;1227 ;113 123%
and antipodals
Zr a |asbsc aj;b; a=++22 a=++23 c=++123
c=++111 b=+-13+-22 b=++113
Cc=+-112-422 {c=++122
d=122+113-23

B, a |asbj;2c-a-b|b*ta;bibtc |b;b+c;c 2d~c-b+a
H, :| 0 |z, 0 Z 28787 Z
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vi) Gu’u : Dimension 6
Cycles: a, b, ¢, d, e as in Example (iii) and in addition,

f

1122 + 1113 -~ 114 - 222 + 24 - 33
g = ++1113--114
and h = ++1122--222,
Boundaries: e, ¢ *+d, c ta, ¢ +b as before, and in addition,
1114: g, 1222: h

1123: 2f - h - g - e * c.

Thus in homology we have

e=g=h=0, a=zbs=sc=d, 2f =c and 2¢

U]
o

Thus f generates H. ard uf

0, 2f 0, so H =727 .

Tables of Homology Groups of the Grassmannians

Table III tébulates the above results together with a few more
that have been worked out in the above manner. By going to large enough
Grassmannians, such results are valid for ék and G as shown in Table
III . Cohomology can be found using Universal Coefficients, and the results

can be comparedeith those obtained using characteristic classes (see [1]
pages 179 and 182). The copies of Z are generated by Pontrjagin classes
and their products. Another method would be to use the cochain complex
directly, where the incidence numbers defining & (the coboundary map)
would be [egs eB] = [eB, eql from the boundary map. Going through the
same procedure as in Example 2.15, explicit generators in terms of Schubert
cell duals could be determined. In this way for instance it could be found

which Schubert varieties represent the Pontrjagin classes.



Table II. Homology groups for e where k and n are small:

k,n

62,2 62,3 62,4 62,5 §3,3 és,u é3,5 64,4
Ho Z Z Z Z Z Z Z Z
H1 0 0 0 0 0 0 0 0
H2 Z97Z Z Z Z 22 22 22 Z2
H3 0 0 0 0 0 0 0 0
H4 Z Z VAT Z Z 787 Z Z8ZD7
H5 0 0 0 Z 22 22 _ Z2
H6 Z Z Z 22 22 0] ZL+
H7 0] 0 0] 0 Z 0
H8 Z Z 0 ZHZ Z | 2979787
H9 0 Z Z2 22 24
HlO Z 0 0 22
H11 0 Z 0
H12 Z Z, ZAZHZ
His 0 25
H14 .0 0
Hls' VA 0
H16 Z

r
2.17 Assertion: Hr(G2,n) = {Z for »r evemand r #n, r = 2n

Z®Z for r»=n even

@ otherwise,

The method used for G G2 g can be generalized easily.
L

2,20 %t "

Corollary: H,(Gy) = Z for r even, O for r odd.
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Table III. Low dimensional homology groups for ék :

(Note: Hr(ék) = Hr(ék,r+1) since the embedding ék,r+1 *'ék covers all

cells of ék of dimension r + 1 or less. Also,

Hr(ar+1) = Hr(ér+2) = .. .= Hr(a) for the same reason.)
H

Hy | Hy | B, |Hy | By c Hg
¢,z | o] o]lo] o 0 0
G|z | ol z]of| z 0 0
G| 2| o]l2z,l 0] 2 z, 0
Gy | Z 012z,| 0] 2% Zs Z,®7.,
G| 2 | 0z, | 0f 282, | . 2,92,
Gg | 2 | ofz,] 0] z#2, 207 87,
G, 1z | o}z 22@?2622
G |z {0}|2z,|0|zez,| 2, |2,02.97,

In the unoriented Grassmannians and Schubert varieties, the
. computations are much simpler as there are only half as many cells to worry

about and the boundary map is much simpler.
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Table IV. Homology for the unoriented Grassmannians G, , for small
k]

k and n:

2,2] €2,3| G2,u| G2,5 | 63,3 G3,u
H, z z z z z z
H, Z, Z, Z, Z, z, z,
H, Z Z, Z, Z, Z, z,
Hy 0 Zy | 2, Z, | 2,92, Z,82,
H, Z z | 2%z, | zez, z 262,
He Z, Z, | 2,98, | 262,02, | 202,60,
He 0 Z, Z, Z, 2,92,
H,) 0 z, z, zzéz2
Hg z 7 0 Z8%,,
Hg Z, z 7,9,
Hyo 0 0
Hyq zZ,
Hy, 0

Note that there is Poincaré Duality in G2,2 . G2’4 and G3,3
This reflects the fact that Gk n is orientable whenever k + n is even
' [ .

(see [2]).

Remark: The homology groups for Gy.p have been determined in [7], but as
k4 .
this article was not available in Russian or English it was not possible

to compare results.
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PART III - HOMOLOGY AND COHOMOLOGY PRODUCTS

We now turn to the multiplicative structures, Only the Z,
homology and cohomology products in the unoriented Grassmannians are studied,
but the cohomology ring structure is determined entirely (3.16 and 3.17).

The formulas describing the cup product are equivalent via Poincaré duality
(described in terms of Schubert symbols in 3.7) to those describing products
in Z cohomology of le,n(C) (see [31). 1In the form given, they can also
be used to determine cup products in the unoriented Schubert varieties, and

some examples are given.

The General Intersection Theory To Be Used

For M a manifold, there is a product theory for intersections

of cycles in H_ (M; Z,) called the Lefschetz intersection

ﬂL pH (M3 Zo) x Hy (M5 Z5) » H o (M5 Z,)

which is related to the cup product in cohomology in the following way.

3.1 Assertion: For b=n - a above, the product ﬂL induces a map
D : Hp_g(M; Z5) X Hy (M3 Z9) > 2 Q’HO(M; 22) which can be considered as a
map
[a¥) a 0
D : Hy_ (M3 Z5) > Hom(H (M3 Z,) > Z,) &~ H (M3 22)

by a + the map f(B) = a N PB€ Z,~ ) B
L 2
aﬂLB=1

If afNy B=v in H(M 22) then D(a) v D(B) = D(yv) in H*(M; Z,).
This is due to the Lefschetz intersection product being Poincaré

dual to the cup product in the sense that the following diagram commutes:
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(with Z, coefficients)

HO(M) x  HP(M) v 5P
~m1 o} |~ A | |
0y,
—————)
H_ a(M) x H_ b(M) Hn_a_b(M)

where n[M] 1is the cap product with the fundamental class of M (lying in

Ho(M; Z5)) i.e. the Poincaré dual map.

3.2 Assertion: Let M be an n dimensional manifold with a cell complex
structure, and e  , eg cells in the complex representing Z, cycles a
and . Suppose there is continuous map h : M - M homotopic to the
identity such that

for any cells

c eq and egr © EE', e,r 1s transverse to h(eB.).

eyt
Then E& n h(gé) is a 22 cycle in M homologous to a ﬂL B.

If eg N h(Eb) = ¢ then alf B'= 0.

This is from general intersection theory (e.g., see [10]).

Simple Intersections in Sy n and the Poincaré Duality Map
oIl

A straightforward translation of 3.2 into Schubert cell
terminology is givén below (3.4) and, using it, the Poincaré duality map is
described in terms of Schubert symbols (3.7) and some examples of explicit

intersections are given.

3.3 Remark and Notation: From the chain complex Cr(Gk n) associated with
2
the Schubert cell decomposition (1.22) we obtain a mod 2 chain complex

Cr(Gk,n5 Z,) and a mod 2 cochain complex

r — .
C (Gk,n; Zz) = Hom(Cr,(Gk’n, ZQ), 22).
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For e, € Cp(Gy n3 Z9), o a Schubert symbol, write the cochain

element dual to e, as oy

i,e., o% € Hom(CP(Gk,n; ZQ), Z,) is the linear map

sending ey to 1 and

en to 0 for M £ o.
Since the cochain map & is zero mod 2,
r _ .r .
B (G 3 Zp) = C (G n3 Zp)
and {o* : |o| = r} is a basis for Hr(Gk’n; Z,) dual to the basis

{eg : lo] = r} for Hr(Gk,n5 Z5).

From here on, Z, homology and cohomology will be assumed unless

otherwise stated.

3.4 Theorem: Let e and en be cells in G

o for o and n

k,n
Schubert symbols. Suppose there is an orthogonal linear transformation

2 k+n k+n
$ - i ] $ -
R R inducing Gk,n Gk,n such that

i) For an e., Ce. and ¢ © e s €5t 1s transverse to
Yy € o en c
@(e |).
m

ii) 56 N @(gﬁ) = @156(1) U @256(2) u. ..U émEG(m) for some

. orthogonal transformations @1, e e, ®m , where o(1) . . . o(m) are

distinct Schubert symbols of rank |o| + In] - kn.
Then in H*(Gk,n)’ e ﬂL en (the Lefschetz intersection product)

is eo(l) + eo(2) + . . .+ eg(m).

pf: This follows from 3.2 as & : G -G is homotopic to the
k,n k,n

identity, and @ig

o(i) is homologous to g&(i) (since &®. is also

1

homotopic to the identity map).

3.5 Notation: Define &° : rRY ~ Rq, Pp=<q by $p(gi) ={€p-i+1 for 1 =p

e. for 1 > p.
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If g =k + n, then aP . Gk,n > Gk,n is the induced homeomorphism.

k+n

3.6 Lemmé: Let ey and en be Schubert cells in Gk,n and & = ¢

as defined above. Then we have

i) &y is transverse to @en

ii) eg N & =  unless O; +M)_ 349 20 VY i.
iii) if My =n -0y 5,1 Vi then e ﬂcbé'n = the point {P4}
(Recall 1.6.)

in Gk,n .

pf: i) Suppose o and T are Schubert symbols such that

O; * My_j41 S n -1 for some i.

If P € ecﬂéer] , then

. . 2 Oi+i . 2 .
dimension of P N1 (R ) = 1 (j as in 1.4) and

A My ., .tk-1t+1
dimension of P N 1(r X-1itl ) =k -1+ 1
O-+1 A~ Me_s,q+k-i+1
= 4R Iy nl(r kit ) =1

=03t it j4qtk-1+1>n+k or 0. +M sy >n-1

which is a contradiction. Thus eo_ﬂ @en = f.

ii) Suppose o and 7 are Schubert symbols such that

O; + My_541 = n for all 1i.

Consider the graph coordinates centred at Ps (see 1.17, 1.18 and

1.19). Since e; © Uy » the intersection eg ﬂ@)en lies entirely in Us »

the domain of the graph coordinates. Recall that Ly © kan

is the linear

subspace corresponding to e, .

Claim: Ug N® ey = (L ﬂ¢>en) x Ly ¢ RK*D i1 the above graph coordinates.
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pf: L_= {A

(aij) s.t. aij

L = {A = (aij) s.t. aji;

0 for j > o;}

0 for j =oy}.

kxn

Suppose A € & en R The plane ¢j(A) = P is the row space

of the matrix in 1.18 corresponding to A. Since P is in & e » it

must satisfy the Schubert conditions

;+i
R

dimension of P N i ) =i and

Ry oy g,

dimension of P n i
Looking at the matrix in 1.18, it can be seen that thesé

conditions are independent of ajs for j Z o; since M_ier T O1 Z n.

Thus P € & °n n Uy

e P = @G(A) for some A = (a..) s.t. for A' = (a!.) where
ij i
a:!Lj = aij for j = Oi
0 for 3j > o;

amd A' €L N & e
g n
Thus & e nu, = (I N @ en) x LG .

This claim proves 3.6(ii) since ;N en has dimension

]n] - (kn - |o|) and the intersection is transverse (since L, 1s orthogonal

to L, and thus to L, N & en).

iii) Suppose ¢ and 7 are Schubert symbols such that

O +My_54q =0 Vi

P €S ey N ey
a, O2ti . . .
<P N (R 1I™) in dimension = i and

a My qtk-it1 n+k-o:-i+1
PN I(R k-1+1 = R 1 } in dimension k - i for all i

© P D<es,> for all i
1

=3 = P
P Py -
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Remark: Although 3.6 above shows that we can always make two cells E&
and Eﬁ in Gx,n transverse (in the manner of 3.4(i)) using the orthogonal

transformation ®k+n. e N e,

However, although the intersection eg N & en must
be a cycle homologous in H..,(Gk n) to eq ﬂL e » it is not in general a
2 .

union of orthogonal transformations of Schubert cells as required in 3.4(ii).

3.7 Theorem: In Gy , , the intersection product ﬂL, satisfies:
k]
i) For Schubert symbols o and T,

ey ﬂL e = 0 unless 0. +Mp_ 54,9 20 Vi,

ii) ﬂL : Ho o X Hy > HO ™~ Z, 1is the map
(6, M) »21 if m; =n -0y _3,q ¥Yi

0 otherwise.

iii) The Poincaré duality (inverse) map

r .
D:H __~>H is

o =+ N%* where Ny S0 -0 5.y Y i.

.pf: (i) follows from 3.6(i) and 3.2.
(ii) follows from 3.6(ii), 3.2 and (i) above since if
!OI + |n| =n and M; =n - 0 _;,4 does not hold for all i then 3 io
such that nio + Ok_i0+1 < n.
(iii) is just another way of saying (ii).
This result is equivalent to Proposition, page 1072 in [3] which

was first proved in [9].

3.8 Remark: The intersection product is unnatural in the sense that for
f :M~->M' a continuous (cellular) map, f, does not preserve the

intersection product. However, in cohomology, the induced map f* does
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preserve cup product, so that in the Grassmannians we have the following:

i) For j : G > G v s n'2n, j as in 1.4,
s

k,n

j* e H“(Gk’n,) 4-H“(Gk,n) is the map
o% > g%
(as can be seen from 3.3, 1.21 and 2.12) and

j%(o% u M%) = ok UMk,
ii) TFor 1: Gk,n - Gk',n . k' 2k, 1 as in 1.4,

. HE B3 i
1% : H (Gk',n) - H (Gk,n) is the map
g% - (O"):':
where o' = (Op 3t k41> Onpktk+22 ¢+ ¢+ s Ongkt)
(as can be seen from 3.1, 1.21 and 2.12) and
1% (o% o rl:':) = (o'):': v (T]')*

(n' defined from m as o' is from o).

We also have algebrailc right inverses for the maps j#* and 1%

defined as,

2y~ L e .'\
(%)™~ : H (Gk,n) -~ H (Gk’n.) n <n'
is the map (o%) » (3,(0))*  and
oo -1 ta X
(1%) 7 2 %Gy 1) > H*(Gyr 1) k = k!
is the map o% > (1&(0))*,

These maps are group homomorphisms (actually monomorphisms) but do
not in. general preserve cup product.

We now go to some specific examples of intersection product which
use 3.4 directly. Checking transversality is inAgeneral more complicated
to verify than in 3.6, so for the remainder of the paper we will assume the

following.
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3.9 Assumption: Let ey and en be Schubert cells in Gk _— and
?

Rk+n k+n

suppose there is an orthogonal transformation & : -+ R such that
E& ne Eﬁ (where & : Gk,n » Gy n is induced by 3) is a (Z5) cycle
¥ of dimension |o| + lnl - kn. Then

i) e, 1s transverse to @& en

ii) there is an orthogonal transformation &' : RK'D o gktn
. - - ' - - - :
such that ¢ en = ® en and for any egr © e and en. C en » €51 1s
transverse to & n
iii) The cycle ¥ is e ﬂL e -
Note: (ii) = (iii)
3.10 Examples: The same notation as in (2.16) will be used.
Remark about Schubert conditions: Recall (1.10) that for
o = (01, e e, Gk) a Schubert symbol, the Schubert conditions assocciated
. - . . . 2,501 1y o .
with e; in G , are dimension of P N j(R yzi ¥Yi
b

o)

If 0, = n, then the above Schubert condition is redundant

(since every k-plane in RK*D intersects f(Rn+i) in dimension i) and
can be left out.
i) In G2a2 look at 12 ﬂL 12.

If we take the orthogonal transformation N 1 Gy p > Gy o (see
£ >
3.5), then 12 and @4(12) satisfy 3.4(i) but not 3.4(ii), so we must use

a different transformation. Take @3 P Gy 5> Gy 5 (recall 3.5):
H 2

708317 = {p € Gyp set.dim. PN <5, 8,5 21

and dim. P N <Eé, €é> > 1}

which is easily seen to be X U X, where
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Xy = {P € G2’2 ;.t. dim. PN <Eé> = 1}

Xp = {P €6y o s.t. PC <eq, €y, €3>} .

Since X, = 11 and Xy = #(02) where & is any orthogonal transformation

taking E& to Eé » by 3.9 we have 12} 12 = 02 + 11 in Gpy,o -

ii) 1In G2’3 look at 13 nL 23,
4, .
Here, we use &7 : G2’3 - G2’3.
3 n 8% (73) = {p ¢ Gp,3 s-t.dim. PN <&, 5p =1

and dim. P N <e,, e3, > = 1}

which is X4 U X5 where

X = {P € 6, 3 s.t. dim. P N<ey = 1}

Xy = {P €G

\4
v
-

2,3 s.t. dim. P N <€i,'_

and P c <ey, ess Eé, Eh>}
Since X, = 12 and Xy = #(03) for & as in (i) above, we have

13N, 23 = 12 + 03 in Gy 3 -

. . n
iii) In 63,3 look at 133 N 233, using & > G

* G3,3 > G3 3¢

T33 0 &%(233) = {P € Gy 5 s.t. dim. P N <5y, ap = 1
E
and dim. P N <Eé, Eé, EL> =1}

which as in (ii) above is X U X,  where
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X, = {P € G3’3 s.t. PN <E§> = 1}

X, = {P € G s.t. dim. PN <E&, E&> > 1 and

3,3
P C<eys €5, €5, 2}

123 and Xy = $(033) for & as above. Thus in G

However, here X

2 3,3

we have
133 ﬂL 233 = 123 + 033,
iv) In G3,3 look at 123 M 233.

6

Let &: R6 -+ R” be an orthogonal transformation mapping

<5&, Eé, §é> to <Eé, EL, Eg> and & the induced homeomorphism on G3’3 .

123 N #(233) = {p € Gy,3 s.t. dim. PN <ey, e> 2 1,

v
[

dim. P n <—e—2, gu, €5> =
and dim. P N <€i, Eé, ey, > = 2}.
With a little difficulty, this can be seen to be X1 U Xy, U X3 where
Xy = {P € G3,3 s.t. dim. PN <ep> =1

and dim. P N <E&, €5, Eé, Eh> > 2}

X2 = {P ¢ G3,3 s.t. dim. P N <ef, e5> =1
and dim. P N <€i, Eé, EL> = 2}
Xy = {P ¢ G3,3 s.t. dim. PN <eq, ex> 21

and . P C<eq, . .., >k

Under suitable orthogonal transformations &, , &



7

—— —

X, = ,(023), X, = ®,(113) and X3 = $;(122).

11 2 - %2
Thus 123 N 233 = 023 + 113 + 122 in H (G, ,).
w [
v) In G, , look at 34 N 24, using & = &5
2

25N 33 ={PeG,, s.t.dim pnIRY 21
3
and dim. PN <-é.2, gs, gu, g5> = 1}

which 1s X U Y where

X = {P € Gy y s-t. dim. P N <e,, e3> 2 1} and
Y= {P€g s.t. dim. PN 3R% =21
2,4
2,50
and P < j(R7)}.
X = @1(IH7 and Y = 23 for some orthogonal transformation ®1

Thus 34 ﬂL o4 = 14 + 23,

vi) In look at 222 N 033.

€33
By 3.7(i), 222 N, 083 = 0 in Gz 3 , but let us try to make a
b

nonempty intersection, using 35,

7770 °(033) = {P € Gy 5 s.t. dim. PN <gg> = 1
b
and P c <Ei, ey es>}.

This is the cell &°(022), but |022] = 4 whereas |[222] + |033]- 3
=6+ 6 -9 =23, Thus we cannot use 3.9, although 222 and @5(033)

(the open cells) are transverse, having empty intersection.

3.11 Remark: Using 3.7(iii) and 3.1 we can rewrite the above results as
cup products in cohomology:

i) In H%(G, ,), 01% u 01% = 11% 4+ 02%
9
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ii) In H*(G, ,), 02% u 01% = 12% 4+ Q3%

2,3
iii) 1In H*(G3 3) the same 1s true

L]
iv) In H%(Gz g), 12% y O1% = 112% 4+ 22% 4+ 13%

9
v) In H%*(G, ,), 02% u 01% = 12% 4+ (3%,

2,4
Note: 01%® ¢ 01% = 11% + 02*% must hold in H*(Gk n) for all
: b

k= 2 and n = 2, since there are no other Schubert symbols of dimension 2.

Complicated Intersections and the General Formula

It is not always possible to intersect Schubert cells as in 3.10
so that 3.4 can be used--3.14 has such examples--and for the cases where it
is not possible, a more complicated argument, such as the one developed

below, is needed. The examples in 3,14 lead up to the main formula in 3.16.

3.12 Definition: TFor k =< k' define
g : {subsets of Gk,n} -+ {subsets of Gk',n}
as X c G

P G h t P tai
k,n - {P ¢ k',n suc hat contains a

k-plane 3(P')cC 3(Rk+n) for some P' € X}.

3.13 Claim: If X is a cycle in H.(Gy n) homologous to
?
o(1) + . . . + o(m) where o(i) are Schubert symbols i =1, . . . , m,

then g(x) 1is a cycle in Hr+(k'—k)n(Gk',n) homologous to

c'(1) + . . . + o'(m) where
o'(i)=(o(i)g, o(i)g, . . ., o(ij, ny,n, . . ., n)
. N v
~—
k' - k
for 1i=1, .. ., m.

This will not be proved, but its validity is suggested by the case
X = & (c(I)) Udyct2n U, . . U ¢ .(cTm)) for some orthogonal transformations

P00 0 0y ¢, . Here, the claim is obviously true.
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3.14 Examples: 1) Look at 24 N 24 in Gy y » using & = S
b

v
[N

24N &(24) = {P € Gy, s.t. dim. PN <ey, ey, 65>
2
and dim. P N <eg, e,, ex> = 1}.

This is X U Y where

={P €6y s.t. dim. PN <e> =1} and

{P € 2hN &2L4) s.t. PC<ey, . .., e>} = 23N &(23)

>
I

<}
"

Although 23 and $(23) do not satisfy the transversality

conditions in 3.3 as cells in G2,4 » when considered as cells in G they

2,3
do (by 3.6). Thus 23N&(23) in G, 5 1is homologous to

23 1 23 =13 + 22 (by 3.11), so Y = 3(23N #(23)) in G is homologous

2,4
to. 13 + 22 also, since Jj preserves homology class.
X is &'(04) for some orthogonal transformation ', so
combining the homology classes determined by X and Y we obtain
24N & 24 = X Q Y is a cycle in G2,4 homologous to
13 + 22 + O4. By 3.9 then,
24 nL 24 = 13 + 22 + 04 in H*(GQ,u).
In cohomology, by 3.7(iii),. this reads as

S 02% § 02% = 13% + 22% 4 Oy,

ii) 1In Gu’u look at 2334 N 2444 using & = &

2334 N @ 700 = {P €6, , s.t. dim. P 3R 21
3

“dim. P N §(R®) = 2

dim. PN 3@R®) = 3

and dim. P N <e55 g §7> = 1}1.

This is X U Y where
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X = 2334 N & 244k N j(G, 5) = 2333 N ¢ 2333, and
E)
Y = {P €233 N & 244y s.t. dim. P <€5, Eé> > 1},

since for P € 2334 N1 & 2444, if P N <€5, Eé> = 0, then
dim. PN J@R") = dim. PN J(R®) + dim. P N <eg, eg, > = 4 so that P

must be in X.

As in (i) above, 2333 N & 2333 in Gy_ 3 1is homologous to
3

2333 M1y 2333 = 1333 + 2233 (by 3.11 and 3.7(iii)), so that in Gy i also
9

2333 1 & 2333 1is a cycle homologous to 1333 + 2233,

Y = g(233 1 $(133) ¢ G3,3) for g as in 3.12. (This can be
easily checked.)

In 63,3 , 233 and ¢ 133 satisfy the transversality conditions
in 3.3, thus 233 N &(133) in G3,3 is a cycle homologous to 123 + 033
(by 3.10(iii)). Thus, by 3.13, Y = g(233 N & 133 ¢ G3’3) is a cycle in
Gu’u homologous to 1234 + 0334,

Combining the homology classes of X and Y we have

2334 ﬂL 2u4hy = 1333 + 2233 + 0334 + 1234 in H (G

% Ll»,‘-l-).

In cohomology this reads as

112% o 2% = 1113% + 1122% + 114+ + 123%,

The following two formulas (3.15 and 3.16) completely describe
the cohomology ring structure in G as a ring generated by the Schubert

cocycles (0, 0, . . . , 0; a)* over all integers a > 1.

3.15 Claim: Let o= (oy, - « . ,0%) and m=(0,0, ... ,0,m) be
S i L]
chubert cycles in Gk,n

i) For 7 : Ck,n 7 Ck,n' » n' Zn and
>
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(j*)_1 as in 3.8, we have

(5%) " L(o% L M%) = o U ME.

ii) For 1 : Gk,n - Gk',n , k'=2k and
(1)1 as in 3.8, we have
(l*)_l(o'* u 'r]*) = (O")* U (an):';

where o' = (0, 0, . . . , 0, Tys o v v s o) and m = (0,0, . . ., 0, M) -

k' -k n+ k' -1
This can be proved by going to the intersection product via D
(3.7) and generalizing
for (i), the way in which 3.10(ii) and (vi) give the same answer in
cohomology (3.11) and
for (ii), the way in which 3.10(ii) and (iii) give the same answer in

cohomology (3.11).

Note: In general it is not true that (j*)_1 and (1%)7%
preserve cup productf—see 3.19(iv) and (v). /
3.16 Claim: Let o = (04 = 0, 05 > 0, T3y + + « ok) and
m=1(0, 0, ..., 0,M) be Schubert symbols.

In H*(G) we have

o* un® = Z2(c')*, summed over all o =G31, e e e Oi), Schubert
symbols of dimension |o'| = |o] + e such that o; = oi = Gi+i for
i=1, ...,k -1 and o = oﬁ

Indication of proof: For ¢ and M as above, define o+ m as Zo' for

o' as above.

Claim: o * n splits into two sums 210' and 2,0' where 21 is over

o' s.t. o' = (G;’ o; + 1, og +1, ..., oﬂ + 1)
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for all o" in the sum for

(030'2—1,0'3—1,. o . ,Ok—1)°(0,0,.. . ,O,nk)

Z, is over o' s.t. o' = (o} + 1, S oﬁ + 1)
for all o¢" in the sum for

(0,0é -1l,053-1, ... ,0,-1)(0,0, ..., 0,m, - 1.

pf: TFor O©' 1in the sum for o * M, either Gi ='02 in which case
o' is in Z, , oOr ci\< 02 in which case o' is in 21

Conversely, for o' in 2, or Zo , it is easy to see that o
satisfies .ci S0, =041 and lc'! = o] + Ny -

By 3.15, the cup product o% u Mm% ' can be taken in H*(Gk,n)
without losing any terms. Go to the corresponding intersection product in
H*(Gk,n) via the Poincaré duality (3.7(iii)).

From here we cén generalize the method and result in 3.14(ii), and
we get

X is homologous to the dual (3.7(iii)) of Zg
and Y is homologous to the dual (3.7(iii)) of 'ZT .
In this way, 3.16 can be proved by induction on ,ol and e

Note: The above formula in H*(G) holds in H*(Gk rl(C); Z) where
k]

it is known as Pieri's formula (see [3]).

3.17 Claim: In H%(G) we have,

(O 9%, v o, )% = G(Gk)" o(op + 1)* . . . ooy + k - 1)*

O(Ok_1 - 1) G(Gk_l)ﬂ .. o(ok_1 + k - 2)%

o(o1 -k + 1) o(o, -k + )%, .. 0(01)*

1
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the determinant, where the product is cup product, and

o(a) = (0, 0, ... ,0,a) for a=0 and 0 for a < O.

Indication of proof: This follows algebraically from 3.16 by induction on

the size of the matrixj; e.g., for k = 2 we have

(01, 0y)% = 0(02)* 0(02 + 1)%

o(o1 - 1)% 0(01)“

oloy)* v olog)* + ooy - 1)* v o(o, + 1)*

= (04, 02) + (oy - 1, oy + 1)+ . . .+ (0, gy + 9y)
+(01—1,02+1)+(01—2,02+2)+...+(O,o‘2+01)
= (04, 95)

(The second line is from 3.16.)
Note: 1In H*(Gk a(C)s Z) this is called the determinantal formula
]

(see [3]).

3.18 Remark: i) The results in 3.16 and 3.17 are also valid in H*(Gk n)
k)
if we use the projections

1% : H*(G) - H*(Gy) and

3% H:';(Gk) > H*(Gk,n)’ (See 3.8.)

ii) They are also valid for H*(R(c)) for any Schubert symbol
o, 1if we use
i% . H*(Gk,n) - H%(Q(0)) where

i o) >0 is the embedding.

k,n

3.19 Examples using 3.18 above: The shortened notation is used again, and

for convenience we will drop the *'s, as everything is in cohomology.
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ii) H*(R(1, 3)) cohomology products:

1 11 2
1 11 + 2
11 12 0

2 12 + 3 13 13

12 13
3 13
13

iii) H#(1, 1, 3)) cohomology products:

1 11 2
1 11 + 2
11 111 + 12 0
2 12 + 3 112 + 13 13
112 112 0 - 1183
12 112 + 13 113 113
3 13 113 0
112 113
13 113
113

The next two examples are of individual cup products in different
Grassmannians.

iv) 124 o 2:

In H®%(G) it is

1224 + 1134 + 1125 + 234 + 225 + 144 + 135 + 126,
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In H*(Gs,q) it is. 234 + 144,

In H*(G3’5) it is 234 + 225 + 1ub4 + 135,

In H*(Gu,u) it is 1224 + 1134 + 234 + 144
i.e., for j : G3,4 - G3’5 and 1 : Gs’u - Gu’u

(j*)'1 and (1%*)"1 4o not preserve cup product.

v) 12 ¢ 113 = (1 * 2 + 3) v 113:
In H*(G) it is
11123 + 11114 + 1223 + 12133 + 1115 + 233 + 224 + 134 + 125,
For 7 : G3’3 - G3’4 and 1 : G3,3 - G4,3

(j*)_l and (1%)"1 do not preserve cup product.

Remark: In Gz 3 , 12 u 113 can be determined to be 233 (as above) by
E

going to the Poincaré duals and using the intersection method as in 3.10.

3.20 Conclusion: The product structure in H%*(G), H*(Gy) and H*(Gy )
k]
is well known from characteristic classes (see [1]1).
H*(G)) s generatéd by the S-W classes wlf .« ., & of the
tautological bundle, and
H*(Gk,n) is generated by ®gs o o v o5 and By, o o0 .o, B
under the conditions

(T+aog+ ... +@)d+8 +...+a&)=1, where the c'Bj

are the S-W classes of the normal bundle.

It is known (see [2]) that &j is the cohomology class o(j)%

(from 3.17).

By the map : Gk,n *'Gn,k which in cohomology must map @ to

&5 , we can find the Schubert cocycle corresponding to

i:
(c(§)) = (1, 1, . . . , 1) which we can call 7T(j).
(- ~ J
j times
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Thus T(j)* = Nj ,» and T(j)* must generate H*(Gk). (This
could be checked algebraically using 3.16 and 3.17.)

It can be determined algebraically from 3.16 and 3.17 that in G,

(i) is obtained recursively from 0 (j) by
T(3)* = o(P* + o(j - D)% o T(1)* +
+0(3 - 2) o w(2)% + . . .+ o(1)*a(5 - 1)%,

This reflects the identity

(wj Posg ot .t wl)(&j+ &j-l + .. .t &1)A= 1
in characteristic classes.

The above shows that for G, G and Gk,n » the cohomology ring
has a simple description. However, in the cohomology of Schubert varietieé,
the product structure is more complicated, and the simplest method of
description seems to be to gi&e a table for cup product as in 3.19(ii) and

(iii).
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