- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Seismic migration by Chebychev transform : a novel...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Seismic migration by Chebychev transform : a novel approach Mitsakis, Dimitrios Michael
Abstract
Chebychev semi-discretizations for both ordinary and partial differential equations are explored. The Helmholtz, heat, Schrӧdinger and 15° migration equations are investigated. The Galerkin, pseudospectral and tau projection operators are employed, while the Crank-Nicolson scheme is used for the integration of the time (depth) dependence. The performance of the Chebychev scheme is contrasted with the performance of the finite difference scheme for Dirichlet and Neumann boundary conditions. Comparisons between all finite difference, Fourier and Chebychev migration algorithms are drawn as well. Chebychev expansions suffer from neither the artificial dispersion dispersion of finite difference approximations nor the demand for a periodic boundary structure of Fourier expansions. Thus, it is shown that finite difference schemes require at least one order of magnitude more points in order to match the accuracy level of the Chebychev schemes. In addition, the Chebychev migration algorithm is shown to be free of the wraparound problem, inherent in migration procedures based on Fourier transform.
Item Metadata
Title |
Seismic migration by Chebychev transform : a novel approach
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
1987
|
Description |
Chebychev semi-discretizations for both ordinary and partial differential equations are explored. The Helmholtz, heat, Schrӧdinger and 15° migration equations are investigated.
The Galerkin, pseudospectral and tau projection operators are employed, while the Crank-Nicolson scheme is used for the integration of the time (depth) dependence.
The performance of the Chebychev scheme is contrasted with the performance of the finite difference scheme for Dirichlet and Neumann boundary conditions. Comparisons
between all finite difference, Fourier and Chebychev migration algorithms are drawn as well.
Chebychev expansions suffer from neither the artificial dispersion dispersion of finite difference approximations nor the demand for a periodic boundary structure of Fourier expansions. Thus, it is shown that finite difference schemes require at least one order of magnitude more points in order to match the accuracy level of the Chebychev schemes. In addition, the Chebychev migration algorithm is shown to be free of the wraparound problem, inherent in migration procedures based on Fourier transform.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2010-07-16
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.
|
DOI |
10.14288/1.0052978
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Campus | |
Scholarly Level |
Graduate
|
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.