The Open Collections website will be undergoing maintenance on Wednesday December 7th from 9pm to 11pm PST. The site may be temporarily unavailable during this time.

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Bayesian decision analysis for pavement management Bein, Piotr


Ideally, pavement management is a process of sequential decisions on a network of pavement sections. The network is subjected to uncertainties arising from material variability, random traffic, and fluctuating environmental inputs. The pavement manager optimizes the whole system subject to resource constraints, and avoids sub optimization of sections. The optimization process accounts for the dynamics of the pavement system. In addition to objective data the manager seeks information from a number of experts, and considers selected social-political factors and also potential implementation difficulties. Nine advanced schemes that have been developed for various pavement administrations are compared to the ideal. Although the schemes employ methods capable of handling the pavement system's complexities in isolation, not one can account for all complexities simultaneously. Bayesian decision analysis with recent extensions is useful for attacking the problem at hand. The method prescribes that when a decision maker is faced with a choice in an uncertain situation, he should pick the alternative with the maximum expected utility. To illustrate the potential of Bayesian decision analysis for pavement management, the author develops a Markov decision model for the operation of one pavement section. Consequences in each stage are evaluated by multi-attribute utility. The states are built of multiple pavement variables, such as strength, texture, roughness, etc. Group opinion and network optimization are recommended for future research, and decision analysis suggested as a promising way to attack these more complex problems. This thesis emphasizes the utility part of decision analysis, while it modifies an existing approach to handle the probability part. A procedure is developed for Bayesian updating of Markov transition matrices where the prior distributions are of the beta class, and are based on surveys of pavement condition and on engineering judgement. Preferences of six engineers are elicited and tested in a simulated decision situation. Multi-attribute utility theory is a reasonable approximation of the elicited value judgements and provides an expedient analytical tool. The model is programmed in PL1 and an example problem is analysed by a computer. Conclusions discuss the pavement maintenance problem from the decision analytical perspective. A revision is recommended of the widespread additive evaluation models from the standpoint of principles for rational choice. Those areas of decision theory which may be of interest to the pavement engineer, and to the civil engineer in general, are suggested for further study and monitoring.

Item Media

Item Citations and Data


For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use