- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Heat flow in the melt and crucible for crystal growth
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Heat flow in the melt and crucible for crystal growth Kho, Rowin Wisadi
Abstract
A magnetic field is imposed on the melt during Czochralski crystal growth to control fluid flow. The influence of an applied magnetic field on heat transfer in a germanium melt has been investigated in this work. In heat-transfer modelling of the Czochralski process, values of thermal conductivity of the crucible material, pyrolytic boron nitride, are required as a function of temperature. The thermal conductivity of a pyrolytic boron nitride crucible material has also been determined in this work. Both the investigation of the influence of the applied magnetic field and the determination of the thermal conductivity have involved experimental temperature measurements and mathematical modelling of heat transfer. The finite element equations for the two-dimensional heat-conduction equation have been derived using the Galerkin method of weighted residuals. They have been validated by comparing the finite element solutions with the corresponding analytical solutions. The finite element results are in excellent agreement with the analytical solutions. A steady-state conduction-dominated mathematical model has been developed to analyze the temperature measurements obtained within the germanium melt in a Czochralski crystal growth configuration with and without an applied magnetic field of 0.099 tesla. The effect of the applied magnetic field on the heat transfer in the melt has been determined by fitting the model-calculated results to the measurements. The effective thermal conductivity of the melt has been found to decrease by a factor of seven due to the magnetic field. The thermal conductivity across a pyrolytic boron nitride crucible plate (through crucible thickness) has been determined from measurements of temperature responses in liquid gallium positioned on both sides of the plate, in conjunction with a transient mathematical model which simulates the thermal responses. By matching the simulated thermal responses with the measurements, the thermal conductivity of the pyrolytic boron nitride crucible plate has been obtained as a function of temperature.
Item Metadata
Title |
Heat flow in the melt and crucible for crystal growth
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
1991
|
Description |
A magnetic field is imposed on the melt during Czochralski crystal growth to control fluid flow. The influence of an applied magnetic field on heat transfer in a germanium melt has been investigated in this work. In heat-transfer modelling of the Czochralski process, values of thermal conductivity of the crucible material, pyrolytic boron nitride, are required as a function of temperature. The thermal conductivity of a pyrolytic boron nitride crucible material has also been determined in this work. Both the investigation
of the influence of the applied magnetic field and the determination of the thermal conductivity have involved experimental temperature measurements and mathematical modelling of heat transfer.
The finite element equations for the two-dimensional heat-conduction equation have been derived using the Galerkin method of weighted residuals. They have been validated by comparing the finite element solutions with the corresponding analytical solutions. The finite element results are in excellent agreement with the analytical solutions.
A steady-state conduction-dominated mathematical model has been developed to analyze
the temperature measurements obtained within the germanium melt in a Czochralski
crystal growth configuration with and without an applied magnetic field of 0.099 tesla. The effect of the applied magnetic field on the heat transfer in the melt has been determined by fitting the model-calculated results to the measurements. The effective thermal conductivity of the melt has been found to decrease by a factor of seven due to the magnetic field.
The thermal conductivity across a pyrolytic boron nitride crucible plate (through crucible thickness) has been determined from measurements of temperature responses
in liquid gallium positioned on both sides of the plate, in conjunction with a transient mathematical model which simulates the thermal responses. By matching the simulated thermal responses with the measurements, the thermal conductivity of the pyrolytic boron nitride crucible plate has been obtained as a function of temperature.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2010-11-17
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.
|
DOI |
10.14288/1.0078450
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Campus | |
Scholarly Level |
Graduate
|
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.