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A B S T R A C T 

Chebychev semi-discretizations for both ordinary and partial differential equations 

are explored. The Helmholtz, heat, Schrodinger and 15° migration equations are in­

vestigated. The Galerkin, pseudospectral and tau projection operators are employed, 

while the Crank-Nicolson scheme is used for the integration of the time (depth) depen­

dence. The performance of the Chebychev scheme is contrasted with the performance 

of the finite difference scheme for Dirichlet and Neumann boundary conditions. Com­

parisons between all finite difference, Fourier and Chebychev migration algorithms are 

drawn as well. 

Chebychev expansions suffer from neither the artificial dispersion dispersion of 

finite difference approximations nor the demand for a periodic boundary structure of 

Fourier expansions. Thus, it is shown that finite difference schemes require at least one 

order of magnitude more points in order to match the accuracy level of the Chebychev 

schemes. In addition, the Chebychev migration algorithm is shown to be free of the 

wraparound problem, inherent in migration procedures based on Fourier transform. 
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I would perpetuate these nympths. 

So clear, 

Their skin's light bloom, it eddies in the air 

Heavy with tufts of sleep. 

Did I love a dream ? 

A Faun's Afternoon — Stephane Mallarme 
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C H A P T E R I 

SEISMIC M I G R A T I O N 

As a lily sways in newly stilled air, so my being moved 
in its elements, in my ravishing dreams of her. 

Hyperion or The Hermit in Greece — Friedrich Holderlm 

1.1 Migration Fundamentals 

Simplifying assumptions regarding the subsurface's structure are involved in seis­

mic data processing. Consequently, the final output does not correspond to the actual 

distribution of reflectors or diffractors in the earth's crust. The procedure that is re­

sponsible for repositioning the seismic data, so that associated reflectors or diffractors 

are properly reconstructed, is known as migration (Sheriff and Geldart, 1984). 

Most migration techniques involve a lot of simplifying assumptions (either in early 

or later stages of their formulation) in order to achieve versatile and practical algo­

rithms. The main problem — present due to the inverse problem nature of migration 

— is the lack of knowledge of the subsurface velocity distribution. Most techniques 

consider all the energy present in the seismogram as being primary; migration is mostly 



2 

done in two dimensions under the assumption that the cross-dip is zero. Moreover, 

lateral velocity variations cannot be accommodated both effectively and efficiently. 

The reported simplifications usually result in undermigrated or overmigrated sec­

tions and in an improper handling of noise and multiples, which exhibit themselves as 

migration noise and improper reconstruction of the structure underneath. Neverthe­

less, migration usually improves the quality of the output section to be interpreted by 

enhancing its lateral resolution (constrained by the presence of spatial aliasing). 

1.2 Modern Migration Algorithms 

While the diffraction-stack (or wavefront-sum) method (Hagedoorn, 1954) dom­

inated seismic migration up to the 70's, more recent migration techniques involve a 

two-step process. A wave-field extrapolation via a solution of the wave equation and 

an imaging principle, in order to define the end point of the downward continuation 

of the wavefield. 

There exist three main methods for the implementation of the approximation of 

the particular equation to be solved, namely, the Kirchhoff, the finite difference and 

the spectral methods. The most common migration technique is the finite difference 

method in which finite difference approximations are employed in all the coordinates. 

Various parabolic approximation equations to the scalar wave equation are commonly 

solved. These are one-way equations and this property makes them easier to solve, 

more stable and more appropriate for application of the imaging principle (Claerbout, 

1976). Their derivation is most readily understood on the basis of the paraxial approx­

imation (see 6.1). Two of these equations have widely been applied in the migration 
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of seismic sections, namely, the 15° and 45° parabolic wave equations. (Loewental et 

al, 1976; Hood, 1978). 

The other major class of migration algorithms is based on Fourier transforms and 

belongs to the spectral category (Bolondi et al, 1978). Its two basic variants are the 

F — K (frequency-wavenumber) or Stolt migration (Stolt, 1978) and the phase-shift 

migration (Gazdag, 1978). An improved implementation of the latter (phase-shift plus 

interpolation) is presented in Gazdag and Sguazzero (1983). The major characteristic 

of these methods is accurate space derivative estimates due to the global nature of the 

Fourier spectral basis functions. However, this global property prohibits velocity vari­

ations in the coordinate to be transformed and it allows errors (that would be localized 

in finite difference formulations) to contaminate the whole spectrum and consequently, 

to propagate all over the domain of the solution (Claerbout, 1985). The Kirchhoff sum 

method (in principle an advanced and rigorous version of the older diffraction stack 

method) is based on the KirchhofTs integral solution of the wave equation; it makes 

use of the Kirchoff-Huygens diffraction hypothesis, that is, every element of a reflector 

acts as a separate scatterer (French, 1975). Integral transform methods have been 

used for its solution (Schneider, 1978) and it has also been approached as a spatial 

deconvolution problem (Berkhout and van Wulfften Palthe, 1979). 

None of above methods could claim to be the best. Their performance depends 

on the data set and on the particular implementation used. In general though, finite-

difference methods are limited to either 15° or 45° dips, they can accommodate lateral 

velocity variations and they produce less migration noise. Frequency methods can mi­

grate dips of any degree, but they produce more migration noise and they become very 
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cumbersome when lateral velocity changes need to be handled (Sheriff and Geldart, 

1984). 

Conventionally, migration is done after CMP stacking, so that the cost is reduced 

since the half-offset coordinate has been eliminated. The quality of a migrated section 

can be enhanced if migration is performed before stack (Dubrulle, 1983; Reshef and 

Kosloff, 1986). This is known as pre-stack migration and it is very costly. A partial 

pre-stack migration procedure has also been proposed (Yilmaz and Claerbout, 1980). 

Another interesting pre-stack kind of migration involves the migration of common-

midpoint slant stacks (Ottolini and Claerbout, 1984), whereas even two-way wave 

equations have recently been used in migration (Kosloff and Baysall, 1983, Baysall et 

al, 1984). 

Discussion of the many fine points involved in migration and an analysis of the 

numerous elaborate techniques that have been proposed goes beyond the scope of 

this brief summary of the migration fundamentals and this quick look at the most 

basic algorithms. An extensive and in-depth discussion of the subject can be found in 

Claerbout (1985). 

1.3 Reflecting and Absorbing Boundary Conditions 

In the numerical solution of initial boundary value problems, a finite grid is used to 

perform the computations. A seismic model cannot be represented by a finite medium 

and therefore, by retreating to numerical methods, we introduce artificial boundaries 

in our model. These boundaries create unphysical reflections which contaminate the 

solution, interfere with the true reflections and, possibly, cause instabilities. However, 
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the earth does not feature those boundaries and, consequently, the waves (obeying 

the physical free-space boundary conditions) will continue through them to die out at 

infinity. 

We see the need to invent special boundary conditions which would simulate trans­

parent boundaries. Two major directions in establishing them exist. The first involves 

introduction of numerical viscosity at an area close to the boundary, so that the wave's 

amplitude is reduced as they approach it; subsequently, we either get weak or no re­

flections at all (Lysmerand and Kuhlemeyer, 1969). This method performs well for 

compressional waves but diminishing of the reflected shear waves is not satisfactory. 

Recently, Cerjan et al (1985) proposed a modification of this technique to account 

for its shortcomings. In general, this first absorbing boundary condition technique 

has the advantage that is flexible enough to be employed regardless of which kind of 

discretization of the problem is used (Kosloff and Kosloff, 1986). 

The second main approach is directed towards factoring the wave equations into 

incoming and outgoing waves. Modeling outgoing wave components at the boundaries, 

we succeed in absorbing energy over a wide range of angles of incidence and, thereafter, 

reduce artificial reflections. The transparent (the terms absorbing, radiating and flowing 

also appear in the literature) boundary conditions for the full elastic and scalar wave 

equation are essentially paraxial approximations of them. This technique has been 

developed for finite difference approximations and details can be found in Lindman 

(1975), Reynolds, (197.8), Clayton and Engquist, (1977), Israeli and Orszag, (1981); 

an analysis of the well-posedness and stability of the resulting schemes has also been 

done (Engquist and Majda, 1977 and 1979). Absorbing boundary conditions for the 

parabolic wave equations used in migration have also been developed (Clayton and 
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Engquist, 1980). Problems associated with this technique are its inability to account 

for an adequate elimination of reflected energy in multi-dimensional problems when 

the angle of incidence is shallow and that its application to global discretizations 

(Fourier methods) is not clear, since although all the grid points are coupled, the 

boundary conditions are local. Total cancellation of the artificial reflections may be 

achieved by alternating between Dirichlet and Neumann boundary conditions; the 

reflection coeffients for these conditions are +1 and —1 respectively and therefore 

they cancel each other out (Smith, 1974). Nonetheless, the process requires excessive 

computations. Recently, a slightly different decomposition (Keys, 1985) helps the 

design of absorbing boundary operators by incorporating the direction of propagation. 

Coordinate transformations have also been investigated (Grosch and Orszag, 1977); 

however, significant errors might be introduced since waves in the vicinity of infinity 

cannot be resolved if the true solution is oscillatory there. Bayliss and Turkel (1982) 

developed a similar class of boundary conditions and showed that the behavior of the 

solution in the far field strongly affects the kind of absorbing boundary conditions to 

chosen. 

1.4 Fourier Transform Migration and Associated Problems 

Spectral Fourier methods impose periodic boundary conditions on the differential 

equation under consideration. Such an assumption for a seismic section is most likely 

invalid. However, if periodic boundary constraints are not imposed, the Gibbs phe­

nomenon (see 2.2.4.1) will either slow down the convergence of the method or possibly 

lead to its divergence. 
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In addition to demanding periodic boundary conditions, the computational grid of 

a discrete Fourier transform cannot distinguish between a wavevector K and its aliases 

K ± N where N is the period of the transform. That could create very serious prob­

lems when evaluating convolutional sums in the wavenumber domain due to improper 

interaction among the various modes. This phenomenon is actually a manifestation 

of reflecting boundaries in the Fourier method (discretizing the continuous Fourier 

transform over a finite domain, forces the both the function and the transform to be 

periodic) and it is better known as wrap-around (periodic reflections or mirror images). 

In practice, this is avoided by doubling the period of the D.F.T and appending the 

extra space with zeros (Stolt, 1978); consequently, the various modes interact properly 

and we avoid having objects migrating across the boundaries of the computational 

domain and producing incorrect results near the boundaries (Gazdag, 1978). 

1.5 Chebychev Transform as an Alternative 

The induced periodicity and the introduction of extra computational work, due to 

need for padding with zeros, are undesirable features of Fourier methods. Achieving 

a relaxation of those requirements, while maintaining accurate derivative evaluation, 

implies that we employ spectral transforms that are non-periodic. 

The Chebychev polynomials (see 2.2.4.2) emerge as a viable alternative for coping 

with the problem, since they enjoy the advantage of accurate derivative approximation 

without the need of any specific boundary structure. As far as the problem of the 

reflecting boundaries is concerned, a relevant variant of existing techniques should be 

employed. 
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Before studying the performance of Chebychev spectral methods in equations used 

for migration procedures (which are partial differential equations with two spatial 

dimensions and time derivatives), we should investigate the particularities and the 

details of the technique in simpler equations. In this thesis, four equations of increasing 

difficulty are solved with both finite difference and Chebychev schemes and a discussion 

of the relative performances is presented. These equations are: 

1. The one-dimensional Helmholtz equation with the coefficient of the function term 

being positive; this is an eigenvalue-eigenfunction problem (chapter III). 

2. The one-dimensional homogeneous heat equation, which is the natural extension 

of the previous ordinary differential equation to the equivalent partial differential 

equation; a first order time derivative has been introduced, so that the complica­

tions of time differencing may be studied (chapter IV). 

3. The one-dimensional Schrodinger equation (the complex counterpart of the heat 

equation), since it is virtually identical to the diffraction term of the 15° migration 

equation (chapter V). 

4. The 15° migration equation, for a 2-D earth model (chapter VI). 

A presentation of the fundamentals of the various techniques and their particulars 

is given in chapter II; an updated summary of their performance for various problems 

has also been included. 
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C H A P T E R II 

S P E C T R A L M E T H O D S 

But, on the other hand, in a universe suddenly 

divested of illusions and lights, man feels an 

alien, a stranger. 

The myth of Sisyphus — A l b e r t Camus 

2.1 The Method of Weighted Residuals 

All numerical methods seek the solution in a discrete finite point set and therefore, 

both the input and the output vector is given and sought, respectively, on those points. 

It is evident that an interpolation problem is encountered here, and it is essentially the 

particular form of the interpolation scheme used (either polynomial or trigonometric 

in general) that characterizes and distinguishes the various methods. In order to 

attempt a simultaneous description and comparison of the finite difference and the 

spectral methods, we may view them as special cases of discretization schemes known 

under the general name of the Method of Weighted Residuals (M.W.R) (Hussaini et 

al, 1983); finite elements may also be understood under this general frame. Detailed 
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presentations of the M.W.R method may be found in Strang and Fix (1973), Finlayson 

(1972) and Vichnevetsky (1981). A fundamental description is provided below. 

The solution is sought in the form of a truncated series expansion Yin an9n in 

terms of the basis functions, i.e the gn's. The expansion is then substituted in the 

differential equation to be solved and a residual is produced. In the next step another 

set of functions, usually referred to as weight functions, are used to manipulate this 

residual in a certain way, so that some norm of it would be either minimized or 

maximized. 

In most practical cases, the manipulations follow the rules of the common inner 

product in the Hilbert space, resulting in the usual projection of the residual. In this 

way its L2 norm — which is linked to its energy in a very straightforward manner — 

is minimized. This provides us with a set of simultaneous algebraic equations to be 

solved, so that the coefficients of the assumed expansion (the an's) will be obtained. 

2.2 The Choice of Basis Functions 

2.2.1 Finite difference methods 

The finite difference methods involve a polynomial interpolation, whose explicit 

form can be viewed either as the Lagrange interpolating polynomial or the Newton 

finite difference polynomial. According to this scheme, the basis functions are poly­

nomials of a certain degree (depending on the accuracy desired) having the property 

that every one of them is local on the computational grid. 
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2.2.2 Spectral methods 

The spectral methods involve a trigonometric interpolation, where the basis func­

tions belong to infinitely differentiable sets of linearly independent (and most com­

monly orthogonal) functions, which are usually chosen among linear combinations of 

the eigenfunctions of various (either singular or non-singular) Sturm-Liouville prob­

lems. Those contrary to the basis functions of the finite difference methods, are global 

on the computational grid. 

2.2.3 Finite difference versus spectral methods 

To show the close relationship of the polynomial interpolation, with Taylor-type 

expansions, we will use the Newton-Gregory formula for the approximation of a func­

tion f{x) between the points a and a + (n — l)e using n equidistant interpolating 

points a, a + e,..., a + (n — l)e (Lanczos, 1938): 

with Ax = e and [x]K = x(x — e)(x — 2e) .. . (x — (K, — l)e). When /(x) is analytic at 

x = a with e tending to 0, (2.1) becomes 

(2.1) 

f{a + x) = f[a) + f'[a)x + ...+ 
( n - l ) ! 

(2.2) 
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which is a Taylor expansion truncated to n terms. It is obvious then, that polynomial 

interpolation is based on a Taylor-type of expansion. 

Taylor expansions show a local character. As a consequence, their extrapolating 

property limits us to estimating values only exceedingly close to the centre of the 

expansion. The accuracy of the approximation deteriorates rapidly, as we move farther 

away from its close vicinity. Therefore, due to the Taylor expansion characteristics, the 

distribution of the error is much less uniform when using finite differences. Even in the 

case of a convergent approximation significant departures from the true solution might 

arise due to three other important sources of discrepancies. These are the aliasing, the 

truncation error and the boundary conditions (Vichnevetsky, 1981). 

Aliasing is due to high frequency characteristics of the function being sought, which 

might prohibit its adequate representation by a certain degree polynomial. Higher 

frequencies fold back and as they become indistinguishable from lower ones, degrade 

the approximation even more. The only way to reduce the effect of this type of error is 

to retain more terms in the truncated expansion or equivalently to increase the degree 

of the approximating polynomial. It is well understood that any finite function cannot 

be band-limited; therefore, by increasing the number of samples we cannot eliminate 

aliasing. However, we may be able to limit it to an acceptable level (Brigham, 1974). 

Trigonometric interpolation cannot reduce the effects of aliasing either, but it can 

help us to eliminate completely the other source of serious problems, the so-called 

truncation error (Vichnevetsky, 1981) or phase error (Orszag, 1971b). The local char­

acter of the finite difference method and therefore, the small number of grid points 

involved in evaluating a certain order derivative, creates an error that becomes more 
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profound (Orszag, 1971e) for the short wavelengths (high wavenumbers or frequen­

cies), as the grid cannot handle their spatial variational rates adequately. This error 

unfortunately propagates and results in an alteration of the characteristics of those ill-

handled wavelengths introducing instability to the scheme, which inevitably degrades 

or even destroys completely the accuracy of the approximation. This phenomenon has 

long been recognized as a fundamental potential flaw in finite difference implementa­

tions and it has been termed grid (the terms numerical and artificial are used, as well) 

dispersion (Alford et al, 1974). In other words, the phase speed becomes a function 

of the discretization interval. Therefore, it alters accordingly the characteristics of 

propagation (Kelly et al, 1976). 

The most common ways of overcoming this problem are oversampling and numer­

ical viscosity. Since we are only interested in band-limited signals, we can choose the 

sampling rate such that numerical dispersion lies outside the band of interest. This 

approach is described as oversampling since we need to take 8-10 points per minimum 

wavelength of interest, as opposed to 2 according to the Nyquist aliasing criterion. This 

imposes a practical limitation when high-frequency resolution is sought (Kosloff and 

Baysal, 1982). Numerical viscosity amounts to an implicit filtering of high wavenum­

bers that are susceptible to artificial dispersion. Artificial viscosity is usually added 

to nondissipative schemes and it has the advantage, that the user controls the magni­

tude of the dissipation induced through the viscosity coefficient. Inherently dissipative 

schemes also exist (upstream differences, Lax-Wendroff). Employment of such schemes 

may be either advantageous or disadvantageous, depending on the particular charac­

teristics of the problem being tackled. For hyperbolic problems dispersion accumulates 

with time. One manifestation of cumulative dispersion is dissipation. Attention must 
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be paid when elaborate schemes are used as parasitic waves might be introduced. It 

is also of interest to note that shear waves appear to undergo more severe numeri­

cal dispersion than longitudinal waves (Chin et al, 1984). Additionally, mixed finite 

difference schemes might conceal subtleties with respect to their stability properties. 

For example, the leap-frog Dufort-Frankel scheme for the advection-diffusion equation 

requires some stringent stability requirements in two dimensions, while it is uncondi­

tionally stable in one dimension. This is of significant interest in geophysical modeling, 

where the computational grid exhibits a small horizontal size and large velocity in the 

vertical direction (Coushman-Roism, 1984). 

Implementation of a higher order finite difference scheme reduces the truncation 

errors and consequently allows for coarser sampling. As an example of artificial disper­

sion consider the simple one-dimensional, homogeneous and non-dispersive hyperbolic 

equation d2Pjdt2 = c2d2 P / dx2. Time discretization results to an anomalous dis­

persion, whereas space discretization leads to normal dispersion. As a result when 

a scheme is controlled by temporal error, the numerical dispersion leads the signal, 

whereas it follows the signal when the spatial error is dominant (Dablain, 1986). Fur­

thermore, artificial dispersion may give rise to anisotropy when more spatial coordi­

nates are considered (Alford et al, 1974). 

The analysis of the numerical dispersion is greatly facilitated through the calcu­

lation of the group velocity. The group velocity controls the energy propagation in 

dispersive partial differential equations. Therefore, a new kind of analysis — termed 

group velocity or normal mode analysis — has been proposed (Trefethen, 1982) for 

the investigation of the artificial dispersion associated with discrete representations of 

partial differential equations and its consequences. 
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Although this analysis is directly applicable to nondissipative finite difference 

schemes only, it can be extended to most dissipative ones, since dispersion usually 

dominates dissipation at low frequencies. A lot of insight and a quantitative com­

prehension of various differencing errors in wave propagation problems can be gained 

through the group velocity analysis. In addition, this analysis has been shown to 

provide us with a clear understanding of the Gustafsson, Kreiss and Sundstrom sta­

bility theory for hyperbolic initial boundary value problems (Gustaffson et al, 1972) 

— difficult in its original algebraic formulation (Trefethen, 1983). 

The boundary conditions comprise the third source of discrepancy between the true 

and the discrete solution. The spectral methods handle specific boundary constraints 

in a very straightforward manner, which closely resembles the analytic way of handling 

them. This is not true for the finite-difference methods, which require the introduction 

of ficticious points across the boundaries in order to be able to represent certain type 

of boundary conditions. This results in expressions that are neither accurate nor do 

they remind us at all of the original expression. The reason, why boundary constraints 

formulations exhibit such significant differences depending on the method used, has to 

be found in either the local or the global character of the basis functions used. 

Finite difference formulation of boundary conditions involves only the local bound­

ary basis function, whereas a spectral formulation involves all the basis functions re­

tained in the expansion. It would then be anticipated that boundary conditions would 

be much more accurately represented by spectral methods, although we may have to 

pay for an increased complexity in the calculations (details about the manipulation 

of the boundary conditions equations will be given in the discussion of the various 
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types of spectral methods). The late revival of the normal mode analysis (Gustafs­

son, 1982) has facilitated a better understanding of the effect of various inflow-outflow 

boundary conditions on the accuracy and stability properties of different finite differ­

ence schemes (Lax-Wendroff, folded Lax-Wendroff, leap-frog, Mac Cormack) applied 

to multi-dimensional initial boundary value hyperbolic equations (Abarnabel and Mur-

man, 1982; Beam et al, 1982; Blotner, 1982; Coughran Jr.,1984). 

All spectral methods are very sensitive to the correct implementation of the bound­

ary equations; an inappropriate implementation could cause a hopeless divergence of 

the method (Orszag, 1971a). 

2.2.4 Choice of spectral basis functions 

Of equal importance is the choice of the basis functions to be used in a spec­

tral method. The basis functions are frequently chosen among linear combinations of 

eigenfunctions of Sturm-Liouville problems. These eigenfunctions are linearly indepen­

dent and they can be orthonormalized. A very detailed analysis of convergence rates 

can be found in the excellent monograph "Spectral Methods in Numerical Analysis" 

(Gottlieb and Orszag, 1977); here, we will restrict ourselves to a very comprehensive 

presentation of the most fundamental properties they possess. 

2.2.4-1 The Fourier transform 

The most popular set of orthogonal basis functions is the complex Fourier series, 

which is, in fact, the one that has extensively been used in geophysics. Several factors 

contribute to its great popularity. The transform (spectral) components are equidis-

tantly placed, which makes both the concept of frequency and strength of various 
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frequency components very clear. It is very clean and fast, in the sense that the ma­

nipulations that involve differentiations and some integrations are very easy to handle 

efficiently. The discovery of the Wiener-Khintchine theorem, in the context of Fourier 

transform theory, allows for an interesting and very useful exploration of the spectral 

properties of the function under consideration and permits us to evaluate convolutional 

sums through equivalent simple vector multiplications in the spectral domain. 

A very serious problem though, that prohibited for a long time the wide use of 

the Fourier methods in practical applications, was the great difficulty involved in 

performing the integration that defines the transform itself. There are also many 

cases for which it is impossible to evaluate the transform analytically. Consequently, 

numerical evaluation ended up being the only feasible alternative; however, it was 

slow and impractical. A major breakthrough took place in 1965 with the introduction 

of the F.F.T algorithm (Cooley and Tukey, 1965), which improved greatly the speed 

in evaluating the Fourier coefficients. The F.F.T algorithm is, in fact, a fast way 

of calculating trapezoidal sums involved in approximating the Fourier integrals and 

it, therefore, requires input at equidistant points; the spectrum is also given in a 

regular manner. However, Fourier coefficients may be computed otherwise and general 

methods — to account for irregularly spaced abscissas and for points outside the 

fundamental interval — using offset trapezoidal rules, have been developed (Lynes, 

1984). 

For a piecewise continuous functions /(x), which has bounded total variation, we 

define its Fourier series for 0 < x < 2ix as the periodic function (Gottlieb and Orszag, 
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1977) 
+ oo 

g(x)= £ a ^ k X (2-3) 
k= — oo 

where 

ak = V~ f(x)e-tkxdx (2.4). 

The complex Fourier series g(x) has a period of 27r, and it exhibits the following 

convergence properties: 

g{x) = ^[f{x+) +f{x-)} for x £ [0,2ir\ (2.5) 

and in particular 

g{p)=g{2*) = \[W+) + f {**-)] (2.6) 

If f(x) is smooth (infinitely differentiable) and periodic, the Riemann-Lebesgue lemma 

implies that a Fourier series truncated to L terms, converges to f(x) faster than any 

finite power of 1/L as L tends to infinity, for every x. Problems arise however, when 

either of the two previous assumptions is not met. 

Violation of the first assumption, implies a discontinuity of a certain order. Vi­

olation of the periodicity assumption (/(0+) ^ f(2n — )) is in fact equivalent to the 

introduction of discontinuities at x = 0 and x = 2-K. 

The existence of a discontinuity results in a non-uniform convergence of the trun­

cated Fourier series in the neighborhood of the discontinuity, which is well known as 

the Gibbs' phenomenon. Alternatively, the Gibbs' phenomenon may be explained by 

imagining an attempt at reproducing a function at a discontinuity by using linear 



19 

combinations of continuous functions (Yedlin, 1985) or through the side-lobes of a 

box-car filter when truncation of the data does not occur at the multiple of its fun­

damental period (Brigham, 1974). Tapering is usually applied to minimize the jump 

at the discontinuity (Kanasewich, 1981). Early applications of F F T to the solution of 

differential equations are given in Orszag (1971a) and Le Bail (1971). 

Under periodic boundary conditions Fourier methods are the natural choice and 

they can provide excellent results, but there exist a variery of diverse factors that can 

cause a Fourier method to converge slowly or even diverge, due to the presence of the 

Gibbs' phenomenon. Among those we may easily identify: 

a) Non-periodic boundary conditions; 

b) Discontinuity in a higher derivative due to the particular form of the differential 

equation when assuming a periodic solution; 

c) Improper imposition of periodic boundary conditions to a problem that is non-

periodic by structure; 

d) Conflict in the nature of the initial condition with the method applied. 

2.2.4-2 The Chebychev transform 

In contrast to Fourier polynomials, which are linear combinations of eigenfunctions 

of non-singular Sturm-Liouville problems, eigenfunctions of singular Sturm-Liouville 

problems have a convergence rate that is controlled only by the infinite differentiability 

of the function. In other words, we may drop the periodicity requirement or equiv-

alently the series will not exhibit the Gibbs' phenomenon at the endpoints. Some of 

these eigenfunctions could be found among the Chebychev, the Legendre, the Laguerre, 

the Hermite and other polynomials. 
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Among those, the Chebychev and the Legendre polynomials appear to have been 

applied most often. Chebychev polynomials have the advantage that the transform can 

be evaluated fast and efficiently via an algorithm (Gentleman, 1972) that incorporates 

the FFT, whereas there is no fast Legendre transform known yet; a relatively fast 

Legendre transform has been written, nevertheless (Orszag and Kells, 1980). Even 

though they share almost similar properties, the distribution of the error is more 

uniform in the Chebychev case, whereas Legendre succeeds in showing smaller errors 

at the endpoints (Lanczos, 1973). 

The Chebychev polynomials of the first kind are defined as 

Tn(x) — cosra(cos x), for - 1 < x < 1 (2.7) 

or (under the transformation x = cos#) 

Tn(cos 9) = cos n9, for 0 < 9 < TT (2.8) 

where n is the order of the polynomial. 

They satisfy the orthogonality relation 

(2.9) 
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with CQ = 2 and c n = 1 for n > 0. In the classical least squares sense the Chebychev 

coefficients of f(x) in the expansion Yln°=oanTn

 a r e given from the formula 

The convergence rate of the expansion depend only on the smoothness of f(x) in 

the interior of the domain of definition. Consequently, Chebychev expansions do not 

exhibit the Gibbs' phenomenon at the endpoints, while they do at any internal dis­

continuity, i.e if the n-th derivative of the function u(x, t) is discontinuous somewhere, 

then, we do not obtain infinite order accuracy but accuracy of the order of 0(Axn) in 

the neighborhood of the discontinuity, instead (Orszag and Jayne, 1974). A variety of 

properties and recursive relations regarding the Chebychev polynomials can be found 

in many relevant books (Gottlieb and Orszag, 1977, Fox and Parker, 1968, Rivlin, 

It is important to point out here that the Chebychev points are not equidistant 

in x but clustered near the endpoints instead. Therefore, they would provide a much 

better representation of functions that change quickly in narrow boundary layers, than 

polynomials using an equidistant distribution of points. However, this high resolution 

advantage, may cause problems when it comes to time differencing (Hussaini et al, 

1983, Orszag, 1980). Chebychev expansions need at least 7r polynomials retained per 

wavelength in order to converge fast. In other words, if a function oscillates over a 

distance A, we expect to retain 27r/A polynomials for rapid convergence. That number 

would be of course smaller if rapid changes of the functions take place only close to 

the boundaries (Gottlieb and Orszag, 1977). 

(2-10) 

1974). 
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The exponential convergence (in the absence of discontinuities, of any kind) of 

Chebychev (or any other "spectral" type polynomials), as the number of retained 

polynomials increases, may be alternatively explained as follows. Spectral methods 

provide a much better estimate of the larger true eigenvalues of the differential oper­

ators involved than finite difference methods do (Zang et al, 1982). 

Another set of polynomials {Un}, known as the Chebychev polynomials of the 

second kind, are orthogonal in the interval [—l,+l] with respect to the weighting 

1/2 
factor (1 — x2) and they are defined as 

and the corresponding coefficients of an expansion f(x) = YLanUn{x) are given as 

Some of the early applications of Chebychev polynomials in economization prob­

lems are discussed in Lanczos (1938) and Miller (1946), while the books by Lanczos 

(1957) and Fox (1962) include detailed presentations of the method and examples. 

Norton (1964) and Scraton (1964) studied Chebychev methods for the solution of lin­

ear o.d.e's and Clenshaw and Norton (1963) and Wright (1964) investigated non-linear 

o.d.e's; integral Fredholm equations were studied as well (Elliot, 1963). 

(2.12) 
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2.3 The Choice of Weight Functions 

Three different choices of weight functions are available; the corresponding spectral 

methods are known as the Galerkin, the collocation and the tau methods. In the 

Galerkin or spectral method the weight functions are exactly the basis functions used 

in the series expansion. The collocation or pseudospectral method employs weight 

functions which are shifted Dirac delta functions defined over a set of collocation 

points, on which the numerical and the exact solution are identical. The tau method 

could be viewed as a simplified version of the Galerkin method, because the weight 

functions are again the same as the basis functions. However, its particular treatment 

of the boundary constraints differentiates it from the latter. 

The previous short description of our three options in choosing the weight functions 

does not reveal some of the essential characteristics of each one of them that are 

encountered in practice. All the methods work under the assumption of homogeneous 

boundary constraints. If this is not so, the differential equation needs to be modified 

so that the solution satisfies equivalent homogeneous boundary conditions. 

In both the Galerkin and the collocation methods, all the basis functions have to 

satisfy the given boundary conditions on an individual basis. This is not a requirement 

for implementing the tau method. The above requirement makes the algebra more 

cumbersome in the first two methods (since we need to find a suitable but almost always 

non-orthogonal set of basis functions), and it therefore necessitates the introduction of 

relatively sophisticated tricks for the optimization of the resulting set of simultaneous 

algebraic equations that is developed in subsequent stages of the process (Orszag, 

1971c). This superiority of the tau method should be credited to its special treatment 

of the boundary constraints (Lanczos, 1957). The higher modes of the expansion 
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are not considered at all; instead, the boundary constraints are substituted for them 

(Orszag, 1971d). 

The tau method then emerges as an optimum choice for constant coefficient prob­

lems, although it is not expected to perform equally well for more complicated prob­

lems, such as variable coefficient or nonlinear ones. Special direct (full-diagonalization) 

or iterative (A.D.I) solvers may be devised to handle 2 or 3-D Chebychev tau formu­

lations (Haidvogel and Zang, 1979; Haldenwang et al, 1984). Collocation appears to 

be an obvious choice here, since it simplifies the complicated algebra without losing 

the high mode contribution, the latter becoming significant in complicated problems. 

Although the pseudospectral method exhibits such an advantage, it suffers from intro­

ducing aliasing terms at full strength, a feature that might cause an inherent instability 

(Orszag, 1972; Fox and Orszag, 1973). On the other hand, Galerkin methods do not 

include aliasing terms but require complicated manipulations and more computational 

work (Orszag, 1969, 1970; Patterson and Orszag, 1971; Price and Varga, 1974). The 

Galerkin and the tau methods could also be viewed (at least in simpler problems) as 

equivalent to collocation methods with a different distribution of the collocation point 

set. 

2.4 Problems, Advancements and Current Trends in Fourier and Chebychev 

Methods 

Although spectral methods are particularly suited for simple geometries, efficient 

transformations might be employed to adjust them for distorted non-uniform domains 

(Orszag, 1980; Mc Crory and Orszag, 1980); an on-going research in this direction 

seems quite promising. 
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Pseudospectral schemes have been attractive since the early developments of spec­

tral methods (Merilees, 1973; Schammel and Elsasser, 1976; Haidvogel, 1977), and 

they have also been applied to seismic migration (Pann et al, 1979). Subsequently, 

they have been progressively gaining in numericists' preference; this is especially pro­

nounced for pseudospectral Chebychev approximations. 

The main reason for such a dominance might be found in the easy handling of 

operators involving nonconstant coefficients, nonlinearities or non-smooth geometries, 

in the pseudospectral framework; complicated problems in flow and air dynamics have 

been handled satisfactorily (see 2.5 and 2.6). Pseudospectral Chebychev techniques 

have also performed very well for difficult domains as laminar heat transfer in pipelines 

(Hatziavramidis and Ku, 1983), the extended Graetz problem (Ku and Hatziavramidis, 

1984), or axisymmetric flow in a heated, rotating spherical shell (Macaraeg, 1986). 

Galerkin or tau methods require excessive amounts of computations on similar com­

plicated problems (Deville and Mund, 1985). 

Pseudospectral Fourier semi-discretizations have already been applied in seismic 

migration; the transform provides an accurate evaluation of the spatial derivatives ap­

pearing in the equations. Gazdag (1981) employed a third-order Runge-Kutta scheme, 

whereas Kosloff and Baysal (1983) used a leap-frog (second-order accurate) scheme for 

the time differencing. 

Zebib (1984) proposed an interesting variant of Galerkin's method: the higher 

derivative of the differential equation under consideration is expanded in Chebychev 

polynomials and the lower derivatives and the function itself are evaluated via suc­

cessive integration of recursion formulae. The aim is to obtain higher accuracy than 

the tau method for the same amount of computations and satisfy non-homogeneous 
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conditions on the function and its derivatives directly; the manipulations involved, 

though, tend to become very complicated and obscure. 

Finally, we should mention that among other applications, integral equations with 

weak singularities have been solved with Chebychev methods (Frenkel, 1983a) and the 

set of f/n's has also been used for both p.d.e's (Shoucri and Knopr, 1974) and integral 

equations (Frenkel, 1983b). In addition to these, the shifted Chebychev polynomials 

Tn(x2) have been successfully applied for the solution of Sturmian eigenalue equations 

(Delic and Rawitscher, 1985), while Boyd (1987) has studied the implementation of 

rational Chebychev basis functions in expansions on an infinite interval. 

A brief but very enlightening review of the theory and the potential applications of 

the spectral methods could be found in Orszag and Israeli (1974), whereas an update 

with particular emphasis on pseudospectral techniques can be found in Gottlieb et al 

(1984b). 

2.5 Time Integration in Spectral Methods 

Although the above discussion provides a comprehensive analysis of the spectral 

methods, it is not complete in the sense that it does not cover mixed initial boundary 

value problems. 

The approach mostly used, combines spectral representations of the spatial co­

ordinates while maintaining some kind of finite difference scheme in time (finite ele­

ments may provide an equivalent or superior level of accuracy (Ku and Hatziavramidis, 

1984)). Nevertheless, time-spectral expansions have been presented but they have not 

found wide applications (Morchoisne, 1984; Tal Ezer, 1984). The particular choice of 
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this scheme is not straightforward; many interrelated factors have to be considered so 

that an optimum choice for the specific p.d.e will be chosen. 

2.5.1 Explicit schemes 

Explicit time integration schemes enjoy easy formulation and one-step storage re­

quirements; they do not require matrix inversions and when using them we can take 

advantage of the spectral representation and evaluate the derivatives either via re­

currence formulae (tau) or via the FFT algorithm (Galerkin and pseudospectral). 

Despite these advantages, explicit schemes suffer either from unconditional instability 

(e.g second-order Runge-Kutta for Fourier methods, leap-frog for Chebychev problems) 

or from restrictive conditional stability which imposes severe limitations on the size of 

the time step At (Gottlieb and Orszag, 1977). Consequently, long-scale calculations 

become inefficient or even prohibited. The source of this problem can be linked to one 

of spectral methods' main advantages, namely, their high resolution. This is especially 

pronounced in the Chebychev case due to the clustering of the Chebychev nodal points 

near the boundaries; for the usual set of points ij = cosfaj/N), j = 0,..., N, we see 

that the points x\ and x^- i a r e within about w2/2N2 of the boundary points x0 and 

XN respectively and therefore, the resolution there is Ax = 0(l/jV 2). This severe lim­

itation is especially annoying when we are dealing with problems that do not exhibit 

strong boundary-layer structure (Orszag, 1980). 
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2.5.2 Implicit schemes 

The next obvious alternative is implicit schemes. Spectral implicit schemes allow 

much larger time steps to be taken but their employment for time-integration is hin­

dered by some important drawbacks. The representations of the spectral operators are 

full, ill-conditioned matrices which cannot be easily inverted; the formulation becomes 

obscure and major problems arise in applying fast spectral algorithms for the evalua­

tion of the derivatives. Furthermore, as the dimensionality of the problem is increased, 

formulations become complicated and the storage requirements and computational 

work using direct methods (e.g Gaussian elimination) become prohibitively high. One 

significant exception exists for implicit (usually Crank-Nicolson) tau schemes which 

exhibit a quasi-tridiagonal structure and as a result, they are amenable to a direct and 

fast inversion through a special modification of the classic LU decomposition (Golub 

and van Loan, 1983) tailored to their structure. This algorithm is readily expandable 

in higher dimensions, but unfortunately this conveniently exploitable structure is lost 

even for a linear but non-constant coefficient problem (Hussaini et al, 1984). Neither 

fully explicit nor fully implicit methods seem to provide a satisfactory answer to the 

time-differencing issue. 

2.5.3 Semi-implicit and hybrid explicit-implicit schemes 

Combinations of explicit and implicit schemes are viable alternatives. The motiva­

tion for such semi-implicit schemes is the implicit treatment of the boundary regions 

(where the high resolution occurs), while treating the interior of the computational 

domain explicitly (Gottlieb and Orszag, 1977). Mixed equations might result in very 

stiff systems; hybrid explicit-implicit schemes might be then applied so that various 
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terms are treated differently (Drummond et al, 1985). Another approach involves a 

finite difference predictor (implicit) combined with a spectral corrector (explicit). The 

idea here is to employ finite-differences in order to decrease the density of the matrix 

allowing in that way an easier inversion; the implicit nature of the scheme helps stabi­

lizing the algorithm and permitting the use of larger time steps. That allows us (using 

a modified-Euler corrector scheme, for example), to increase the size of the time step 

to 0(l/N) as compared to 0(1/N4) when applying Chebychev methods to equations 

involving second order derivatives (Taylor, 1984). 

Such schemes have also been the answer to the numerical difficulties associated 

with employing explicit Chebychev integration for the Navier-Stokes equations; natu­

ral boundary conditions for the pressure are missing for incompressible flows and the 

classic ways of specifying them (proven to be successful in a finite differences environ­

ment) fail. The Adams-Bashworth-Crank-Nicolson (ABCN) scheme (Moin and Kim, 

1980) overcomes the difficulties by resorting to a well-posed problem, i.e treatment 

of the problem as an initial boundary value one, as opposed to a simply initial value. 

Direct extension of this scheme to higher dimensions is cumbersome and time-splitting 

techniques have been augmented in the numerical process (Orszag and Kells, 1980); 

however, the new scheme exhibits a low order accuracy in time, i.e O(At). Recently, 

an influence matrix technique for the boundary conditions specification has been in­

corporated into the scheme (Dennis and Quartelle, 1983; Le Quere and De Roquefort, 

1985). 
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2.5.4 Unconditionally stable explicit schemes 

Another alternative (in hyperbolic problems) is the use of unconditionally stable 

explicit schemes, where the size of At to be used, depends on accuracy requirements 

only; At still needs to remain fairly small (however, much bigger than the original 

stringent limit) in order to maintain good accuracy levels. The idea is to employ a 

purely explicit scheme (e.g Runge-Kutta, leap-frog, modified Euler) but to couple the 

temporal and spatial representations, instead. This is done by the application of an 

appropriate filter (whose choice depends both on the scheme used and the stiffness of 

the problem), so that phase-errors remain under control (Gottlieb and Turkel, 1980). 

This approach has proven to work quite satisfactorily for the Fourier case but its 

success for the difficult Chebychev case remains controversial (Gottlieb et al, 1984b). 

It has been argued that the Gottlieb-Turkel filter does not result into absolutely stable 

schemes. Numerical investigation shows that limited filtering does not alter the abso­

lute stability properties, whereas extended filtering causes the scheme to be absolutely 

unstable for any At. In addition, artificial dispersion, similar to the one introduced 

by finite differences, has also been observed. In more complicated problems, it is ex­

pected that although filtering would stabilize the fast modes, it would simultaneously 

distort the slow modes to a significant level, causing deterioration of the accuracy of 

the numerical method (Fulton and Taylor, 1984). 

A powerful alternative, mainly for parabolic differential equations, has been found 

in modified versions of the Dufort-Frankel explicit scheme. Again here a controllable 

parameter 7 is incorporated in the scheme so that phase-errors are damped during suc­

cessive time steps. Consequently, time step restrictions are (at least in theory) relaxed 
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and only accuracy considerations are taken into account (Gottlieb and Gustafsson, 

1976; Gottlieb and Lustman, 1983a). 

2.5.5 Iterative techniques 

The pronounced difficulties encountered due to the serious At limitations described 

in the foregoing paragraphs, are most important for those classes of equations in which 

the temporal behavior of the solution takes place on a much smaller scale than the 

spatial one. Similar considerations concern cases with solutions exhibiting temporal 

and spatial behavior occurring on the same scale. 

Another class of problems includes equations for which we are simply interested in 

steady-state solutions. Then a technique which would converge fast in the steady-state 

solution (although being maybe inaccurate initially) would be quite adequate. Direct 

solvers are definitely impractical for the matrix inversions emerging in either implicit 

formulations or in steady-state problems. Iterative schemes have been proven to be the 

answer to this problem. The fundamental concepts involved in the iterative solution 

of those systems are presented briefly below (Gottlieb et el, 1984b). 

Let L(u) = f where L is the spectral matrix, u the approximate solution and / a 

known vector. Iterative solution of this system proceeds according to 

t i ^ 1 = u n - i ¥ - 1 [ L ( u r t ) - / ] (2.13) 

where H is a sparse, efficiently invertible matrix that approximates the Jacobian Ji 

of L. 
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Iterative schemes based on this formula are classified as stationary; various choices 

of H (called the preconditioning operator) define particular schemes exhibiting dif­

ferent convergence properties. In Jacobi's method H = d iag(JiJ, whereas in Gauss-

Seidel's method H is the lower triangular part of Jr.-

Nonstationary iterative schemes (e.g preconditioned Richardson's method) are 

based on 

un+l = un - anH-l[L{un) - / ] (2.14) 

where appropriate an's improve the convergence rate. 

Nonstationary second-degree schemes based on polynomial acceleration provide 

further improvements. The iterations are done according to 

un+1 = ujnun - anujnH-l\L{un) - f) + (l - w n)u"- 1 (2.15) 

Different definitions of u>n distinguish schemes based on the above formula (e.g Cheby­

chev acceleration and conjugate gradient methods). All these iterative methods are 

heavily affected from the choice of the preconditioner H. 

Routinely, a low-order finite difference approximation Hpo to L is chosen (Orszag, 

1980); special remedies might be required for cases where the norm ||/fppL|| is un­

bounded (Hussaini and Zang, 1984). An increase in the dimensionality of the problem, 

though, imposes serious computational considerations in the evaluation of and 

alternative preconditioners might have to be employed. Existing algorithms perform 

approximate factorizations or incomplete LU decompositions of Hpo to obtain a suit­

able operator fast (Zang et al, 1982, 1984). Minimal residual (MR) techniques can 



be combined with relaxation schemes (e.g Richardson, Chebychev) to give a robust 

parameter-free scheme whose convergence is guaranteed subject to the condition that 

all the eigenvalues of H^L lie in the right half of the complex plane (Wong et al, 

1983). 

Finite element matrices have been proposed for preconditioning spectral iterative 

schemes, as well. They exhibit properties similar to the finite difference precondi­

tioned, being moreover symmetric (Canuto and Quarteroni, 1985). Finite elements 

provide for geometrical ease in handling irregular boundaries; the use of Lagrangian bi­

linear elements result in very sparse matrices, lowering the inversion cost with respect 

to the use of higher degree finite elements (Deville and Mund, 1985). 

2.5.6 Spectral multigrid methods 

Preconditioning is extremely crucial and much of the current research is devoted 

to preconditioning in spectral multigrid (SMG) techniques that have recently been 

introduced. Multigrid methods (MG) can achieve a dramatic acceleration of iterative 

techniques (Zang et al, 1982, 1984), as they take advantage of a common property of 

most relaxation schemes, namely, the potential efficient reduction of the high-frequency 

error components but inevitable slow reduction of the low-frequency components. The 

MG method differs from conventional solvers, in the sense that the discretization and 

solution processes are intermixed and they benefit from each other. A sequence of 

grids with varying mesh spacing is used. Relaxation is performed in each grid and 

various interpolation techniques are applied for transfer of data either in a coarse to 

fine or a fine to coarse grid fashion (Grinstein et al, 1983). 
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Pseudospectral applications to both subsonic (Euler equations) and transonic (full 

potential equations) inviscid flows have been investigated in association with MG 

methods. The double character of the transonic case (subsonic-supersonic) needs 

highly sophisticated time-differencing schemes as high levels of stiffness are present 

hindering straightforward formulations (Drummond et al, 1985; Street et al, 1985; 

Hussaini and Zang, 1984). The Douglas-Gunn alternating direction implicit (A.D.I) 

iterative method seems to perform quite satisfactorily for the foregoing problems in 

two and three dimensions. 

Pseudospectral Fourier methods based on the FFT algorithm can be quite subtle. 

A fine point is associated with the evaluation of the derivatives in transform space. The 

highest (Nyquist) mode should be disregarded in the process to avoid contamination 

and divergence of the iterative MG scheme (two equivalent explanations of that could 

be found in Zang et al, 1982 and Brandt et al, 1985). This is known as the two 

point oscillation phenomenon. However, elimination of the Nyquist component might 

degrade the accuracy if a lot of information lies there; as an alternative Brandt et al 

(1985) performed the calculation of the derivative at the mid-points of the original 

collocation set. Thus, accuracy is preserved, at the expense of a small increase in the 

computational work needed. 

2.6 Shock H a n d l i n g in Spectral Methods 

The transonic case is challenging since it involves a mixed type (hyperbolic- elliptic) 

equation, which further complicates an already difficult situation (inviscid compress­

ible flows give rise to shock waves, that is to say, to discontinuous solutions). Shocks 
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require special attention: if a shock occurs in the interior of the computational do­

main, then the spectral methods' accuracy and convergence rate tends to deteriorate 

(shock capturing); for shocks occurring at the boundaries we do not need to worry 

(shock-fitting). A variety of filtering procedures can be applied to avoid the Gibbs 

phenomenon associated with the shock's formation (Gottlieb et al, 1984a, Hussaini et 

al, 1983). Evidently, in similar cases involving discontinuities, smoothing should play 

an integral role in the formulation of spectral methods so that they maintain stability 

and high levels of accuracy (Osher, 1984). 
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C H A P T E R III 

T H E H E L M H O L T Z E Q U A T I O N 

The stars grew dim, the sky grew light and against 
this luminous background appeared, as if delicately 
traced in ink, the mountains, trees and gulls. 

Dawn was breaking. 
Zorba the Greek — Nikos Kazantzakis 

3 . 1 Physical Aspects of the Helmholtz Equation 

In many applications involving evolutionary problems in time, we solve the time in­

dependent equations directly; we usually seek a time-harmonic solution. The Helmholtz 

equation is obtained under the assumption of an exp( — iut) harmonic time-dependence 

of the solution and in three dimensions it reads 

V 2 $ + A;2$ = 0 (3.1) 
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Depending on whether the Helmholtz equation is considered in the exterior or 

the interior of a body, it describes the scattering of the waves by the body or the 

propagation of the waves in it. 

A variety of boundary conditions are applied to (3.1); their form depends on the 

dimensionality, the geometry and special physical aspects of the particular problem. 

In general, though, proper boundary conditions on the physical surfaces and an appro­

priate (depending on the nature and the geometry of the problem) radiation condition 

at infinity are essential (Bayliss and Turkel, 1982). 

3.2 Numerical Aspects of the Helmholtz Equation 

Wave propagation considerations involve at least three characteristic quantities 

associated with the wavelength (Bayliss et al, 1985). 

1) The quantity (kAx) 1 measures the number of grid-points per wavelength and it 

is widely used as a measure of accuracy. 

2) The quantity kl (I is the diameter of the computational region) gives the number of 

wavelengths in the computational domain. Although usually not considered, this 

quantity has an impact on the discretization error. The latter increases linearly 

with k, despite the fact, that the number of points per wavelength remains constant 

(Bayliss et al, 1985). 

3) The quantity ka describes the number of wavelengths in the region in which k is 

spatially varying (a is the characteristic length of the inhomogeneous region). 

Any kind of discretization leads to a large linear system of equations; this system 

becomes bigger as k increases because the solution becomes more oscillatory and, 
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therefore, finer sampling rates (or equivalently higher-order interpolation polynomials) 

are required. LU decomposition takes excessive amounts of work to solve those systems 

and consequently, we either have to limit ourselves to moderate values of k or to resort 

to iterative schemes. 

The Helmholtz equation is difficult to solve using standard iterative methods (e.g 

SOR, Jacobi, conjugate gradient), because it allows both positive and negative eigen­

values for the difference operator (Nicolaides, 1979). That means that the Helmohltz 

operator is often indefinite. This happens when k2 is larger than the smallest eigen­

value of the discrete approximation to the operator — V 2 (Bayliss et al, 1983). That 

causes the low-frequency components of the error to be amplified leading to a diver­

gence of the iterative scheme (Grinstein et al, 1983). 

A variety of optimizations of these schemes has been proposed that work quite well 

for valus of A;2 that lead to slight indefiniteness (Nicolaides, 1979); preconditioning 

has been shown to accelerate the iterative procedures even for highly indefinite cases 

(Bayliss et al, 1983). Optimization has to circumvent additional problems introduced 

when radiation boundary conditions are used. These boundary conditions involve 

complex constants which destroy the self-adjointness of the Helmholtz matrix — a 

property that is a fundamental requirement in most iterative methods — (Bayliss et 

al, 1983). 

3.3 The One-Dimensional Helmholtz Equation 

The equation is 

d2 

— y ( x ) + k2y{x) = 0 (3.2) 
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and two boundary conditions are applied to it. These may be Dirichlet (b.c's on the 

function itself), or Neumann (b.c's on the derivative of the function), or even Robbins 

(b.c's on linear combinations of both the function and its derivative). They will be 

either homogeneous or not. If we are applying the tau method we need not worry 

about this (see 3.3.1). For both the Galerkin and the collocation methods, though, we 

have to transform equation (3.2) so that it satisfies homogeneous boundary conditions. 

This is done by subtracting a suitable polynomial from y(x) so that the updated 

function g(x) obeys the desired homogeneous boundary conditions; equation (3.2) will 

be transformed as well. It is understood that after the updated function g(x) has been 

computed, we add the subtracted polynomial to get the solution y(x). For Dirichlet 

boundary conditions the polynomial is linear, whereas for Neumann is a quadratic 

function. Keeping the foregoing in mind, we continue assuming that the equation 

satisfies homogeneous boundary conditions. 

3.3.1 The tau method 

The expansion has to be done in terms of a set of orthogonal polynomials inde­

pendently of the boundary constraints to be satisfied. The natural choice is, of course, 

the orthogonal set of the Tm(z)'s. We write y(x) = X)m=o amTm(x) retaining N + 1 

components of the infinite expansion. Substituting that in (3.2) and taking the inner 

product with each one of these T n's, we project the equation onto the function space 

spanned by the Tn(x)'s . The resulting system reads 

N N 
^(r n ,rm)+fc 2^a n(T r i ,O = 0 for n = 0,. . . ,JV (3.3) 
n=0 n=0 
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This involves the calculation of the inner products (Tn,Tm) and ( T n , T ^ ) (T£ denotes 

the second derivative of the Chebychev polynomial T m ) , but before dealing with their 

calculation, we need to take care of the overdeterminacy that characterizes our system. 

This system is, indeed, overdetermined because it has two more equations coming 

from the boundary conditions. General Robbins boundary conditions may be written 

as 

a±u + (3±ux = q± for x = ± 1 (3.4) 

Substituting the Chebychev series for y(x), performing the differentiation and using 

the result Tn(±l) = ( ± l ) n _ 1 n 2 , we obtain the two boundary equations 

N 

£ ( ± i r [ a ± ± / ? ± n 2 K ° ) = 7 ± (3.5) 
n=0 

Deleting the equations for n — N — 1, N we end up having N + 1 equations (N — 1 

from the projection operation plus two from the associated boundary conditions) to 

solve for the 7Y + 1 unknown coefficients of the original expansion for y(x). 

There are three ways of implementing the tau method; these are the direct, the 

differentiated and the integrated tau methods and we now proceed to present them in 

detail. 

8.3.1.1 The direct system 

Two inner products appear in (3.3). The first is simply the orthogonality relation 

between the Chebychev polynomials and it reads (n/2)cTn8rnn. The second is not easy 

to calculate directly and alternative procedures have been proposed. The differentiated 
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system (see 3.3.1.2) suffers from further truncation errors and might be susceptible 

to instabilities. The integrated system (see 3.3.1.3) may be cumbersome to apply, 

if analytic integration is prohibitive due to complicated coefficients present in the 

equation of interest. 

As a consequence, a semi-analytic expression for the value of the integral has 

been developed (see Appendix A.I) and the appropriate computer algorithm written; 

although quite fast, this algorithm is doomed to be superseded by the other methods. 

3.3.1.2 The differentiated system 

This second implementation of the tau method tries to bypass the difficulties of 

evaluating the inner product (T n , T£) by expressing the second order derivative of the 

function as another Chebychev expansion Yln=o a™ 2 ^m(z) ; the coefficients ain 

can be found analytically as linear combinations of the original coefficients (equation 

A.40). This approach has been almost exclusively used in the literature. Although 

fast, convenient and well established, it results in matrix representations of differential 

operators that are not very stable. There might be cases where the results would be 

doubtful because of unacceptably high accumulation of round-off error. Equation (3.1) 

constitutes such a case. The reason may be that this is a zero eigenvalue problem; as 

the value of k2 increases, it suppresses the diagonal of (d2/dx2 + k2) leading to a 

singular matrix. It is obvious that we must be careful in setting up an d2/dx2 matrix, 

which is as stable as possible. 

Following this approach, we substitute the corresponding Chebychev expansions 
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for y(x), y"(x) in (3.1); this results in 

£ a^Tm(x) + k2JT a£>Tm(x) = 0 (3.6) 
n=0 n=0 

Completing the tau projection procedure we obtain 

al-V + k2a^ = 0 for 0 < n < JV - 2 (3.7) 

or 

P (p2 - n2) 40) + A:2 a{l

0) = 0 for 0 < n < AT - 2 (3.8) 
p=n+2 

p+n:even 

and the boundary conditions 

N 
£ ( ± l ) > ± ± / 3 ± n 2 K ° ) = 7 ± 

n=0 

S.S.I.3 The integrated system 

Problems susceptible to round-off (when the previous method is applied) ask for an 

advanced treatment. In these cases special stabilization procedures must be employed 

(Gottlieb and Orszag, 1977), or equivalently the integrated version of the tau method 

should be used (Fox and Parker, 1968). 

The relevant procedure commences by integrating the equation twice, to obtain 

(3.9) 

y(x) + k2 dx / y(x) dx + Ax + B = 0 (3.10) 
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where A, B are integration constants. 

Substituting the Chebychev expansions for y(x) and its second anti-derivative 

( + 2) 

(where the coefficients am , m = 0,iV + 2 are given as linear combinations of the 

Om''s according to equation (A.49) ) yields 

N N + 2 

£ <4 0 )Fm + k2 Y, a{+2)Tm + A 7\ + B T0 = 0 (3.11) 
m=0 m=0 

since Ti = x and To = 1. 

Taking then the inner product of the above expression with each one of the Tn's 

for n = 0,... ,JV + 2, gives a system of N + 3 equations (from the projection, only). 

The equations for n = 0,1 contain the constants A,B and the coefficients 

a0

+2\a[+2^ which require knowledge of / ydz | s = _ i and J dx f ydx | x = _ i . These 

equations are, therefore, dropped. Proceeding, we examine the last two equations (for 

n = N + 1, N + 2); they seem to imply that a(
N+[ — a/v + 2 = 0-

Employing expression (A.49), we find that 

(o) (0) 
( +2) _ c J V - 1 a N _ l ( + 2 ) _ cNaN 

aN+1'4N(N + l) ^ N + 2 ~ 4(N + l)(N + 2) 

which, subsequently, require a ^ L i = ajv^ — 0 f ° r consistency. 

Therefore, the tau projection is accomplished by disregarding the equations for 

n = iV + 1, N + 2 and eliminating, simultaneously, a#Lp a ^ ' n * n e projection 

equations. This is followed by substitution of these equations with the ones expressing 

the boundary conditions; the system is now fully determined. 
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That amounts to a completion of the tau projection and, thereafter, the final 

system reads 

J ^ L z 2 (°) + U _ «(o) + - ^ ^ « < ° > 2 = 0, 2<n<N (3.13) 
4 n ( n - l ) n " 2 V 2 ( n 2 - l ) y n 4n(n + 1) n + 2 ' _ _ v ; 

with co = 2 and c n = 1 for n > 0 and en = 1 for n < TV, en = 0 for n > N and the 

same boundary conditions.The same system has been obtained (Gottlieb and Orszag, 

1977), by transforming results of the differentiated system as well. 

The integrated system claims a stable structure (due to strong diagonal domi­

nance), but it enjoys an additional advantage, as well. The system is quasi-tridiagonal, 

that is to say, the matrix is tridiagonal except for two rows; these come from the bound­

ary conditions and are usually full. Although, this latter property of the integrated 

system is not of crucial importance, for the one-dimensional and time-independent 

Helmholtz equation under current consideration, it is extremely helpful in problems of 

higher dimensionality and in problems where time-dependence is present (see 4.3.2). 

3.3.2 The Galerkin method 

Considering now the Galerkin method, we are faced with the requirement of ho­

mogeneous boundary constraints; for non-homogeneous problems transformations are 

needed. If we are dealing with a non-homogeneous Dirichlet problem, that is to say, 

-y(x) + k2y(x) = 0 and y(+l) = a,y(-l) =0 (3.14) 
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we define g(x) = y(x) — (a - I - bx), where a 

results in a homogeneous Dirichlet problem 

(a + /3x)/2 and 6 = (a-0)12. This 

d2 

g(x) + k2g(x) = -k2 (a + bx) and g(±l) = 0 (3.15) dx2 

This is solved and finally y(x) is given as g(x) + (a + bx). 

If the problem is of non-homogeneous Neumann structure, namely, 

d2 

—y{x) + k2y(x) = 0 andy x(+l) =Tf,y x(-l) = 6 (3.16) 

we define h(x) = y(x) — (dx + ex2), where d = (7 + 6)/2 and e = (7 — 6)/'4. That 

results in a homogeneous Neumann problem 

d2 

g(x) + k2g(x) =-\2e + (k26)x+(k2e)x2} and ^(±1) = 0 (3.17) dx2 

Adding dx + ex2 back to g(x), after solving the updated equation, completes the 

process. 

Next comes the problem of choosing the appropriate basis functions (as a linear 

combination of Chebychev polynomials), so that the homogeneous boundary conditions 

(whatever the kind) are satisfied by each one of the elements of the set. For the 

Dirichlet case, a suitable set, consisted of the polynomials ?n(x), with n > 2, is 

defined as 

„ T"( x) ~ To(z), for n even; , > 
9 n ( ' ~ 1 r n ( * ) - r ! (x ) , for n odd 
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since qn(±l) = 0, always. 

For the Neumann case, a suitable set is 

<?2n(*) = T2n{x) - n2T2{x) + (n2 - l)T0(x) (3.19) 

for n > 2, since (qn)x(±l) = 0; incidentally these latter gre's also satisfy qn(±l) = 0 

(Orszag, 1971d). 

For mixed boundary conditions (Robbins), i.e 

au + flux =0 at x — —1 and + 6ux =0 at x = +1 (3.20) 

the above defined set is still applicable; another suitable set {pn} n — 4,..., N may 

be defined as 

if n is odd and for n > 2; 
if n is even and n > 2. 

since p 2 n ( ± l ) = p 2 n + i ( ± l ) = ( P 2 n ) z ( ± l ) = ( p 2 n + i ) I ( ± l ) = 0 (Hatziavramidis and 

Ku, 1983). 

Let us now assume that non-homogeneous Dirichlet boundary conditions are given. 

The problem is transformed and 

N 
g(x) = £ a^qm(x) (3.22) 

m—2 

\ T 2 n + i — 2T2n-i + T2n-3 — T3 + T1, 
\ T2n — 2T2n-2 + T2N-4 — 2T2 + 2T0, 
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is substituted into it. This formulation leads to the system 

N 
Yiam[(9ntC)+k2{qniqm)] =-k2la{qn,T0)+b{qn,T1)}, n = 2,.. . ,JV (3.23) 
m=2 

3.S.2.1 The direct system 

The above set of equations includes N — 1 equations for the N — 1 coefficients 

a2°\ • • • , of the expansion. 

The inner products appearing in the Galerkin formulation are decomposed into 

inner products involving the original Chebychev polynomials and their second deriva­

tives. The open form solution is then applied and the resulting linear system is solved 

to obtain the coefficients a2°\ . • • 

Unfortunately, these coefficients cannot be used directly as input for the (inverse) 

fast Chebychev transform to evaluate the sum g(x) = Ylm=2 *m?m(4 The following 

transformation alleviates the problem: the function g(x) is written as 

N 
(3.24) 

m=0 

and equivalencing that with the expansion 

N 
9(*) = E 40)?m(x) (3.25) 

m=2 
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N/2 N/2-1 X><°> and .<»> = - yj 4»>+1 (3.26) 
n=l n = l 

where the rest of the these new coefficients are identical to the old ones, namely, 

= a$ for m = 2 , . . . , JV. The vector a^0) can be efficiently mapped back onto x 

space to give g(x). The addition of a + bx terminates the procedure, giving y{x). 

8.3.2.2 The indirect (differentiated) system 

This method bypasses the direct evaluation of the inner products, by employing 

the transformation discussed above in the early stages of the solution process. The 

differentiated system method's fundamental character constitutes an orthogonalization 

of the basis function set {qn}- The members of this set enjoy the desired feature of 

satisfying the boundary constraints on an individual basis. However, this advantage 

is counterbalanced from the fact that {gn} is a non-orthogonal set and therefore, a 

projection would involve coupling among the various modes qn. This non-orthogonality 

property of this set is rather repulsive, as it tends to complicate the formulation as 

seen previously. Orthogonalization of the set is definetely desirable and this is the 

essence of the procedures presented below. Of course, the original orthogonal set {Tn} 

is the ultimate choice for the new basis function set. 

The orthogonalization transformation might be visualized as being applied either 

at the pre- or the post-projection stage of the process. The post-projection version is of 

theoretical importance only, as it does not avoid evaluating the inner products (qn, q'^). 

,(°) a0 = -
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Although an impractical procedure, it is presented, as it is easier to comprehend and 

it provides a rigorous justification of the pre-project ion version given later on. 

The post-projection version is nearly identical to the direct method. A subtle 

difference does exist and this is exactly the detail that justifies the orthogonalization. 

After the projection has been completed the coefficients are coupled due to both 

the non-orthogonal nature of the set {qn} & n d the presence of the second derivative. 

The presence of the terms like 

N/2 N/2-1 

~E^2n
 and - E ^ n + l ' 

n= 1 n=l 

is due to coupling of non-orthogonal components or, equivalently, due to modification 

of the {Tn} set (with the simultaneous elimination of two degrees of freedom), so that 

each element of the new set would satisfy the boundary conditions. These alterations 

involved the elimination of the polynomials To(x) and T\(x) as individual components; 

concurrently, these polynomials are intermixed with the higher order Chebychev poly­

nomials, so that the {qn} set can be constructed. The idea is, then, to return into an 

expansion of the orthogonal form g(x) — X^m=o am^Tm(x); the coupling sums would, 

subsequently, identify themselves as the coefficients a 0 ° \ of the autonomous com­

ponents To(x) and Ti(x), respectively. The recovery of the two degrees of freedom 

calls for an augmentation of the system with two additional equations for the new 

coefficients. Finally, the constraints imposed on the coeffient set (being manifested 

in the above sums) need to be appropriately incorporated in the new system, so that 

their fullfillment is guaranteed. 
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Let us now discuss the pre-projection version, which is to be used in practice. 

According to this approach the expansion is sought in the form of the expansion 

- Y,m=oa$T™(x) a n d 9"(x) i s approximated as J ] ^ o L " 2 ) T m ( i ) with the 

am2 ''s obtained from the usual. These expressions are then substituted into 

the transformed (homogeneous boundary conditions) problem. Projection with the 

original orthogonal polynomials !Tn's follows and a system of (JV + l) equations in 

(N + 1) unknowns is formed. In order to fullfill the boundary conditions 

£ > i ° > = 0 and £ (-l) n «<?> = 0 (3-27) 
n=0 n—0 

we solve them for a0°^ and af^ to derive the equivalent pair 

N/2 N/2-1 

<40> = - £ •£? and a<»> = - £ 4°>+1 (3.28) 
n—1 n—1 

Building these constraints into the solution vector via appropriate changes in the 

coefficient matrix, we introduce an updated system — maintaining its (iV + l) x (iV + 1) 

dimensional structure — which ensures satisfaction of the homogeneous boundary 

conditions through that additional coefficient coupling. During the last step, we see the 

boundary conditions spreading out in all the equations; this is another manifestation 

of the global property of spectral basis functions. Finally, the system of equations is 

solved for a^0) which, subsequently, is inverted to obtain g(x). 

The differentiated system is absolutely essential in time dependent problems. De­

tails, on the mathematical manipulations involved in the orthogonalization of the basis 
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function set, are presented during the discussion of the Galerkin formulation for the 

one-dimensional heat equation; a simplified version of those applies here. Indirect 

integrated systems are not employed, since they tend to lead to obscure formulations 

and they do not feature easily invertible matrices but rather full ones instead. 

3.3.3 The collocation method 

The formulation of the solution process of the Helmholtz equation, in a pseu­

dospectral context, follows the Galerkin formulation of the problem in a nearly paral­

lel fashion. The sources responsible for the reported resemblance between these two 

methods may be identified first, in the requirement that the equation must be associ­

ated with homogeneous boundary conditions and second and most important, in the 

requirement that each one of the basis functions used in the approximation, satisfies 

the homogeneous boundary conditions. 

Let us now assume that we need to solve the Helmholtz equation with non-

homogeneous Dirichlet boundary conditions (the same as in Galerkin's method). First, 

transformation of the problem to a new one with homogeneous conditions associated 

with it, is performed. Subsequently, the solution of the updated problem is pursued 

and both the direct and indirect variants of the method are investigated in detail. 

3.3.8.1 The direct system 

According to the direct approach, the use of the {Tn} set is prohibited; a search 

for a suitable alternative leads us to the familiar set {qn}, where the definition of 

the functions qn(x), for n = 2 , . . . , N is identical with the one given in the Galerkin 

analysis of the problem. The expansion reads g(x) = Ylm-2 &rn Qrn[x) a n d substitution 

in the equation follows. A pseudospectral projection is now expected to decompose 
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the differential equation into a system of (JV — l) algebraic equations for the (JV — l) 

unknowns a£^'s. 

The pseudospectral projection consists of taking the inner product of the equation 

with a set of 6 functions {6n} where 6n = 6(x — xn) for n — 1,..., N — 1. The points 

xn constitute a (JV — l)-long collocation-point set on which the expansion g(x) = 

Ylm=2 UnPqm{x) satisfies the differential equation and the boundary conditions exactly. 

A variety of collocation-point sets have appeared in the literature and a brief 

description of most promising ones is given below. 

Chebychev's choice (Lanczos, 1957), consists of the zeros of the (JV — l)-th order 

Chebychev polynomial TM-I{X), given as: 

xn = c o s ( ^ ~ Y ^ 7 r f o r n = 0 , . . . , J V - 2 (3.29) 

Filippi's choice consists of the extrema of the JV-th order Chebychev polynomial 

TJV(X), which are located at the zeros of the derivative T'N(x) and may be obtained 

through the formula: 
7T71 

i n = cos— for n = 0,..., TV (3.30) 

The latter set contains (JV + 1) points, since it includes the endpoints —1 and +1, 

as well (corresponding to n — 0 and n = JV respectively). These points have to be 

omitted, as the choice of the {<?n} set accounts for satisfaction of the imposed boundary 

conditions (Lanczos, 1957, Gottlieb and Orszag, 1977). 

Other collocation sets include the extrema of the (JV — 2)-th order Chebychev 

polynomial TN-2(X) (Clenshaw's choice), the zeros of the the (JV-l)-th order Legendre 
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polynomial Pn(x) (Legendre's choice) and the extrema of the JV-th order "stretched" 

Chebychev polynomial T^*(x) (Kizner, 1964), called the extremal choice. 

The pseudospectral projection reads 

£ 4 0 ) ( ^ m ( * M ( * " *»)) + * 2 E «in0)(?m(x),5(x - Xn)) 
m=2 \ ' m=2 (3.3l) 

= -k2(^(a + bx),6(x - xn)^ for n = 2 , . . . , J V - l 

or 

N d2 N 

Ya^—qm{xn)+k2Y^m)<lrn{xn) = -k2{a + bxn) for n = 2 , . . . , / V - l 
m = 2 m=2 

(3.32) 

We can see then that the evaluation of the complicated inner products (qn,q'^) 

or (T n ,T^) , present in the direct Galerkin and tau methods, respectively, has been 

substituted here, with the (much simpler) evaluation of the (d2 / dx2)qm(x) at the 

(N — 1) collocation-point set {xn} (Appendix A.2) 

The full matrix (d2/dx2 + k2)qm(xn) is then inverted to obtain a(°). Direct appli­

cation, of the inverse fast Chebychev transform (IFCT) routine with the vector a(°) 

as input, is hindered by the fact that the elements of this vector correspond to an 

expansion in terms of the gn's and not the T n's. Employing the same transformation 

as in Galerkin's method (see 3.3.2.1), the problem is overcome and finally adding the 

solution of the original equation is obtained as y(x) — g(x) + (a + bx). 
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3.3.3.2 The indirect (differentiated) system 

The principal idea beyond this indirect variant of the pseudospectral method is the 

orthogonalization of the basis function set {qn}- Since the arguments are, basically, 

the same to the ones presented in the discussion of the Galerkin system, we will focus 

on pointing out the differences between the two analyses only. 

Starting with the post-projection version, we identify the coefficient coupling due 

to the use of the {qn} set; extension to the {Tn} set, which also has two degrees of 

freedom more, is equivalent to allowing the boundary points —1 and +1 to enter the 

collocation set {xn}. 

This concept is properly implemented in the pre-projection version, where we 

start off with the familiar expansions g(x) = ^2m=0a {^Tm{x) and g"(x) = 

IZm=o &m2^Tm(x). We then proceed with the pseudospectral projection, where the 

collocation-point set employed includes the boundary points as well. The next step 

involves imposing the appropriate constraints on the vector a^°\ so that compliance 

with the boundary conditions is guaranteed. After the manipulations demanded by 

the last step have been completed, we solve the system to obtain a^ 0). This is inverted 

to give us g(x); the addition of a + bx to g(x) completes the procedure, providing 

the solution y(x) to the initial problem. Indirect integrated systems have not been in 

favour, due to the need for pre-processing (which might be burdensome) or because of 

the relatively more complicated form of the resulting problem. 
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3.3.4 Finite differences method 

Finite differences may also be visualized as collocation with the requirement that 

the equation and its boundary conditions are to be satisfied exactly on a collocation 

point set consisting of the points 0, e,2e,..., rae as e tends to 0. This set lies in the 

neighborhood of the origin and its choice corresponds to the Taylor expansion of y(x) 

truncated to N + 1 terms (Lanczos, 1957). 

Let us start by definining an (N + l)-long point set xy (for j — —N/2,..., +N/2) 

on the interval [—1,-1-1]. The corresponding discretization interval is Ax = 2/N and 

the computational grid is given as 

Xj = j'Ax for j = -N/2,+N/2 (3.33) 

The second derivative is approximated through the classic (second-order in accu­

racy) difference scheme 

d2 y(x + Ax) - 2y(x) + y(x - Ax) 
—y(x) ~ — '- — ^ 
dx (Ax) : 

(3.34) 

and assuming arbitrary non-homogeneous Dirichlet boundary conditions (y( —1) = 0 

and y(+l) = oc), the Helmholtz equation (3.1) is transformed into the tridiagonal 

system 

A / y~[N/2-i) \ (d 1 
1 d 

d 1 
1 dj U+(JV/2-l) J 

0 

0 
(3.35) 
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where d = (kAx) — 2. 

If the differential equation satisfies general non-homogeneous Neumann boundary 

conditions (y'( —1) = 6 and y'(+l) — 7), a difference scheme for approximating the 

normal derivatives is needed. One way is to use central differences 

d . . y(x + Ax) - y(x - Ax) 
—ylx) ~ — -
dxyy ' 2Ax 

(3.36) 

at both boundaries, whereas another implementation involves the use of the one-sided 

difference schemes 

d y{x + Ax) - y(x) 
-y(x) ^ _ at 1 = — 1 (3.37) 

and 
d_ . . y(x) - y(x - Ax)  

d^y(x) ~ ^ at x = +1 (3.38) 

These last two schemes are not centered and they are, therefore, characterized by the 

two-point oscillation of y(x) phenomenon (see 2.5.6 and 3.4.2). 

Central differences yield the tridiagonal system 

(d 
1 

2 
d 

d 
2 

\ 

1 
dj 

( V-(N/2) \ 

\y+(N/2) J 

( 26Ax \ 
0 

0 

V - 2 7 A X j 

(3.39) 
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Another tridiagonal system is obtained from the second technique; its explicit form is 

(d+ 1 
1 

1 

d 
\ (v 

d 
1 

1 
d+lJ 

-(N/2-1) 

\y+(N/2-i) J 

( 6Ax \ 
0 

0 
-^Ax J 

(3.40) 

Robbins boundary conditions may be constructed by combining the previous anal­

yses; the obtained systems are still tridiagonal. 

The inversion of these algebraic systems provides y(x) at the points of the compu- . 

tational grid. These inversions can be performed very efficiently due to the tridiagonal 

structure of the matrices (see Appendix B.3). This feature is extremely important for 

time-dependent problems. 

3.4 Discussion of Results 

The performance of the numerical schemes discussed before, has been studied 

extensively by comparing the numerical results with the exact solution 

y(x) = Acos kx + B sin kx (3-41) 

where A and B are integration constants and depend on the boundary conditions. The 

level of accuracy is evaluated in both the L2 and the norms by denning appropriate 

relative errors. 



58 

Let us say that y, is the approximate solution vector calculated on the discrete 

point set z,-, i = 1,...,JV and y, contains the values of the exact solution at these 

points. We then define a relative L2 error as 

and a relative LQO error as 

f _ max!<i<^ \yj - y t| 
Loo — fZ~i maxi<i</v |y;| 

and we may imagine contour maps of both these errors by tabulating their values for 

varying values of the parameters N and A:2. This procedure is repeated for various 

schemes and different kinds of boundary conditions. 

3.4.1 Inhomogeneous Dirichlet boundary conditions 

The specific choice of the boundary constraints a = y(x = +1) and 0 = y(z = 

— 1), does not affect the convergence properties of either the finite difference or the 

Chebychev schemes. Fourier series would exhibit a reduced convergence rate depending 

on the size of the discontinuity jump; therefore, the awkward pair of values (a, 3) — 

(—2, +5) has been chosen in order to demonstrate the capability of Chebychev methods 

to handle efficiently such highly non-periodic constraints. 
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3.4-1-1 Finite differences 

1,2 and Loo values for the finite difference solution of the Dirichlet Helmholtz 

problem are displayed in tables (3.1-2) respectively, but before proceeding with a 

detailed discussion and interpretation of the results, we should pause to emphasize 

some fundamental aspects of both the continuous and the discrete problem. 

N\k2 2 7 25 100 250 1000 
5 4.75 (-2) 7.05 (-1) 5.78 (-1) 7.68 (-1) 9.84 (-1) 3.10 (-1) 
9 1.96 (-3) 9.53 (-3) 2.42 (-1) 7.46 (-1) 1.00 (0) 9.72 (-1) 
17 1.13 (-4) 4.73 (-4) 3.44 (-2) 1.14 (0) 1.00 (0) 1.00 (0) 
33 8.00 (-6) 2.90 (-5) 2.98 (-3) 4.64 (-2) 7.66 (-1) 1.17 (0) 
65 3.00 (-6) 2.00 (-6) 2.08 (-4) 3.92 (-3) 3.79 (-1) 1.86 (0) 
129 1.40 (-5) 1.00 (-6) 1.60 (-5) 2.71 (-4) 7.94 (-2) 3.73 (-1) 
257 2.22 (-4) 7.00 (-6) 7.00 (-5) 2.10 (-5) 8.29 (-3) 7.80 (-2) 
513 3.75 (-3) 1.03 (-4) 6.10 (-5) 8.00 (-6) 1.18 (-3) 8.16 (-3) 

Table S. l £2 values for the finite difference solution of the Dirichlet Helmholtz problem. 

N\k* 2 : 7 25 100 250 1000 
5 2.48 (-1) 9.40 (-1) 8.10 (-1) 1.01 (0) 1.00 (0) 6.53 (-1) 
9 4.67 (-2) 1.13 (-1) 6.82 (-1) 9.81 (-1) 1.00 (0) 1.00 (0) 
17 1.11 (-2) 2.51 (-2) 2.13 (-1) 1.58 (0) 1.17 (0) 1.00 (0) 
33 2.99 (-3) 6.13 (-3) 6.31 (-2) 2.70 (-1) 8.94 (-1) 1.47 (0) 
65 1.69 (-3) 1.63 (-3) 1.64 (-2) 7.72 (-2) 6.22 (-1) 1.87 (0) 
129 3.96 (-3) 1.04 (-3) 4.50 (-3) 1.99 (-2) 2.82 (-1) 6.58 (-1) 
257 1.56 (-2) 3.28 (-3) 2.79 (-3) 5.36 (-3) 9.15 (-2) 2.89 (-1) 
513 6.34 (-2) 1.23 (-2) 7.91 (-3) 3.18 (-3) 3.43 (-2) 9.30 (-2) 

Table 3.2 values for the finite difference solution of the Dirichlet Helmholtz problem. 
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Dirichlet or Neuman boundary conditions correspond to standing waves and an 

increased k2 value gives rise to more rapid oscillations. The eigenvalues of the contin­

uous problem with eigenfunctions yn{x) — cn sin k(x+1) are k2 = — (n7r/2)2, where c n 

is an arbitrary constant. The second order finite difference representation of d2/dx2 

reads (1, —2, l)/(Ax) 2 and it is negative definite (i.e all eigenvalues are negative); its 

condition number's growth rate may be estimated from the ratio of its maximum over 

its minimum eigenvalue, that is to say A m a i / A m i n . The minimum eigenvalue may be 

estimated adequately from the continuous spectrum for n = 1, as A m i n ~ (n/N) 

(Ax = 1 for normalization purposes). The eigenvalue spectrum has an upper bound 

(in absolute value) of approximately 4 as seen by application of Gerschgorin's theorem 

— the Gerschgorin's disks are (—2, +2) (Ax is normalized to unity again). Combining 

this information for the minimum and the maximum eigenvalues, we can estimate a 

condition number which grows roughly as TV2. Furthermore, we should point out that 

the particular finite difference scheme is second order in accuracy and therefore its 

truncation error decays as N2. 

The Dirichlet Helmholtz equation gives rise to a symmetric eigenvalue problem 

when formulated in a finite difference environment. The matrix form of the problem 

is 

Ay + k2Iy = 0 (3.44) 

where A is the tridiagonal matrix given in (3.35). Applying a similarity transforma­

tion to A , i.e S _ 1 A S = A, where A is a diagonal matrix with its elements being 

the eigenvalues of the matrix A and S is chosen such that its columns contain the 
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eigenvectors of A , we obtain that 

S _ 1 A S y + A; 2 S - 1 ISy = 0 (3.45) 

or 

(A + Ar2I)y = 0 (3.46) 

We now see that whenever (kAx) < |Am t T l|, the Helmholtz matrix retains the 

negative definiteness of the second order difference operator (+1,-2,-1-1). As (kAx) 

reaches | A m t n | a zero-eigenvalue problem is encountered (the Helmholtz matrix is now 

singular), as the first of the resonant frequencies (eigen-frequencies) of the system 

is being reached. The moment (kAx) exceeds |A m i r e | the Helmholtz matrix becomes 

indefinite, for one of its eigenvalue turns positive. As (kAx) continues to increase, the 

indefiniteness persists (as more eigenvalues change sign) and singularities are identified, 

reflecting the presence of further resonances. This situation is interrupted as | A m a x | is 

reached and subsequently, exceeded. No more singularities are present and the matrix 

becomes positive definite as all of its eigenvalues turn positive. 

It is interesting to note that passing from indefiniteness to a positive definite struc­

ture occurs nearly simultaneously with the establishment of the diagonally dominant 

Helmholtz matrix, i.e for (kAx) > 4. The off-diagonal dominant case is obtained for 

the range 0 < (A;Ax)2 < 4 which results in suppressing the diagonal of the matrix. 

In particular for the value of (kAx)2 = 2 a total collapse of the diagonal is experi­

enced; that yields a singular matrix as it corresponds to the eigenvalue Â  = —2 of the 

tridiagonal matrix ( + 1 , -2 ,+1 ) . 
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Let us now proceed to discuss the results shown in the tables (3.1-2) on the basis 

of the previous analysis; the corresponding values of kAx are given in the table 3.3. 

N\k2 2 7 25 100 250 1000 
5 7.07 (-1) 1.32 (0) 2.50 (0) 5.00 (0) 7.91 (0) 1.58 (+1) 
9 3.54 (-1) 6.61 (-1) 1.25 (0) 2.50 (0) 3.95 (0) 7.91 (0) 
17 1.77 (-1) 3.31 (-1) 6.25 (-1) 1.25 (0) 1.98 (0) 3.95 (0) 
33 8.84 (-2) 1.65 (-1) 3.13 (-1) 6.25 (-1) 9.88 (-1) 1.98 (0) 
65 4.42 (-2) 8.27 (-2) 1.56 (-1) 3.13 (-1) 4.94 (-1) 9.88 (-1) 
129 2.21 (-2) 4.13 (-2) 7.81 (-2) 1.56 (-1) 2.47 (-1) 4.94 (-1) 
257 1.10 (-2) 2.07 (-2) 3.91 (-2) 7.81 (-2) 1.24 (-1) 2.47 (-1) 
513 5.52 (-3) 1.03 (-2) 1.95 (-2) 3.91 (-2) 6.18 (-2) 1.24 (-1) 
1025 2.76 (-3) 5.17 (-3) 9.77 (-3) 1.95 (-2) 3.09 (-2) 6.18 (-2) 
2049 1.38 (-3) 2.58 (-3) 4.88 (-3) 9.77 (-3) 1.54 (-2) 3.09 (-2) 

Table 3.3 Values of the quantity fcAi for various values of the parameters k2 and JV. 

Based on the behavior of both the L 2 and the computed estimates, we may 

identify three characteristics regions on the (kAx) contour map (Figure 3.1). 

REGION C 

REGION R 

REGION ET 

Figure 3.1 Characteristic, regions on the kAx contours. 
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For a constant value of k2 we would normally expect an improvement in accuracy 

as N increases, since the truncation error is reduced. Similarly, it is anticipated that, 

for constant N, the accuracy of the approximation diminishes as k2 increases, due 

to an enhanced truncation error involved in the inadequate handling of the higher 

frequencies introduced in the system. Indeed, this kind of error behavior is observed 

in Region A. 

Region B manifests the dominance of the round-off error (a direct consequence of 

a poor conditioning of the numerical system) over the truncation error. The latter 

is still being reduced (although as N2 only) but the improvement is drowned in the 

excessive accumulation of round-off, which takes over and destroys the approximation. 

Furthermore, the values of (kAx)2 in Region B lie either very close or even within the 

machine accuracy and any attempt for higher resolution is futile. 

Region C is quite interesting in the sense that it presents us with a surprising 

situation, at least at first glance. The matrix of the system is diagonally dominant 

and positive definite, while the crossing to Region A is associated with a loss of both 

these advantageous properties (the only exception is to be found for k2 = 2 which 

yields a negative definite system always). Although, the matrix is better structured 

from a numerical viewpoint in Region C, the errors are much larger and they do not 

behave in any kind of consistent fashion at all. 

The source of that anomalous error behavior may be traced in the high values of 

A;Ax in Region C; this /cAxrange results in a total deformation of the negative nature 

of the continuous spectrum, since the discrete scheme has only positive eigenvalues. 

Equivalently, the consequences of the high values of kAx, may be understood as severe 

truncation error augmented with a profound aliasing, since the low sampling density 
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(denoted by the low values of the parameter (kAx) 1 which gives the number of 

points per wavelength) results in the difference Helmholtz operator failing ultimately 

to approximate the original differential operator. In other words, the underlying Taylor 

expansion is diverging and, thereafter, the numerical results are — to a great extent 

— meaningless both in an absolute and a relative quantitative sense. This is due 

to the inevitable inability of the numerical scheme to handle the solution properly. 

A n additional deterioration is experienced, as the grossly inadequate sampling allows 

tremendous levels of aliasing to contaminate the solution. The approximation becomes 

so untrustworthy that the error estimates do not mean much, as they depend on a 

set of values given at a specific point set, whose low density is absolutely inadequate. 

Evidently, the error oscillates as the solution oscillates and it experiences a diminishing 

capability of resolving differences satisfactorily, when significant departures from the 

true solution are present; this problem is more profound in the X 2 norm due to the 

squaring it involves. 

Finally, the behavior of the errors for the same values of ( f cAx ) - 1 , but for different 

values of k, reveals an interesting pattern. The error is progressively increasing with 

k, confirming the dependence of the numerical accuracy on the total number of wave­

lengths present in the computational grid; the latter is expressed by the quantity k£, 

i.e 2k in our particular 1-D simulation, since the length of the computational region is 

t = 2 and remains constant throughout the various computations. 

3.4-1.2 Tau Chebychev methods 

Chebychev spectral formulations of the Helmholtz problem give rise to an unsym-

metric eigenvalue problem, involving a spectrum which quite often incorporates pairs 
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of complex conjugate eigenvalues. We commence our discussion of Chebychev meth­

ods with the tau method. Its direct implementation yields the results given in tables 

(3.4-50; the algorithm becomes inefficient for N > 65 and this has prohibited further 

computations. The combination N = 129, A;2 = 250 has been investigated in order to 

provide an indication of the system's performance for larger sizes of the problem and 

to help us enrich our comprehension of the discrepancies in the performance of the di­

rect tau and the direct-indirect pseudospectral approaches on a Chebychev collocation 

point-set (see 3.4.1.3). 

N\k2 2 7 25 100 250 1000 
5 1.16 (-4) 9.67 (-2) 2.78 (+2) 2.79 (0) 1.18 (0) 2.29 (0) 
9 * * 1.31 (-3) 4.72 (-1) 1.21 (0) 1.71 (0) 
17 * * * 7.00 (-6) 1.29 (0) 7.20 (-1) 
33 * * * * * 1.92 (0) 
65 * * • * • 

Table 3.4 values for the direct Chebychev tau solutions of the Dirichlet Helmholtz problem. 
Stars correspond to relative errors < 10 - 7 . Cost condiderations have prohibited computations 
for values of N > 65. 

N\k2 2 7 25 100 250 1000 
5 1.24 (-2) 3.50 (-1) 2.05 (+1) 1.69 (0) 1.15 (0) 5.03 (-1) 
9 2.00 (-6) 2.28 (-4) 6.11 (-2) 9.50 (-1) 1.09 (0) 1.59 (0) 
17 2.00 (-6) 3.00 (-6) 3.00 (-6) 3.59 (-3) 1.13 (0) 1.34 (0) 
33 3.00 (-6) 3.00 (-6) 3.00 (-6) 8.00 (-6) 1.80 (-5) 1.40 (0) 
65 3.00 (-6) 3.00 (-6) 3.00 (-6) 9.00 (-6) 1.80 (-5) 4.60 (-5) 
129 — — — — 2.90 (-5) — 

Table 3.5 £<» values for the direct Chebychev tau solutions of the Dirichlet Helmholtz prob­
lem. Cost considerations have not permitted computations for N > 65; however, the N — 129 
system has been solved for fc2 = 250 to provide an idea of the performance of the method at 
this level. 
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Both the (indirect) differentiated and the integrated versions error estimates that 

are almost identical within round-off (inversion of all the linear systems of simultane­

ous equations arising in this chapter has been performed via the LU decomposition, 

augmented with iterative improvement of the solution vector whenever possible). Al­

though the integrated d2 /dx2 matrix enjoys a superior conditioning over the differen­

tiated system's matrix, their Helmholtz counterparts do not exhibit dramatic condi­

tioning differences. Tables (3.6-7) contain error estimates that reflect the performance 

of both methods. 

The indirect methods' error estimates are virtually identical to the direct method's. 

Small differences do exist and they would tend to indicate that the direct system is 

slightly less accurate; these discrepancies are basically negligible and based on the 

presently computed error values and conditioning estimates, we can infer that present 

error behavior should evolve in a similar fashion for both the direct and the indirect 

imp lement at ions. 

N\k2 2 7 25 100 250 1000 
5 1.16 (-4) 9.67 (-2) 2.78 (+2) 2.79 (0) 1.18 (0) 2.30 (0) 
9 * * 1.31 (-3) 4.72 (-1) 1.21 (0) 1.71 (0) 
17 * * * 7.00 (-6) 1.29 (0) 7.20 (-1) 
33 * * * * 1.92 (0) 
65 * * * * 

Table 3.6 i 2 . v a l u e s for the indirect Chebychev tau solutions of the Dirichlet Helmholtz 
problem. Stars correspond to relative errors < 10 - 7 and they persist until JV=513, at least. 
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N\k2 2 7 25 100 250 1000 
5 1.24 (-2) 3.50 (-1) 2.05 (+1) 1.69 (0) 1.17 (0) 5.03 (-1) 
9 1.00 (-6) 2.29 (-4) 6.11 (-2) 9.47 (-1) 1.09 (0) 1.59 (0) 
17 1.00 (-6) 2.00 (-6) 3.00 (-6) 3.59 (-3) 1.13 (0) 1.34 (0) 
33 2.00 (-6) 2.00 (-6) 4.00 (-6) 6.00 (-6) 1.20 (-5) 1.40 (0) 
65 2.00 (-6) 3.00 (-6) 4.00 (-6) 6.00 (-6) 1.20 (-5) 3.00 (-5) 
129 9.00 (-5) 1.10 (-5) 1.10 (-5) 1.90 (-5) 2.10 (-5) 5.60 (-5) 
257 1.20 (-5) 1.30 (-5) 1.50 (-5) 7.00 (-6) 2.10 (-5) 3.40 (-5) 
513 2.00 (-5) 2.60 (-5) 2.40 (-5) 1.40 (-5) 2.70 (-5) 3.90 (-5) 

Table 3.7 values for the indirect Chebychev tau solutions of the Dirichlet Helmholtz 
problem. 

Continuing with the analysis of the relative performance of the indirect methods, 

we should point out that our reservations regarding the structure of the differentiated 

system are not unjustified, although in general its performance has been comparable 

integrated system's. The break-down of the former may be witnessed in the vicinity of 

a zero-eigenvalue area. As an example, for N = 5 and k2 = 24 both systems experience 

an eigenvalue collapse, i.e | A m t n | ~ 10 - 6 —10-7) and thereby they appear to be nearly 

singular with the integrated system even more so, as it possesses the smallest eigenvalue 

(~ 10 - 7) and a determinant of 0( —5), that is, 3 orders of magnitude smaller than 

the determinant of the differentiated system. Despite that, the differentiated system 

shows an L2 of 0(14) and an of 0(7), whereas the errors of the integrated system 

do not exceed O(l). The explanation of such spectacular error discrepancies may be 

traced in the ill-conditioning of the differentiated system; its condition number is of 

0(8), as contrasted to 0(5) of the integrated system, an excellent manifestation of 

the fact that the value of the determinant of a matrix is a very poor measure of its 

conditioning. 
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Let us now proceed to discuss the tau Chebychev performance and draw compar­

isons with the performance of the finite difference scheme. The same three regions 

of the finite difference tables may be identified again. Region C exhibits the same 

inconsistent and oscillatory error behavior; the explanation is basically the same in 

the finite differences case. Although truncation errors in the approximation of the 

differential operator are not present, the nature of the error originates in aliasing; the 

exponential convergence of the method eliminates truncation errors but it can do ab­

solutely nothing to alleviate the contamination of the solution due to the severe levels 

of aliasing. 

Exact comparisons under such circumstances are meaningless, especially provided 

that the computational grid is now quite different. The peaking of the error at TV" = 5 

and k2 = 25 might be either an arbitrary high attributed to the foregoing factors 

or it could be traced into a relative ill-conditioning of both the tau systems since 

it lies at the close vicinity of a singularity. Although either one or both the above 

possibilities might be partially responsible for that error high, a closer look at the 

true solution and a deeper understanding of the tau-projection, show that such a 

case suffers from overweighted boundary conditions at the expense of two lost highest 

modes. Furthermore, the collocation of points is rather unfortunate, since fcAxmai is 

large exactly where a denser sampling would have been required. 

Region B of the finite difference table can not be identified in the L2 map, as the 

nature of the Euclidian norm inhibits its resolution ability; recovery of this property 

would take place when the round-off would be dominating the solution completely and 

it would thus be meaningless. On the contrary the map reveals the presence of 

such a zone which does not possess the expansion rate of the finite differences' one 
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though. These differences between the finite difference and the tau Chebychev scheme 

have their origins in the exponential convergence and the conditioning of the latter; 

the integrated system should be anticipated to exhibit the deterioration associated 

with Region B later than the differentiated system would. A comparison of the results 

(in both norms) in Region A shows that the tau Chebychev method enjoys an definite 

overall superiority over the finite differences. 

For the same number of points per wavelength (A; Ax) 1 the tau Chebychev method 

is readily seen to have a smaller error; alternatively, the finite differences require more 

points to achieve the tau method's level of accuracy; furthermore the tau's superb 

maximum accuracy (basically 0(—6)) is never reached by the finite differences as 

the round-off surpasses the low order algebraic convergence rate, overwhelming the 

accuracy improvements; this is best exhibited in the Zoo tables. 

Furthermore, the accuracy of the tau approximation is much less vulnerable to 

an increase of k (i.e increases in the total number of wavelengths kl present), when 

compared to finite differences for the same value of ( A T A X ) " 1 . 

For small values of A; (A;2 < 25), finite differences may achieve an accuracy com­

parable to the tau method's without requiring more than half an order of magnitude 

more points. As A; increases, the demand for more points is more pronounced and we 

see that for A;2 = 100, about 1.5 orders of magnitude are needed, while for a A;2 of 250 

and 1000, several orders of magnitude would be required to do so. Unfortunately, the 

computer code uses a Fast Chebychev Transform (which is based on a Fast Fourier 

Transform routine that only accepts input arrays dimensioned an integer power of 2) 

that does not permit experiments on grids of intermediate size; this prohibition re­

sulted to the rather spiky structure of the tau map since the tau Chebychev operator 
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seems to exhibit an incredibly fast convergence rate as soon as the aliasing present in 

Region B is overcome. 

Briefly, the overall comparison of the results shows that when aliasing and round­

off factors are not dominating the numerical schemes, the tau-Chebychev method is 

both capable of exhibiting a superb level of accuracy provided that it is accompanied 

with an adequate number of points. Even more important, it is capable of providing 

approximations of moderate accuracy with many fewer points than the finite difference 

method. 

3.4-1-3 Galerkin and pseudospectral Chebychev methods 

Galerkin and pseudospectral approaches involve additional complications in their 

formulation; their direct versions were originally devised to alleviate these problems. 

Tables (3.8-9) contain the errors associated with the Galerkin method, tables (3.10-

11) with the pseudospectral using a Filippi collocation point set and tables (3.12-13) 

with the pseudospectral on a Chebychev collocation point set. 

N\k2 2 7 25 100 250 1000 
5 2.00 (-6) 1.81 (-2) 2.56 (0) 5.42 (-1) 9.95 (-1) 7.10 (-1) 
9 • * 5.40 (-5) 7.40 (-1) 7.35 (-1) 9.08 (-1) 
17 * * • * 1.67 (0) 9.19 (-1) 
33 * * * 3.69 (0) 
65 * * 

Table 3.8 Li values for the direct Chebychev Galerkin solution of the Dirichlet Helmholtz 

problem (stars correspond to relative errors < 1 0 - 7 ) . Computations for N > 65 have not been 

carried out because of cost considerations. 
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N\k2 
2 7 2 5 1 0 0 2 5 0 1 0 0 0 

5 2 . 1 4 ( - 3 ) 1 . 5 0 ( - 1 ) 2 . 0 7 ( 0 ) 8 . 1 3 ( - 1 ) 1 . 0 0 ( 0 ) 9 . 5 2 ( - 1 ) 

9 1 . 0 0 ( - 6 ) 4 . 1 0 ( - 5 ) 1 . 2 5 ( - 2 ) 1 . 0 5 ( 0 ) 9 . 9 2 ( - 1 ) 9 . 1 9 ( - 1 ) 

1 7 1 . 0 0 ( - 6 ) 2 . 0 0 ( - 6 ) 6 . 0 0 ( - 6 ) 6 . 3 2 ( - 4 ) 1 . 2 7 ( 0 ) 9 . 8 0 ( - 1 ) 

3 3 1 . 0 0 ( - 6 ) 2 . 0 0 ( - 6 ) 4 . 0 0 ( - 6 ) 9 . 0 0 ( - 6 ) 4 . 0 0 ( - 5 ) 1 . 8 9 ( 0 ) 

6 5 2 . 0 0 ( - 6 ) 2 . 0 0 ( - 6 ) 3 . 0 0 ( - 6 ) 1 . 0 0 ( - 5 ) 1 . 8 4 ( - 4 ) 6 . 2 0 ( - 5 ) 

Table $.9 i M v a l u e s f o r t h e d i r e c t C h e b y c h e v G a l e r k i n s o l u t i o n o f t h e D i r i c h l e t H e l m h o l t z 

p r o b l e m ( s e e c a p t i o n o f T a b l e 3 . 8 ) . 

We notice that Region C remains susceptible to aliasing and the irrelevant error 

oscillations are still being observed. Although the approximations remain still really 

bad, we do see the Galerkin and the Filippi-collocation methods exhibiting relatively 

smaller errors, while the tau and the Chebychev-collocation techniques are worse. 

N\k2 
2 7 2 5 1 0 0 2 5 0 1 0 0 0 

5 1 . 1 9 ( - 4 ) 1 . 8 2 ( - 2 ) 5 . 1 2 ( - 1 ) 5 . 3 7 ( - 1 ) 9 . 9 5 ( - 1 ) 7 . 3 2 ( - 1 ) 

9 * * 1 . 8 7 ( - 4 ) 7 . 4 5 ( - 1 ) 7 . 4 4 ( - 1 ) 9 . 0 4 ( - 1 ) 

1 7 * * * * 1 . 6 7 ( 0 ) 9 . 1 7 ( - 1 ) 

3 3 * * * * 3 . 6 0 ( 0 ) 

6 5 * * 1 . 4 0 ( - 5 ) 2 . 7 8 ( - 3 ) 

1 2 9 1 . 8 8 ( - 2 ) 6 . 3 3 ( - 3 ) 1 . 0 2 ( - 1 ) 7 . 4 4 ( - 1 ) 9 . 4 6 ( - 1 ) 1 . 4 2 ( 0 ) 

Table 3.10 Lo v a l u e s f o r t h e d i r e c t C h e b y c h e v p s e u d o s p e c t r a l s o l u t i o n o f t h e D i r i c h l e t 

H e l m h o l t z p r o b l e m o n a F i l i p p i c o l l o c a t i o n p o i n t - s e t ( s t a r s c o r r e s p o n d t o r e l a t i v e e r r o r s 

< 10 - 7). C o m p u t a t i o n s f o r N > 1 2 9 h a v e b e e n c o n s i d e r e d f r u i t l e s s d u e t o t h e g r e a t l y i n ­

c r e a s e d c o s t a n d t h e e x t r e m e l y h i g h l e v e l o f i l l - c o n d i t i o n i n g p r e s e n t . 

Proceeding to Region A, we notice that Galerkin is slightly superior to Filippi-

collocation followed by tau and Chebychev-collocation in that order. This reaffirms 

that Galerkin (for simple linear constant-coefficient problems) is virtually equivalent 

to the collocation approach on the Filippi set, whereas the tau is identical to the 
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N\k2 2 7 25 100 250 1000 
5 1.36 (-2) 1.54 (-1) 9.72 (-1) 9.11 (-1) 1.00 (0) 9.94 (-1) 
9 • * 4.10 (-5) 2.13 (-2) 9.16 (-1) 9.83 (-1) 9.48 (-1) 
17 2.00 (-6) 2.00 (-6) 8.00 (-6) 5.32 (-4) 1.28 (0) 1.00 (0) 
33 1.00 (-6) 2.00 (-6) 1.10 (-5) 2.80 (-5) 4.77 (-4) 1.91 (0) 
65 3.00 (-6) 1.80 (-5) 7.40(-5) 1.84 (-4) 5.46 (-3) 1.13 (-1) 
129 1.45 (-1) 9.26 (-2) 3.98 (-1) 1.41 (0) 1.03 (0) 2.05 (0) 

Table 3.11 values for the direct Chebychev pseudospectral solution of the Dirichlet 
Helmholtz problem on a Filippi collocation point-set (see caption of Table 3.10). 

collocation technique on the Chebychev set. The tau method solves exactly a per­

turbed problem on the zeros of a Chebychev polynomial of the appropriate order; in 

fact, Lanczos originally devised the method developing the general collocation projec­

tion principle into a technique which is both fast and very powerful for such kind of 

problems. 

N\k2 2 7 25 100 250 1000 
5 1.96 (-3) 9.72 (-2) 2.79 (+2) 6.24 (-2) 1.17 (0) 2.55 (-1) 
9 * * 7.03 (-3) 4.35 (-1) 1.21 (0) 1.38 (0) 
17 * * * 7.00 (-6) 1.29 (0) 6.54 (-1) 
33 * * * * * 1.91 (0) 
65 * * * 1.06 (-2) 
129 6.71 (-1) 2.18 (-2) 2.08 (-2) 3.86 (-1) 9.99 (-1) 1.05 (-2) 

Table 3.12 Li values for the direct Chebychev pseudospectral solution for the Dirichlet 
Helmholtz problem on a Chebychev collocation point set (stars correspond to relative errors 
< 10" 7). Computations for TV > 129 have been considered fruitless due to both the greatly 
increased cost and the very high level of ill-conditioning present. 
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N\k? 2 7 25 100 250 1000 
5 5.26 (-2) 3.40 (-1) 2.08 (+1) 3.38 (-1) 1.10 (0) 5.51 (-1) 
9 1.00 (-6) 2.23 (-4) 1.21 (-1) 7.57 (-1) 1.09 (0) 1.58 (0) 
17 2.00 (-6) 2.00 (-6) 4.00 (-6) 3.84 (-3) 1.10 (0) 1.19 (0) 
33 2.00 (-5) 2.00 (-5) 7.00 (-6) 3.60 (-5) 1.56 (-4) 1.40 (0) 
65 3.00 (-6) 3.00 (-6) 3.3 (-5) 4.00 (-4) 1.64 (-3) 1.20 (-1) 
129 8.71 (-1) 1.71 (-1) 2.98 (-1) 1.01 (0) 1.05 (0) 1.38 (0) 

Table 3.13 values for the direct Chebychev pseudospectral solution of the Dirichlet 
Helmholtz problem on a Chebychev collocation point-set (see caption of Table 3.12). 

Region B is also present but as in tau's case, Galerkin shows a slow deteriora­

tion pace. However, this is not true for the pseudospectral methods and we see that 

accuracy starts rapidly being lost as the dimension of the problem increases; that usu­

ally occurs after maximum accuracy has been achieved and as anticipated, it is more 

pronounced for higher lc2 values. Such a behavior is very disturbing and it becomes 

shocking for high values of both parameters TV and A;2; there a very fast and over­

whelming loss of accuracy is experienced. It is worth pointing out that the Chebychev 

collocation point-set (which does not yield the outstanding resolution of the Filippi 

set otherwise) exhibits a less dramatic deterioration than the latter, as the size of 

the problem increases. The computational burden of the direct Galerkin approach 

hindered calculations for higher values of N but the presently computed error values 

(augmented with rough conditioning tests) may be considered as an indication that a 

similar breakdown is not likely to occur in that short range and with that rapid rate. 

Excessive accumulation of round-off errors associated with the complicated com­

putations involved in the construction of the pseudospectral matrices is not believed 

to carry the responsibility for the reported deterioration because of the following con­

tradictory arguments. Firstly, these computations are performed in double precision 
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arithmetic (exactly, in order to avoid misfortunes of that type) and secondly the di­

rect Galerkin technique does not exhibit these, athough for the same problem size, it 

involves more demanding and more vulnerable to round-oif computations. 

The cause of the problem is finally identified in the enormous level of ill-

conditioning of the direct-collocation matrices; this prohibits even iterative improve­

ment of the solution which is often seen diverging. The ill-conditioning of these systems 

(and probably the Galerkin's in a later stage) is then suspected to be associated to a 

destabilization of the procedure due to an improper numerical handling of the bound­

ary conditions. The problem originates in the non-orthogonal nature of the {gn} basis 

function set as the resulting system is expected to lose some of the excellent con­

ditioning properties associated with orthogonal sets; adequate conditioning may be 

maintained as long as these components retain a high-level of linear independence. 

Apparently, the direct algorithm does not succeed in fulfilling such expectations and 

then as the dimensionality and thereby, the "noise" level is increased, these weakly 

constructed high-resolution systems collapse; the Filippi point-set is obviously affected 

more than the having less resolving power Chebychev point-set. The rigid foundations 

of the Galerkin projection make the method more robust as far as ill-conditioning is 

concerned. 

Confirmation of these suspicions demands a comparison with the corresponding re­

sults obtained from the indirect method; although the concepts behind the construction 

of the direct and the indirect systems have already been presented, we should point 

out that their main difference hinges on the boundary condition treatment. 
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N\k2 2 7 25 100 250 1000 
5 2.00 (-6) 1.81 (-2) 2.56 (0) 5.42 (-1) 9.95 (-1) 7.10 (-1) 
9 * * 5.40 (-5) 7.40 (-1) 7.35 (-1) 9.08 (-1) 
17 * 1.67 (0) 9.19 (-1) 
33 * * * * 3.69 (0) 
65 * * *• 

Table 3.14 Ln v a l u e s f o r t h e i n d i r e c t C h e b y c h e v G a l e r k i n s o l u t i o n o f t h e D i r i c h l e t H e l m h o l t z 

p r o b l e m . S t a r s c o r r e s p o n d t o r e l a t i v e e r r o r s < 1 0 - 7
 a n d t h e y p e r s i s t u n t i l N=513, a t l e a s t . 

N\k2 2 7 25 100 250 1000 
5 2.14 (-3) 1.50 (-1) 2.07 (0) 8.13 (-1) 1.00 (0) 9.52 (-1) 
9 1.00 (-6) 4.00 (-5) 1.25 (-2) 1.05 (0) 9.92 (-1) 9.19 (-1) 
17 1.00 (-6) 3.00 (-6) 8.00 (-6) 6.24 (-4) 1.27 (0) 9.80 (-1) 
33 2.00 (-6) 5.00 (-6) 6.00 (-5) 2.80 (-5) 1.67 (-4) 1.89 (0) 
65 9.00 (-6) 5.00 (-6) 9.00 (-6) 1.80 (-5) 9.80 (-5) 3.43 (-4) 
129 8.00 (-6) 1.20 (-5) 1.80 (-5) 3.70 (-5) 1.69 (-4) 3.65 (-4) 
257 1.10 (-5) 1.80 (-5) 1.90 (-5) 5.40 (-5) 4.20 (-5) 5.50 (-5) 

Table 3.15 Lx v a l u e s f o r t h e i n d i r e c t C h e b y c h e v G a l e r k i n s o l u t i o n o f t h e D i r i c h l e t H e l m h o l t z 

p r o b l e m ( t h e s m o o t h t r e n d o f t h e e r r o r s a n d t h e c o n d i t i o n i n g o f t h e s y s t e m h a v e m a d e t h e 

r e l a t i v e l y e x p e n s i v e c o m p u t a t i o n s f o r iV=513 u n n e c e s a r y ) . 

Results from the indirect systems are given in the tables (3.14-15) and (3.16-17) 

for the Galerkin and the Filippi-pseudospectral respectively. 

Although, the results appear to be identical to the direct method's (within round­

off precision), it is of crucial significance to recognize the stabilization induced in 

the system by the indirect method's algorithm, which yields systems of satisfactory 

conditioning that do not suffer from the reported instabilities and, thereafter, maintain 

their high accuracy in the same fashion as the tau method does. 

The relative conditioning of these unsymmetric matrices arising from both the 

direct and the indirect techniques was studied through singular value decomposition 
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N\k2 2 7 25 100 250 1000 
5 1.19 (-4) 1.82 (-2) 5.12 (-1) 5.37 (-1) 9.99 (-1) 7.32 (-1) 
9 * * 1.87 (-4) 7.45 (-1) 7.44 (-1) 9.04 (-1) 
17 * * • 1.67 (0) 9.17 (-1) 
33 * * • * 3.69 (0) 
65 • • * * • 

Table 3.16 Z 2 values for the indirect Chebychev pseudospectral solution of the Dirichlet 
Helmholtz problem on a Filippi collocation point-set. Stars correspond to relative errors 
< 10 - 7 and they persist until JV=513, at least. 

N\k2 2 7 25 100 250 1000 
5 1.36 (-2) 1.54 (-1) 9.72 (-1) 9.11 (-1) 1.00 (0) 9.94 (-1) 
9 1.00 (-6) 4.30 (-5) 2.13 (-2) 9.16 (-1) 9.83 (-1) 9.45 (-1) 
17 1.00 (-6) 3.00 (-6) 5.00 (-6) 5.19 (-4) 1.28 (0) 1.00 (0) 
33 2.00 (-6) 4.00 (-6) 7.00 (-6) 1.00 (-5) 1.20 (-5) 1.93 (0) 
65 6.00 (-6) 6.00 (-6) 1.00 (-5) 8.00 (-6) 1.40 (-5) 3.50 (-5) 
129 1.00 (-5) 1.10 (-5) 2.10 (-5) 1.80 (-5) 2.40 (-5) 6.30 (-5) 
257 1.50 (-5) 1.80 (-5) 2.90 (-5) 2.60 (-5) 2.20 (-5) 5.10 (-5) 

Table 3.17 for the indirect Chebychev pseudospectral solution of the Dirichlet Helmholtz 
problem on a Filippi collocation point-set. The smooth trend of the error and the conditioning 
of the system have made the relatively expensive computations for JV=513 unnecessary. 

(SVD); the condition numbers were estimated as c r m a z / a m i n , where a stands for sin­

gular value. This is necessary because of the complex contributions present in the 

eigenvalue spectrum and it is equivalent to calculating the eigenvalues of A A T which 

are the squares of the singular values of the matrix A . A comparison of the condition 

numbers confirmed our suspicions, since the direct methods suffer from a conditioning 

several orders of magnitude poorer. The poor conditioning causes rapid deteriora­

tion of any inherent stability of the algebraic systems. Indirect Chebychev-collocation 

tests have not been performed, for it may be readily seen that such method would not 
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suffer from ill-conditioning and it would, therefore, exhibit a behavior similar to tau 

method's. It is important to note, here, that the direct tau algorithm does not suffer 

from ill-conditioning and this shows that the tau projection is more numerically stable 

in its straightforward implementation than in its equivalent collocation form. That 

confirms the previous reasoning, since the direct tau approach does involve more com­

plicated computations, whereas it exhibits a different boundary condition treatment. 

The consequence of this is that an exact equivalence relation between the direct and 

the indirect versions of any projection operator occurs only for the tau method. 

Finally, completing the discussion of the relative performance of the finite difference 

and the Chebychev tau, Galerkin and pseudospectral schemes, we should emphasize the 

fact that the Chebychev methods are greatly superior to the finite difference scheme. 

Galerkin and the Filippi-pseudospectral techniques need fewer points to achieve an ac­

curacy of a certain order than tau and Chebychev-pseudospectral techniques, whereas 

the finite difference require more points. The exact order of this demand for denser 

sampling varies both with the method and the value of k2 and it ranges from half to 

several orders of magnitude. 

3.4.2 Inhomogeneous von Neumann boundary conditions 

The Chebychev superiority established for the Dirichlet problem that has just been 

discussed, is anticipated to carry over to Neumann problems as well. Choosing the 

Neumann boundary conditions to be yx(x - — l ) — S = +5 and yx(x = +1) = 7 = — 2 

as before, the Helmholtz equation (standing waves, still) was solved with both the 

finite difference and the tau Chebychev method. The tau method was chosen among 
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the Chebychev spectral projection techniques, because it is the easiest to formulate 

and it provides a lower bound in the resolution capacity of these methods. 

Tables (3.18-19) contain the errors associated with the tau solution; their inspec­

tion reveals a behavior identical to the Dirichlet case. 

N\k2 2 7 25 100 250 1000 
5 3.32 (-2) 5.83 (-2) 1.07 (0) 1.40 (0) 1.08 (0) 2.06 (0) 
9 * * 1.35 (-2) 2.07 (0) 7.99 (-1) 9.55 (-1) 
17 * * * 2.00 (-6) 1.50 (0) 1.01 (0) 
33 * * * 3.01 (0) 
65 * * * * 

Table 3.18 L<2 values for the Chebychev tau solutions of the Neumann Helmholtz problem. 
Stars correspond to relative errors < 10 - 7 and they persist until N= 513, at least. 

N\k2 2 7 25 100 250 1000 
5 1.71 (-1) 2.87 (-1) 1.66 (0) 1.24 (0) 1.13 (0) 1.64 (0) 
9 5.00 (-6) 8.20 (-5) 1.28 (-1) 1.98 (0) 1.23 (0) 1.14 (0) 
17 2.00 (-6) 3.00 (-6) 3.00 (-6) 2.32 (-3) 1.30 (0) 1.08 (0) 
33 2.00 (-6) 3.00 (-6) 4.00 (-6) 5.00 (-6) 8.00 (-6) 1.96 (0) 
65 5.00 (-6) 3.00 (-6) 4.00 (-6) 6.00 (-6) 1.10 (-5) 3.80 (-5) 
129 2.50 (-5) 5.00 (-6) 2.30 (-5) 1.00 (-6) 2.10 (-5) 5.60 (-5) 
257 2.80 (-5) 1.10 (-5) 4.60 (-5) 7.00 (-6) 2.90 (-5) 8.30 (-5) 
513 5.90 (-5) 1.80 (-5) 7.10 (-5) 1.20 (-5) 6.60 (-5) 8.80 (-5) 

Table 3.19 values for the Chebychev tau solutions of the Neumann Helmholtz problem. 

This is not astonishing at all, since the approximation of the first derivatives at 

the boundaries converges exponentially; therefore, there is no generation of truncation 

error which could contaminate the solution. However, this high quality performance 

level would be lost if wrong implementation of the boundary conditions was to take 
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place as the boundary errors would rapidly be transmitted all over the computational 

domain due to the global characteristics of spectral methods. 

N\k2 2 7 25 100 250 1000 
5 1.08 (-1) 2.70 (0) 1.46 (0) 7.76 (-1) 9.65 (-1) 9.80 (-1) 
9 4.26 (-3) 3.30 (-2) 3.19 (-1) 7.85 (-1) 9.52 (-1) 9.50 (-1) 
17 2.41 (-4) 1.56 (-3) 2.70 (-2) 1.89 (0) 1.82 (0) 9.60 (-1) 
33 1.70 (-5) 9.20 (-5) 2.16 (-3) 3.40 (-2) 7.32 (-1) 1.07 (+1) 
65 4.00 (-6) 6.00 (-6) 1.47 (-4) 2.66 (-3) 3.60 (-1) 2.16 (0) 
129 1.90 (-5) 1.00 (-6) 1.30 (-5) 1.82 (-4) 7.54 (-2) 3.55 (-1) 
257 2.79 (-4) 7.00 (-6) 1.00 (-5) 1.70 (-5) 7.87 (-3) 7.42 (-2) 
513 4.15 (-3) 8.60 (-5) 1.01 (-4) 1.60 (-5) 1.07 (-3) 7.72 (-3) 

Table 3.20 L 2 values for the finite difference solution of the Neumann Helmholtz problem 
with cental differences at the boundaries. 

On the contrary, finite differences are affected by this change of the boundary con­

ditions applied to the equation and they do show a relative deterioration with respect 

to their accuracy level in the Dirichlet case, although not as dramatic as it would have 

been for a spectal method, had the latter been implemented inappropriately. 

N\k2 2 7 25 100 250 1000 
5 3.30 (-1) 1.64 (0) 1.45 (0) 1.00 (0) 1.00 (0) 9.96 (-1) 
9 6.54 (-2) 1.85 (-1) 8.74 (-1) 1.01 (0) 1.00 (0) 1.00 (0) 
17 1.54 (-2) 4.00 (-2) 2.32 (-1) 2.06 (0) 1.90 (0) 1.00 (0) 
33 4.04 (-3) 9.65 (-3) 6.12 (-2) 2.91 (-1) 9.38 (-1) 4.02 (+1) 
65 1.93 (-3) 2.48 (-3) 1.59 (-2) 7.49 (-2) 6.15 (-1) 2.15 (0) 
129 4.28 (-3) 1.11 (-3) 4.66 (-3) 1.94 (-2) 2.79 (-1) 6.56 (-1) 
257 1.66 (-2) 2.54 (-3) 3.89 (-3) 5.92 (-3) 8.98 (-2) 2.87 (-1) 
513 6.40 (-2) 9.20 (-3) 1.18 (-2) 5.42 (-3) 3.31 (-2) 9.14 (-2) 

Table 3.21 values for the finite difference solution of the Neumann Helmholtz problem 
with central differences at the boundaries. 
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The explanation of the reported deterioration lies, naturally, in the lower conver­

gence rate, since additional truncation errors involved in the finite difference approxi­

mation of the boundary conditions are present. 

The magnitude of these errors depend on the particular finite difference employed 

at the boundaries. Tables (3.20-21) give the results associated with the classic second 

order finite difference scheme with central differences for the boundary conditions, 

whereas tables (3.22-23) correspond to one-sided differences at the boundaries. 

Central differences are symmetric (by employing fictitious points adjacent to each 

boundary) and they definitely exhibit a higher quality of results with respect to one­

sided differences. 

N\k2 2 7 25 100 250 1000 
5 4.00 (-1) 1.74 (-1) 2.32 (0) 9.83 (0) 2.58 (0) 8.63 (0) 
9 2.33 (-1) 9.88 (-2) 2.71 (+2) 2.44 (0) 1.38 (0) 3.45 (0) 
17 1.08 (-1) 4.27 (-2) 1.25 (+1) 2.33 (0) 1.06 (0) 1.49 (0) 
33 4.03 (-2) 1.49 (-2) 5.55 (-1) 9.94 (-2) 4.99 (-1) 1.53 (+1) 
65 1.26 (-2) 4.46 (-3) 7.82 (-2) 4.89 (-2) 1.93 (+1) 7.70 (-1) 
129 3.25 (-3) 1.20 (-3) 1.52 (-2) 1.36 (-2) 1.07 (+1) 1.01 (-1) 
257 3.14 (-4) 2.50 (-4) 3.12 (-3) 3.36 (-3) 9.76 (-1) 6.88 (-2) 
513 1.95 (-3) 1.20 (-5) 3.38 (-4) 7.03 (-4) 1.27 (-1) 5.98 (-2) 

Table 3.22 L2 values for the finite difference solution of the Neumann Helmholtz problem 
with one-sided differences at the boundaries. 

The low level of accuracy exhibited by the latter approach should be attributed 

to the two point oscillation, the latter being intrinsic to these unsymmetric difference 

approximations. Assuming that u(x) — exp(t"A;x), its true first derivative is 

= ikexp(ikx) (3-47) 
dx J T R 
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whereas central differences give 

du\ ., , . , .sin&Ax . . 
— = tkexv>iikx)— (3.48 
dxJCD kAx 

and one-sided differences yield 

O os=ikexp(ihz) exp(±rtAi/2)!!SS1 (3-49) 

Both the difference approximations converge to the true solution (for A:Ax —> 0), 

but it is evident that the presence of the complex exponential exp(±t'A;Ax/2) compli­

cates and decelerates the convergence of the sine function. 

N\k2 2 7 25 100 250 1000 
5 6.34 (-1) 4.25 (-1) 2.29 (0) 4.41 (0) 2.14 (0) 5.56 (0) 
9 4.82 (-1) 3.25 (-1) 1.68 (+1) 2.24 (0) 1.53 (0) 3.23 (0) 
17 3.27 (-1) 2.09 (-1) 3.50 (0) 8.19 (-1) 1.15 (0) 2.03 (0) 
33 2.01 (-1) 1.23 (-1) 7.37 (-1) 3.94 (-1) 7.98 (-1) 4.91 (0) 
65 1.13 (-1) 6.74 (-2) 2.76 (-1) 2.34 (-1) 4.37 (0) 1.19 (0) 
129 5.72 (-2) 3.50 (-2) 1.22 (-1) 1.20 (-1) 4.12 (0) 3.90 (-1) 
257 1.79 (-2) 1.61 (-2) 5.54 (-2) 5.88 (-2) 9.88 (-1) 2.77 (-1) 
513 4.36 (-2) 4.09 (-3) 1.96 (-2) 2.74 (-2) 3.57 (-1) 2.46 (-1) 

Table 3.23 values for the finite difference solution of the Neumann Helmholtz problem 
with one-sided differences at the boundaries 

This interference becomes most profound for A;Ax = ±7r (the corresponding wave­

length is 2Ax); this is the so-called 2Ax wave and the latter scheme is unable to treat 

it properly. 
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3.4.3 Robbins and radiation boundary conditions 

The Helmholtz problem has been solved with mixed (Robbins) boundary condi­

tions applied to it, as well. As anticipated, the error behavior is similar to the von 

Neumann case for both the finite difference and the tau Chebychev schemes. 

Complex Robbins boundary conditions of the absorbing type, i.e u(x)±iku(x) = 0, 

are easy to accommodate. It would be expected that the performances' levels should 

be roughly equivalent to the ones exhibited for the case of real Robbins boundary 

conditions. However, these constraints have not been tested numerically, since the 

imposition of such a radiation boundary condition on one boundary, while maintaining 

a Dirichlet or Neumann condition at the other (simulating either a soft or a hard 

scatterer, respectively), defaults to trivial solutions in the fundamental interval, as no 

energy is allowed there. 



83 

C H A P T E R IV 

T H E H E A T E Q U A T I O N 

My soul, my soul} itself, is this flame: 

insatiable for new horizons 

its silent glowing passion blazes upward. 

Dithyrambs of Dionysus — Friedrich Nietzsche 

4.1 The Homogeneous One-Dimensional Heat Equation 

The Helmholtz equation investigated in the last chapter is an ordinary differential 

equation of the elliptic type. We proceed with a simple parabolic partial differential 

equation, namely, the heat equation 

d d2 

— u(x,t) = o(x)-—u(x,t) (4.1) 
at ox* 

The presence of the time derivative term complicates the situation and demands ad­

vanced considerations for the numerical formulations of the problem. The heat equa-
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tion describes the diffusion of the function u(x,t) in the course of time; the parameter 

<j(x) is termed the diffusion coefficient. 

4.2 Finite Differences 

Let us start with the classic finite-difference implementation using again a second 

order difference scheme (a summary of various alternative higher-order schemes can 

be found in Panov (1963)). Approximation of the second order spatial derivative is 

done according to (3.34) and it is, thereafter, centered at (x, t). Problems, however, 

arise in the approximation of the first order time derivative, since by employing (3.37) 

we center it at (x,t + At/2). 

The resulting scheme 

< + A t = «', + 7 ^ 2 ( « U A , - 2« i + ui_Ax) (4.2) 
(Ax) 

is 0(At) + 0((Ax) ) accurate, explicit and extremely easy to solve but the non-uniform 

centering of the temporal and the spatial derivatives does not allow for an appropriate 

handling (attenuation) of the short wavelengths and therefore, the numerical solution 

diverges as Ax becomes smaller. This is a case of conditional instability; a classic 

Fourier stability analysis shows that stability can be guaranteed under the severe 

limitation that ^crA£/(Ax) 2^ < 0.5 (Botha and Pinder, 1983). This restricton has an 

interesting physical interpretation; A i m a x is half the diffusion time T = (Ax) /a and 

it may be understood as the time needed for information to travel over a distance Ax 

(Vemuri and Karplus, 1981). 
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An obvious alternative is the application of the leap-frog scheme for the time 

differencing, that is to say 

du(x,t) _ u(x,t + At) - u(x,t - At) 

dt ~ 2At 
(4.3) 

so that time derivative is centered at (x, t), i.e 

u?" = u*-" + - 2«* + ul_Ax) (4.4) 
(Ax) 

Although this scheme is O(At)2 + 0((Ax) 2) accurate, it leads to an unconditional 

instability, which is caused by the time difference being taken over two steps since 

that makes the difference equation second order in time. Although one of its solutions 

is the solution being sought, the parasitic solution (see 4.4.2) is an oscillating increasing 

exponential and it, inevitably, contaminates the results (Claerbout, 1976). 

The backwards Euler implicit scheme offers a first answer to the problem of insta­

bility by considering the second derivative difference operator centered at (x, t + At). 

The scheme exhibits an accuracy of O(At) + 0((Ax) ), is unconditionally stable but 

it requires a matrix inversion for each time step. The relevant equations are 

- K t i . + ( i + 2 b X + A t - Kt I. = ( 4 - 5 ) 

where b = (aAt/{Ax) ). We can also see that the matrix to be inverted is triadiagonal; 

these systems can be solved very efficiently (see Appendix B.3). What is the underlying 
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physical mechanism? The backwards-Euler scheme drives high frequency features into 

equilibrium, that is, equations (4.5) converge to the steady-state equation 

—u(x,t)=0 (4.6) 

for large time steps (At —* oo). We are usually interested in the evolution of features 

with spatial scales A >> Ax and although, the backwards Euler scheme alleviates 

the instabilty problems, it is not considered to be satisfactorily accurate, because its 

temporal truncation error is O(At) and subsequently, substantial step size restrictions 

might be demanded due to accuracy considerations (Press et al, 1985). 

A significant improvement may be accomplished by taking the averages of the 

schemes (4.2) and (4.5); a rigorous justification of this scheme based on the underlying 

bilinear transformation is given in Chapter V. The resulting implicit scheme avoids 

all of the above misfortunes and it has long been presented by Crank and Nicolson 

(Claerbout, 1976). It maintains the centering of the time derivative at (x,t + At/2) 

and it also succeeds in centering the second order spatial derivative there too; the 

improved truncation error, i.e 0((At)2) + 0((Ax) 2), allowes a much larger At to be 

taken (Peaceman, 1977). The fast convergence of the method in association with its 

unconditional instability and its efficiency (tridiagonal systems to be inverted) have 

contributed to its great popularity. Envisioning the Crank-Nicolson diffusion model 

from a physical perspective shows that the time evolution of the initial distribution 

makes less sense than in the case of the backwards-Euler difference approximation. The 

low frequency components evolve amidst a fluctuating, but bounded, background of the 

original high frequency distribution; the inaccuracies associated with these components 
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is what we have to trade for a both stable and fast algorithm. It might be advisable to 

conclude a Crank-Nicolson procedure by shifting to backwards-Euler at the end of our 

computation, driving, thereby, the mishandled small scale features into steady-state 

(Press et al, 1985). 

The Crank-Nicolson scheme leads to a tridiagonal set of equations to be solved at 

each time step; for the Dirichlet conditions u(x — —l,t) = 0 and u(x = +l,t) = cx, 

the system reads (with a = crAt/2(Ax) ) 

/ 1 + 2o - a \ ^u-(N/2-
t=t0+At 

- a l + 2a '• • 

. 1 + 2a —a 

V —a 1 + 2a; V u+(JV/2-

/ 1 - 2a +a ^«-(JV/2-
1̂ 

t=t0 (2a0\ 
+a 1 - 2a ' • 0 

: + : 
• 1 - 2a +a 0 

V +a 1 - 2a ; ») ^2aa ; 

(4.7) 

Of course, u_(jv/2) = 0 and a n d u+(N/2) = a , always. 

The Neumann conditions ux(x = —l,t) = 8 and ux(x = +l,t) = 7 are handled 

through appropriate changes of the corner elements of the recursion matrices and the 

boundary vector. One-sided differences at the boundaries of the computational grid 
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/ 1 + a —a 
-a 1 + 2a 

V 
( \ — a +a 

+a I-2a '• 

V 

1 + 2a -a 
—a 1 + aJ 

\ 

1 -2a +a 
+a 1 - aJ 

( U-(JV/2-l) \ 

V u + (iV/2-l) / 

t=t0 + At 

\u+(N/2-l) J 

1]) 
t=t0 / -2a6Ax\ 

1]) 0 
+ 

0 

l)J ^ +2a*i Ax J 

(4.8) 

The values of u(x) at the endpoints are calculated as u(x — — l) = U _ ( J V/2) = 

«_(/v/2-i) — £>Ax and u(x = +1) = u+(jv/2) — u+(/v/2-i) + lAx. Claerbout (1976) 

adopts this scheme, although he only considers zero slope boundary conditions (6 = 

1 = 0). 

The central difference approximation of the first derivatives at the boundaries 

(Keller, 1968) may be employed as well. Such an approach yields the recursion system 

/ 1 + 2a -2a 
-a l + 2a 

V 

/ 1 - 2a +2a 
+a 1 - 2a 

I u-(N/2) \ 

1 + 2a -a 
-2a l + 2aj 

\ 

I-2a +a 

\U + (N/2) J 

^ « - ( 7 V / 2 ) ̂  
t = t „ / -4aSAx\ ^ « - ( 7 V / 2 ) ̂  

0 
* + ! 

0 
V u + (/V/2) / V +4cry Ax J 

(4.9) 
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As the dimensionality of the equation increases though, implicit schemes become 

rather cumbersome. Alternatives include the Dufort-Frankel (explicit) scheme or sym­

metric semi-implicit schemes — especially if non-linearities are present (Livne and 

Glasner, 1985). A word of caution needs to be given for the unconditionally stable 

Dufort-Frankel scheme. Consistency and stability are both needed to ensure con­

vergence of the numerical solution (Lax's equivalence theorem). The Dufort-Frankel 

scheme is consistent with the diffusion equation only if At —• 0 faster than Ax —• 0; 

otherwise, the scheme is still stable but consistent with the hyperbolic equation 

«t - «M + {At/Ax) utt = 0 

instead and it therefore converges to the true solution of the latter equation as Ax 

and At tend to zero (Vemuri and Karplus, 1981). 

4.3 Chebychev Methods 

Spectral methods for the numerical solution of the heat equation present a viable 

alternative. Semi-discretizations involve a spectral representation of d2/dx2 combined 

with a finite difference approximation to d/dt. If the boundary conditions in the 

spatial coordinate are periodic, Fourier expansions are most appropriate; otherwise, a 

Chebychev expansion is the optimum alternative. 

The homogeneous heat equation (4.1) is assumed to satisfy homogeneous Dirichlet 

boundary conditions and consequently, all the various Chebychev projection operators 

may be applied without any need for pre-processing. For the tau method the basis 

functions are the original Chebychev polynomials, while for the Galerkin and the 

(4.10) 
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collocation methods, we need to make use of the appropriate basis functions qn(x) 

defined in (3.18). Although, both direct and indirect approaches may be pursued as 

before, complications associated with the the time derivative (see below) make the 

indirect systems easier to formulate; direct systems will not formulated. 

4.3.1 The differentiated tau method 

The expansions involve coefficients which depend on time, i.e dm\t) and am

 2\t) 

for u(x,t) and uxx(x,f), respectively. 

Employing the usual procedure, we obtain 

jtaff=aa^ for m = 0 , . . . , iV-2 (4.11) 

with the boundary conditions 

N N 
£ < 4 0 ) = 0 and £ ( - l ) m « < ? = 0 (4.12) 
m=0 m=0 

Although we could use this mixed (o.d.e's and algebraic equations) system to 

apply the finite differences in time (since the o.d.e's will be transformed into algebraic 

equations), we would like to transform the system into one of a pure differential form, 

i.e 

4a ( ° )=Aa(° ) with a(°) = (40),...,ai0)) (4.13) 
dt 

that is to say, we need to augment the system with two o.d.e's for (d/dt)a^l_1(t), 

(d/dt)affl (t) and build the boundary constraints into A , so that compliance with 
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them is maintained. Differentiating the boundary conditions (4.12) with respect to 

t and combining the results with equations (4.11), yields a system for the unknowns 

(d/dt)a^_l and (d/dt)a^\ consisting of the equations 

N-2 
AYA 

m=0 

-2) _ _ * (0) _ _* (0) 
m " dt N ~ l dt 

(4.14) 

N-2 

o Y, (-D m«L- 2» = - (-i)"|.i»0) (4i5) 
m=0 

The solution may be expressed as 

<L_ 
dt* -a 

(o) 
N-

(-2) , d2u 
dx2 + (-1) 

N 

J x= + l 

d2u  
rdx2 

J i = - i 

(4.16) 

dtaN 

(0) _ (-2) aaN + - ; 

d2u 
dx2 + (-1) 

x = + l 

d2U 
'dx2 

j z = - i 

(4.17) 

with • 3 2 u 
9 i 2 

Y^W (-2) , 
= < 7 2^m=0 a"» a n d 

x = + l 
a i 2 Eiv , ,xm (-2) * 

J i = - l 
menting equations (4.11) with (4.16) and (4.17), we achieve our goal; the new system 

may be written uniformly, as 

dt m 

N 

— P(p2-™2Wp

0) + tim,N-ibi{t) + 6rnjNb2{t) for m = 0, . . . , /V 
p=m+2 

p-j-m: even 

(4.18) 
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where 
d2u 

dx2 

J z= + l 
+ i(-D" 

d2U 

dx2 

x = - l 
(4.19) 

and 

M0 = - o dx 2 

x=+ l 

d 2U 
dx 2 

z = - l 
(4.20) 

4.3.2 The integrated tau method 

The relevant equations are developed following a procedure identical to the one 

presented for the Helmholtz equation. 

A double indefinite integration of the equation leads to 

(4.21) 

where A and B are arbitrary functions of t. Assuming the familiar expansions for 

u(x, i) and j dx j u(x,t) dx, the projection with the Tm's (for m = 0 , . . . , JV + 2 ) is 

performed; the equations for m = 0 and m = 1 are omitted, since they contain the 

undetermined constants of integration A and B. The equations for m = JV + 1 and 

m = JV + 2, i.e 

J^N+I =0 a n d T*A 

d ( + 2) _ 
dt N + 2 

(4.22) 

imply that (see 3.3.1.3) 

d (°) n A D (°) r> - a ^ 1 = 0 and - a ^ = 0 (4.23) 
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in the projection equations for m — N — 4 , . . . , N and m = N — 1, TV, respectively. 

The resulting system reads 

^aj+2> = <ra£) for m = 0, . . . , /V (4.24) 

( + 2) 

and substituting a m according to (A.49) into (4.24), the final equations can be 

expressed, in terms of the a^'s only, as 

Cm~2 -a(0K C m + 2 - Q ( ° ) + C m + 4 - a ( ° ) - a a ( o ) . m _ 2 /V 
4 m ( m - l ) ^ a m - 2 2(m 2-l)<it m + 4m(m + l) d t m + 2 ~ ™m ' m ~ A '''' ^ 

(4.25) 

augmented with the boundary conditions (4.12). 

4.3.3 The Galerkin method 

The {<7m} set needs to be used in the expansion for the approximation 

TV 

u(x,t) = Y 4 0 )9m(x) (4.26) 

The post-projection analysis shows that expressing uxx(x,t) in terms of the gm(x)'s 

too, causes a coupling among the aj^'s, while the use of the non-orthogonal qm(x)'ls 

introduces an additional coupling among the (d/d^aj^'s (in the Helmholtz equation 

this latter coupling involved the 's, instead). 

Consequently, the resulting system to be solved has the cumbersome form 

B-5<°> = Cfi<°> 
dt 

(4.27) 



94 

(with the matrix B being non-diagonal); thereafter straightforward inversion is very 

inefficient. Diagonalization of B corresponds to orthogonalization of the {qm} set, 

that is to say, employing the {Tm} set for the expansion of u(x, t), i.e u(x,i) = 

J2m=o arnTm(x). Subsequently, trivial normalizations transform B to the identity 

matrix I, yielding the desired output form 

7 a ( ° ) = Aa<°> (4.28) 
at 

The manipulations involved may be briefly summarized as follows: summing up 

properly modified versions of equations (4.27), we identify the coefficients a0°^ and a^ 

(which are missing in the qn expansion but are present in the desired Tn expansion) as 

linear combinations of the a2°^, a3°^,..., affl, so that the boundary conditions are still 

satisfied. Two new equations for the time-derivatives of the augmented coefficients 

are constructed; these are then used to modify the rest of the equations, so that both 

consistency with the new expansion's characteristics and satisfaction of the boundary 

constraints are maintained at all times. 

The equivalent pre-projection formulation (assuming a solution vector associ­

ated with the {Tn} set), imposes the constraints on a ^ in a later stage; the system 

of equations reads (Gottlieb and Orszag, 1977) 

N 1 {--i)m 

N TA] = - E /V ~ m2)4°> + J - 6 l ( c ) + U ! - M 0 , form = 0 , . . . , 

(4.29) 

dt Cm p=m+2 
p+m: even 
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with 

' N2 + N 

d2u 
'dx2 + 

(-1) 
N 

x=+l 
2{N2 + N) 

d2u 
'dx2 

J I=-l 
(4.30) 

M O = 
(-1)* \ d 2 u 

2{N2 + N) [ dx2 + 
x=+l 

N2 + N 

d2u 
dx2 

x--l 
(4.31) 

4.3.4 The collocation method 

The pseudospectral system exhibits disadvantages nearly identical to Galerkin's. 

The use of the {qm} set is, once more, responsible for the inefficient system that results. 

The post-projection analysis shows that the problems (due to further coupling among 

the {d/dt)a£hs) are more pronounced here and the decoupling transformation needs 

to overcome the dependence of the projection equations on the collocation points. 

Diagonalization of the system advances as follows: augmentation of the collocation 

grid with the two boundary points is performed, and subsequently the collocation 

equations for these points are constructed. Special discrete orthogonality properties 

of the Chebychev polynomials, i.e 

JV j ^ 
Y -Tiix^Tnixj) = —ci6ln for /, n e [0, N] (4.32) 

on the complete Filippi set i.e, xy = cos(nj/N) for j = 0,... , i V , or 

N 

£r,(*y)rB(zy) 
y=o 

N+l 
ci6in for/,n e [0,N] (4.33) 
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on the zeros of Tjv + i , i.e Xj — cos[(j + 1/2)/(TV + l)]) for j = 0,..., N, are then used 

to support a second stage of decomposing the collocation sums, eliminating, thereby, 

their dependence on the collocation set of points. A last stage involves the final 

diagonalization process, where the coefficients a0°^ and are identified as certain 

sums (see 3.28) of the coupled coefficients a^'. Manipulating the resulting system, in 

association with the discrete orthogonality relationships previously mentioned, allows 

construction of equations for (d/dt)aQ

0>i and (d/dt)a[°K Incorporating those into the 

rest of the equations (to guarantee compliance with the boundary conditions in the 

course of time) completes the procedure. 

The equivalent pre-projection approach might be used to derive the same final 

system of equations 

(-1) 
c m 

m 
M O for m = 0, ...,N 

(4.34) 

with 

M O I r d2ui and M O I r d2u~\ (4.35) 
J x=+l 

Collocation-Chebychev methods for the heat equation have been shown to be stable 

(Gottlieb, 1981, and Gottlieb and Lustman, 1983b). 
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4.3.5 Time differencing in Chebychev semi-discretizations 

The final system of equations for all but the integrated tau methods may be written 

under the general form 

d 1 N 

= — E M P 2 " » 2 K + M ^ i n + M<)#2n ,(4.36) 
p+n: even 

where the terms J 3 i n , and 

d2u 
bi(t) = ci+ 

dx2 

X-+1 

d2U 
dx2 

(4.37) 
J x = -l 

(which ensure compliance with the boundary constraints £ ^ _ 0 a n

 = Yln=o(~l)nan = 

0) vary in the different methods (compare equations 4.18-20, 4.29-31 and 4.34-35); the 

notation used here is after Gottlieb and Orszag, (1977). 

Semi-discretizations usually proceed by employing a finite difference scheme for 

the remaining variable, i.e for t (finite elements in semi-discretizations may be used 

too). Time integration was discussed in (2.5). Thus, we limit ourselves in a brief 

presentation of the problems and the possible ways around them. 

Explicit time differencing schemes enjoy remarkably easy formulation and they do 

not demand matrix inversions; these advantages are virtually counterbalanced by the 

overwhelming restrictions, which need to be imposed on the size of the time step At, 

to ensure stability of the semi-discrete scheme. 

The source of this problem is found at the clustering of the Chebychev grid points 

near the endpoints —1 and +1. Such a feature supports high resolution in the vicinity of 
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the boundaries, but it, concurrently, imposes the severe limitation that At be smaller 

than (1/CTM4), where M is the number of Chebychev polynomials retained in the 

expansion in x. This is so, because the dense boundary regions have a resolution 

Ax ~ 0(1/M 2); alternatively, this might be explained on the basis of the fact that the 

largest eigenvalue of the Chebychev matrix representation to d 2 / d x 2 grows as 1/M4, as 

it might be seen from application of Gershgorin's theorem (Zang et al, 1982). Despite 

those problems, explicit schemes are used quite often; the fourth-order Runge-Kutta 

scheme enjoys a great popularity (Hussaini et al, 1983). 

Alternatives have been found in either explicit schemes involving some kind of 

filtering (see 2.5.2), i.e Dufort-Frankel (Gottlieb and Gustafsson, 1976; Gottlieb and 

Lustman, 1983a), or in schemes involving implicit treatment (see 2.5.2 and 2.5.3). 

In order the express the system (4.36-37) in matrix notation, we define the (jV + l)-

long column vectors B l 5 B 2 , d and e as (-Bx)n = Bin, (B 2 ) n = B2n, 

<<„ = < + i r 2 ^ ^ and «. = (4.38) 

The definitions of the last two vectors result from the evaluation of the second deriva­

tive at x = ±1, respectively; this is accomplished via the expression (Gottlieb and 

Orszag, 1977) £>„(±1) = ( ±ir > n ^ (4.39, 
Jfc=0 

Denoting the Chebychev representation of d 2 / d x 2 by the singular matrix C (the two 

last columns are zero reflecting the loss of two degrees of freedom), we may write our 
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system as (double bars as used to distinguish matrices from vectors also expressed 

with capital letters): 

4a ( 0)=a[Ca(0) + c 1 + B 1 (d T a( 0 ) ) + C l _ B 1 ( e T a ( ° ) ) + c 2 + B 2 (d T a( 0 ))+c 2 _B 2 (e T a( 0 ))] 
dt 

(4.40) 
or 

^-a<°> = crAa(°) (4.41) 
dt 

where A = C + B and 

B = { [ C l + ( B a d T ) | + ( C l_(B 1e T)] + [ c 2 + ( B 2 d T)l + [c2_(B2eT)]} (4.42) 

The Crank-Nicolson and the backwards Euler implicit schemes are unconditionally 

stable for Chebychev semi-discretizations (Gottlieb and Orszag, 1977). Formulating 

the Crank-Nicolson scheme for our system 

u t + ± t - u t = oAtX{V±^L±JH ) (4.43) 

leads to the system 

( i - ^ i ) [ . C 0 ) ] ( + i , = ( i + ^ A ) [,<»>|, (4.44) 
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The backwards Euler scheme 

ut+&t — ut = oAt Aut+At (4.45) 

results into the system 

( l - a A « I ) [ a W ] 1 + A t = [aW]t (4.46) 

The integrated scheme is consisted of both ordinary differential and algebraic equa­

tions; this has not been modified in order for the quasi-tridiagonal form to be main­

tained. Employing the Crank-Nicolson scheme leads into the system 

^(n)[a{;l2)t+At - 0(n)\ai%+At + l(n)\a{

n°l2)^At = 
(4.47) 

°Wk°22]t + Hn)[an% + l(n)\a%\t for n = 2,..., N 

where a(n) = cn_2/4n(n - l), (3(n) — oAt/2 + en+2/2(n2 - 1), q(n) = en+4/4n(n + 1) 

and S(n) = aAt/2 - en+2/2(n2 - 1). 

The backwards Euler formulation of the integrated system reads 

«Wk°2 2U A t - <(»)k 0 )h + A* + l(n)[a{

n°l2\t+At = 
(4.48) 

« H k ° 2 2 ] t - ? H k 0 ) ] t + 7(n)[a22]t f o r n ^ 2 , . . . , i V 

with e(n) = oAt + en+2/2(n2 - 1) and f(n) = en+2/2(n2 - l). 
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Systems (4.47) and (4.48) need two more equations that are given from the bound­

ary conditions: These should be imposed on the vector at the new time step, i.e t + At 

(backwards Euler) or they should be centered (Crank-Nicolson) at t + (At/2). The 

corresponding equations are 

f ; [ a ( ° ) ] t + A t =0 and £ ( - 1 ) ^ % ^ = 0 (4.49) 
n = 0 n=0 

or 

E l«n°X+±t = - E ^ 0 ) l t = 0 and £ (-l)"k°)] t + A t = £ (-l) n + 1k 0 )] t = 0 
n=0 n=0 n=0 n=0 

(4.50) 

4 .4 Discussion of Results 

The numerical algorithms have been tested against the exact solution to the heat 

equation (with a = 1 and u(x = ±l,t) = 0) for the initial heat distribution u(x,t — 

0) = sin7rz (after Hussaini et al (1983)), which reads 

u(x,t) — e _ 7 r sin7rx (4-51) 

Although the Crank-Nicolson scheme enjoys a great popularity and a high reputa­

tion for problems associated with heat conduction and diffusion, it involves a number 

of subtleties; those should be well understood before the technique is blindly applied. 
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4.4.1 Crank-Nicolson stability analysis 

Assuming an (N + l)-long discretization of the fundamental interval [ —1,+1], let 

us write down the Crank-Nicolson system as 

Au' = Bu + A; (4.52) 

where u' denotes the solution at the next time step. Stability is associated with the 

eigenvalues of the matrix A _ 1 B , since 

u = A _ 1 B u + A - 1 A : (4.53) 

The eigenvalues fij of A~lB may be calculated as fij — (1 — aAy) 1 (1 + aAy), where Ay 

are the eigenvalues of the tridiagonal ( A 2 / A x 2 ) operator (symmetric for the Dirichlet 

but unsymmetric for the Neumann problem). 

The HJ spectrum for Dirichlet conditions reads 

1 - 4asin2(j7r/2iV) r . A r , 
fXj = for j = l , . . . , 7 V - l 4.54 

J 1+4asin20>/2iV) K 1 

(two less than in the general case) and it immediately obvious that < 1 for all 

positive values of a; an unconditional stability is always guaranteed. 

The Neumann spectrum (equation 4.8) reads 

1 - 4acos2(y7r/2Ar) r A r . . 
1 + 4acos^(j7r/2iV) 



103 

and a trivial inspection reveals that the eigenvalues Hj satisfy \fij\ < 1 since /ijv = 1-

The method is still stable but the presence of the unit eigenvalue is responsible for a 

persistent error in the numerical approximation (Mitchell and Griffiths, 1980). This 

error is coupled with the size of the parameter a; if a is not chosen appropriately then 

the numerical solution suffers from a high-frequency oscillation known as "Crank-

Nicolson noise" (Wood and Lewis, 1975). This problem is also identified in problems 

of the mixed (Robbins) type and it is briefly discussed in Mitchell and Griffiths (1980); 

a detailed analysis is given in Keast and Mitchell (1967). Alleviation of the problem 

might require a significant decrease of the time step; alternative procedures involve 

noise elimination techniques, while trying to maintain an adequately fast time stepping 

pace (Wood and Lewis, 1975). 

The Dirichlet case has been classified as unconditionally stable and free of per­

sistent errors, since all the eigenvalues fij are clearly smaller than unity. A deeper 

understanding of the physics of the problem provides additional insight. Following 

Ames (1977), we compare the exact solution in terms of the infinite sine series 

(4.56) 

71=1 

with the finite difference approximation 

N-l 

v(iAx,jAt) = Y vnnJ

n sin(m7r Ax) (4.57) 

71=1 

The eigenvalues fj,3
n correspond to the numerical approximations to exp(—n27r2t) and 

we can see that as Ax, At —• 0 (with a fixed), the eigenvalues fi]
n —• exp(—n2ir2t) 
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ensuring that the scheme is consistent; Lax's equivalence theorem then guarantees 

that the scheme is convergent. 

However, the Uj spectrum depends on the size of the parameter a = Al/2(Ax) 2 

and it is of fundamental importance to realize that changes in the value of a affect, in 

a nonlinear fashion, the relative decay rates of the eigenmodes of the discrete model. 

Subsequently, it is crucial to make sure that the time evolution of the discrete spectrum 

follows the details of the evolution of the continuous one, both on an individual and a 

global basis. For the problem under current consideration, we need a spectrum that is 

dominated by the factor exp(—n2ir2t) or equivalently the largest eigenvalue / i i should 

be clearly controlling the spectrum. Additionally, we must take caution that p\ stays 

positive in order to avoid contamination from extraneous oscillations. 

These constraints may be expressed as (Ames, 1977) 

Atx > 0 and — < 1 for all n > 1 (4.58) 
M l 

and they impose a restriction on the size of At that can be used, which is 

/V2sin(27r/iV) 

for the scale of our particular problem. Although an actual limitation to be taken into 

serious consideration, the above bound is not considered significant, since for a given 

spatial discretization, accuracy considerations would usually demand a step size of at 

least that level. 

(4.59) 
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Furthermore, Flatt (1961) has shown that uniform stability (for Crank-Nicolson 

diffusion systems) depends on the length of the computational domain imposing, there­

after, further restrictions on the permissible value of the parameter a. 

4.4.2 Absolute versus relative stability 

Another important point should be discussed before the analysis of the numerical 

algorithms' performances. This is associated with the choice of the norm in which the 

accuracy of each method is to be measured. In the last chapter both the relative Li 

and LQO error norms were employed and it was decided that the Loo norm comprised a 

better indicator of the performance of a method. The infinity norm is a very pessimistic 

one and it may be misleading if extraneous solution points are present; in addition, 

its normalized version should be used with caution, for it would tend to magnify the 

error estimates when the solution itself becomes negligible. Despite this, we believe 

that an error analysis and an algorithm evaluation based on the Loo norm is absolutely 

adequate for our problem, at least as the solution remains both smooth (free of input 

noise) and far away from zero. 

Both the Crank-Nicolson and the backwards-Euler solutions of either the finite dif­

ference or the Chebychev system, involve a repetitive application of a certain (linear) 

operator in order to advance the given initial condition successively in time. What 

is the nature of the errors arising in the recurrence? First, we have to consider that 

the initial condition fed into the discrete system is not exact due to round-off errors; 

second,,we need to be aware of the fact that at every step of the repetitive application 

operator errors are both committed and transferred to the next step. The generation 

of errors is due to the fact that the operator itself is only an approximation of certain 
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order to the true differential one and therefore, a truncation error is always present. 

Additionally, even this inaccurate calculation is not done perfectly since the compu­

tations are susceptible to round-off problems. Furthermore, all the errors present in 

the solution vector at a certain time step are themselves being propagated to the next 

step through the computation. 

Let us now return to the issue of stability and its exact meaning in a recurrence 

environment. The notion of stability has been presented in an absolute sense only. 

In other words, the schemes are stable in the sense that errors do not get magnified 

through the recurrence; consequently, absolute errors remain bounded. This kind 

of stability is termed absolute stability. It is obvious that such a stability definition 

is consistent with the Loo norm and it is doubtful whether an Z o o error analysis is 

compatible with that. However, our persistence in examining the Z o o errors instead 

of the Loo is further justified by the fact that the diffusion equation damps the initial 

distribution in the course of time and therefore, we should be investigating the decay 

of the approximate solution with respect to the decay of the true solution in a relative 

than in an absolute fashion.Thus a reliable estimate of the accuracy of the computed 

solution at some time step is obtained. 

It would then be only natural to analyze the stability of the scheme in the nor­

malized norm, thereby, investigating the relative stability of the given scheme,, that 

is, the behavior of the relative (percentage) error as the number of iterations tends 

to infinity. Confusion prevails since numerical analysts themselves do not appear to 

follow a uniform path with respect to the definition of absolute and relative stability. 

Pizer and Wallace (1983) define relative stability for both single- and multi-step 

recurrence methods as a description of the behavior of the relative error ti/yi (where 
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i is the recurrence level) as t -> oo. Naturally, absolute and relative stability do not 

coincide, unless the absolute error magnitude goes to zero at the same rate as the exact 

solution does. Otherwise, an absolutely stable scheme is unstable in a relative sense if 

e, —• 0 more slowly than t/i —> 0 and an absolutely unstable scheme is relatively stable 

if e, —• oo more slowly than y, does (Pizer and Wallace, 1983). 

The majority of numerical analysts (Ralston and Rabiniwitz, 1978, Gear, 1971) 

employ a different approach towards relative stability. In order to identify and explain 

this alternative and rather dominating second approach, let us consider the simple 

first order differential equation 

y' = -Ky with y(x 0) - Vo 

with the true solution being 

Y = y 0 e x p ( - J K ' ( x - x o ) ) (4.61) 

The general integration formula may be written as 

p 

y n + 1 ( l + hKb^) = ] T ( a t - hKbi)yn_i (4.62) 
t=0 

where p is the order of the integration scheme, h is the step size, and a t and bi 

(b_i 7^ 0 for implicit schemes) are integration constants depending on the particular 

(4.60) 
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scheme employed (Ralston and Rabinowitz, 1978). The solution of the linear equation 

(4.60) may be expressed as 
p 

yn = J2 C i r i (4-63) 

t'=0 

where the ct-'s are constants and the rt's are obtained by solving the equation 

It may be shown that c 0 t/o and —• exp(-K(xk - x0)) as h -» 0. Thus, the first 

term in (4.63) approaches the true solution as h —> 0. The rest of the r̂ , i = 1,..., p are 

classified as parasitic roots (being present because the order of the difference equation 

is p+ 1 as opposed to 1 for the differential equation) and they should satisfy |r,| < |r 0 | 

for all i > 1, so that they would not interfere destructively in the construction of 

the approximate solution. An analogous analysis may be carried out for the error 

components of the solution. 

Now, if the solution is an increasing exponential, we cannot hope to keep the error 

bounded since the exact solution itself is not bounded. However, we need to ensure 

that the error stays small relative to the true solution, which means that the parasitic 

solutions should remain small with respect to the non-parasitic or principal solution 

and therefore errors will be magnified at a lower level than the true solution; we may 

then classify the method as being stable. 

All the above point to the following definition of stability (Ralston and Rabiniwitz, 

1978). A method is said to be absolutely stable on an interval [7,6] if for all hK in this 

interval |rt-| < 1 i = 0,... ,p, whereas this method is classified as relatively stable on 

p 

(4.64) 
t'=0 
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(in general) another interval [a, 3] if for all hK in that interval ) /r 0 1 < 1 i = 1,... ,p 

and if when |rt-| = |ro|, rt- is a simple root. 

If the solution is ever-decreasing in magnitude, absolute stability is meaningful 

only if all the parasitic solutions decrease in magnitude as well. Gear (1971) empha­

sizes that for the majority of the schemes and the problems being tackled, accuracy 

limitations (accurate approximation of exp(hK)) overwhelm relative stability restric­

tions (parasitic roots smaller than the principal root). Furthermore, weakly stable 

or nearly weakly stable schemes (one or more parasitic roots lying at the vicinity of 

the unit circle for hK = 0) are likely to suffer from relative stability problems, while 

strongly stable schemes (all roots clearly well inside the unit circle) do not tend to 

exhibit such kind of problems. Although very enlightening, this second approach to 

the relative stability question is paradoxical, in the sense that it does not consider 

relative stability for the single step recursions present in our case, where there is only 

the principal root ro contributing in the numerical approximation. 

The latter stability definition was presented for the case of a single scalar equation. 

For a system of equations though, ro is not a scalar anymore, but an eigenfunction 

matrix instead. A comparison of this definition with the restrictions (4.58), reveals 

a high degree of resemblance and we may conclude that, since we have to cope with 

an ever-decreasing solution, whose dependence on the first eigenfrequency increases 

dramatically with time, we may extend the notion of relative stability in the same 

fashion to single step recursions as well. In other words, we could view the higher 

eigenfrequencies as being of the parasitic kind and impose the requirement that they 

stay smaller from the principal mode at all times (compare with 4.58). Alternatively, 

it may be that the second approach does not consider the issue as one of a relative 
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stability nature, either because knowledge of the exact solution is not available a priori 

in general, or because the problem is classified as regarding accuracy, instead. 

Before concluding this discussion on accuracy and stability, we should point out 

that the diffusion equation involves a natural damping (smoothing out irregularities) 

and therefore, not only the solution bur the errors themselves are susceptible to that. 

The effect of the errors may also be visualized from another perspective. They are 

virtually perturbing the original equation, augmenting it with an artificial heat source 

term, that is to say, our diffusion equation becomes inhomogeneous as "heat" is fed into 

the system superficially. These errors would decay as time progresses for an absolutely 

stable approximation, but they should have a faster relative decay rate with respect 

to the solution, if we are to retain our original relative accuracy in the course of time. 

4.4.3 Additional numerical considerations 

Numerical tests are made for t = 1 following the details of the test example of 

Hussaini et al (1983). Although computations for the Helmholtz equation (chapter 

III) are done in single-precision arithmetic, an inspection of the true solution at t = 1 

reveals the inadequacy of such an accuracy level for our diffusion model computations. 

A major hurdle is the apparent magnification of the error at the zero crossings in the 

numerical solution. Stepping in time is accompanied by two negative effects insofar 

as accuracy is concerned. The magnitude of the solution itself is reduced and concur­

rently, cumulative round-off causes a drifting of the exact zero crossing away from zero. 

Consequently, after the time of interest for our problem has elapsed, numerical results 

become meaningless as numerical resolution of fundamental aspects of the solution has 

been lost. 
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This zero crossing phenomenon has more severe implications in the case of the 

Chebychev expansions. The two following factors are responsible for such a phe­

nomenon. The first is associated with the fact that the endpoints are "frozen" in the 

finite difference system, whereas they have been included in the Chebychev system (so 

that the system is more efficient and better conditioned — see discussion in 3.3.2.2 and 

3.3.3.2). Second, the boundary points are not amenable to direct manipulation, since 

their significance has been transferred to the spectrum through the transformation in 

the Chebychev space. The transform routine tends to operate as a "noise" generator, 

in the sense that it diminishes the resolution of the physical space and, therefore, it 

weakens the power of whatever protective precautions are taken in the physical space. 

Furthermore, re-imposition of the boundary conditions requires an inverse transform; 

continuation of the procedure demands a forward transform to recover the Chebychev 

spectrum at that time instant and thereby, efficiency is reduced and further (but rather 

minor) round-off's are experienced. 

Experiments show a dramatic improvement when imposition of the boundary con­

ditions is applied at every time step of the Chebychev system recursion. The presence 

of the interior zero crossing of the solution is rather intractable though. Either system 

(finite differences, Chebychev) exhibited a significant improvement when the interior 

zero crossing was kept satisfactorily close to zero, but, of course, such an approach 

is useless because it requires a priori information regarding details of the time evo­

lution of the exact solution. A more efficient (but rather elementary) filtering based 

on a "minimum threshold" principle (either in the physical or the transform space) 

fails to improve the accuracy levels, indicating the need for a deeper understanding of 
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the problem and the ultimate dependence of such an approach on the specific initial 

condition being considered. 

Obviously, shifting to double-precision arithmetic is a viable alternative. Nonethe­

less, the algorithms are doomed to suffer from exactly the same problems at larger 

times (employing double-precision merely procrastinates the occurr ence of the reso­

lution loss); therefore, more sophisticated techniques would need to be devised in the 

future to account for a more efficient and productive handling of such problems; a 

detailed study of filtering in Chebychev space should be carried out but this beyond 

the scope of this thesis. Confirmation of the previous speculative analysis on the ac­

curacy deterioration, associated with the pollution of the numerical algorithms due to 

such ill-conditioned intrinsic characteristics of the exact solution, has been obtained 

by comparing the results of our problem with results obtained for the initial condition 

sin((x + l)7r/2), which does not have a zero crossing at x = 0; sin((x + l)7r/2) has only 

half its period in [—1,-1-1], while sin(Trx) unfolds its full period in that same interval. 

4.4.4 The finite difference Crank-Nicolson scheme 

Let us now present some error estimates from our numerical experiments with the 

Crank-Nicolson finite-difference scheme. Tables (4.1-2) are concerned with the relative 

and the absolute estimates for u(x, 0) = sin7rx at t = 1, respectively. Two different 

step sizes are considered, involving both constant and variable (a = f{N)) values for 

the parameter a. 

The absolute stability of the scheme allows a fast time integration pace to be employed. 

Although fast integration is associated with an enhanced local temporal error, it also 

means that fewer time steps are needed to arrive at the desired time instant and 



113 

N + l\At 1/N (a = N/8) 1/JV2 (a = 1/8) 
5 0.10 (-1) 0.45 (+1) 
9 0.58 (0) 0.62 (0) 
17 0.18 (0) 0.13 (0) 
33 0.46 (-1) 0.32 (-1) 
65 0.12 (-1) 0.80 (-2) 
129 0.29 (-2) 0.20 (-2) 

Table 4.1 values for the Crank-Nicolson solution of the heat equation with u(x, 0) = 
sin 7TX, at t = 1. 

JV + 1 \ At 1/JV {a = N/S) 1/N2 (a = 1/8) 
5 0.52 (-4) 0.23 (-3) 
9 0.30 (-4) 0.32 (-4) 
17 0.91 (-5) 0.69 (-5) 
33 0.24 (-5) 0.17 (-5) 
65 0.60 (-6) 0.41 (-6) 
129 0.15 (-6) 0.10 (-6) 

Table 4.2 values for the Crank-Nicolson solution of the heat equation with u(x, 0) = 
sin irx, at t = 1. 

consequently, arithmetic error is reduced. This is clearly depicted in tables (4.3-4), 

which contain a description of these errors as time increases from t = 0 to / = 1; the 

given estimates are for JV = 16, At = 1/16 (a = 2) and At = 1/256 (a =1/8). 

time steps l o o L o o 

1 0.65 (-2) 0.12 (-1) 
5 0.27 (-2) 0.58 (-1) 
10 0.24 (-3) 0.11 (0) 
17 0.91 (-5) 0.18 (0) 

Table 4.3 and L o o values for the Crank-Nicolson solution of the heat equation with 
u(i, 0) = sin r̂a: for N=16 and from t = 0 to t = 1; time advancing is performed in steps of 
At = 1/16. 
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time steps Loo Loo 
1 0.47 (-3) 0.49 (-3) 
50 0.36 (-2) 0.25 (-1) 
150 0.23 (-3) 0.76 (-1) 
256 0.69 (-5) 0.13 (0) 

Table 4 . 4 Loo and Loo values for the Crank-Nicolson solution of the heat equation with 
u(i,0) = sinTTi for N=16 and from t = 0 to t = 1; time advancing is performed in steps of 
At = 1/256. 

Despite the fact that the recursion enjoys absolutely stability for both choices 

of Ar, either of those leads to relative instability (or relative inaccuracy), since the 

percentage error between the computed and the exact solution increases (linearly) with 

the number of time steps. 

A similar behavior of the errors can be identified from the results given in table 

(4.5). These refer to the Crank-Nicolson solution of the heat equation with u(x,0) = 

sin x in [0, ir] and with exact solution u(x, t) = exp(—t) sin x. The number of x samples 

N = 20 and the parameter a — l/2\/20 were chosen as in Mitchell and Griffiths (1980). 

time steps Loo Loo 
1 0.11 (-4) 0.11 (-4) 
2 0.22 (-4) 0.23 (-4) 
4 0.44 (-4) 0.45 (-4) 
8 0.87 (-4) 0.91 (-4) 
16 0.17 (-3) 0.18 (-3) 
80 0.58 (-3) 0.91 (-3) 
160 0.75 (-3) 0.18 (-2) 
320 0.62 (-3) 0.36 (-2) 
640 0.21 (-3) 0.73 (-2) 
800 0.11 (-3) 0.91 (-2) 
1500 0.44 (-5) 0.17 (-1) 
2000 0.37 (-6) 0.23 (-1) 
3000 0.22 (-8) 0.35 (-1) 

Table 4.5 Loo and L^ for the Crank-Nicolson solution of the heat equation with u(x, 0) = 
sin i for different numbers of time steps (N = 20). 
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These results — virtually identical to theirs — demonstrate similar trends in the 

attitude of the errors. In the beginning both errors start to increase with time, but 

at a later stage the absolute error commences to descend as anticipated. A similar 

situation is not observed in the case of the percentage error, which appears to increase 

linearly and without having a finite bound. 

4.4.5 The Chebychev Crank-Nicolson scheme 

We now proceed with the performance of the Chebychev solutions to the diffusion 

equation. The Crank-Nicolson scheme has been chosen, over the backwards-Euler one, 

to simulate the time advancing of the solution, due to its reduced temporal error. The 

absolute stability having been ensured, we need only worry about the accuracy. A 

stepsize At — 1/N2 has also been chosen; it is considerably larger that the explicit 

schemes' barrier and it approximately corresponds to the ( A i ) m i n of the Chebychev 

sampling. 

iV+ 1 GAL PSD TAU TIN TIC 
5 0.94 (0) 0.94 (0) 0.10 ( + 1) 0.10 (+1) 0.10 ( + 1) 
9 0.20 (-1) 0.20 (-1) 0.21 (-1) 0.21 (-1) 0.21 (-1) 
17 0.12 (-2) 0.12 (-2) 0.12 (-2) 0.12 (-2) 0.12 (-2) 
33 0.76 (-4) 0.76 (-4) 0.76 (-4) 0.76 (-4) 0.76 (-4) 

Table 4.6 for the Chebychev Crank-Nicolson solution of the heat equation with u(i,0) = 
sin 7rx from t = 0 to t = 1. The results listed refer to the Galerkin, pseudospectral, and differen­
tiated, non-centred integrated and centred integrated tau systems, respectively. Extrapolation 
has provided error estimates for the systems with N = 64, 128; these are 0.50 (-5) and 0.30 
(-6), respectively. 
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All three projections have been tested; tables (4.6-7) present and estimates 

for the initial condition u(x, t = 0) = sin7rx and at t = 1. The linear systems to be 

inverted at each time step are not tridiagonal, as in the case of the finite differences and 

therefore, general inversion routines have to be employed. The results given have been 

obtained by applying an L U decomposition with partial pivoting. Improvement of the 

solutions using iterative improvement have not produced answers of better quality. 

4-4-5.1 Conditioning and inversion of the propagation matrix 

The conditioning of the Chebychev Crank-Nicolson matrices depends in a non-

trivial fashion on both the values of a and At used in a particular application. 

N + 1 GAL PSD TAU TIN TIC 
5 0.39 (-4) 0.39 (-4) 0.41 (-4) 0.41 (-4) 0.41 (-4) 
9 0.96 (-6) 0.96 (-4) 0.10 (-5) 0.10 (-5) 0.10 (-5) 
17 0.62 (-7) 0.62 (-7) 0.62 (-7) 0.62 (-7) 0.62 (-7) 
33 0.39 (-8) 0.39 (-8) 0.39 (-8) 0.39 (-8) 0.39 (-8) 

Table 4.7 Loo for the Chebychev Crank-Nicolson solution of the heat equation with u(x,0) = 
sinTra; from t — 0 to t = 1. The results listed refer to the Galerkin, pseudospectral, and 

differentiated, non-centred integrated and centred integrated tau systems, respectively. 

A condition number investigation (for the parameters of our current problem) nul­

lified our suspicions with regard to the quality of their conditioning (see table 4.10); the 

tau systems are worse conditioned than the Galerkin and the pseudospectral matrices 

and between them, the integrated system exhibits definetely a looser structure. Par­

tial pivoting, at least in theory, might fail even for well-conditioned matrices and it is 

important to understand that even a moderate failure could possibly lead to increased 

round-off over a large number of repetitions. The loss of relative accuracy, witnessed 

in the finite difference's evolution of the numerical solution and evident from a simple 
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comparison of the tables (4.8-9) for the Chebychev solutions, may be associated with 

this problem. « 

N + l GAL PSD TAU TIN TIC 
5 0.16 (0) 0.16 (0) 0.74 (0) 0.74 (0) 0.74 (0) 
9 0.33 (-3) 0.33 (-3) 0.86 (-3) 0.86 (-3) 0.86 (-3) 
17 0.48 (-5) 0.48 (-5) 0.48 (-5) 0.48 (-5) 0.48 (-5) 
33 0.75 (-7) 0.75 (-7) 0.75 (-7) 0.75 (-7) 0.75 (-7) 

Table 4.8 Loo f° r the Chebychev Crank-Nicolson solution of the heat equation with u(x,0) = 
sin nx after one time step. The results listed refer to the Galerkin, pseudospectral, and differen­
tiated, non-centred integrated and centred integrated tau systems, respectively. Extrapolation 
has provided estimates for N = 64,128; these are 0.12 (-8) and 0.18 (-10), respectively. 

Eradication of our qualms demands the employment of the complete (total) piv­

oting strategy, but since the numerical tests do not indicate the presence of such an 

exceptional situation, the issue has been approached via less computationally intensive 

techniques. Preprocessing of the system has been considered. The Crout LU algorithm 

is a candidate due to its implicit pivoting strategy: the pivot element is chosen as if the 

entries of the matrix had been scaled to a maximum of unity in each row (Press et al, 

1985). Instead, row balancing has been attempted; this amounts to a simplified ver­

sion of the more general row-column equilibrium. The matrix D = diag(/3ri, • • •, 0Tn) 

is computed appropiately, in order to produce a matrix D~*A, which has roughly the 

same L^ norm for each of its rows (Golub and van Loan, 1983). The quantity 0 is the 

float-point arithmetic radix base of the machine used and thereafter, by choosing the 

scale factors only among the integer powers of 0, no round-off errors are committed 

during the balancing process. Significant improvement of the conditioning may be 
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N + l GAL PSD TAU TIN TIC 
5 0.68 (-1) 0.68 (-1) 0.32 (0) 0.32 (0) 0.32 (0) 
9 0.27 (-3) 0.27 (-3) 0.69 (-3) 0.69 (-3) 0.69 (-3) 
17 0.45 (-5) 0.45 (-5) 0.45 (-5) 0.45 (-5) 0.45 (-5) 
33 0.74 (-7) 0.74 (-7) 0.74 (-7) 0.74 (-7) 0.74 (-7) 

Table 4.9 L^ for the Chebychev Crank-Nicolson solution of the heat equation with u(i, 0) = 
sin •KX after one time step. The results listed refer to the Galerkin, pseudospectral, and differ­
entiated, non-centred integrated and centred integrated tau systems, respectively. The 65 and 
129-long systems exhibit errors of 0.12 (-8) and 0.18 (-10) in value, respectively. 

N + l GAL PSD TAU TIN'S 
5 0.23 (+1) 0.18 (+1) 0.45 (+1) 0.45 (+1) 
9 0.50 (+1) 0.39 (+1) 0.17 (+2) 0.46 (+3) 
17 0.16 (+2) 0.14 (+2) 0.79 (+2) 0.28 (+4) 
33 0.63 (+2) 0.59 (+2) 0.45 (+3) 0.19 (+5) 
65 0.28 (+3) 0.27 (+3) 0.28 (+4) 0.13 (+6) 
129 0.13 (+4) 0.13 (+4) 0.18 (+5) 0.85 (+6) 

Table 4.10 Condition numbers for the Chebychev Crank-Nicolson systems with a=\ and 
At = 1/N2; the condition numbers given above refer to the Galerkin, pseudospectral, and 
differentiated, and integrated tau systems. 

achieved and even though, this refers to a specific norm, comparable decrease of the 

condition number in any other norm should be anticipated (Press et al, 1985). 

As a result, the probability of accuracy diminution, due to the addition of numbers 

that vary widely in magnitude during the elimination process, is greatly reduced. In 

addition to row balancing, the QR algorithm (with implicit shifts) has also been used 

to invert the propagation matrices. 

Neither of the techniques mentioned above has succeeded in improving the accu­

racy, but the likelihood of witnessing such a stabilizing effect would tend to increase 

with the dimension of the spatial discretization. Furthermore, for such occurrences, it 

might be advisable to employ an (SVD) decomposition augmented with a threshold 

cut-off for the "noisy" singular values. 
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4.4-5.2 Analysis of results and comparison with finite differences 

Let us now compare the performance of the Chebychev tecniques with finite dif­

ferences; a variety of interesting points should be highlighted. The relative simplicity 

of the analytical problem and the well-posedness of its numerical counterpart under 

current consideration, defaults to a virtual equivalence between the Galerkin and the 

pseudospectral methods; the lack of ill-conditioning makes all the variants of the tau 

projection performing at the same level as well. Furthermore, as sampling becomes 

denser, the tau results improve rapidly, converging to the originally superior Galerkin 

(pseudospectral) approximations. 

The integrated tau system's implementation demands a closer look. Although the 

boundary conditions should be imposed in a "centred" fashion according to equations 

(4.50), other investigators prefer a "non-centred" version, that is, equations (4.49) 

(K im and Moin, 1980; Orszag and Kells, 1980). This latter choice is not consistent 

with the rest of the Crank-Nicolson system, but paradoxically, it amounts to a mere 

computational trick for minimizing round-off in the computation of the right-hand 

side vector. Again, no difference in the results is observed but this will not be so, if 

conditioning problems and incomplete boundary simulation are present; accumulation 

of the inner products (in updating the right-hand side vector) in an extended precision 

is another reason. The latter detail may be of fundamental importance, as a repetitive 

inaccurate accumulation of these inner products could weaken the imposition of the 

boundary conditions (primarily) to a significant extent and lead to woefully incorrect 

answers. 

Some useful indications on the performance of all the different techniques, in the 

presence of unavoidable pitfalls, may be drawn by looking back at the troublesome 
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single precision solutions of the given problem. There, the Galerkin method enjoys 

an early relative superiority over all the other techniques, but as the dimension of the 

problem increases, the breakdown of the highly sensitive Galerkin and pseudospectral 

systems occurs faster than for their tau counterparts. Among the latter ones, the 

resistance to deterioration is more enhanced in the "non-centred" systems. The "cen­

tred" integrated and differentiated systems follow in this order. A final comment, here, 

concerns the superiority of the (pure differential) differentiated system (4.18-20) over 

its mixed (4.11-12) predecessor; the former may endure slight boundary imposition, 

problems with relative success, whereas the latter rather dissolves. 

JV + 1 GAL PSD TAWS 
9 0.24 (-3) 0.46 (-3) 0.16 (-2) 
17 0.11 (-10) 0.21 (-10) 0.84 (-10) 

Table 4.11 L^ values for the Chebychev Runge-Kutta solution of our model problem (after 
Hussaini et al, 1983). 

N+l GAL PSD TAVS 
9 0.26 (-1) 0.26 (-1) 0.31 (-0) 
17 0.19 (-7) 0.19 (-7) 0.19 (-7) 

Table 4.12 Laa values for the Chebychev Crank-Nicolson solution with At = 1/iV4 for our 
model problem; extrapolation from the errors after just one time step has again been employed. 

Overall though, the Chebychev systems enjoy a great superiority over their finite 

difference rivals. They are able of attaining a moderate accuracy level by employing 

orders of magnitude fewer points than finite differences do; alternatively, they may be 

pushed into achieving extrere accuracy by dense sampling rates. 
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If the length of the calculations is not long, explicit schemes with high-order trunca­

tion error and, most importantly, provision for absolute and relative error control (ac­

counting to an implicit control of the truncation error to predetermined tolerance lev­

els) is the best choice, i.e fourth-order Runge-Kutta or high-order predictor-corrector 

methods. This may be manifested by considering the results given in table 4.11 (ob­

tained via a fourth-order Runge-Kutta integration of the Chebychev systems) and 

comparing them with the error estimates displayed in table 4.12, which correspond 

to a Crank-Nicolson time integration with a time increment At = 1/iV4. This spe­

cific choice reflects the upper bound on At for explicit integrations (Runge-Kutta) 

and although it is absolutely meaningless in an "implicit" environment, it allows a 

comparison of the two temporal integrators to be carried out under a uniform time 

increment assumption. As anticipated, these Crank-Nicolson results are superior to 

the ones reported earlier, for At = 1/iV2. Despite this significant improvement, the 

Crank-Nicolson performance is definitely inferior to Runge-Kutta's. Furthermore, the 

special characteristics of the various Chebychev systems appear to be resolved better in 

a Runge-Kutta integration; the overlap of the Crank-Nicolson results is not witnessed 

there. What are the sources of these phenomena? 

First, we ought to realize that the reported Runge-Kutta scheme has a temporal 

truncation error two orders of magnitude higher than the Crank-Nicolson's. Second, 

the former technique is "privileged" in the sense that it incorporates an adaptive time 

step size control, in order to maintain a predetermined absolute-relative accuracy level; 

on the contrary, a direct march in time was performed for the Crank-Nicolson systems. 

Therefore, the Runge-Kutta driving mechanism does not allow the accumulation of the 
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repetition of truncation errors with time. Finally, we should not forget that the Crank-

Nicolson scheme amounts to a low-frequency approximation of the time propagator and 

therefore, a proper handling of the high-frequencies is neglected. The Runge-Kutta 

technique, on the other hand, propagates these higher frequencies more accurately, 

provided that the restrictions on the size of At are met; indeed, it is exactly this high-

frequency part of the spectrum that would devastate the numerical approximation if 

the restrictions on At fail to be met. This last point refers to the characteristic feature 

of the implicit methods: they aim at producing the correct equilibrium solution and 

not at providing answers of high resolution. 

The issue of resolution among the different Chebychev systems themselves is now to 

be discussed. The nature of the Runge-Kutta integrator allows the high-frequency su­

periority of the Galerkin and the pseudospectral methods to be reflected at their perfor­

mance, compared to the tau method; incidentally, the Galerkin results are marginally 

better. However, as N increases and the spatial information gets almost saturated at 

N = 16 (see 4.4.5.3), we observe that the tau results merge into the level of the rest, 

even in the Runge-Kutta case. 

Nevertheless, ambitions for answers of very high accuracy may be prohibited, due 

to time differencing obstacles when large time scale computations are considered. Im­

plicit schemes manage to shrink these limitations to some extent at least, as long 

as the dimension of the problems remains moderate. In agreement with the previ­

ous observations, Hussaini et al (1983) propose the use of the Chebychev integrated 

Crank-Nicolson system for large time scale computations, when a relative accuracy of 

1 0 - 3 is considered satisfactory (Hussaini et al, 1983). 
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Our results too point in the understanding that the most important feature of the 

Chebychev solutions is their ability of achieving moderate accuracy with much fewer 

spatial points. The Chebychev time step is much smaller than in finite differences (even 

with implicit schemes); nevertheless,the trade-off, subjective as it may be, is in favor 

of the Chebychev systems, especially as the spatial dimensionality of the problems 

increases. 

The previous analysis reflects the case of o = 1. How would it be affected by an 

increased ol It is important to understand that either stability or accuracy consid­

erations couple a and At; as a result, it is the product of these, namely the quantity 

a At, that controls their performance. Failure to satisfy the requirement of At not 

being larger than 0(l/oN4) would default to a destabilization of explicit integration 

schemes. On the contrary, implicit schemes will not suffer from instabilities, but in­

accurate results would be obtained if accuracy considerations of the physical problem 

were not to be obeyed. Integration with either scheme (provided that the problem 

is treated correctly) should be pronouncing the superiority of the Galerkin and the 

pseudospectral methods over the tau systems; evidently, the higher resolution of the 

former techniques should be depicted better in the Runge-Kutta than in the Crank-

Nicolson integration. In addition, properly implemented Chebychev systems would be 

exhibiting an enhanced superiority over the finite differences, as the magnitude of the 

diffusitivity parameter a of the problem increases. 
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4-4-5.S Analysis of the Chebychev spectrum of sin(7rx). 

We would now like to focus our attention back to the results given in table 4.6 

and study them in association with the Chebychev spectrum of the initial condition 

u(x, t = 0) = sin(7rx). 

Concurrently, we would also like to identify how faithful the discrete Chebychev 

spectrum is to its true counterpart. This comprises an exceedingly important aspect of 

the effect of the discretization on the proper representation of the original information. 

Fortunately, the Chebychev transform of sin(7rx) can be evaluated analytically and 

thereafter to machine-accuracy precision level. The derivation has been carried out in 

Appendix A.5; the magnitude of each spectral component according to (A.55) is given 

as 
oo 

an =
 2 E ( ~ 1 ) * J 2 f c + l(7r)<5n,2fc+l (4.65) 

k=0 

A mere inspection of this expression reflects the odd-character of the spectrum ( the 

sin(7rx) having odd parity in [ — 1, -hi] ), since the ^-function ignites for odd values of 

n, only. The absolute value of the an's (4.65) is plotted in figure (4.1a); the specrtum 

peaks for a Chebychev pseudo-wavenumber in the neighborhood of n. The latter 

marks the onset of a dramatic convergence, obvious in the corresponding logarithmic 

plot (figure 4.1b). 

Table 4.13 displays information regarding the convergence of the Chebychev series; 

successive truncation of the true spectrum has been applied and the corresponding 

errors have been recorded. 
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Figure 4.1 Amplitude spectum of the true Chebychev spectrum of sin(nx) in a (a) linear and 
(b) logaritmic scale. 
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Reconstruction of the sine is readily obtained as 

sin(Trx) = 2 JT — j^) s i n ( ^ ) Tn(x) (4.66) 
n=0Cn ^ 2 / 

and table 4.14 contains error estimates concerning the quality of the reconstruction of 

the sine, employing only a certain portion of the true spectrum. 

N + l L2 Loo 
2 0.58 (0) 0.10 (+1) 
4 0.14 (-1) 0.16 (0) 
8 0.80 (-7) 0.25 (-3) 
16 0.14 (-21) 0.16 (-10) 
20 0.27 (-30) 0.69 (-15) 
22 0.66 (-35) 0.34 (-17) 

Table 4.13 Li and LOG values for the true Chebychev spectrum of sin 7 r x , truncated to various 
cut-off levels. 

N + l Lo Loo 
2 0.61 (+1) 0.73 ( + 1) 
4 0.15 (-1) 0.11 (0) 
8 0.85 (-7) 0.25 (-3) 
16 0.15 (-21) 0.11 (-10) 
20 0.10 (-29) 0.14 (-14) 
22 0.71 (-30) 0.10 (-14) 

Table 4.14 Li and Lx values for the true Chebychev series reconstruction of sin nx, truncated 
to various cut-off levels. 

The L2 behavior of table 4.14 verifies the heuristic criterion for the resolution 

requirements of Chebychev expansions, i.e "good" convergence demands TT polynomials 

per wavelength, at the very least. Indeed, significant reduction of the reported error 

commences at i V c u t - o f f = 4, which amounts to retaining 4 ( 2 non-zero) modes 

(sin7rx has just one complete wavelength in the fundamental interval [ —l,+l]). This, 
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alternatively, may be seen in table 4.13, where the relative energy discrepancies start 

exhibiting a dramatic drop-off at the same cut-off level. 

Important as it is, the previous heuristic cannot provide a rigorous, quantitative in­

terpretation of the rather vague classification good. The criterion has been established 

on the basis of the energy distribution in the spectrum and it might be misleading, 

when augmented with an analysis concerning pre-specified resolution (accuracy) am­

bitions. That this may be the case is evident from the LQQ estimates in both tables. 

Athough substantial reduction of the inaccuracy level begins at JV c u t_ 0fr = 4, it is the 

^cut-off = 8, which witnesses an unquestionable diminution of the incomplete recon­

struction's errors; still, it is obvious that high-resolution information is stretched up 

to the 21-st coefficient (for double precision computations). Everything, beyond this 

spectral boundary, floats in a noise swamp and provides no more information. 

The previous discussion on the effect of the truncation of the true spectrum will fa­

cilitate the investigation of the quality of the discrete spectrum; we start by reminding 

ourselves of the most familiar discrete Fourier spectrum limitations. The only class of 

functions, whose discrete Fourier transform qualifies as an excellent simulator of the 

analytic integral, must satisfy all the following conditions: 

1) The function is periodic; 

2) The function is band-limited; 

3) The sampling interval does not violate the Nyquist sampling criterion, i.e two 

points per cycle; 

4) The truncation of the infinite time (space) function is performed exactly at a 

multiple of its period (Brigham, 1974). 



128 

Nevertheless, the results are "perfect" to the order of the accuracy of the numerical 

integration and limited to the round-off level. 

The computation of the discrete Chebychev transform demands a discrete point-

set as well. Although a quadrature on an equidistant point-set is usually preferred over 

other more elaborate and fancier non-equidistant quadrature schemes (for example the 

DFT algorithm is based on the extended trapezoidal rule), the Chebychev transform 

has been traditionally evaluated on specific non-equidistant point-sets for good rea­

sons. These are associated with a dramatic acceleration in the speed of the relevant 

computations; the point-set Xi = cos 0t- for 0t- in [0, ir] reduces the transform to a cosine 

one and it allows the use of the FFT algorithm, thereby introducing an overwhelm­

ing efficiency improvement (see Appendix B). Sampling in an non-equidistant fashion 

makes the aliasing analysis rather obscure, but on the other hand, a direct equidistant 

quadrature in x-space for the calculation of the integrals 

2 r f(x)Tn(x) 
an = / —, ax 

ncn JQ y/i - x2 

is considered disadvantageous and therefore the issue is dropped. 

The assumption of non-equidistant sampling may possibly lead into undesirable 

circumstances, in the sense that, depending on the particular function to be sampled, it 

may constitute a bad choice, gleaning information of inferior importance. On the other 

hand, practical applications usually involve initial conditions drawn from a sequence of 

points that most likely do not obey a nice, analytic formulation; thus, it is immediately 

understood that any further analysis in this direction, in a general framework, is 

fruitless, and it may be of some help only in a problem to problem basis. 

(4.67) 
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Given the fact that the special fast point-set is employed, a cosine transform 

2 f* 
an = / f(0)cos(n9)dO (4.68) 

7TC n JQ 

is needed; traditionally, the extended trapezoidal rule has been employed on equidis­

tant Oi nodes in [0, ir\. This is by no means mandatory, but its simplicity and its 

relative robustness have made its use almost exclusive; furthermore, it is amenable 

to the fast implementation of the FFT algorithm. Furthermore, fancier higher-order 

methods would tend to guarantee an improved accuracy of the integration, only for 

adequately smooth integrands; in addition, a desired accuracy may be readily con­

trolled by monitoring of the relative change of the results between successive halving 

of the sampling rate. 

The disadvantages of the trapezoidal quadrature are well-known: it is only second-

order accurate and the improvement of its truncation error—being accomplished by 

finer sampling—is counterbalanced by an enhanced negative influence of round-off 

errors, the latter being inversely proportional to the mesh-size, i.e 0(1/Ax) (Mc Calla, 

1967). Additionally, the trapezoidal approximation (expressed in terms of the Euler-

Maclaurin summation formula) is only an asymptotic expansion—as opposed to a 

convergent one—with an error, that is always less than twice the amplitude of the first 

ommitted term in a certain truncation. 

The cosine transform trapezoidal quadrature brings back the aliasing analysis of 

periodic functions that are equally sampled. Aliasing is the direct manifestation of the 

discretization procedure; the quality of the integration may be easily investigated via 
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the aliasing summation formulas (Lynes, 1984), 

oo 

Cr = Cr + Y,Clm+r
 +

 Clm-r
 for |r| < m (4.69) 

l=i 

where subscripts denote the order of the cosine coefficient, m + 1 is the period of the 

discrete transform and Cr (Cr) is the discrete (exact) coefficient. 

Assuming a convergent expansion, we may see that the error in CT is 0(Cj m _ r ) 

for 0 < r < m/2, whereas higher frequencies are erroneously calculated, not being 

resolvable in that grid. Consequently, the aliasing contaminations are expected to 

increase with r and accordingly, the truncation error becomes more profound as the 

order of the coefficient r to be computed increases. 

N + l L2 l o o 

4 0 .14 (-1) 0 . 1 6 (0) 

8 0 . 8 0 (-7) 0 . 3 7 (-3) 

16 0 . 1 4 (-21) 0 . 1 6 (-10) 

32 0 . 2 6 (-29) 0 . 1 7 (-14) 

Table 4.15 L2 and Loo values between the approximate (discrete) and the true (analytic) 
Chebychev spectral coefficients for various sampling densities. 

The rather remarkable similarity between the errors estimates given in table 4.15 

and the errors presented in tables (4.13-14) is difficult to neglect; failure to understand 

though, the fundamental differences in the nature of those quantities, may lead to false 

interpretations. 

We do see, once more, that N — 4 gives us a somewhat reasonable approxima­

tion, while N = 8 appears to provide a fairly satisfactory approximation to those true 

spectral coefficients. Doubling the number of samples is accompanied with another 
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significant accuracy enhancement, which persists in up to another halving of the sam­

pling interval, i.e JV = 32. Finer sampling fails to improve the accuracy of the incorrect 

non-trivial higher-order coefficients; the observed accuracy improvement terminates at 

JV = 64 and it is actually transformed to a deterioration as JV < 128, affecting all the 

previously correctly computed, lower frequency coefficients as well. 

Aliasing is definitely responsible for the incorrect results, obtained from the coarser 

sampling rates, since as the non-linear mapping x = cos 9 creates slight problems by 

forcing a non sinusoidal function to be decomposed in terms of periodic functions, 

i.e cosines and thereby, extending its apparent frequency content. The non-resolvable 

frequencies are folded back into the "visible" part of the spectrum; the contamina­

tion obeys the classic pattern recognized for periodic functions. The latter has been 

confirmed through a painstaking, high-resolution, numerical inspection of the various 

approximate Chebychev spectra; removal of aliasing leaves the coefficients accurate to 

0( A0 2). Aliasing is seen to have already been completely eliminated, at the givenpreci-

sion, at JV = 32; nevertheless, further reduction of the truncation error, anticipated 

through a successive refinement of the sampling interval, is forced to a stall by round­

off, since the maximum attainable resolution, offered by the machine at the given 

double precision level, has already been reached at the reported sampling density. 

The last argument is true in an Loo-based interpretation and it is consistent with 

the spirit of all the error analysis given before. The Loo norm comprises a pointwise 

error measure, normalized in a maximum global fashion and therefore tends to neglect 

local discrepancies that are considered unimportant in the overall comparison; it is 

this selective character of the Loo norm that originally weighed heavily in its choice. 
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Accurate measurement of the truncation error that affects severely the approxima­

tion of the higher order Chebychev coefficients, which are several orders of magnitude 

smaller than the low frequency part of the spectrum, necessitates the introduction of a 

different norm. This norm may be chosen to normalize the maximium pointwise error 

at the local level, i.e 

I* _ m a x o < j < j y \yj - yj\ ^ ^ 

or alternatively, it could be defined as 

LL = -oo = max 
0<t< N 

(4.71) 

Neither one of these norms can provide an adequate description of the effect of the 

truncation error on the calculation of the high wavenumber Chebychev coefficients; 

nevertheless, the vast inaccuracies of the spectral section are readily seen by a compar­

ison of the true spectrum (figure 4.1b) and the corresponding instantaneous percentage 

errors (figure 4.2). 

Introducing a finer sampling, i.e N = 64, does not enhance the quality of the 

integration, because the truncation error's reduction is being counterbalanced by a 

respective deterioration of the round-off errors. Finally, the output of the integration 

quadrature with N = 128, reflects the onset of the highly undesirable situation, where 

the accumulation of round-off error overwhelms any improvement of the truncation 

error and we are, thereby, confronted with a round-off driving the computational 

mechanism, accumulating rapidly and soon, defaulting into an ultimate devastation of 

the algorithm's products. 
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Figure 4.2 Local relative errors in the approximation of the Chebychev spectrum of 
s in (7r i ) ; 33 points has been employed for the numerical approximation. Notice that higher 
coefficients exhibit enhanced inaccuracies. 

The absence of further information in the spectrum beyond a certain Chebychev 

mode has some interesting implications. Propagation of a spectrum with an extended 

insignificant part is both fruitless and meaningless; this part of the spectrum simulates 

an overdeterminancy composed of pure noise. This noise contribution, not adding 

anything to the solution itself, cultivates the rise of "numerical noise", which will 

gradually start interfering with the important part of the spectrum; subsequently, 

corruption of the latter should be anticipated over an adequately large number of time 

steps. Additionally, the increase in the spectrum order corresponds to a diminution 
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in the size of At to be used in the time integration, so that a desired accuracy level is 

maintained. 

Despite all that, we still observe a continuous improvement of the accuracy levels, 

as the spatial discretization increases beyond N = 32. The answer lies in the size 

of At, which decreases as 1/7Y2 and in the fortunate fact, that the conditioning of 

the systems remains satisfactory for the present precision level. Consequently, the 

reduced temporal error due to the smaller At, overwhelms the "noise" interference 

due the trivial spectral extension and the relative degradation of the conditioning of 

the propagation matrix. 

The previous analysis points to another major advantage shared and enjoyed by 

spectral techniques, namely filtering, which is expressed best in Fourier decomposi­

tions (the association of Fourier coefficients with temporal and spatial frequencies is 

most readily grasped from a physical viewpoint). Nevertheless, filtering is common 

to all spectral methods and it is evident that accuracy depends only on the temporal 

error, after the spatial decomposition has reached its maximum resolution for a given 

numerical precision level. 

Incidentally, the values for N = 16, after only one time step and for various 

sizes of At, are given in table 4.16; we do observe the positive effect of the improved 

temporal error on the relative accuracy. 

The value At = 1/322 corresponds to At = 1/iV2 for N = 32; propagation of the 

17-long spectrum at a rate of 1/322 scores the same accuracy as the 33-long one does. 

The slight aliasing and the lower accuracy characterizing the former are, apparently, 

counterbalanced by the worse conditioning and the noise, present in the latter; this 

noise interference is not significant and even an 17-long truncation of the 33-long 



135 

At t — At t — 1 
1/N 0.21 (-1) 0.28 (0) 

1/N2 0.48 (-5) 0.12 (-2) 
1/4N2 0.75 (-7) 0.76 (-4) 
l/N4 0.29 (-12) 0.19 (-7) 

Table 4.16 values obtained for the 17-long Chebychev Galerkin Crank-Nicolson diffusion 
system and for different At values. Both the errors after one time step and at t = 1 are given; 
the error value for At = 1/JV4 at t = 1 has been computed by extrapolating the error value 
obtained for the first time step. 

spectrum gives identical results, as the cumulation of round-off nullifies its marginal 

superiority. 

Nevertheless, the above a posteriori analysis of the numerical Chebychev spectrum 

of the initial condition clearly suggests the computation of a non-aliased spectrum, 

incorporating a proper balance of truncation error and round-off and its subsequent 

truncation to the desired order, the order being chosen on the basis of accuracy and 

efficiency considerations. 

4.4.6 Finite difference and Chebychev backwards-Euler schemes 

We have concentrated on the Crank-Nicolson formulation of the time integra­

tion and presented an analysis of the results obtained by using both finite differences 

and Chebychev methods in conjuction with it. Let us now show the effect of the 

smaller temporal truncation error enjoyed by the Crank-Nicolson compared to the 

backwards-Euler scheme. Tables (4.17-18) present relative and absolute infinity errors 

corresponding to the solution of the specific diffusion problem for the backwards-Euler 

scheme; 

the four Chebychev systems use At = l/N2, whereas the finite difference results 

have been computed for both the At = 1/7V and At = l/N2 choices respectively. 
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N + l FD (1/iV) FD (1/N2) GAL-PSD TAU-TIN 
5 0.24 (+3) 0.28 (+2) 0.15 (+1) 0.99 (0) 
9 0.38 (+2) 0.21 (+1) 0.99 (+0) 0.99 (0) 
17 0.86 (+1) 0.36 (0) 0.20 (0) 0.20 (0) 
33 0.26 (+1) 0.82 (-1) 0.48 (-1) 0.48 (-1) 
65 0.10 (+1) 0.20 (-1) 0.12 (-1) 0.12 (-1) 
129 0.31 (0) 0.50 (-2) 0.29 (-2) 0.29 (-2) 

Table 4.17 values for the finite difference and the Chebychev backwards-Euler systems; 
the former are implemented with either At = l/N or At = 1/N2, while the latter with 
At = l/N2. The Chebychev estimates for N > 32 have been computed by extrapolation. 

The inferiority of this method may be identified immediately. Nevertheless, we can 

confirm its numerical absolute stability, the loss of relative accuracy with time and the 

superiority of the Chebychev systems over the finite differences. 

N + l FD (l/N) FD (l/N2) GAL-PSD TAU-TIN 
5 0.12 (-1) 0.15 (-2) 0.62 (-4) 0.41 (-4) 
9 0.20 (-2) 0.11 (-3) 0.48 (-4) 0.48 (-4) 
17 0.44 (-3) 0.19 (-4) 0.10 (-4) 0.10 (-4) 
33 0.14 (-3) 0.42 (-5) 0.25 (-5) 0.25 (-5) 
65 0.52 (-4) 0.10 (-5) — — 
129 0.23 (-4) 0.26 (-6) 

Table 4.18 Loo values for the finite difference and the Chebychev backwards-Euler systems; 
the former are implemented with either At = l/N or At = l/N2, while the latter with 
At = l/N2. Results for the Chebychev systems have not been computed for N > 32 due to 
the excessive computational cost. 

In addition, we observe identical results for the Galerkin and the pseudospectral 

methods; the tau methods produce same error estimates, which converge fast to the 

results of the former methods. The peculiarity of the tau projection is once more 

demonstrated, as it displays smaller errors than the Galerkin or the pseudospectral 

methods for N — 4. 

The low temporal accuracy of the backwards-Euler propagation model has a strong 

influence on the size of At to be used in the time integration of the finite difference 
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matrix. The backwards-Euler scheme with At = 1/N2 produces answers of a definite 

superiority over the results corresponding to the choice At = l/N, in contrast to the 

Crank-Nicolson scheme. 

4.4.7 Fast algorithms for the inversion of the integrated system 

Despite the fact that implicit Chebychev methods lessen substantially the limita­

tions associated with the size of the time integration step, it remains that full matrices 

need to be inverted at each new time step. Iterative methods are a promising alterna­

tive (see 2.5.5); remaining, however, in the field of direct methods, we concentrate on 

the integrated tau system, since its quasi-tridiagonal structural characteristics allow 

special inversion procedures to be devised. A detailed analysis of these algorithms 

is presented in Appendix B.2 from a general viewpoint. We now discuss particular 

details concerning their form in the case of the heat flow equation. 

The importance of these techniques, when dealing with implicit time dependent 

problems, cannot be over-emphasized. The need for a repetitive inversion of the 

propagation matrix, makes their presence crucial. A trivial inspection of the quasi-

tridiagonal even-odd component subsystems, reveals the dependence of the condition­

ing of these systems on the value of the product (aAt); each one of these subsystems 

appears to be conditioned somewhat worse than the system as a whole. A rigorous 

analysis of the exact form of the reported dependence is not of an immediate inter­

est to us and therefore, a deeper investigation is postponed until the next chapter, 

since it is the Schrodinger equation (chapter V) that is associated implicitly with the 

migration equation. Furthermore, the Schrodinger version should exhibit a different 
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conditioning dependence, due to the exclusive contribution of the factor (aAt) in the 

imaginary component of the middle diagonal. 

For the purposes of an introductory analysis, we constrain ourselves to the familiar 

choice of a = 1 and At = 1/N2. The conditioning of either subsystem is adequate, but 

this alone cannot guarantee success for the fast solvers. The latter employ a direct LU 

decomposition without pivoting and therefore they may easily fail even for perfectly 

conditioned matrices. Procedure S L U l is applied with the boundary row of l's at 

the bottom of each subsystem; an upper tridiagonal matrix is obtained after forward 

elimination. The success of this extremely efficient algorithm, whose reliability is 

greatly desired, is directly associated with the diagonal dominance characteristics of the 

matrices involved. Diagonal dominance can never be achieved, in a strict sense, due to 

the presence of l's in the boundary row. Despite that, we can still talk about diagonal 

dominance, in a looser sense, considering the rest of the matrix. Unfortunately, a 

strong off-diagonal dominance is present. The main diagonal being only 0(l/4n 2), 

the off-diagonal elements exhibit a magnitude superiority of 0(l /2n 2 — 1/2N2); this 

amounts to a strong off-diagonal dominance since n = 2,... ,N. 

Experiments for our given problem (the odd coefficients need not be propagated) 

show that S L U l is able to acquire solutions of a quality identical to the answers 

obtained via a general Gauss-elimination procedure with partial pivoting up to JV=128. 

The algorithm has failed ultimately for N — 256, as a near-zero pivot demolishes its 

accuracy; the initial impact destabilizes the satisfaction of the boundary conditions 

and subsequently, a few more time steps destroy the approximation as a whole too. A 

row-balanced S L U l has not not show signs of improvement, either. Doubling the size 

of the problem results — as anticipated — in an absolute devastation, as the forward 
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elimination process is hindered, due to the encounter of a zero pivot. The reported off-

diagonal dominance is 0(l/2re2 — At/2), in general. Consequently, enlarged At values 

yield a more promising structure; At should, nevertheless, remain within a reasonable 

range for accuracy considerations. 

The SLU2 algorithm is implemented with the row boundary at the top; pivoting 

is not applied and a full upper triangular matrix is obtained after the completion of 

the forward elimination process. Inspection of the structure of the underlying matrix 

reveals only a weak off-diagonal dominance, since the off-diagonal elements' magnitude 

is 0(l/2n 2) compared to the magnitude of the diagonal element, i.e 0( l /2n 2 — 1/2N2). 

The system should be more resistant to instabilities due to lack of pivoting; indeed, 

the SLU2 procedure has performed exuberantly for our problem. We should point 

out, however, that an increase in the value of At results in a weaker main diagonal, the 

latter being 0( l /2n 2 — At/2) in general. The real value of this procedure is evident in 

problems with a = c(t), which demand a repetition of the forward-elimination process 

at new time step; if o is constant its efficiency contribution is negligible. Finally, the 

SLU3 procedure, which is identical to the SLU2 but for the partial pivoting that it 

incorporates, is to be used when no alternative exists and it can hardly be classified 

as fast. 

Haidvogel and Zang (1978) claim that they " found pivoting to be unnecessary 

for this process", commenting on the inversion of the tau-integrated quasi-tridiagonal 

systems. There, they deal with the two-dimensional Poisson's equation and their 

ADI-SOR algorithm involves a direct integrated-tau solver, where the diagonals are 

0(w1 //4n2), 0(1 — \uju/2n2]) and 0(w l //4n2) respectively, with ww being the relaxation 

parameter of the SOR process. In their case, the choice of UJU and the moderate size 



140 

of the systems may be responsible for the absolutely satisfactory performance of the 

fast solvers. The same applies for the experiments of Haldenwang et al (1984); they 

also do not seem to attempt the inversion for N > 64. Thus, SLUl does not collapse 

and the inversion counts 0(8N) operations only. 
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C H A P T E R V 

T H E S C H R O D I N G E R E Q U A T I O N 

On the beach in the foreground the painter had 
arranged that the eye should discover no fixed 
boundary, no absolute time of demarcation between 
earth and ocean 

Remembemnce of things past — Marcel Proust 

5.1 The One-Dimensional Linear Schrodinger Equation 

In quantum mechanics the state of a system is characterised by a wavefunction 

\P(r,t). The time evolution is fixed by the Schrodinger equation 

a * 
i f t — = HV (5.1) 

where H is the Hamiltonian operator of the system. 

Solution of the Schrodinger equation and, therefore, determination of the wave-

function \&(r,t), allows us to obtain all the dynamical information of the physical 
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system under consideration (Kosloff and Kosloff, 1983a, b). The general form of the 

Hamiltonian operator is (in the absence of a magnetic field) H = f + V (Bisseling 

and Kosloff, 1985). That is, the sum of the kinetic and potential energy operators, 

respectively. 

The kinetic energy operator is equal to p2/2m where p is the momentum operator 

and m is the mass of the system. The momentum operator p is —i/tV and since V 

operates on 9 just as a simple multiplier, the above expression for the Hamiltonian 

becomes 
D 2 h2 

H = — + V = V2+V (5.2) 
277i 2m 

where V 2 is the well-known Laplacian operator. Before we proceed to discuss some 

numerical approaches and the problems associated with them, we will make a detour 

to present a brief review of the fundamentals concerning wavepackets in quantum 

mechanics. 

5.J.1 Free propagation of a wavepacket 

Let us consider the one-dimensional case with \I> = *&(x, t). At some instant t = t0, 

we can write the plane-wave decomposition of the wavefunction ^(x, t = t0) as 

/

+oo 
f(k) exp(ikx) dk (5.3) 

- oo 

with k being the wavenumber. For a wavepacket to be satisfactorily defined, the 

amplitude spectrum |^(x)| should be sharp, being maximal for k = ko and having 

most of the energy only in a band AA: about ko (Hamilton et al, 1972). In addition, 
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the phase should be a slowly varying function of k in the interval Ak (Diu, 1980) and 

would exhibit similar features in position space; |^(x)| would be concentrated in an 

interval Ax around some x = xo value. 

As time passes, the Schrodinger equation, which is basically a parabolic equation 

for the evolution of a complex quantity (Press et al, 1985), will cause a progressive dif­

fusion of the position probability density function (* denotes complex conjugate). 

Simultaneously the wavepacket will advance in x and it will spread out (as a direct 

consequence of the highly dispersive nature of the Schrodinger equation), so that the 

total probability is conserved, remaining equal to its normalized value (Lawden, 1967). 

It is obvious, of course, that according to the Heisenberg's principle of uncertainty, the 

sharper the distribution of iffyf/* (enhanced resolution in position space), the broader 

the peak of / / * (reduced resolution in momentum space). 

Let us consider a free wavepacket (V = 0) with initial wavefunction ^{x,t — 0) = 

B(x). Decomposing B(x) gives us 

k0 ;§> AA; for the group velocity, i.e cg = ko/m, to be well-defined. Such a wavepacket 

r +oo 
B(x) = / B{k)eikxdk (5.4) 

J — oo 

with the Fourier spectrum given as 

. (5.5) 

In order to obtain the solution after time t, we propagate each of its Fourier components 

and we then synthesize the total field at the time of interest. For some specific k = K, 
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the component B(K)elKx after time t will be equal to B(K)elKxe~lujt where 

= E(K) = P_^K) = HJO 
v ; h 2mh 2m v ' 

Thus B(K)elKx becomes 

B(K)eiKxe-%nKH/2m = B{K)el(Kx-hKH/2rn) (5.7) 

that is, a plane-wave propagating in the direction of the positive x-axis with phase 

speed c = v/K = fiKj2m. 

Superimposing all modes after time t, gives us the solution 

/

+oo 
B{K)eiK^-^K^dK (5.8) 

-oo 

Even hough each mode travels with speed c, the center of the wavepacket (and therefore 

the energy or the probability density) travels with the group velocity 

du hK 
cg = — = = 2c 5.9 

dK m 

which can be easily shown by the stationary phase method (Diu, 1980). 

Either one of expressions (5.6) and (5.9) reveals the dispersive character of the 

Schrodinger equation. This dispersion is characterized as anomalous and it is quite pro­

found. Consequently, short wavelengths accelerate with respect to long wavelengths; 

this amounts to the familiar situation, where an observer, who is travelling at cg with 
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a finite wavetrain, sees wavecrests emerging at the leading edge. These are then in­

corporated into the wavetrain and finally, vanish at its trailing edge. (Tolstoy, 1973). 

5.1.2 Free propagation of a Gaussian wavepacket 

Most numerical methods for the integration of the Schrodinger equation are tested 

against the available analytic solution of a wavepacket that is amplitude modulated 

by a Gaussian distribution. This model avoids mathematical discontinuities, while 

it still decays quite rapidly exhibiting a satisfactory sharp peak. Let us proceed by 

defining a Gaussian wavepacket and calculate the exact analytic solution to be used 

for comparison with the numerical results. 

Consider a one-dimensional Gaussian wavepacket at t = 0 with wavefunction 

(Tomonaga, 1966). We can see that the modulator, exp ( —x 2/2A 2), has non-negligible 

values only in the region of length A about the origin. With that choice, the total 

position probability density 

is normalized to A2/y/irA instead of unity (Bramhall and Casper, 1970), but this is 

rather a matter of definition. Its Fourier transform gives us the momentum ( or equiv-

alently wavenumber since we have adopted atomic units with h = 1) space probability 

density 

tf(z,« = 0) = . 4 e - ( l 2 / 2 A 2 V k x (5.10) 

— oo 
(5.11) 

dx (5.12) 
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or 

B(k') = - = exp 
27T 

(5.13) 

We observe that this function has a maximum at k' — k and it takes an appreciable 

value only in a region 1/A on both sides of this point. 

We now see the effect of the modulation on the wavenumber spectrum of the orig­

inal wave; a multitude of new wavenumbers, occupyg the two symmetrically disposed 

bands around the carrier wavenumber k, have been created. 

It is apparent that the wavepacket can be obtained from the superposition of the 

plane waves with wavenumbers in the vicinity of k. The final result reads 

*(x,0 = exp 
1 

( l + J t / m A 2 ) 1 / 2 I 2A2(1 + it j mis2) [ 
x*-2iA'zkl x- — | 

2m J 
(5.14) 

(Tomonaga, 1966) and #Vl/" gives us the position probability density at time t. To 

simplify the notation, we extend our use of atomic units to include m = 1/2; we also 

assign A to unity. 

5.2 Numerical Solution of the Schrodinger Equation 

A numerical simulation of the wavepacket's propagation is not trivial in the sense 

that it involves many pitfalls. Let us then proceed and write down the Schrodinger 

equation in atomic units (h — 1, m = 1/2) 

(5.15) 
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assuming that the particles are free (V"=0). This leaves the Hamiltonian H - V 2 

(negative Laplacian), which in one dimension reduces further to H d2/dx2. We 

can then rewrite the equation in the much simplified form 

(5.16) 
dx2 

Let us begin by representing by the value of the discrete approximation to ty(x,t) 

at the space-grid point jAx and the time-grid point nAt. 

5.2.1 Finite difference methods 

We shall first discuss the existing finite-difference solutions to the Schrodinger 

equation. Traditionally, the second-order central difference operator has been em­

ployed for the representation of the d2/dx2; other approaches will be mentioned later. 

Having decided upon the discretization of the spatial derivative, we only need to 

choose an appropriate scheme for the time derivative. The formal analytical solution 

reads 

n + l — t dtH ifin 

J 
(5.17) 

and it is obvious that we need an approximation to exp(—i dtH) for the time-advancing. 

Writing down the Taylor expansion 

fc 
(5.18) 

fc = 0 
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and truncating (5.18) after the first two terms, gives us exp(—idtH) 2 1 - idtH 

(Goldberg et al, 1967). Substituting this into the analytical solution we obtain the 

classic forward-Euler scheme, that is, 

= (1 _ i dtH)V] = V] - idtHV? (5.19) 

This is an explicit scheme that is very easy to manipulate but unfortunately it may 

be easily shown (Askar and Cakmak, 1978) that it is unconditionally unstable. We 

may think that by retaining another term in the Taylor expansion of the exponential 

evolution operator, we might be able to go around this problem. This does not happen, 

though, and 

exp(-» dtH) ~ 1 - idtH - {dtH)2/2 (5.20) 

leads to another unstable scheme (Mc Cullough and Wyatts, 1971a, b). 

Leaving explicit schemes aside for the moment, we proceed by constructing an 

implicit first-order accurate scheme as follows: Discretizing the analytical solution we 

obtain 

=exp(t <*«#)¥? (5.21) 

and the first order approximation to the exponential yields 

tfj?-1 = [l + idtH)¥? (5.22) 
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or 
- l 

V? = [1 + i dtH) (5.23) 

As we easily see this scheme is unconditionally stable (Press et al, 1985). Although 

we have ensured stability, we are not satisfied yet because it is obvious that the above 

scheme is dissipative, where the Schrodinger solution conserves the total probability 

density (energy) through the unitary nature of the evolution operator exp(—idtH). 

Therefore, such a choice would exhibit a deteriorating accuracy performance in the 

course of time. The solution is found in Caley's form of approximating the exponential 

as 

exp{-idtH) ~ 1
 %dtHJ2

 (5.24) 
1 + idtH/2 

(Goldberg et al, 1967) which clearly conserves energy with an amplification factor of 

one. The above difference form leads to the very familiar Crank-Nicolson method, 

where the uniform centering of both the time and the space derivatives at (n + 1/2, j) 

ensures maintainance of the time reversal symmetry of the Schrodinger equation. In 

addition,this scheme is second-order accurate in time. 

Although the Crank-Nicolson scheme enjoys unconditional stability and performs 

quite accurately when appropriately chosen Ax, At are used (a detailed analysis of the 

procedure concerning the choice of these parameters is presented later), it still remains 

an implicit scheme and it, subsequently, requires the inversion of a system of simulta­

neous equations for every time step. This is a rather trivial task in one dimension, due 

to the tridiagonal structure of these matrices, but it can pose formidable problems as 

the increase in the dimensionality of the problem might force us to face a prohibitively 

large amount of computer work (Claerbout, 1985). 
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Recently an explicit scheme for the time integration of the Schrodinger equation 

has been presented. This is based on another uniform and symmetric centering of the 

derivatives appearing in the equation. 

We write # ;

n + 1 = e - i d t A ^ J and tfj1-1 = e + 1 d t A ^ as before; we then subtract 

by parts to obtain 

\J/n+! _ \ J / n - J

 = (e-idtH _ e+idtH^n (5.25) 

Taylor expansions, similar to the ones used previously, yield 

^rt+l _ yn-l = _2idtH^ (5.26) 

which can be easily identified as the classic two step leap-frog scheme. This explicit 

scheme is conditionally stable and as accurate as the Crank-Nicolson one, i.e 0(Ax2)-t-

0(At2). It is not strictly unitary, but the error involved is some orders of magnitude 

less that the error of the scheme itself and the stability of the scheme guarantees that 

it will not cumulate as time progresses (Askar and Cakmak, 1978). The Schrodinger 

equation is highly dispersive, the dispersion relation being w = k2. Finite differences 

introduce phase-errors due to inadequate derivative approximations, which exhibit 

themselves as artificial dispersion altering the true dispersion relation. 

Other approaches over the years, include a combination of a five point rather 

than the classic three point difference formula to approximate the Hamiltonian and a 

fifth order predictor-corrector scheme for the time derivative (Kulander, 1978), while 

another interesting approach involves a finite element formulation of the equation 

(Askar, 1981). Both the above techniques (although exhibiting relative advantages 
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over existing finite difference codes), suffer from artificial dispersions due to their non­

spectral character. 

5.2.2 Spectral methods 

5.2.2.1 Spectral semi-discretizations 

Lately pseudospectral Fourier and Hankel methods have been used to approximate 

the spatial derivative in the time dependent Schrodinger equation. For rectangular pe­

riodic geometries, Fourier spectral methods (Kosloff and Kosloff, 1983a, b) are most 

appropriate as the derivatives are evaluated exactly and boundary conditions are han­

dled in a very natural way; for radial geometries Hankel spectral methods are most 

suitable (Bisseling and Kosloff, 1985). The spectral approach has some very important 

consequences. It maps the continuous physical Hilbert space to a discrete one, since 

Hermitian operators maintain their fundamental property under this mapping. Conse­

quently, they still possess real eigenvalues and they satisfy the commutation relations 

of quantum mechanics to the degree of the machine accuracy. As anticipated, finite 

difference representations fail to do so, because they approximate a global quantity, 

such as the kinetic energy, using local functions (Tal Ezer and Kosloff, 1984). 

Artificial spatial dispersion can be avoided altogether if aliasing is absent. However, 

a finite difference operator for the time derivative will still result in the introduction 

of artificial temporal dispersion. Unconditionally stable schemes would then exhibit 

a serious accuracy deterioration, if a sufficiently small At has not been chosen. On 

the other hand, a conditional stability of some scheme could be lost too, if an inap­

propriately large time step is chosen, causing the introduction of instabilities, which 

could render the numerical simulation meaningless. Fortunately, a proper decrease in 
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the size of the time step (which corresponds to a more accurate extrapolated value in 

the truncated Taylor series) to a fraction of the stability limit, can virtually provide 

us with a dispersion relation which matches the true one to a high degree of accuracy. 

That is not the case with the previous finite difference approaches since we do need an 

oversampling in the spatial dimension in order to eliminate spatial artificial dispersion 

(in addition to the same decrease in the size of the time step) (Kosloff and Kosloff, 

1983a, b). 

5.2.2.2 Full-spectral techniques 

A spectral time propagation scheme has been recently proposed in order to in­

troduce infinite accuracy in the approximation of the time derivative (Tal Ezer and 

Kosloff, 1984). This is based on a truncated expansion of the evolution operator in 

terms of the complex Chebychev polynomials in an appropriate coordinate system 

(Tal Ezer, 1984). There, it is the order of the complex time-interpolating polynomial 

that controls accuracy and not the actual size of At; consequently, this scheme can 

be used as an one step propagator if intermediate results are of no interest (Kosloff 

and Kosloff, 1986). Recently (Reshef and Kosloff, 1986) this technique was employed 

for migrating common-shot gathers in exploration geophysics. A somewhat different 

"spectral" technique solves the time dependent Schrodinger equation with a split op­

erator FFT method followed by correlating the wavefunction with its initial state — 

a kind of numerical spectroscopy (Feit et al, 1982). 
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5.3 The Somrnerfeld Radiation Condition 

The continuous Schrodinger equation is associated with the radiation boundary 

conditions at infinity, that is, \imx->±O0 ^f(x, t) = 0. Our computational grid is fi­

nite though, and that is going to cause trouble, as time progresses, since with the 

wavepacket arriving at a rigid boundary wall, the physics of the problem will be vio­

lated. This artificially posed boundary will cause reflection of the wavepacket and it 

will, therefore, degrade the accuracy of the representation. The degradation is, origi­

nally, witnessed near the reflecting boundary only, but it soon pollutes the complete 

computational grid. It should be emphasized that finite differences tend to exhibit a 

slower contamination rate, when compared to spectral techniques, of the spatial fea­

tures of the solution, which lie away from the reflecting boundary. This is due to the 

iocai nature of the former, as opposed to the global nature of the latter. In Fourier 

methods, in particular, the periodic character of the basis functions causes the familiar 

wraparound effect, which could be visualized as periodic reflections, as well. 

A naive way of coping with the finite mesh proper boundary condition simulation 

involves an adequate increase of the size of the computational grid. Quantification of 

the classification adequate emerges from shifting the undesired, troublesome reflect­

ing boundary outside the realm of interest, so that an unrealistic, but nevertheless, 

satisfactory numerical simulation of the radiation boundary condition is achieved. Al­

though this trick practically solves the problem, it suffers from the disadvantage of 

introducing a lot of unneccesary memory requirements and a larger amount of com­

putations. The familiar "padding with zeros" of Fourier methods corresponds to the 

described expansion of the grid size shifting the wraparound interference outside the 

realm of interest in the computational grid. 
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More sophisticated methods should involve some kind of absorbing boundaries. 

The highly dispersive Schrodinger equation poses severe difficulties for methods that 

impose an one way equation at the boundary allowing energy to propagate in the 

outward direction only (Israeli and Orszag, 1981); the situation becomes much more 

obscure in higher dimensions (Galbraith et al, 1984). In particular it is not at all clear 

how to formulate this approach for the Fourier scheme (due to the periodic structure 

implicitly imposed by the latter). Very recently (Kosloff and Kosloff, 1986), absorbing 

boundaries involving a complex potential, which attenuates the wave amplitude at the 

grid boundary regions, have been developed. 

5.4 A New Implicit Chebychev Technique 

We aim to maintain the high accuracy of the Fourier method, while relaxing the 

imposed periodic boundary structure. The answer lies in a spectral device of non-

periodic character, since such a transform environment eliminates the wraparound 

reflections, inherent in a Fourier environment. This technique, nevertheless, needs to 

be augmented with an effective absorbing boundary condition mechanism. We thereby 

propose a new semi-discretization of the problem; the Hamiltonian operator is built in 

a Chebychev environment, while the Crank-Nicolson scheme is employed for the time 

integration. 

All three different projection operators are implemented. The mathematical for­

mulation follows closely the formulation for the heat equation, the only difference being 

the imaginary character of the diffusion-like coefficient of the Hamiltonian. Complex 

LU solvers (Bowdler et al, 1966) are used to invert the system of the linear simultane­

ous equations and evidently the fast LU solutions for the integrated-tau systems are 



155 

appropriately modified to match the needs of complex arithmetic. The performance 

of the method is thoroughly investigated and is compared with the performance of the 

classic second order accurate Crank-Nicolson finite difference scheme. 

We commence the presentation with a brief quantitative summary of the funda­

mentals issues governing the important aspects of the numerical simulation of the 

wavepacket's propagation, in both schemes to be compared. The following presen­

tation comprises an integration of the knowledge and the experience gained through 

the previous numerical experiments. Furthermore, it incorporates some indispensable 

insight into the problem given by Goldberg et al (1967) and Claerbout (1976, 1985). 

5.4.1 Spatial aliasing 

The first important issue is spatial aliasing. We calculate the maximum present 

wavenumber (momentum) in the wavepacket's spectrum, i.e & m a x , at a given ma­

chine precision level. Clearly, this value has to be smaller than the Nyquist angular 

wavenumber, i.e &NYQ = TT/AX, which identifies the highest wavenumber resolvable 

for a given mesh size. The described analysis is absolutely sufficient for the clas­

sic scheme's aliasing considerations but it is obviously inadequate to cover the needs 

of the Chebychev scheme, which, equivalently, demands a similar procedure but in a 

Chebychev fashion instead, i.e finding out the highest significant Chebychev coefficient. 

5.4.2 Spatial artificial dispersion 

A finite difference simulation of the Hamiltonian operator gives rise to spatial 

artificial dispersion. Diminution of the negative effects of the latter dictates an over-

sampling in the x-coordinate. The sampling density, for a particular wavenumber k, 
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is reflected in the quantity (kAx)-1; the latter measures the number of grid points 

employed in the reconstruction of the wavelength A. Since the eigenfunctions of our 

model problem are sin(A:x), we obtain 

A 2 , . 2(l-cosA:Ax) . * , 
sin(/:x) = — * — - - sm(A;x) (5.27) Ax 2 A x 2 

and introducing the Taylor expansion of cos(/cAx), we see that 

* L x = [1 - {k™£X)2} + O (f(*m a x Ax) 4 ) (5.28) 

Expression (5.28) shows clearly that the maximum (in absolute value) eigenvalue of 

the finite difference representation of the Hamiltonian, i.e — £ m a x converges fast to the 

corresponding eigenvalue, i.e — ̂ a x , of the true Hamiltonian, if 

(fc m a x Ax) 2 

12 v ' 

Alternatively, the quality of the approximation may be measured from the equivalent 

relation 
r 2 . A; m a x Ax . 
K m a x - "T Sin (5.30) 

A x 2 
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5.4.3 Temporal artificial dispersion 

The bilinear approximation to the time propagation operator introduces artificial 

temporal dispersion into both schemes. Rewriting expression (5.24) as 

exp(—iAtH) s i exp (-2iarctan(#At/2)) (5.31) 

allows us to identify the approximation of the true eigenvalues —iH, of the d/dt 

operator with the quantities 

At i + exp(i^At) 

The eigenvalues of H are k2 (assuming no errors in its numerical simulation) and 

combining that with the dispersion relation u = k2, we can easily derive a very useful 

expression relating u and its bilinear approximates Q. This approximation reads 

2 (uAt\ 
- S ^ T I ( 5 - 3 3 ) 

and this quality is linked to the quantity (wAt) - 1 , which measures the number of 

samples in a period of a given frequency w. Consequently, phase errors are introduced 

and they accumulate over a given number of time steps; computing the error per time 

step for a particular frequency, multiplying it with the number of time steps, i.e let us 

say M , we may compute a relative (among the various modes) phase error. Diminution 

of this error, i.e 

( M A t 3 / 1 2 ) [ A 4 ax - * o ] « l (5.34) 
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in the case of a wavepacket with average wavenumber ko, is a definite prerequisite for 

an appropriate numerical simulation of the wavepacket's propagation. 

5.4.4 The initial condition and the propagation parameters 

5.4.4-1 A Gaussian wavepacket 

A Gaussian amplitude modulator is chosen and it is initialized in such a way 

that it decays quite rapidly; it therefore possesses a well-defined group velocity and 

it lies far away from the boundaries of our computational grid (which correspond to 

mathematical infinities). We then normalize our spatial computational grid from — 1 

to +1 and center our wavepacket at x = 0. The wavepacket is defined as 

u(x, t = 0) = exp (ik0x) exp (—x2/2a2) (5.35) 

and by choosing cr0 = 0.05 = 2/20 (where 2 is the total length of our grid), we 

succceed in obtaining a rapidly vanishing Gaussian around its rather sharp peak (so 

that it is virtually negligible in a distance more than a0 from x = 0). Furthermore, its 

spectrum is not too spead out about ko in the wavenumber space and it also satisfies 

homogeneous boundary conditions. 

5.4-4-2 Boundary reflections and the choice of the average wavenumber 

The alleviation of the artificial reflections from the boundary x = +1 is the last 

issue to be considered. 

We adopt, for the purposes of this thesis, a variant of the simple trick described 

previously. Thus we predetermine the distance to be travelled by the wavepacket, 
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assuring that it does not impinge on the rigid boundary at x = +1. In that way, 

the wavefunction remains practically zero on and in the neighborhood of the artifi­

cial boundary and, thereafter, an important physical property of the true solution is 

satisfied. 

The materialization of this approach, though, imposes certain restrictions on the 

parameters of the problem. The choice of k0 defaults to a certain value of group velocity 

for the position probability density (energy). However, the obvious interdependence, 

between the average wavenumber of the wavepacket and the duration of the propaga­

tion, can lead to boundary reflections if incorrect choices are made. The group velocity 

of the centre of the wavepacket is (recall expression 5.9) cg — p/m = hk0/m = 2ko. 

Let us assume L = N • Ax is the total length of the grid where N is the number of 

spatial grid points. Furthermore, let us write T = M • At with T being the duration 

of propagation and M the total number of time steps corresponding to a time step of 

At. 

We proceed to propagate the wavepacket, originally centered at x = 0, a certain 

distance X, so that it does not come too close to the x = +1 boundary (since it moves 

to the right). Then 

X = cgT = 2k0T ^k0 = X/2T (5.36) 

This indirect way of specifying the average wavenumber should guarantee us the desired 

simulation, but unfortunately that is not so, since there is an additional major source 

of problems, namely the highly dispersive nature of the Schrodinger equation, which 

causes the solutions as time progresses. As a result, the wavepacket spreads out and 

a k0 defined through expression (5.36) might not be adequate to prevent artificial 
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reflections, as an excessive spatial spreading might cause the right flank of the packet 

to impinge on the boundary much faster than the analysis shows. 

Therefore, care needs to be taken, in order to sustain the original spread allowing 

only negligible and controllable amount of additional spreading to occur as time ad­

vances. The spread a after time T can be calculated as a function of both the initial 

spread er0 and the time T as 

o2 = (a4 + 4 T 2 ) 1 / 2 (5.37) 

provides an additional constraint that will now guarantee an indirect satisfaction of 

the radiation boundary conditions of the continuous problem. A concurrent limitation 

of the maximum duration of the propagation is also imposed. 

5.7 Choice of Error Norms 

A certain norm needs to be chosen for the quantification of the quality of the 

approximate solution yt. The issue is rather unclear and it depends upon the special 

characteristics of the problem under consideration and the specific features of the solu­

tion, we are particularly interested in. The matter touches upon the general question 

of comparing two discrete vectors of complex elements. 

Various choices are available but, for our problem, we feel that a normalized Li 

energy norm suffices. This norm is defined as 

X(0) = E ^ o l t t - f r l 2

 ( 5 3 8 ) 

L t = 0 ml 
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and in its "infinity" form, as 

wo) _ max0<,-<jv [yt- - y,| 
OO 1 I 

max0<i<jv 13/* | 

Justification of this classic choice may be acquired by envisioning the behavior of 

(5.38) in the complex plane. The norm follows the "beak" of the updated resultants of 

the complex vectors; it, therefore, amounts to computing global energy discrepancies 

normalized to the energy of the reference vector, i.e the exact solution vector. We 

could, then, term this norm as the "small" norm; the superscript (°) refers to the 

order of the derivative of the vectors, whose energy differences are being measured. 

The analysis of the performances of the various schemes to follow relies on informa­

tion gathered using the norms (5.38) and (5.39); the latter reveals pointwise departures, 

which could probably be inconsistent with the global estimates. Although, erroneous 

isolated local deviations are not anticipated in our problem, the has occasionally 

been proven indispensable in revealing boundary reflections, whose contamination ef­

fects have become invisible in the global estimate. However, we ought to note, a viable 

alternative or counterpart to the norms. These are the "flat" norms, which 

tend to measure the energy discrepancies between the first derivatives of the vectors 

to be compared, either in a global sense, i.e L2
l\ or in a maximum pointwise fashion, 

i.e L&\ 

The nature of these "flat" norms consists in tracing the trails of the vectors point 

by point, as contrasted to marking their successive leading edges only. That defaults 

in an annihilation of the DC shifts from the origin, inherent in the vector sections 

(5.39) 
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themselves, amounting, thereafter, to an evaluation of the derivatives' differences. 

The "flat" norms are expressed as 

(5.40) 

and 

m a x 0 < t < i v _ i | (y f + 1 - yt) - ( y I + 1 - y t)| 
OO I I 

m a x 0 < t < j v - i |j/t+i - J/i| 
(5.41) 

A fundamental characteristic common in both the "small" and the "flat" norms is that 

they receive contributions due to both the magnitude and phase differences indiscrimi­

nately. Distinguishing between the partial discrepancies is not feasible, as the existing 

ambivalence is not resolvable. 

Ambitions of further resolution between magnitude and phase errors, demand the 

construction of additional norms, especially designed to measure the "closeness" of the 

two vectors with respect to one particular parameter only. The interpretation is thus 

aided by augmenting the coupled norms' estimates with the auxiliary norms. 

The issue is not trivial but it appears that magnitude norms are easier to visualize 

and to construct, either in a "small" or a "flat" environment. Nevertheless, these 

norms suffer from an improper balancing, with respect to the coupled estimates, which 

hinders an accurate quantification of their differences. 

Phase norms' structures are much more difficult to decide upon. The fundamental 

issue of phase-unwrapping is inherent to the problem and furthermore, computations of 

the phase angle, through the inverse tangent in the complex plane, are seen to be very 
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vulnerable to numerical noise, frequently providing meaningless results. Phase com­

putations, involving the difference vector or, alternatively, the individual vectors sepa­

rately, have their share of advantages and drawbacks. The former approach maintains 

an absolute phase difference between 0 and 2TT, at the expense of an approximation 

being introduced. 

Finally, the logarithmic approach to the problem, which tends to operate as a 

compressor of magnitude differences, amplifying, therefore, the phase discrepancies, is 

not considered. 

5.6 Numerical Experiments and Analysis of Performance 

5.6.1 Parameter initialization 

The analysis presented in (5.4.4.2) has led us to choose X — L/8 — +0.25 and 

T = 0.005, which default to an average wavenumber ko = 25 with a standard deviation 

AA; = l/oo = 10. The choices <7 0 = 0.1 and T = 0.005 allow a final spreading o ~ 0.19, 

only; the latter indicates an 19% increase of the initial CT0 value. 

Furthermore, we maintain At = 1/N2 for an (JV + l)-long spatial discretiza­

tion; compliance of this time-stepping pace with a uniform length of propagation T is 

achieved by introducing a rational number of time steps. 

5.6.2 Analysis of the initial condition 

5.6.2.1 The unmodulated signal 
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A comparison of the Fourier and the Chebychev amplitude spectrum of the un­

modulated wave exp(iA;ox) may be made by inspection of figures (5.1a) and (5.2a), 

respectively. 

In the Fourier spectrum, we identify the anticipated "spike" at k = fco, in the 

wavenumber space, i.e 

1 f+°° 
a(k) = — / exp(iA:ox) exp(—ikx)dx = S(k — k0) (5.42) 

2 7 r J-oo 

The Chebychev spectrum of exp(i7:ox) = cos(A;ox) + isin(A:ox) may be computed 

exactly; the procedure is an extended version of the computational process given for 

the cosine. The transform is, obviously, complex and it reads 

1=0 °l 1=0 

The amplitude and the phase of the an's are plotted in figure (5.2). The amplitude 

distribution is quite stimulating, as its peak is identified at the close vicinity of n = 

25, while significant amounts of energy are present at the lower modes, only. We 

observe, once more, the characteristic convergence pattern of Chebychev expansions. 

The function exp(25zx) has approximately 8 complete wavelengths inside [ — 1,+1]; 

its Chebychev spectrum reaches a global maximum at about 25 and and it, then, 

exhibits higher coefficients characterized by negligible amplitudes, demonstrating that 

87T polynomials suffice for a good convergence. Nevertheless, maximum resolution for 

single-precision extends up to n = 40 — 45. 
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Figure 5.1 Amplitude spectrum of the true Fourier transform of (a) the unmodulated and 
(b) the modulated signal. 
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Figure 5.2 (a) Amplitude and (b) phase spectrum of the true Chebychev transform of i h e 
unmodulated signal. 
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5.6.2.2 The modulated signal 

The amplitude modulation of exp(^ox) with the Gaussian exp(—x2 j2a2) affects 

both the Fourier and the Chebychev spectra in a very definite manner. 

The Fourier coefficients, i.e 

1 [+°° ( x2 \ 
a(k) = — / exp I j 1 expfVfcô ) exp(ikx)dx (5.44) 

2 7 r ./-oo V 2 t T o / 

can be computed analytically and they read 

(5.45) 

(Tomonaga, 1966). The modulation in the x-domain results in a roughly equivalent 

modulation in the fc-domain, where the amplitude peaks at k = k0, while decaying 

fast around it; the amplitude at k = ko ± (l/o~o) is 60% of its maximum value (figure 

5.1b), only. 

The Chebychev spectrum of the modulated wave does not lend itself to an obvious 

analytical evaluation and thus we have to resort to the familiar numerical quadrature 

expressed by the F.C.T algorithm. To avoid a biasing of our comparisons, we compute 

the numerical counterpart of the unmodulated spectrum (figure 5.3); an error analysis 

between the numerical and the analytic spectra indicates the sampling density needed 

for a satisfactory quality level of the numerical approximate. 

An Li of 0.36 (-09), and a corresponding of 0.18 (-4) signal that the resolution 

border has been virtually reached at N = 64; the excellent quality of this numerical 

approximate is clearly seen by comparing figures (5.2-3). Furthermore, figure (5.4) 

a(k) — / _ exp 
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Figure 5.3 (a) Amplitude and (b) phase of the discrete Chebychev transform of th' 
ulated signal; 65 samples have been employed. 



169 

displays the instantaneous relative errors; thus it unveils the gross inaccuracies of the 

high-order and less significant coefficients due to truncation error. However, the wide 

spread of the coefficients, combined with the reality of the round-off, would nullify any 

improvement of truncation error to be obtained in finer grids. 

The complications arising in measuring and comparing the phases may be exempli­

fied in this ideal case. The phase of the difference vector is plotted in figure in (5.5a), 

while the differences of the individual phases are depicted in figure (5.5b). The latter 

reveals instantaneous phase discrepancies, that are either 0 or 2n in the significant 

part of the spectrum. This behavior is a rather innocuous consequence of the fact, 

that the purely real, even, true coefficients are approximated by elements incorporat­

ing minor imaginary contributions with a negative sign; approaching the branch cut 

from the third quadrant, results in a phase of — IT, instead of the correct IT. The phase 

of the trivial part of the spectrum is totally meaningless; this insignificance carries on, 

to characterize figure (5.5a) in a global scale. The very small size of the vector ele­

ments and the "noisy" distribution of signs, results in a failure to provide interpretable 

information. 

As we have established a satisfactory amount of faith in the the numerical spectrum 

of the unmodulated signal, we proceed to compute the spectrum after the signal's 

modulation (figure 5.6). This computation reveals a spectacular, somewhat similar 

to its Fourier analog, modulation of the Chebychev spectrum, around A;o = 25, as 

well. Minor departures, from the typical Gaussian shape, may be noticed at the low 

order modes, whereas an appreciable amount of energy has been transferred to higher 

modes (figure 5.6a). The spectral coefficients displayed have been obtained from an 

JV = 128 discretization. Noise prevails after n ~ 75 — 80 (an identical observation may 
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3annidHv 
Figure 5.4 Amplitude spectrum of the error vector, between the analytic and the discrete 
Chebychev transform of the unmodulated signal, normalized with respect to the local •magni­
tude of the true spectrum; 65 coefficients have been considered. 
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F i g u r e 5.5 (a) Phase spectrum of the error vector between the analytic and the discrete 
Chebychev transform of the unmodulated signal and (b) error vector between the analytic 
and the discrete Chebychev phase spectrum of the unmodulated signal; both graphs involve 
65-long vectors. 
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Figure 5.6 (a) Amplitude and (b) phase discrete Chebychev spectrum of the modulated 
signal. 
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be made for the Fourier spectrum), while the magnitude of the last 10 — 30 resolvable 

coefficients is significantly smaller than the magnitudes of the lower ones. 

Calculation of the post-modulation spectrum with N = 64 verifies an anticipated 

small but definite amount of aliasing, due to the inadequate representation of the 

non-trivial higher modes. The aliasing is especially pronounced in the less dominant 

tail of the spectrum; doubling the density of the x-sampling, we eliminate aliasing 

and improve the truncation error. The trailing coefficients are expected to still suf­

fer from inaccuracies due to truncation errors, but the minor contribution of these 

higher-order modes to the representation of the function, combined with the possibil­

ity of a pronounced round-off accumulation, in both the transform calculation and the 

subsequent numerical solution procedures, in denser grids, renders further resolution 

attempts hopeless. 

Another spectacular result, with respect to the phase characteristics of the mod­

ulated spectrum, is obtained; the instantaneous phase is plotted in figure (5.6b). The 

phase of the dominant Gaussian part of the spectrum oscillates between — TT and TT/2, 

whereas the phase of the less significant Gaussian flanks oscillates between —TT/2 and 

7r; this phase modulation-like behavior persists, to a remarkable extent, in the trivial 

part of the spectrum, as well. 

5.6.3 Discussion of results 

Tables 5.1 and 5.2 display the L2 and the Loo computed estimates for all the 

Chebychev and the finite difference methods presented previously. The Chebychev 

values of these tables refer to a spectrum computed directly from an equal available 

number of x-samples; no appreciable differences between the Chebychev variants exist 
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and the inferiority of the classic finite difference scheme is readily identified. Table 

5.3 is concerned with the errors that correspond to spectra obtained via successive 

truncations of a spectrum computed originally from N — 128 x-samples; only the 

Galerkin results are given. 

N + l GAL PSD TAU TIN FD 
5 0.37 (+2) 0.37 (+2) 0.36 (+2) 0.37 (+2) 0.19 (+2) 
9 0.41 (+1) 0.43 (+1) 0.35 (+1) 0.45 (+1) 0.25 (+1) 
17 0.20 (+1) 0.20 (+1) 0.20 (+1) 0.21 (+1) 0.20 (+1) 
33 0.31 (0) 0.33 (0) 0.35 (0) 0.35 (0) 0.90 (0) 
65 0.89 (-3) 0.89 (-3) 0.89 (-3) 0.89 (-3) 0.11 (0) 
129 — — — — 6.77 (-2) 
257 — — — — 0.48 (-3) 

Table 5.1 L2 values for the various numerical solutions of the Schrodinger equation; results 
for the Galerkin, pseudospectral, tau differentiated and tau integrated Chebychev schemes are 
displayed versus results for the classic finite difference scheme; At = l/N2, while Chebychev 
estimates for N > 64 have not been computed due to the excessive computational cost involved. 

N+l GAL PSD TAU TIN FD 
5 0.61 (+1) 0.61 (+1) 0.59 (+1) 0.61 (+1) 0.61 (+1) 
9 0.19 (+1) 0.20 (+1) 0.17 (+1) 0.20 (+1) 0.12 (+1) 
17 0.12 (+1) 0120 (+1) 0.11 (+1) 0.12 (+1) 0.10 (+1) 
33 0.29 (0) 0.35 (0) 0.31 (0) 0.31 (0) 0.87 (0) 
65 0.29 (-1) 0.29 (-1) 0.29 (-1) 0.29 (-1) 0.35 (0) 
129 — — — — 0.88 (-1) 
257 — — 0.22 (-1) 

Table 5.2 Z^, values for the various numerical solutions of the Schrodinger equation; results 
for the Galerkin, pseudospectral, tau differentiated and tau integrated Chebychev schemes are 
displayed versus results for the classic finite difference scheme; At = l/N2, while Chebychev 
estimates for N > 64 have not been computed due to the excessive computational cost involved. 
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N+l L2 
Loo 

5 0.11 (+1) 0.10 (+1) 
9 0.10 (+1) 0.10 (+1) 
17 0.93 (0) 0.83 (0) 
33 0.20 (0) 0.26 (0) 
65 0.89 (-3) 0.29 (-1) 

Table 5.3 L2 and Loo values for the Chebychev Galerkin solution of the Schrodinger equation; 
N + l corresponds to the spectral cut-off level of an original N = 128 spectrum, fed into the 
system. 

Finite differences axe severely aliased up to iV=16, while an N—32 discretization 

covers virtually all the spatial wavenumbers of primary significance (figure 5.1b). The 

Chebychev transform is heavily aliased up to N=32; nonetheless, a sampling den­

sity corresponding to N—64 allows most of the dominant spatial information to be 

transferred into the Chebychev domain. An investigation of the errors given in tables 

(5.1-2), in conjuction with a detailed study of corresponding graphs of the ampli­

tude of the approximate solution plotted versus the exact wavefunction, reveals some 

important characteristics of the numerical schemes. 

The limited local character of the finite differences is associated with the fact 

that the classic scheme (irrespective of being aliased or not) preserves the Gaussian 

shape of the true solution; nevertheless, it is the very same intrinsic feature of the finite 

difference scheme that obstructs its convergence; artificial spatial dispersion is injected 

into the system, the group velocity is underestimated and the numerical solution is 

superseded by the analytic solution, the later being centerred at x = +0.25 (figure 

5.7). An aliased Chebychev spectrum (for N=32) yields some unexpected results, as 

the biased spectrum (figure 5.8a—solid line) nullifies the spreading-control analysis 

(recall discussion in 5.4.4.2). A revealing demonstration of this (with At = 1/322) 

is presented in figures 5.8b, 5.9a and 5.9b (dashed lines), where the Galerkin, the 
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pseudospectral and the tau solutions are displayed versus the analytic solution (solid 

line). 

The time-advanced numerical solution exhibits translucent evidence of appreciable 

boundary reflections; it may be contemplated that it is the altered dispersion relation 

(due to time differencing), which gives rise to this .artificial spreading, but numerical 

experiments, employing much reduced time steps, exhibited similar reflections. 

This result points to the real source of problems, namely, the propagation of an 

aliased spectrum, which definitely cannot account properly for the Gaussian shape 

of the initial condition. The spectrum incorporates barely 60% of the spatial infor­

mation with its higher part being rich in aliasing contamination; its great departure 

from the correct Gaussian-like shape is clearly noticeble in figure 5.8a. This mispre-

sentation manifests itself with a spreading factor much larger than anticipated; finite 

difference stencils apply in the x-space instead and therefore their implicit spectral 

aliasing does not transmit this misrepresentation in a global manner. The central bulk 

of the Chebychev spread-out Gaussian may, nevertheless, claim a smaller shift from 

the exact solution than in finite differences. 

A deeper understanding of the reported anomaly may be gained by repeating 

the experiments with an initial spectrum consisting of a truncated portion of the 

non-aliased, more-accurate and complete spectrum corresponding to N = 128 (figure 

5.8a—dotted line). These filtered versions of the previous experiments display a rather 

ambivalent character. We do see (dotted lines in figures 5.8b and 5.9) that elimination 

of aliasing (decreased truncation error is of secondary importance) smooths out the 

reflections at the left boundary significantly, but it does not succeed in accomplish­

ing a similar operation at the right boundary. The answer lies in the inability of the 
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filtered spectrum to satisfy the boundary conditions; the latter are not homogeneous 

any more and their effect may be envisioned as either an inhomogeneity factor not 

being accounted for or equivalently a Gibbs' phenomenon at both boundaries due to 

the non-uniform convergence of the expansion at these points. The generated errors 

are, thereafter, gradually moving inwards affecting the rest of the solution; at the left 

boundary, the major improvement due to the non-aliased character of the new spec­

trum overwhelms the deterioration introduced by the incomplete satisfaction of the 

boundary condition at x = — 1. The contamination is, nevertheless, visible and it is 

especially pronounced at the right boundary, the boundary x — +1 being much closer 

to the Gaussian; the Gibbs' oscillation interferes much faster with the Gaussian's right 

flank and the final outcome can not claim an ameliorated simulation of the physical 

process. Major reductions on the size of At failed to improve this result, again. How­

ever, a comment on the improvement observed with respect to the alignment of main 

bulk of the numerical solution with the true Gaussian should be made. Furthermore, 

we should note the relatively reduced Gibbs' phenomenon in the tau variant (dotted 

line in figure 5.9b) compared to the size of the phenomenon in the Galerkin and the 

pseudospectral simulations (dotted lines in figures 5.8b and 5.9a, respectively). The 

stronger emphasis of the boundary conditions that characterizes the former seems to 

decelerate the ill-conceived Gibbs' radiation. 

Introducing 65 coefficients in the Chebychev spectrum has dramatic consequences. 

Most of the spatial information having been fed in, the algorithm produces a con­

siderably improved output (figure 5.10a). Identical results for its filtered version re­

flect the counterbalancing effect of the limited aliasing of the direct spectrum with 

the weak Gibbs' phenomenon accompanying the use of the truncated spectrum since 



178 

only a minor amount of energy lies beyong the current cut-off. Additionally, the im­

proved truncation error of the latter cannot be resolved because of the accumulation 

of round-off during the process. The reported improvement in the quality of the nu­

merical simulation is also partly due to the decreased time step (At goes as l/N2) and 

it is obvious that further significant decrease of the error is coupled with a decrease 

in the size of At. In theory, maximum accuracy demands retaining 75-80 coefficients; 

the practical advantages are doubtful though, especially if we recall that the accuracy 

of that additional higher portion of the numerical spectrum is severely damaged by 

truncation error. 

The Fourier spectrum of the initial condition extends up to A; = 75 — 80, but 

it is readily seen that the energy beyond k = 50 is of secondary importance for all 

practical purposes, although (maximum attainable resolution would require the whole 

non-trivial spectrum). The finite difference scheme appears to converge much more 

slowly than its Chebychev rival, despite it being slightly aliased at N = 32 and aliasing-

free at N = 64. 

Accuracy loss is also coupled with time-differencing, but comparison between the 

Chebychev and the classic scheme for the same At size demonstrates clearly the inferior 

quality of the classic scheme. This trend is hardly astonishing because of formidable 

amounts of artificial spatial dispersion still present at these discretization levels, since 

( f c m a x A i ) _ 1 = 7Y/100 for our problem. The anticipated improvement of the classic 

scheme's performance with an oversampling in the i-direction seems to match the 

Chebychev accuracy at N = 256. However, this is misleading since the latter has a 

time step 16 times larger than the former does; repeating the Chebychev experiment 

with N = 64 and the time step of the finite difference scheme of N = 256 (figure 5.10b), 
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yields an L2 of 0.60 (-5) and an of 0.18 (-2), indicating that finite difference would 

need a whole order of magnitude more points in order to attain a comparable accuracy 

level, i.e an oversampling of TV — 512 would be needed. 

Finite differences do not appear capable of achieving their reported accuracy levels 

with time steps significantly smaller than the current At = 1/TV2 pattern. Considering 

TV = 256, so that only limited amounts of artificial spatial dispersion contaminate the 

classic scheme, we obtain error estimates that vary considerably for different At values. 

As an example, let us consider At = 1/642; repeating the experiment, we compute 

an L2 of 0.11 (0) and an of 0.35 (0), which constitute a pair of inferior accuracy 

estimates. 

Either scheme is coupled with a low-order finite difference approximation of the 

time derivative and thus an implicit temporal oversampling is needed to reduce time 

truncation errors; temporal dispersion is acceptable at At = 1/1282, i.e ( w m a x A t ) - 1 ~ 

6 and it is definetely minimal at At = 1/2562, i.e ( w m a x A t ) _ 1 ~ 26, with a relative 

phase error (expression 5.34) of 0.1 ( — 3). 

This analysis tends to indicate that the obtained error estimates are greater than 

it would be anticipated. Part of the explanation lies in the incomplete handling of the 

short wavelengths, an intrinsic feature of the Crank-Nicolson formulation. A relative 

instability is coupled with the latter and we thus witness a relative accuracy loss in 

the course of time. A quantitative idea of the magnitude of the reported loss is given 

below. The Chebychev Galerkin scheme with TV = 64 and At = 1/2562 exhibits L 2 

and Zoo of 0.33 (-9), 0.10 (-4) and 0.58 (-6), 0.56 (-3), for M = 1 and M = 100 

iterations respectively; the error levels at t = 0.005 reported above involve an M of 

328 iterations, approximately. 
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Concluding the analysis, we should briefly touch upon two interesting points. The 

spatial character of our specific initial condition, i.e high concentration in a narrow 

middle portion of the computational grid, makes an all-grid sampling quite inefficient. 

The latter is more distressing in the Chebychev case, due to the contradiction between 

the absence of information near the boundary regions and the high density of the 

Chebychev nodes there. Memory is thereby wasted, while high boundary resolution is 

definitely not required in our problem. On the contrary, the boundaries are artificial 

and there is no desire to approach them; we actually want to make sure that we 

stay away from them. This enhanced boundary sensitivity has undoubtedly its own 

share of responsibility for the troublesome reflections characterizing the "incomplete" 

Chebychev experiments with N = 32. The boundary clustered points aid in the 

the incorrect spreading of the solution; boundary reflections and boundary-generated 

Gibbs oscillations are accelerated and carried faster in the interior of the computational 

domain. 

A note of the increased vulnerability of the boundary condition imposition in the 

Chebychev scheme, due to the intervening transform, should be made again. 

Furthermore, the dissipation of the solution is bound to be more troublesome in the 

Chebychev case than in the finite difference scheme, because of the increased number 

of trivial points at the boundaries' neighborhoods, which would tend to accelerate the 

onset of resolution loss. 

A final comment on the behavior of the absolute errors is worth mentioning. A 

gradual deterioration of absolute accuracy is observed in the course of time. This 

deterioration is of a mild character; this is due to the fact that the amplification 

factor of the Crank-Nicolson formulation is exactly unity. Consequently, the round-off 
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Figure 5.8 (a) Chebychev spectrum for N = 32; both the aliased (dashed line) and the 
truncated (dotted line) spectra are given, (b) The abased (dashed line) and the truncated 
(dotted line) Chebychev Galerkin solution with N = 32 and At = 1/322 versus the analytic 
(solid line) solution. 
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X-DOMAIN 

Figure 5.9 (a) The aliased (dashed line) and the truncated (dotted line) Chebychev pseudospec­
tral solution versus the analytic (solid line) solution, (b) The aliased (dashed line) and the 
truncated (dotted line) tau solution versus the analytic (solid line) solution; At and N are the 
same as in figure (5.8b). 
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- 1 . 0 - 0 . 5 0.0 0.5 1.0 
X-DOMAIN 

Figure 5.10 The Chebychev Galerkin (dashed line) versus the analytic (solid line) solution; 
N = 64 with (a) At = 1/642 and (b) At = 1/2562. 
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generated at each iteration (and all other errors that are present) are transferred over 

to the next step, being neither amplified, i.e absolute stability, nor getting damped. 

This is a significant departure from the heat equation; in the latter, the amplification 

factor is smaller than unity and therefore, there exists a time after which the error 

gets successfully damped. 

5.7 The Fast Complex Integrated Tau Solver. 

Procedures S L U l - 3 (see Appendix B.2) can be readily extended to complex arith­

metic, in order to deal with the complex diffusitivity parameter of the Schrodinger 

problem. 

It is immediately seen that the Schrodinger system exhibits an essential new struc­

tural characteristic, namely, a complex middle diagonal. The latter marks a significant 

departure from the heat equation and necessitates a careful analysis of the system's 

structure. In the numerical environment simulated by the "super-fast" S L U l algo­

rithm, we recognize a high degree of off-diagonal dominance. The main diagonal is 

0(l/4n 2 ) , while the off-diagonal contribution is 0(|iAt/2 + l /2n 2 | + l/4n 2). The re­

ported off-diagonal dominance is more pronounced here than in the heat equation (see 

4.4.7). In addition, it is obvious that increases in At worsen the situation; a decreased 

At improves the situation, but unfortunately off-diagonal dominance persists even in 

the limit of At —»• 0. 

Our intuition has been confirmed by a number of numerical experiments. Under the 

familiar choice At = l/N2, experiments have shown, that, for N < 8, the SLUl-based 

solution is identical to the solution obtained via a straightforward Gaussian elimination 
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with partial pivoting. Mild deterioration characterizes N = 16, i.e 4-5 significant 

figures are now accurate, to be continued as TV reaches 32 or 64; the latter choices yield 

results accurate to 4 and 3-4 digits, respectively. The accuracy is severely damaged at 

JV = 128 and inevitably, near-zero pivots annihilate the approximation at JV = 256. 

The choice At = 1/N, for systems with JV > 16, has yielded meaningless answers, 

due to division by near-zero pivots. On the other hand, the choice At = 1/JV3 has 

resulted in much improved answers, restoring the accuracy to 4-5 figures for systems 

up to JV = 128. 

What about procedures SLU2 and SLU3? Significant efficiency gains in the so­

lution of any quasi-tridiagonal system are achieved only when the S L U l algorithm is 

applied. The SLU3 algorithm is equivalent to a complete LU decomposition with par­

tial pivoting and it is to be used in the lack of any alternatives, only. Finally, the SLU2 

procedure exhibits an efficiency gain which is important only on theoretical grounds. 

The analysis of the Schrodinger tau-integrated systems also serves as a predecessor 

for the incresed demands of the migration problem of the next chapter. However, 

the SLU2 algorithm cannot achieve but a minor reduction of the computational cost 

in the repetitive inversions involved in the migration downward continuation process. 

Thus, we have restricted ourselves to a theoretical investigation with respect to the 

anticipated performance level of the technique; numerical experiments have not been 

conducted. The diagonal shift, inherent in the SLU2 original system, gives rise to a 

diagonally-dominant system (the structure is also superior to the equivalent system 

of the heat equation). The diagonal vigor of the system is easily identified; the main 

diagonal features elements of 0(\iAt/2 + l/2n 2|), whereas the off-diagonals' strength 
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is just 0 ( l / 2 n 2 ) . This quarantees a performance of high quality (see 4.4.7). Further­

more, increasing At enhances the diagonal dominance of the system; the limit At —• 0 

corresponds to neutrally-dominant systems. 
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C H A P T E R V I 

T H E P A R A B O L I C E Q U A T I O N 

Then Myskm stretched out his trembling hand to him 

and softly touched his head, his hair, stroking them 

and stroking his cheeks ... he could do nothing else! 

The Idiot — Fyodor Dostoyevsky 

6.1 The Paraxial Approximation in Exploration Geophysics 

The application of the paraxial approximation (see below), in order to derive one­

way equations, results in a class of equations known as the parabolic approximation. 

This equation is often employed when the desired propagation is at a "small" angle to 

a preferred direction. The main advantage is that instead of having to solve the ellip­

tic Helmholtz equation (boundary value problem), we only need to solve a parabolic 

equation (initial value problem) which is easier to handle numerically. Applications of 

the parabolic equation abound and they cover a wide range of diverse fields including 
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underwater wave propagation, laser beam propagation, quantum mechanics, electro­

magnetic diffraction and propagation, plasma physics, optical waves and, of course, 

seismic waves (Mary and Lee, 1985). 

The parabolic wave equation was originally proposed in geophysics by Claerbout 

(1976) and it was introduced in an effort to expand the existing vertical-incidence the­

ory to include some angular bandwidth around vertical-incidence. A detailed deriva­

tion of the equation may be found in Claerbout (1976, 1985); it basically involves 

various approximations to the square root y k2 — k2, the latter corresponding to the 

vertical wavenumber kz, as may readily be seen by inspection of the dispersion relation 

of the full wave equation, i.e 

k2

z + k2

x = ^ (6.1) 

The 15° equation corresponds to a linear approximation, i.e retaining the first two 

terms of its Taylor expansion, while a bilinear approximation yields the 45° equation. 

Muir's recursion formula, i.e 

1 + Kn 

can be used to obtain higher order approximations (Claerbout, 1985); the phase shift 

method (Gazdag, 1978) implements the full square root operator and it is capable of 

migrating dips up to 90°. 
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6.2.1 Inherent limitations 

The 15° equation has extensively been used in the migration of seismic stacked 

sections, since, due to the assumptions made during its derivation, it enjoys charac­

teristic computational advantages. These include an easy handling of the numerical 

aspects of the equation and an accurate migration of dips up to 15° for a velocity 

function varying slowly with depth, i.e the vertical component of the velocity gradient 

dU/dz is assumed to be small. 

6.2.2 Formulation for a CMP gather 

For the purposes of this study, we only consider the migration of zero offset CMP 

gathers; the exploding reflector model (ERM) is employed for the modeling process. 

The equations may be set up in the regular stationary coordinate frame (i, z, t) with 

the resulting migration scheme known as the (i, 2 , i) migration. Alternatively, time 

retardation is customarily invoked; the relevant equations then involve a diffraction 

term 

d2u _ _vd^u 
JzTt ~ ~2~th? ( 6 ' ' 

and a thin lens term 

dz v dt K ' 

where x, z and t denote half offset, midpoint and 2-way travel time respectively. 

The velocity v = v(x,z) is half the true medium velocity to account for the ERM 

hypothesis and U is the upgoing wavefield since we are interested in migration than 
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in diffraction, instead. The Fresnel diffraction term accounts for the lateral diffusion 

of the waves, while the thin-lens term performs the depth extrapolation. The time-

retarded migration equations are traditionally solved in the frequency domain; Fourier 

transformation in time, yields 

dU vd2U 

dz 2 dx2 

or 
dU v d2U 
dz 2iu dx2 

for the diffraction term (6.3), while the thin lens term reads 

The full equation may be then written as 

(6.5) 

(6.6) 

= -£u (6.7) 
dz v 

dU . U J t t v d2U ,„ . = - l - U + 6.8 
dz v 2iu dxz 

6.2.3 Variants of the 15° u-migration 

The time dependence having been transformed, we are only now being confronted 

with a number of monochromatic wave equations. The procedure involves a separate 

depth extrapolation of each of the available temporal frequencies, to be followed by 

the appropriate superposition according to the imaging principle. 
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6.2.3.1 The finite difference (u — x)-migration 

An splitting method is customarily employed for the solution of the full extrapola­

tion equation (6.8). That has the advantage of incorporating an exact analytic solution 

for the thin lens component, while the familiar second order accurate Crank-Nicolson 

finite difference configuration is used for the solution of the diffraction component. No 

stability problems arise since each component is stable by itself. The splitting proce­

dure introduces an additional error in the numerical solution; this error is zero if the 

two operators commute and in such a case a full separation is possible (Brown, 1983). 

The thin lens and the diffraction operators do commute for horizontally stratified 

media, i.e v=v(z) only, but lateral velocity variations introduce a noncommutativ-

ity which increases with the lateral inhomogeneity. Nevertheless, the finite difference 

formulation allows a straightforward accommodation of horizontal velocity changes. 

6.2.3.2 The frequency-wavenumber (u — kx) migration 

In the presence of lateral inhomogeneities this approach is not applicable; other­

wise, Fourier transformation of the i-coordinate into the corresponding kx axis, allows 

the complete extrapolation process to be performed via a single phase shift, manifest­

ing the separability of the components of the extrapolation in such a case. This is 

easily deduced from the transformed version of (6.8), i.e 

dz \v 2UJ J 
(6.9) 
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6.3 Analysis of Migration Parameters 

6.3.1 The depth extrapolation step Az 

6.3.1.1. Evanescent aliasing 

Finite difference migration proceeds in the x-domain and we, therefore, do not 

have direct access to the (u,kx) plane. Considering each monochromatic wavefield 

separately, the multiplication of the A:z-transformed wavefields with the shift opera­

tor, may be equivalently expressed as the convolution of the wavefield with a certain 

operator, known as the spatial wavelet, the latter and the shift operator constituting 

a Fourier transform pair, i.e 

(Berkhout, 1981). There is, thereby, an explicit dependence of the downward contin­

uation process on the extrapolation step. The character and the magnitude of this 

dependence may be best understood in the (u,kx) plane and they are directly associ­

ated with the concept of propagation and evanescence. The shift operator, for a given 

temporal frequency u>, operates as a depropagator of a certain range of horizontal 

wavenumbers. The vertical wavenumber kz, i.e 

is considered as evanescent if \vkx\ > and it attenuates rapidly in the direction 

of propagation. Introduction of the evanescent modes into the extrapolation process 

W(x,u>, Az) <—> exp(-iAz\/k2 - k2) (6.10) 

(6.11) 
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involving a small Az step is likely to lead to instability of the scheme. A small Az might 

not account for a proper attenuation of these "non-physical" solutions and as the error 

cumulates with a large number of extrapolation steps, the migrated section becomes 

absolutely useless. The situation is characteristic of a numerical "blow-up" of the 

solution. The migration involves the depropagation of upcoming waves and evanescent 

modes result into growing exponentials; the stability criterion is violated and a blow-up 

is shortly witnessed. However, the issue involves another factor, namely, the validity 

of the wave equation-based extrapolation, when a near-field case is considered, i.e 

kzAz <C 1. The wave equation is basically a far-field approximation, i.e kzAz » 1, 

while small depth steps tend to give rise a near-field situation. Conciliation with the 

described inconsistency imposes an even more stringent lower bound on Az (Berkhout, 

1981). It is common practice to mute out the evanescent area before commencing the 

migration procedure, nullifing in that way, stability limitations with regard to the 

lower bound of the extrapolation step. 

Migration in the x-domain, e.g finite difference, finite element, spatial deconvolu-

tion, does not enjoy a direct access of the (UJ, kx) plane. If evanescent energy is present, 

the spatial wavelet will experience a severe contamination (evanescent aliasing) and 

consequently the migration algorithm will be unstable (Nautiyal, 1986). An increase 

in UJ defaults to a bigger value of A:*, that is, the transition point from propagation to 

evanescence on the fcj-axis. As the evanescent region shrinks, the evanescent contribu­

tion for a given Az diminishes as well. At ui* = v(kx)^YQ-> the transition wavenumber 

is the Nyquist value itself and therefore, for u> > UJ*, the evanescent zone lies beyond 

the (ATZ)NYQ value. 
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6.3.1.2 Depth aliasing 

The extrapolation step Az must also satisfy upper bound constraints. The rea­

son is that Az has to be at least equal to half the minimum wavelength involved in 

the downward extrapolation. In practice, temporal frequencies are limited by WNYQ 

and this imposes an upper bound on the maximum vertical wavenumber allowed to 

propagate, i.e 

(*,)NYQ < (6-12) 
v 

Consequently, the restriction becomes 

Az < — = (6.13) 
(fczjNYQ <̂ NYQ 

assuming that all information up to the Nyquist frequency is being used in the extrap­

olation. 

Although, the previous analysis is rigorous for a constant velocity function only, it 

may be approximately applied even in the case of mild i , z perturbations. If dU/dz is 

not adequately small, a more stringent upper bound on Az must be imposed. This is 

required in order to compensate for the loss of justification in dropping the d2U/dx2 

term when deriving the paraxial equation. 
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6.3.2 The 15° dispersion relation 

The 15° equation is incapable of properly migrating dips that exceed its maximum 

capacity, namely a dip of 15°. This limitation is clearly identified in the altered 

dispersion relation obeyed by the equation, i.e 

_U( (vkx)>\ 
k z " v V 1 2u;2 ) 

Expression (6.14) discloses two major characteristics of the 15° equation. First, the 

equation does not exhibit a frequency dispersive character, maintaining in that respect 

a very important feature of the full wave equation. Second, the dispersion relation 

(6.14) divulges a strong anisotropic character, departing from the isotropic semicircle; 

equation (6.14) is a parabola and its departure from the true semicircle increases with 

the dip angle vkx/u>. The modified dispersion relation of the 15° equation gives rise 

to "dispersion effects" when migrating dips greater than 15°. These effects manifest 

themselves in a potential separation of the low from the high frequencies, during the 

downward extrapolation of the wavefield. The errors increase with the dip; in addition, 

incorrect repositioning, for a certain dip, becomes more pronounced as the frequency 

increases as well (Hatton et al, 1986). These migration errors degrade the quality of 

the migrated steeply dipping reflectors; "ghosts" often accompany the true reflectors 

(Gazdag and Sguazzero, 1984). 

The described phenomenon is known as "dispersion"; it owes its existence to the 

limited dip capability of the 15° equation. Even unaliased data suffer from disper­

sion effects and the addressed problem is absolutely independent of spatial aliasing 

and dip reversal, to be examined shortly. Furthermore, another kind of dispersion 

(6.14) 



197 

consideration arises, namely artificially induced dispersion effects, arising in numerical 

simulations operating in finite difference environments. 

6.3.3 Artificial dispersions 

In two-dimensional migration algorithms, two spatial coordinates are considered. 

Migrating in the w-domain assumes a harmonic time dependence and subsequently, 

no temporal artificial temporal dispersion problems are encountered. Both the x and 

the kx algorithms employ an exact solution for the thin-lens term. Consequently, no 

truncation errors are committed and the differential operator is represented exactly. 

However, the situation becomes more involved for the Fresnel diffraction term. The 

wavenumber technique involves a Fourier spectral interpolation in x and it is, therefore, 

free of artificial spatial dispersion. Furthermore, the extrapolation in z can be per­

formed via another simple analytic solution; a numerical approximation for the depth 

derivative dU/dz is then avoided. The finite difference approximation of the d2U/dx2 

operator creates artificial dispersion in this axis and the lack of an analytic extrapo­

lation solution necessitates a finite difference approximation for the depth derivative, 

introducing similar problems there as well. 

Stability considerations are relaxed by employing the Crank-Nicolson scheme but 

nevertheless, accuracy demands that Ax and Az are small enough to account for 

a minimization of these artificial dispersion problems. In principle, the imaginary 

diffusitivity v/2iu depends on u>; therefore, for a given v, a uniform Az stepping rate 

should cover the minimum available temporal component of the complete wavefield. 

In practice this fine point seems never to be addressed. Increased velocities result in 

greater values of a, demanding appropriate reduction in the size of Az. It is interesting 
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to note that the stability criterion for the explicit solution of this Schrodinger-like 

equation corresponds to the Nyquist criterion regarding anti-aliasing considerations in 

the 2-axis, i.e 

(Ax) 2 , . 
2Az < - - (6.15) 

o 

where the right hand side of the inequality represents the diffusion depth that corre­

sponds to a lateral wavelength of Ax. Elimination of the x-dispersion and simultane­

ous handling of a v(x) case may be achieved through higher-order schemes in z. This 

approach allows the use of the Fourier transform for the accurate compuatation of 

the horizontal spatial derivatives; Gazdag (1980) and Kosloff and Baysal (1983) have 

proposed a third-order and a fourth-order Runge-Kutta scheme, respectively. 

6.3.4 Aliasing in a seismic section 

Spatial and temporal aliasing in a seismic section are now examined. A good un­

derstanding of the character of aliasing in two dimensions requires the identification 

of an essential difference in the nature of aliasing between one and two dimensions. 

The concept of the Nyquist frequency as a folding frequency may often be misleading. 

This interpretation is indeed valid in one dimension, but it only applies to real input 

functions, since the amplitude of the spectrum of a complex input function is not 

symmetric, in general. The introduction of a second dimension has a significant conse­

quence. Despite the fact that aliasing overlap (folding) still occurs on each transform 

coordinate separately, aliases are decoupled in the (u,kx) plane (Hatton et al, 1986). 

Alternatively, the concept of two-dimensional aliasing as a reflection or a folding op­

eration about the w and the kx Nyquist boundaries is incorrect; a wraparound due to 

an overlap of repeating spectra is a valid description of it (Clement, 1973). 
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6.3.4-1 Spatial aliasing and dip reversal 

Let us assume that reflectors of all dips are present. It is trivial then to see that 

all w's beyond u>* are spatially aliased, that is, the propagating spectral regions not 

covered by ( A ^ N Y Q wrap around and reappear in the negative kx region. This is well-

known as spatial aliasing and it is directly associated with phenomenon of dip-reversal. 

Spatial aliasing varies with the reflector's dip, i.e 0, the latter being measured 

from the horizontal. As the plane-wave wavefront reaches the surface of the earth, the 

geophone array records an apparent wavelength A z , namely the horizontal component 

of the true wavelength A. Spatial aliasing is avoided if 

Xx > 2Ax (6.16) 

according to the Nyquist criterion. Substituting \ x = A/sin# and A = 2irv/u, expres­

sion (6.16) becomes 

^ t> ( f c s)NYQ 
W a l i a s ^ ^ ( 6 - 1 7 ) 

sm0 

Expression (6.17) reveals that 9 = 90° corresponds to the worst case presented previ­

ously, that is, horizontal rays ( vertically dipping reflector). The best case is 9 = 0°; 

this amounts to a flat reflector (vertical arrivals at the geophone group) and then, 

^ a l i a s — • O O -

In the intermediate region, as 9 is gradually reduced from 90° to 0°, the aliased kx 

range for a given u shrinks. The maximum non-aliased frequency w aii a s increases as 0 

is reduced from 90° to 0° or, equivalently, the aliased kx range for a given u shrinks, 

accompanied with an expansion of the available kz range. 
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6.3.4-2 Temporal aliasing 

In principle temporal aliasing can also occur. Nevertheless, anti-aliasing tech­

niques may be employed to ensure that there are no temporal frequencies beyond the 

U>NYQ boundary; otherwise, temporal aliasing occurs and aliased frequencies fold in the 

negative cj-quadrants. In practice, a (/Cx)NYQ is uniquely specified by the particular 

geophone spacing; temporal aliasing is then avoided, if 

W N YQ < "(^I)NYQ (6.18) 

Finally, an event can be both spatially and temporally aliased if the above conditions 

are not met; spatial and temporal wavenumber wraparound then results. 

6.8.4-3 Migration of aliased data 

Temporal aliasing is usually avoided by means of anti-aliasing filtering, but unfor­

tunately, spatial aliasing is a common phenomenon in seismic data. Spatially aliased 

data suffer from dip reversals; migration then, band-limiting the reflectors, proceeds 

repositioning the reversed dips, that is, the aliased frequencies, in an erroneous fashion. 

Additional dip limitations are introduced by the limited recording time and the limited 

line extent (Lynn and Deregowski, 1981). If only mild amounts of aliasing are present, 

migration is still recommended; severely aliased data are likely to result in a migrated 

section of inferior quality. The danger is enhanced in either high velocity, high noise 

situations or cases characterized by low velocity, steep dips and wide receiver sepa­

ration. The migration of dip aliased data is a major topic; a variety of filtering and 

preprocessing remedies have been proposed in the past, the most famous being the dip 
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moveout correction (DMO) by Fourier transform (Hale, 1983). This technique exhibits 

the classic advantages of Fourier techniques over similar finite diffence algorithms, and 

it does not break down at large offsets and steep dips as the latter do. 

6.4 Absorbing Boundary Conditions 

Absorbing boundary conditions for the finite difference formulations of the 15° 

paraxial equation in geophysics, have long been presented (Clayton and Engquist, 

1980). These conditions are linear, first order in kx, stable and local, i.e they are 

confined to a few traces in the boundaries' neighborhood. Their derivation is based 

upon the concept of impedance and in differential form, they have as follows 

Ux + {b/v)Ut = 0 (6.19) 

Uz - bUx - [a/v)Ut = 0 (6.20) 

and 

Uzt + cvUxz-bUxt-{a/v)Utt=0 (6.21) 

The constants a, b and c are determined by matching the boundary condition at the 

right or the left boundary, with the right or the left side of the dispersion relation of 

the equation in the interior of the computational domain. The reflection coefficient R, 

for a monochromatic plane wave, can be chosen such that reflections are completely 

suppressed. In general though, we are interested in general wavefields; R is designed 

to be minimum for the wavenumber band that carries most of the significant energy. 
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Lastly, the effectiveness of the boundary conditions (6.19-21) depends on the incident 

angle to the boundary, i.e sin_1(t;fcB/u;). 

6.5 Analysis of an Example of 15° Finite Difference Migration of C M P Data 

We are given the surface data, e.g pressure field P(x,z = 0,f) obtained after CMP 

stacking, where x is the half-offset, z is the midpoint, and t is the two-way travel-time 

coordinate, respectively on a P(x t, iy) grid. The classic finite difference approach of 

migrating these data according to the the 15° equation can be briefly summarized as 

follows. 

6.5.1 The algorithm 

We first Fourier transform the data over time to obtain P(x,z = 0, w), that is, 

to obtain the decomposition in terms of the frequency harmonics. Then, the surface 

(complex) wavefield for each frequency w is considered and we deal independently 

with each one of them, since the problem has been analyzed into a sum of monochro­

matic problems. Each frequency is propagated downwards a depth ixz via a combined 

solution of both the diffraction and the thin lens terms. We then inverse Fourier trans­

form the extrapolated monochromatic wavefields and we take the strip corresponding 

to t — 0 to be the migrated wavefield at that depth. This procedure is repeated for 

each new time step until we reach the desired one. Each time the calculated extrapo­

lated monochromatic wavefields are being fed into the equations in order to advance 

the solution in depth. 

The solution of the diffraction term involves the inversion of a tridiagonal system 

for each frequency and for every depth step. Additionally, the elements of this matrix 
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depend in a very straightforward manner on the values of the frequency, the velocity 

and the boundary conditions. From a computational point of view we do not need to 

perform an Inverse Fourier transform for all frequencies at each time step, since by 

simply superimposing all of them we can obtain the desired reflector surface for the 

specific z value. 

6.5.2 Computational details 

A program based on an algorithm given by Claerbout (1985) utilizing the above 

has been written; a number of important computational details are addressed and 

analyzed in the following lines. 

6.5.2.1 The input model 

The idealized surface data used are made of broadened half impulses in a triangle 

form. Broadening implies an absence of high frequencies and therefore, the minimiza­

tion of artificial dispersions caused by the difference operators. 

6.5.2.2 The u>o and the CJNYQ frequencies 

Neither the DC nor the Nyquist temporal mode is used in the depth extrapolation, 

each one for different reasons. The DC is excluded because it does not satisfy the 

equation; it actually satisfies the Laplace's equation. No complications arise since 

setting it to zero amounts to a mere mean-value removal in the time coordinate. A 

non-zero Nyquist component indicates aliasing; however, the absence of any energy at 

the Nyquist does not guarantee an alias-free spectrum. If temporal aliasing is present, 

a dip reversal in u is expected with the U>NYQ marking the discontinuity point. While 

removal of the Nyquist contribution is the least we can do, eliminating this component 
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has another computational merit. Using the complex conjugate property of the Fourier 

transform, we can simply superimpose the real parts of the positive frequencies up to 

but excluding the Nyquist, in order to apply the imaging condition. 

6.5.2.3 The (kx) NYQ component 

The significance of the Nyquist mode in the spatial coordinate is now discussed. 

The Nyquist waveumber is associated with the discontinuity involved in the dip reversal 

in fcx; when kx < (fcZ)NYQ left dips are migrated, but for kx > (̂ IJNYQ right dips are 

processed since the aliased wavenumber wraps back into the negative fcj-region. The 

wavenumber discontinuity causes spurious ringing in the x-coordinate. This is usually 

reduced by appropriate filtering; Claerbout (1985) gives such a filter, i.e 

. 1 1 + cos(/cIAx) 
W(kxAx) = ^ — ' 6.22 

K x 1 i +0.85cos(fcxAx) v ' 

6.5.2.4 Boundary conditions 

We proceed to discuss the boundary condition issue. Claerbout obtains his results 

by imposing zero-slope b.c's (figure 6.1), which are maintained constant for all depths. 

Figure (6.2) gives the migrated output but for homogeneous boundary conditions. 

6.5.2.5 Interpretation of the migrated section 

The highly idealized input model helps to obtain a migrated section of high qual­

ity. Most of the troublesome factors addressed previously are either absent or virtually 

negligible. The trouble-free input is aided by a meticulous choice of parameters, so 

that all sources of problems are practically eliminated. The migrated section features, 

nevertheless, certain artifacts at large depths values (figure 6.1); these are believed 
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Figure 6.1 Migrated section following Claerbout's (1985) example with *ero-slop« boundary 
conditions. 
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Figure 6.2 Migrated section following Claerbout's (1985) example with homogeneous bound­
ary conditions, instead. 



207 

to be w-domain wraparound effects (see also 6.9.3 for plotting details). The origi­

nal smoothing of the input spikes is also seen in the broadening of the approximate 

semicircles. Finally, it is interesting to observe that the migrated waveforms are not 

symmetric functions of time, as the unmigrated impulses are. Migration (in two di­

mensions) yields an output that is neither symmetric nor antisymmetric, but a 45° 

phase-shifted pulse (Claerbout, 1985). 

6.5.2.6 A theroretical inconsistency 

An interesting point regarding Claerbout's example should be made. By impos­

ing homogeneous Neumann b.c's, we are practically introducing discontinuities in our 

scheme since the initial conditions fail to obey them. The reason why such a funda­

mental theoretical flaw does not seem to affect at all the solution might be identified 

in a number of ways. The Schrodinger equation is naturally diffusive and it therefore 

tends to smooth any kind of discontinuities. Errors caused by the discontinuity do 

not propagate fast in the interior of our computational domain, due to the local na­

ture of the finite difference basis functions. Spectral methods would be unforgiving 

in a similar situation, as the error would rapidly pollute the solution everywhere in 

the grid. In addition, this problem is eliminated after the first Az extrapolation has 

been completed, since the advanced wavefields are now consistent with the imposed 

boundary constraints. 

The lack of boundary reflection contamination is partially explained by the rather 

mild intensity of the described inconsistency. The original impulses are located at 

the close vicinity of the left boundary with their peaks on the boundary trace itself. 

Fourier transformation of the time coordinate involves an implicit normalization of the 
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Fourier coefficients with the number of points per trace, scaling the discontinuity jump 

accordingly. The region around the right boundaries is ideally zero and it is, therefore 

consistent with the imposed boundary condition. 

However, the severe loss of quality due to an enlarged boundary discontinuity 

jump is clearly demonstrated in figure (6.2). The implementation of zero-endpoint 

boundary conditions amounts to a significant discontinuity jump at the left boundary; 

the deterioration of the output's quality is rather dramatic. The central sections of the 

semicircles are lost; a pronounced dispersion alters the upper sections of the reflectors 

and an enhanced wraparound interference is also present. 

6.6 Migration in the Fourier—Chebychev Plane 

6.6.1 The Schrodinger and the Fresnel diffraction equations 

Let us take a closer look at the diffraction term 

dU v d2U 
dz 2iu> dx2 

Assigning v — 1 and OJ = 1/2, reduces (6.23) to 

dU .d2U 
= — i dz dx 2 

(6.23) 

(6.24) 

This is identical to the Schrodinger equation but for a minus sign; it is, in fact, the 

diffraction term of the forward modeling parabolic equation that is identical to the 

Schrodinger equation. 
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For notational simplicity, let us write the diffraction term as 

dU d2U 
(6.25) 

dx2 

with a = v/2iu being the equivalent of the ih/2m in the Schrodinger equation; 

o(u),x,z) could be visualized as the complex diffusitivity function. 

6.6.2 The fundamental algorithm 

The Chebychev solution of the Schrodinger equation having extensively been in­

vestigated in the last chapter, there is no need for a detailed presentation of the scheme 

here. However, a brief discussion of the incorporation of the scheme in the migration 

algorithm as a whole is essential. 

The Chebychev algorithm falls naturally in the spectral (wavenumber) class of 

algorithms. The spatial decomposition is identified in terms of Chebychev rather than 

Fourier coefficients. Despite the fact that the notion of the spatial wavenumber kx 

is primarily lost in the new decomposition, it may be recovered by sampling at the 

familiar fast-node set and the subsequent application of the transformation x = cos#. 

This process yields a Chebychev spectrum, where successive coefficients correspond 

to equidistantly located Chebychev wavenumbers, the difference being that the new 

wavenumber is understood as kg, as opposed to kx. 

The Chebychev representation of the d2U/dx2 operator cannot be computed sim­

ply as —k2 U; therefore, we cannot obtain the extrapolated wavefield by the means 

of a simple phase shift operation, i.e an analytic solution, as in the Fourier migration. 

Consequently, the computational procedure comprises an intermediary between the 
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finite difference and the Fourier algorithms. The Chebychev spectrum of a certain u> 

and at a particular z level is continued downwards via the combined solution of the 

diffraction term and the thin-lens, as in the finite differences. The thin-lens term is 

solved analytically, whereas the solution of the diffraction term is done numerically 

according to the procedures presented in the last chapter. 

6.6.3 The boundary conditions issue 

Ideally, absorbing boundaries are desirable. Setting them up is an elaborate task 

and it lies beyond the scope of this first investigation of migration in the (u — k$) space. 

It would seem that a proper implementation of equations (6.19-21) should account 

correctly for the implicit global character of the boundary constraints in Chebychev 

techniques. The described equations are local to the boundaries; Chebychev environ­

ments are expected to be more sensitive to such absorbing boundaries. Absolute care 

must be taken to assure that the new boundary conditions are consistent with the 

global character of Chebychev simulations and that the resulting integration scheme 

is stable. 

It also seems that absorbing boundary formulations of the "sponge" kind would 

be easier to incorporate in the Chebychev algorithm. An indication is given by the 

relatively successful application of these techniques not only for finite difference but for 

Fourier algorithms. A recent generalized approach, which allows even finite element 

discretizations to be accommodated, is given in Sochacki et al (1987). For the purposes 

of the current introductory study, we restrict ourselves to homogeneous boundary 

conditions. Migration input and parameters are then chosen, in such a way, that the 
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boundary conditions are not dominant and subsequently, the grid satisfactorily mimics 

an infinite domain. 

6.7 Optimization Procedures in the Chebychev Migration Algorithm 

The basic Chebychev algorithm presented above is quite primitive; a careful anal­

ysis reveals a number of optimization possibilities which, when correctly applied, can 

reduce the cost essentially. The applicability of these short cuts is highly coupled, 

primarily, with the boundary conditions used and the level of inhomogeneity. A pre­

sentation follows. 

6.7.1 Homogeneous boundary conditions 

Our first attempt to migrate in Chebychev space involves homogeneous Dirichlet 

boundary conditions in the x-boundaries of the computational domain. These bound­

ary constraints are maintained throughout the extrapolation process, that is, at all 

depths (times). This boundary character may be exploited to optimize the fundamen­

tal algorithm discussed previously. 

6.7.1.1 The thin lens term in Chebychev space 

Solution of the Fresnel diffraction term gives the extrapolated wavefield in kg. The 

next step augments this solution with its thin lens counterpart. This operation is a 

multiplication in the x-domain and it corresponds to a convolution in the 9 space. 

However, the thin lens contribution is merely a constant and therefore the convolution 

reduces to a simple multiplication. This is an essential point, because a variable 

thin lens contribution would demand an inverse Chebychev transform to map the 
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extrapolation back in x, so that the direct application of the thin lens solution is 

possible. 

6.7.1.2. Imaging in ke space 

The significance of the previous discussion is better understood, when optimization 

of the imaging is considered. Imaging is, naturally, performed in x-space superimposing 

twice the real parts of the positive frequencies. This means that an inverse Chebychev 

transform is required at every (w,2) level to obtain the wavefield in x there. Fortu­

nately, we Qan reduce the number of inverse transforms to the number of the desirable 

depth levels. This is achieved by the superposition of twice the real parts of the extrap­

olated Fourier-Chebychev spectra, at a given z level; this is a valid procedure since the 

real character of the Chebychev transform leaves the conjugate symmetry of the cu-axis 

unaltered. This procedure amounts to imaging in ke space, that is to say, computing 

the inverse Fourier transform at t = 0. Having completed this first phase of imaging, 

we can invert the imaged Chebychev spectra to produce the migrated section in the 

physical (x,z) space. It is obvious, that the described procedure demands the validity 

of the analysis given in (6.7.1.1), so that the complete solution is readily attainable in 

the (u,ke) spectral plane. 

6.7.1.3 Constant velocity function 

The construction of the Chebychev matrices depends on w, v and Az. Assuming a 

uniform extrapolation step Az and a constant velocity function v, we need to construct 

the Chebychev Crank-Nicolson systems only once for each frequency used. Although 

the loops on u> and z are interchangeable in general, nesting the z-loop inside the 

w-loop is optimal. 
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6.7.1.4 The final algorithm 

A brief summary of the complete algorithm for the solution of the 15° migration 

equation in the (w, ke) plane is presented below. The algorith proceeds as follows. 

1. ) Initialize the surface pseudodata for the input model in the unmigrated (real) 

section P(xk,z = 0,£ t ) , where Xk [k — 0,..., N) is the half-offset, z is the midpoint 

and ti (i = 0,..., M — 1) is the two-way travel-time coordinate. M and N must be 

integer powers of 2 due to FOUR2 input requirements. 

2. ) Fourier transform the time dependence (column-wise) to obtain its frequency 

representation w, with —M/2 + 1 < i < M/2. Information contained in the negative 

frequencies is the complex conjugate of the positive frequencies' content and therefore, 

Chebychev transformation of the x dependence is applied for the positive frequencies 

u>i, 0 < i < M/2, only. The DC (i = 0) and the Nyquist component (i = M/2) 

are not considered. The input is complex and transformation of both the real and 

the imaginary parts of the (u>,x) complex wavefields has to be done. The described 

double Fourier-Chebychev transform may be optionally performed in reverse order. 

The alternative equivalent process consists of a (real) Chebychev transform in x (all 

rows), to be followed by a Fourier transform (all columns). The same amount of 

computational work is involved in both procedures and the output is understood as 

P(u>i, Chk), where Chk refers to the A>th order Chebychev mode, i.e A; = 0, • • •, N. 

For all wt- ; 0 < i < NYQ 

Perform a monochromatic wavefield extrapolation at all the desired depth levels as 

described in the following loop. 
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Calculate the diffusivity-like coefficient, which corresponds to the current value of 

wt and the velocity function v. 

Compute the amount of phase shift from the analytic solution of the thin lens term 

for the current u>j, the velocity v and the particular choice of the extrapolation step 

Az. This constant quantity (since v ^ v(x)) is denoted as s. 

Construct the appropriate Chebychev Crank-Nicolson L (left-hand side) and R 

(right-hand side) matrices, according to the projection operator chosen (Galerkin, 

pseudospectral, tau-differentiated or tau-integrated) and the appropriate homoge­

neous boundary conditions. 

Isolate the Chebychev spectrum of each monochromatic u/t wavefield at the zy_i 

depth level, i.e r1

i~x(Chk) — P(Chk,Zj-i,uJi), where the depth index j runs from 

1 to a predetermined total number of extrapolation steps NZ. 

For all [Az]j j = l,---,NZ 

7. ) Update the right hand side of the simultaneous equations by multiplying the 

complete solution at the previous level with the R matrix, i.e RrJ

i~l(Chk) = 

h?-\Chk). 

8. ) Solve the system Lr\{Chk) = hj~l(Chk). 

9. ) Incorporate the thin lens solution by the multiplication, i.e r\(Chk) = s * 

r{(Chk) 

10.) Image in Chk space (compute the inverse Fourier transform at t = 0) through 

the superposition P(Chk,Zj) = P(Chk,Zj) + 2* Real[rl(Chk)}, where P con­

tains the reflectors' surface in Chebychev space. 

continue with the z loop 
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continue with the w loop 

11. Conclude the migration process by inverting the imaged Chebychev spectra of the 

complete wavefields at all the desired depth levels, i.e P(Chk,Zj) ••<—• P(xk,Zj). 

6.7.2 Other kind of boundary conditions 

A more demanding future treatment of the problem would require a more elaborate 

boundary structure. Although it is premature to refer to optimization techinques and 

details for algorithms to be developed in the future, a brief investigation of a number 

of problems is worthwhile. 

Theoretically, the level of cccomplication for boundary conditions corresponds to 

non-homogeneous Dirichlet conditions, i.e imposing the requirement of maintaining the 

original x-boundary values during the depth extrapolation. This minor complication, 

at first glance, hinders a straightforward implementation of the presented optimized 

algorithm. The need for subtracting the (complex) linear trends prior to the solution 

of the diffraction term, the intervention of the thin lens solution (a boundary free 

complex constant) and the anticipated addition of the trend back to the computed 

solution to complete one solution cycle, affect the efficiency of the algorithm. Never­

theless, numerical experiments done with a test algorithm based on the described data 

manipulation prove the validity of the described procedure and demonstrate its ability 

to cope with the boundary condition alteration caused by the thin lens solution. 

The need for introducing additional transforms at each extrapolation phase, for 

going forth and back in the transform space to accommodate the cumbersome solution 

process, is uninviting. Improvement gains may be achieved by a skillful exploitation 

(when applicable) of the full separation of the solution components; the incorporation 
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of simple analytic solutions for the imaging of the troublesome trends is another issue 

be explored. A simplification of this complicated situation may be also achieved by 

an a priori global removal of the existing trends. Then, a proper augmentation of the 

final solution of the intermediate well-known homogeneous problem with the trend 

map, would conclude the migration; nevertheless, a meticulous analysis is required to 

prevent unexpected failures. The issue is of theoretical importance only, since such a 

boundary structure is no better than its homogeneous counterpart, as far as artificial 

reflections are concerned. Nonetheless, it gives an idea of possible complications. 

Another kind of boundary conditions is the homogeneous or the non-homogeneous 

Neumann type. The homogeneous problem is solved as its Dirichlet counterpart; 

the boundary structure is incorporated in the propagating matrices themselves. The 

intervention of the thin lens solution remains an issue of consideration, while the non-

homogeneous version involves manipulation involving a complex quadratic trend (its 

Laplacian is not zero, as in the case of the linear trend). Ultimately, an absorbing 

boundary structure should be implemented; these conditions can be formulated as 

an extended version of Robbins boundary constraints, merging the analysis for their 

Dirichlet and von Neumann components given previously. We should once more em­

phasize that the imposed conditions must lead to stable problems; extreme care must 

be taken, due to global character of spectral discretizations. Sponge-type boundary 

treatment introduces an implicit degree of locality to the boundary conditions and it 

is probably easier to apply. The danger of introducing instabilities is still high and a 

painstaking investigation is a prerequisite. 
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6.7.3 Variable velocity functions 

A horizontally stratified medium does not affect the versatility of the main algo­

rithm but it slows it down. The propagation systems have to be reconstructed at each 

new velocity level; furthermore, the thin lens solution needs to be recomputed there. 

Lateral velocity variations are, in principle, difficult to handle with spectral tech­

niques. Galerkin and tau implementations have to be solved in the transform space; 

thereafter we are confronted with the evaluation of inner products of the form 

for the Galerkin and the tau method respectively. 

The major difficulties encountered in the evaluation of (6.26) and (6.27) are avoided 

by the application of the pseudospectral technique; the latter permits the accurate 

derivative computation in the transform space, while solving the system in the physical 

space, i.e 

(6.26) 

or 

(6.27) 

—UN(XJ) = O(XJ) UN(Xj) y = i , . . . , / v - i (6.28) 

with 

UN{ZO) - uN(xN) -- 0 (6.29) 

The pseudospectral technique is capable of handling velocity variations easily; the 

function and the derivative can be computed efficiently in 0(2JVlogiV) operations. 



218 

6.8 The (w — kg) Transform of a Seismic Section 

The proposed migration procedure may be identified as a downward continuation 

of the Fourier-Chebychev transformed original (t,x) seismic section. An advanced 

version of the described algorithm should incorporate a rigorous analysis of the (ui, kg) 

plane. The investigation should be capable of uniquely determining the undesirable 

evanescent regions and the occurence of dip aliasing. Identification of the these most 

important aspects in the mixed-tranformed seismic section necessitates the derivation 

of the appropriate dispersion relation in a consistent fashion. 

A rigorous global approach to the problem is definitely non-trivial, since the par­

ticular combination of Chebychev polynomials, used as basis functions, has to be 

manipulated. Fourier implementations of absorbing (non periodic) boundary con­

straints overcome the problem at the expense of strict rigor. The boundary conditions 

are designed to have an indirect boundary locality and thus an approximation of the 

significant interior domain of the computational grid with the same (periodic) basis 

functions can be partly justified. The approach is reminiscent of local mode analy­

sis (simulation of inaccessible boundaries); the dispersion relation is assumed to be 

unaltered. The difficulties of the (u,ke) transform may be attacked by a similar ap­

proximation, that is, employment of the original Tn(x) polynomials in the calculation 

of the dispersion relation. This promising approach should employ the fast x-nodes, 

in order to reduce the Tn(x) functions of the x-coordinate to cosines, i.e cosrafl, in the 

^-coordinate axis. 

The Chebychev transform becomes a (real) cosine transform; on the contrary, the 

Fourier transform is complex. Consequently, it is not obvious, how spatial aliasing (dip 

reversal) is manifested. Is a radial line in (t, x) transformed into a radial line in the 
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(ui,kff) plane? The Chebychev spectrum "sees" positive frequencies only and it might 

be that the apparent lack of the sine component (an additional degree of freedom 

in a complex space) defaults to a folding of the dip, i.e contamination of the lower 

Chebychev wavenumbers, as opposed to the dip reversal characterizing the (u>,kx) 

plane of spatially aliased data, the latter letting the "visible" lower wavenumbers 

free of aliasing contaminations. On the other hand, the Chebychev transform of a 

complex function does not involve a coupling between the transforms of its real and 

the imaginary components. This feature is not shared by Fourier transformations 

and it should have a very definite effect on the behavior of the aliased modes in two 

dimensions; some kind of aliasing decoupling should be anticipated. The issue is, 

nonetheless, not trivial and we do not pursue it further. The necessary mathematical 

analysis and the appropriate numerical experiments are needed to provide the answers 

and a full understanding of the [u,kg) transform plane; mapping of the evanescent 

areas and a better grasp of aliasing and dip filtering in these double mixed-transform 

coordinates are also anticipated. 

Alternatively, the well-known Fourier analysis may be used to aid in the identifica­

tion of all these important parameters. Various filtering operations may be performed 

in (u, kx) to remove the undesirable spectral regions. Subsequently, the filtered version 

of the (w,kx) spectrum may be inverted back, to be transformed again in Chebychev 

space for the extrapolation of the retained portion of the spectrum itself. The proce­

dure involves interpolation of complex quantities; therefore a careful analysis should 

be made to ensure that unwanted surprises do not occur. This alternative might be 

worthwhile, saving trouble and unnecessary fustration. 
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6.9 Chebychev Migration of a Model Problem 

6.9.1 Parameter initiaiization 

The input model is chosen to follow the rules of a two-dimensional Gaussian distri­

bution in the original (i, x) space of the CMP gather. This choice comprises a versatile 

input, since a direct control of its attenuation characteristics is readily managed. The 

input "spike" is defined as 

The x-line is taken to be the fundamental Chebychev interval, i.e [—l,+l] . This 

choice merely serves convenience; a general interval [a, b] can be mapped onto the 

fundamental interval by means of the simple linear transformation 

The novel character of the Chebychev algorithm demands a model migration, so 

that the important aspects of the new technique are illustrated properly. A first over­

simplification is found in the very choice of an appropriately smoothed "spike" model; 

the model is often employed as a first order evaluation of various implementations. In 

theory, an ideal spike has infinite temporal and spatial bandwidths and the Gaussian 

parameters at and ox can be picked such that a smoothed Gaussian "hill" is obtained. 

We aim at a clear, sharp migration semicircle; too much smoothing results in blurred 

outputs, which, naturally, suffer from resolution losses. Additionally, we do not want 

P ( t , x ) = exp[(-<7tt2 - oxx2)/2] (6.29) 

y = kb-a)x + l-{b + a) (6.30) 
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boundary reflection contaminations due to the homogeneous boundary conditions. As­

suring the absence of evanescent aliasing and the virtual lack of migration "ghosts" are 

equally important; none of the algorithms uses the troublesome information at the wo 

and the WNYQ components. Enlargement of the grid sizes imposes prohibitively large 

amounts of computational work, especially in the case of the Chebychev version. An 

acceptable compromise may be found by allowing some spatial and temporal aliasing; 

the simplified unique character of the input model permits the migration algorithms 

to proceed readily and obtain migrated sections of reasonably high quality. 

In the'following examples, we employ a 17-long x-discretization (17 traces) and a 

temporal set of 64 samples (64 points per trace). Consequently, the finite difference and 

the Fourier techniques use Ax = 2/16, while the usual fast-node sampling pattern is 

employed for the Chebychev procedure. Furthermore, the temporal sampling interval 

is chosen to be At = Ax/4 (implying X = T), a constant velocity function v = 2 

is assigned and a Az = At is implemented in the extrapolation process (satisfying 

the depth anti-aliasing requirements). The input Gaussian is centered on the x-axis, 

i.e at x = 0 and it is located at one third the length of the travel time axis; the 

parameters Ot and ox are given the uniform value of 4500. A minor disadvantage of 

the described model is its predisposal against the Chebychev algorithm, since the the 

fast-node sampling is expected to glean an inferior amount of information, due to its 

coarse character in the central part of the x-domain. 
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6.9.2 Comparison of migrated sections 

The migration of our model with the phase shift method is featured in figure (6.3); 

this result is being included in order to demonstrate a migration output correct to 90°. 

The familiar wraparound effect is not witnessed because the periodic interfer­

ence lies outside the [—7r, +ir) fundamental interval (which has been mapped onto the 

[ — 1,-1-1) interval for consistency). Figure (6.4) displays the migrated section obtained 

when the 15° approximation is invoked. Only a minor amount of negative interfer­

ence is discernible; the explanation lies in the fact that both the primary evanescent 

energy and the energy lying at dips higher than 15° have not been incorporated in the 

extrapolation process. The small amounts of "ringing" present in figures (6.4-5) are 

caused by the sharp (u>,kx) filter edges. 

The next two figures demonstrate the destructive interference of these two factors, 

despite the fact that care has been taken to keep this at a minimum level. Figure (6.5) 

portrays the situation where only the primary evanescent energy has been filtered, 

while figure (6.6) is concerned with the migration outcome when the whole (u,kx) 

spectrum has been employed. This last figure will be later compared with the Cheby­

chev and the finite difference results. The finite difference algorithm's artificial spatial 

dispersion has catastrophic consequences; the problem is clearly depicted in figure 

(6.7) where the true reflector is highly overmasked by dispersion noise. The boundary 

traces are zero, but no boundary reflection contamination is experienced, as in the 

case of the Fourier technique. The observed dispersion effects, due to the low-order 

polynomial representation of d2/dx2, demand a much denser spatial sampling of at 

least an increase of one order of magnitude. 
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Figure 6.3 Migration with the phase shift method. 
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F i g u r e 6.4 15 ° Fourier migration; evanescent and high dip energy have been filtered. 
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Figure 6.5 15° Fourier migration; only the evanescent energy has been filtered. 



226 

Figure 6. 6 15° Fourier migration; no filtering has been applied. 
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Figure 6.7 15° finite difference migration. 
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Figure 6.8 15° Chebychev-Galerkin migration. 
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Figure 6.9 15° Chebychev-pseudospectral migration 
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Figure 6.10 15° Chebychev tau-differentiated migration. 
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Figure 6.11 15° Chebychev tau-integrated migration. 
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The Chebychev algorithm's performance is unfolded in figures (6.8-11) correspond­

ing to its Galerkin, pseudospectral, tau-differentiated and tau-integrated variants, re­

spectively. The results appear to be quite similar demonstrating the approximate 

equivalence of the various projection choices for correctly implemented, trouble-free, 

constant-coefficient linear problems. Minor differences are observed in the close vicin­

ity of the boundaries, between the tau variants and the other projections. The two 

tau techniques perform identically, while the same may be said for the Galerkin and 

the pseudospectral projections. The Chebychev migration compares favorably with 

its Fourier rival; artificial reflections are absent and no appreciable contamination due 

to the 2-dispersion effects is experienced. Nevertheless, the Galerkin and the pseu­

dospectral techniques would exhibit a marginally superior performance over the tau 

implementations, under certain conditions, as expected from our previous experience 

and as seen in a number of other migration experiments, not shown here. 

6.9.3 Plotting resolution 

The limited number of traces and the aliasing present hinder the production of 

an output of a high cosmetic value. The need for writing a simple plotting routine is 

a direct consequence of the lack of a readily accessible, highly sophisticated plotting 

program, which would allow an input of non-equidistant traces to be fed into it. As 

a result, another limitation in obtaining pictures satisfying high esthetic demands is 

imposed. Despite the fact that it is only the Chebychev sections that demand the 

use of this special routine, all results have been plotted in this way, to allow for 

a more objective comparison among them. Trace to trace normalization, i.e local 

as opposed to global, is applied and while a uniform normalization is incorporated 
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in the finite difference and the Fourier graphs, the Chebychev plots invoke an non­

uniform normalization pattern, which involves the particular adjacent traces. Finally, 

an overlap parameter of 100% is used in all plots. 

6.10 The Tau-Integrated Chebychev Algorithm 

The short investigation of the properties of the fast inversion of the complex-valued 

quasi-tridiagonal systems of the Chebychev Crank-Nicolson tau-integrated formulation 

of the Schrodinger equation (see 5.7) has not yielded promising results. Nevertheless, 

the high quality of the Chebychev-tau migrated section (figure 6.11) points to the need 

for further research on the application of procedure S L U l in this migration algorithm. 

6.10.1 Theoretical insights 

The analysis presented in (5.7) concerns the special case a = i. The more general 

problem of a non-unit valued diffisivity coefficient is encountered in the Fresnel diffrac­

tion term, i.e a = —iv/2u> and therefore, the magnitude of the reported off-diagonal 

dominance becomes of 0(\\/2n2 — ivAz/4u>\). Despite the fact that the situation re­

mains basically the same as before, the amplitude of the ratio v/2u has a definite 

effect on the analysis of the Schrodinger case. It only appears to be natural that for 

\a\ > 1 the off-diagonal dominance is pronounced and thus a reduced Az is needed 

to counterbalance the large diffusivity coefficient. On the other hand if \a\ < 1, the 

situation is reversed and the restrictions on the size of Az can be moderately relaxed. 
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6.10.2 Numerical experiments 

The migration procedures for our previous model example use a depth step Az ~ 

0(l/N). According to the analysis for \o\ = 1, procedure S L U l is incapable of coping 

with systems with N > 32 when such a Az is employed. 

6.10.2.1 The low frequency instability of procedure SLUl 

A similar behavior has been identified in the inversion of the Fresnel term. An ex­

cellent performance is seen for N = 16; the output is identical with the migrated section 

displayed in figure (6.11), while the cost is reduced by roughly 90%, just marginally 

greater than for the finite difference solution. For our problem the parameter v/2u> 

ranges from TT~X to (327r)-1 and it thus defaults to an implicit reduction of the "appar­

ent" step size, i.e oAz. However, an implementation of the fast inversion for N = 32 

and a step size of 0(l/7V) has failed ultimately. 

The answer to this can be traced in the unsuccesful extrapolation of the low 

frequencies. That may be easily seen by recalling the heuristic discoveries of the 

Schrodinger analyisis (see 5.7). There it has been found that a step size of 0(1/N) 

results in an irredeemable instability of the procedure, whereas a step size of 0(l/ iV 2 ) 

yields results of high accuracy. The high frequencies have indeed been scaled, such 

that they are extrapolated with an "apparent" Az of 0(l/N2). However, the scal­

ing of the low frequencies has left the Az ~ 0(l/iV 2 ) pattern basically unaltered. 

Consequently the extrapolation of the high frequencies is performed correctly, but the 

inversion algorithm collapses for the low frequency components of the solution and 

erroneous results are obtained. 
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6.10.2.2 A second migration input-model 

We now examine a Chebychev-migrated section of a denser spatial sampling. For 

demonstration purposes, we take N = 32, DT = DX/2 and a depth step DZ = 

DT 110. The scaling factor 10, for the depth step, has been chosen such that the low 

frequency inversion is stabilized while the computational cost is still manageble. Fig­

ures (6.12-15) demonstrate the performance of the Fourier (without and with filtering), 

the finite difference and the SLUl-Chebychev algorithm for the the migration of the 

second model problem. 

A comparison of figures (6.12) arid (6.13) unveils the character of the evanescent 

energy in the context of the 15° propagation. Recall the Taylor expansion of the full 

square root y/k2 — k2, i.e 

/ (vkx

2\ U ( vkl vki \ , , 
t- = V 1-(v)-V ( 1 - 5 # - 8 ^ + - ) ( 6 - 3 1 ) 

Expansion (6.31) converges for vkx < u only, while for vkx > u> diverges rapidly. 

Nonetheless, there is a major difference in the way that evanescent aliasing manifests 

itself in the full-angle and the 15° migration equations. In the former, evanescent 

modes give rise to growing exponentials; on the contrary, the latter is incapable of 

exhibiting the characteristic evanescent blow-up. 

How does evanescent energy behave under expansion (6.31)? Let us first examine 

the 15° case of current interest. We do see that for vkx € (u, y/2u) the computations 

are incorrect but energy is sent in the correct direction. As vkx > u the complex 

exponential changes sign and incorrect high frequency energy is sent in the opposite 
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MIDPOIN T 
-1.2 -0.828 -0.456 -0 084 0.288 0.66 1.033 

Figure 6.12 Fourier migration of the second model problem; evanescent filtering has not been 
incorporated. 



Figure 6.13 Fourier migration of the second model problem; evanescent filtering has been 
incorporated. 



Figure 6.14 Finite difference migration of the second model problem. 
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MIDPOINT 
-1.2 -0.812 -0.425 -0.037 0.35 0.738 1 

Figure 6.15 Chebychev migration of the second model problem. 



Figure 6.16 Fourier Crank-Nicolson migration of the second model problem. 
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(incorrect) direction. Similar considerations apply when more terms in (6.31) are re­

tained. The validity of this analysis is demonstrated in figure (6.12) which concerns 

the 15° exact Fourier migration of the second input model where the evanescent region 

has not been filtered. High frequency noise has been introduced everywhere and the 

true semicircle has been augmented by another semicircle-artifact due to the improp­

erly directed energy. Moreover, characteristic wraparound artifacts are clearly visible 

in figure (6.12). Filtering of the troublesome evanescent energy enhances the quality 

of the migrated section (figure 6.13) dramatically. Nonetheless, some "ringing" due 

to not tapering the filter edges and a mild w-domain wraparound interference can be 

identified in figure (6.13). 

The finite difference migration output shown in figure (6.14) is very poor as well. 

In addition to the intractable evanescent high frequency noise, severe dispersion con­

tamination is also present. However, the improperly conceived semicircle of figure 

(6.12) is not as easy to identify and the noise is of relatively lower frequency than 

in the Fourier migration. The Chebychev section in figure (6.15) has been obtained 

via the S L U l procedure; the low frequencies have been properly handled and the 

computational burden of this Chebychev migration is comparable to the demands of 

the finite difference migration. The quality of figure (6.15) is striking indeed. The 

evanescent noise is basically of the same frequency as in the finite difference output; 

however, we should note that the boundary traces are noisier than the interior of the 

computational domain. The semicircular artifact is only slightly discernible again and 

the dispersion effects due to the finite difference approximation of the d/dz operator 

are very mild too. 
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An interesting question arises. Why do figures (6.14) and (6.15) exhibit a lower 

frequency content than figure (6.15) does? The Fourier algorithm differs from the finite 

difference and the Chebychev procedures, in the sense that the former implements an 

exact solution for the Fresnel term, whereas the latter involve the Crank-Nicolson 

approximation which is well-known to be a primarily low frequency approximation to 

the true exponential solution. Thus, the evanescent modes are allowed only a limited 

exposure in the course of the extrapolation. A weak amplitude and a significant phase 

distortion characterize the semicircle-artifact, while an overall smoothing of the output 

section results as well. This smoothing is interrupted by spatial dispersion noise in 

the finite difference output (figure 6.12). The ongoing discussion points out the need 

for another numerical experiment (figure 6.16). There, the Fourier algorithm has been 

employed, but the available exact solution of the Fresnel term has been substituted 

with the corresponding Crank-Nicolson approximation. The Fourier eigenvalues of 

d2/dx2 are —k2 and therefore, the Fourier Crank-Nicolson approximation reads 

However, figure (6.16) features only a very minor smoothing with respect to the exact 

migration shown in figure (6.12), probably because of the persistent contaminating 

effect of the Fourier transform's periodicity. Incidentally, procedure S L U l cannot be 

held responsible for the lower frequency content of the Chebychev output of figure 

(6.15), since the high frequencies have actually been treated very accurately during 

the inversion associated with their depth extrapolation. 

(6.32) 
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Finally, we should note that the stable Crank-Nicolson scheme is able to manifest 

the evanescent blow-up if the full square root operator is to be used. Then whenever 

vkx > UJ, the Crank-Nicolson amplification factor, i.e 

1 — ik,a 
£ = v- 6.33 

l + ikza K ' 

(with a real and \a\ < l) will lose its conjugate symmetry, since the wavenumber kz 

turns imaginary. Thus, with |f| exceeding unity, the stability criterion is not met and 

the evanescent modes will default to the correct growing exponentials. Obviously, for 

the 15° equation, kz is always real and therefore the scheme is always stable; as a result, 

the evanescent aliasing results to the reported erroneous high frequency oscillations. 

6.10.3 The balancing of the boundary condition row in SLUl 

The S L U l fast inversion procedure has been seen to falter for large systems and 

large depth steps. The source of this instability has been identified in the off-diagonal 

dominance characterizing the underlying systems; this becomes more pronounced by 

the large multipliers involved in the pivotless forward elimination phase of the algo­

rithm. At the very first elimination step the 1 of the last and the 0.25 of the first row 

yield a multiplier of 4. The situation gets worse as the elimination proceeds, since the 

last row is being successively magnified. This points to another question for future in­

vestigation. The last row of l's corresponds to homogeneous boundary conditions and 

we may scale it arbitrarily, i.e e ^ o „ = 0, without modifying the boundary structure 

of the system or altering its solution. The parameter e should be chosen in such a way, 

that the magnitude of the last row is appropriately reduced and large multipliers are 
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avoided during the elimination. Simultaneously, care should be taken not to destabi­

lize the conditioning of the system, since the matrix becomes singular in the limit of 

e = 0 (one row of the matrix is zero). 

6.11 A Synopsis of Results and Future Targets 

Chebychev semi-discretizations have been investigated for both ordinary and par­

tial differential equations. Comparisons with similar approaches involving finite dif­

ference and Fourier solutions have been performed and a great deal of insight into the 

details and the intricacies of the various implementations has been gained. 

Chebychev schemes do not demand periodic boundary conditions, thus allowing the 

imposition of arbitrary boundary structures. Furthermore, they belong to the spectral 

category and thus they do not suffer from dispersion errors in the computation of 

derivatives. The tremendous impact of this fact on the accuracy and the efficiency 

of the solution has been first seen in the case of the Helmholtz equation. Finite 

differences require an extended oversampling to attain results comparable with the 

extemely accurate Chebychev solutions. Among the available projection choices, the 

Galerkin and the pseudospectral perform better than the simpler tau projections. 

The time derivative appearing in the heat and the Schrodinger equations can­

not be handled efficiently by explicit schemes, due to the very stiff character of the 

Chebychev systems; a viable alternative has been found in the absolutely stable Crank-

Nicolson scheme. The superior performance of the Chebychev method has been clearly 

demonstrated for both problems, although severe computational considerations arise 

for large time calculations. A first answer to the problem has been given by the 
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tau-integrated implementation, which exhibits a quasi-tridiagonal character and is 

thereafore amenable to a very efficient inversion. In addition, a first investigation for 

one-dimensional Chebychev high-pass filtering has been undertaken, with promising 

results; a deeper analysis is required to extend these results. The Schrodinger prob­

lem also introduces the issue of artificial boundaries present in every discretization; 

Chebychev expansions are susceptible to such contamination as well. 

Chapter VI explores the solution of the 15° migration equation. The approach 

involves a Fourier transform in time, a Chebychev in midpoint and a Crank-Nicolson 

finite difference scheme in depth. The familiar splitting technique is employed to 

account for the thin-lens and the diffraction contributions to the solution. The first 

results are of high quality and show promise for possible future work. Both the full 

dip one-way and the full two-way wave equations should be carefully investigated in 

the context of a Chebychev environment. A relevant dispersion relation needs to 

be discovered facilitating filtering in the (u>,ko) space; stretched coordinates may be 

employed to achieve a mode-decoupling so that a versatile expression will be obtained. 

Efficient reduction of the undesirable boundary reflections should be an indispensable 

component of future efforts; an associated stability analysis of the resulting equation 

is absolutely necessary. Direct solution of the large Chebychev systems is hopeless; 

the lack of alternative approaches tends to nullify any possibility of extrapolation in 

Chebychev space. Iterative techniques (perhaps the MG device) need to be considered 

to provide a satisfactory resolution of the problem. A final point requiring a closer look 

is the effect of the non-equidistant sampling, recommended in Chebychev simulations. 

Spatial aliasing, robustness and the undesirable boundary clustering of the Chebychev 

nodes need to be explored. 
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A P P E N D I X A 

A. I Analytic Evaluation of (Tn,Tm). 

The analytic evaluation of the inner product of a Chebychev polynomial Tn(x) 

with the second derivative of another Chebychev polynomial Tm(x), is given below. 

The inner product of interest, is (Tn,Tm) or (neglecting normalization constants) 

J+ Tn(x)^Tm(x)(l-x2)~1/2dx (A.I) 

Substituting x — cos# and calculating the second derivative of Tm, yields 

— m / 
Jo 

Both integrands are singular; the corresponding integrals are divergent and, there­

fore, direct integration is prohibited. Instead, we consider both integrands together, in 

order to achieve a mutual cancellation of the troublesome singularities. Their current 

form though, hinders this desirable elimination and it necessitates the application of 

a decomposition which would allow the cancellation to take place. 

ra cos n# cos m0 cosra0sinm#cos# 
sin20 sin30 

d6 (A.2) 
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The first integrand contains a cos nO cos md term and a cos nO sin m9 term is in­

cluded in the second. 

The idea is to expand both of these products into power series of cos 9 sin 9; to 

accomplish that we combine the results of applying both the De Moivre's and the 

binomial theorems for the expansion of (cos0 + ism9)n, as described below. 

According to De Moivre's theorem, we write 

(cos 6 + ism 9)n = cos nd + i sin nO (A.3) 

Now, applying the binomial theorem, we get 

(cos0 + t s i n0 ) n = (cos0) n + (J^(cos0)" _ 1(*sin0) + Q (cos9) n~ 2(isin9) 2 

+ ••• + (ism9)n 

' (AA) 

where 

n\ ( n \ n\ 
for n,k £ N (A.5) kj \n — k J k\(n — k)\ 

Equating both the real and the imaginary parts of equations (A.3) and (A.4), we 

obtain the following expansions for cos<? and sin 9 respectively, 

\n/2) 

cos nB = Y/ ( 2k ) (_1)fc(cos 9)n~2h(s'm 9)2k, for n > 0 and even (A.5) 
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and 

[ n - l / 2 ] 

sinn0 = (0,n ,)(-l)k{cosO)n-{2k+1)(SmO)2k+\ for n > 1 and odd 

(A.6) 

where [ ] denotes integer part. 

Let us now expand cosn0, cosm0 and sinm0 according to (A.5) and (A.6), respec­

tively. 
N 

cosnfl = ^a f c ( c o s 0 ) n ~ 2 A ( s i n 0 ) 2 ' c 

A:=0 

cosmfl = ^c/(cos0)m~ 2'(sin0) 21 

1=0 

and 
M 

sinm0 = ^ ^ ( c o s 0 ) m - ( 2 y + 1 ) ( s i n 0 ) 2 j + 1 

j=o 

where the coefficients are given as 

(A.7) 

(A.8) 

(A.9) 

- ( - I ) * © . - ( - D ' ( - ) , ' M.10, 

with 

TV = 
n m m — 1 
— , L = — , and M — 

m — 1 
2 2 2 

( A l l ) 

Multiplying now (A.7) with (A.8) gives 

N L 
cosn0cosm0 = £ £ a, c, ( c o s ( 2 * + 2 , ) ( s i n ( ^ 1 2 ) 

fc=0 /=0 



261 

and multiplying (A.7) with (A.9) gives 

N M 
cosn9smm9 = £ ^ afc6; (cos 6 ) n + m - ( 2 f c + 2 j + 1 ) (sin ^ ) 2 / c + 2 ; + 1 (A.1Z) 

k=0 j=0 

The next step involves forming the complete integrands. Therefore we multiply 

(A.12) with l/sin 2 0 and (A.13) with cos 6/ s in°#, to obtain (A.14) and (A.15) respec­

tively. 

C O S ^ C

2 ° a

S m g = jh X :a f c c 2 (cos^)^ + - 2 ) - ( 2 / c + 2 ' - 2 ) (s in^) 2 / c + 2 ' - 2 (A.U) 
sin 9 , n , „ 

A:=0 1-0 

and 

cos n9 sin m9 cos 9 = £ £ ^ ^ ^ fl) ( n + m _ 2 ) _ ( 2 , + 2 , _ 2 ) ( s i n $ ) 2 k + 2 j . 2 ^ 

k = 0 j'=0 

Substituting (A. 14) and (A.15) into (A.2) and making some suitable rearrange­

ments, yields 

N L f7r E l / i a\(n + m-2)-(2k+2l-2), . Q\2k+2l-2 ,a 

afc m> c/ / (cos0)v ;(sin0) d9 
k-0 1=0 ^° 

(4.16) 
- £ & , j ( c o s ^ ( n + m - 2 ) - ( 2 / c + 2 j - 2 ) ( s i n ^ ) 2 f c + 2 ^ 2 

Some important points concerning the above formula should be identified. For 

m = 0 or m = 1 the integral vanishes identically. Singularities at both integrands 
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are still present and they correspond to the combinations k = / = 0 and k — j = 0 

yielding a sin 0 in the denominators. The advantage of this formula is obvious from 

the fact that it unfolds the removable singularity nature of the prohibited combination 

k = / = j — 0. Evidently, the singularities cancel out and the remaining combinations 

of indices form an integrand, which gives rise to a convergent integral. 

Moving towards a matrix formulation of the problem, we define 

dkl= [ {cos6)a-p{s\n0f dd (A.17) 
Jo 

and 

fkj=f [cos 0)a~6{sm 9)S d6 (A.18) 
Jo 

with 

a = n + m - 2, /3 = 2k + 21 - 2, 6 = 2k + 2j - 2 (A.19) 

The expression to be evaluated is 

— m 
• N L M 

Yak{mYctdki
 ~ bjfk*) 

fc=0 1 = 0 y=o 

(A.20) 

where dob = /oo = 0 to account for the removal of the singularities. 

To complete this procedure, we only need to consider the integration of an integral 

of the form 

I[a-l3,P)= (cos 0) a _ / 3(sin 0)^0 (A.21) 
Jo 
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This is evaluated recursively as (Spiegel, 1968) 

/(a-/?,/?) = a {fJ
a
+ > l ( a - ( 0 + 2),p) (A.22) 

Although (A.22) looks quite innocent, extreme caution needs to be exercised. An 

in-depth analysis of complications emerging during the recursion, helped us to reveal 

some tricky points and allowed an efficient routine to be written. After this algorithm 

had been implemented successfully, an idea based on the use of beta functions for 

the evaluation of those last integrals was proposed (Yedlin, 1986). The efficiency of 

the previous algorithm can be greatly enhanced if these integrals are to be evaluated 

directly through built in beta function routines. The reason why this is possible is 

obvious from the following definition of the beta function 

B(z,w) = 2 (cos0) 2 2~ 1(sin0) 2 u ; - 1d0 for R (z), Z (w) > 0 (A.23) 

(Abramowitz and Stegun, 1964). 

The beta function is also connected with the gamma function through the relation 

B(z,w) = l [ z ) T { w ) =B(w,z) (A.24) 
1 (Z + W) 

(Abramowitz and Stegun, 1964). 
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A.2 Analytic Evaluation of T^(xn) 

The direct evaluation of Tm(x) on a collocation-point set {xn}, which includes the 

endpoints x — +1 and x — — 1 or = 0 and 0 = 7r, respectively, has to cope with 

the problems associated with the presence of poles of second order at these boundary 

points. The explicit form of Tm(xn) 

d 2 

dx 
;Tm{x) = -m 

m cos md sin md cos 0 

sin2 6 sin3 0 
(4.25) 

shows that both ratios forming the above expression feature these singularities. 

Following the previous procedure, we transform the above expression using the 

expansions (A.9) and (A.10); the coefficients and the limits of the expansions are 

given according to (A.11) and (A.12), respectively. 

This procedure results in the expressions 

COSmtf i r ^ a\(m-2l)/ • ^ ( 2 1 - 2 ) I A nc\ 

~7~2~7 ~ y , ci ( c o s 0) ;(sin0^ (4.26) 

smm0cos0 ^ a\{™-2j), . a^(2]-2) 

sin V 

The removable singularity nature of the poles 0 = 0,7r is now revealed; the troublesome 

poles correspond to / = j = 0 and it may readily be seen that they cancel each other 

out. 
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The final output is obtained through the formula 

L M 

-m ^jT c i € i ~ Y bJgJ (A28) 

/=o j=0 

where 

ei = ( c o s 0 ) m - 2 ' ( s i n 0 ) 2 ' " 2 and g3 = (cos 9)m~2j'{sin 0)2j~2 (A.29) 

The imposition of eo = go = 0 accounts for the removal of the poles. 

A.3 The Differentiated System's Coefficients 

Let us write 
N 

tt(x)= J2an0)Tn(x) (A.30) 

Expanding both the first and the second derivative of u(x) in Chebychev polyno­

mials, yields 

d N~l 

-u(x) = Y, *lTl)Tn{x) (A.Zl) dx 
n=0 

and 

-J^ufz) = £ *{n2)Tn{x) (A.32) 
d* 

dx"2 

n=0 

The fact that a"N ^ = 0 and a N

2 \ = aN

 2^ = 0, reflects the loss of one and two degrees 

of freedoms respectively. 
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We aim to derive an expression which gives the coefficients a n ^ as a function of 

the coefficients ara°^'s; the derivation follows. 

Evaluating the indefinite integral of Tn(x) and differentiating both sides of the 

resulting expression, yields 

Tn(x) = 
dx 

(^~Tn+1(x) - ̂ iTn^ix))} (4.33) 
1 ( e 
2 

where 
0 for n < 0; 
2 for n = 0; 
1 for n > 0. 

dn = 
0 for n < 0; 
1 for n > 0. 

(4.34) 

We now write 

7V-1 N 
^ a^Tn(x) = ̂ u(x) = ^-J2a^Tn(x) 
n=0 n-0 

(4.35) 

Using (A.33), we obtain 

d_ 
dx L n=0 x / 

(4.36) 

Equating the coefficients of Tn(x) in (A.35) and (A.36), 

2na^ = c n _ ! a i _ V - dn-iai+V f o r n
 e
 \1>N\ M- 3 7) 

For the purposes of the differentiated system, expression (A.37) is not adequate, 

since two of the coefficients being sought are given as a function of only one of the 



267 

known coefficients. To achieve the desired inverse relationship, we only need to ap­

ply an appropriate summing procedure in (A.37), in order to cancel the unwanted 

coefficients. 

The final formula reads 

N 

c n a ^ = 2 Y Pap°} f°r n 6 [0, IV] [A.Z8) 
p=n + 1 

p+n: odd 

where the coefficient a^N ^ is clearly zero. 

However, our ultimate target is finding a relationship that gives us the coefficients 

an

 2 '̂s as functions of the al°''s. 

Applying (A.38) with regard to the first and second derivatives's coefficients, we 

get 
N 

c v a ^ = 2 £ qa^ forp€[0,JV] (A.39) 

q+p: odd 
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and substituting (A.38) in (A.39) yields (since c p > 1 always) 

cna(-2> = 4 £ P E ^ 
p=n+l c/=p+l 
p+n: odd q+p: ocW 

JV c/-l 

= 4 £ ,4") £ p 
cj=:n + 2 p=n+l 

<7+n: even p + n: odd 

4 £ g 3 ( 0 ) ( n + l) + ( g - l ) ^ - n ^ 

<7=n+2 
q + n: even 

= £ </ (« 2 - n2) 
<j = n + 2 

q-t-n: even 

(A.40) 

( — 2) ( — 2) 

Clearly enough, both a)v_'1 and ay

N ' are zero. Formulas (A.38) and especially (A.40), 

are susceptible to large truncation errors which could affect their convergence severely. 

A.4 The Integrated System's Coefficients 

In an attempt to overcome the difficulties associated with the round-off problems of 

the previous approach, the integrated system method seeks to express the coefficients 

of integrals of u(x), as functions of the coefficients of the expansion of the function 

itself. 

Therefore if 

N 

n=0 
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then 
N + l 

n = 0 

and 
N + 2 

j u(x) dx = £ a^Tn(x) (4.42) 

j dx I u{x)dx= ^ a{+2)Tn{x) (4.43) 
n—O 

where the presence of and ajv+|, o,^2\ corresponds to the gain of one and two 

degrees of freedom, respectively. 

It is straightforward that 

2na^ = C n - i O ^ - for n 6 [1,N + l] (4.44) 

The fact that the lower limit of the definition interval of n is 1 instead of being 0, is a 

consequence of neglecting the integration constant in (A.42). 

We now proceed to accomplish the task of expressing a\ s as functions of the 

an°^'s; applying (A.44) for an

+2^ and a i + 1 ^ gives 

2naS+ 2 ) = Cn - i o l + V - al+V for n G [2, N + 2] (4.45) 

where n ^ O , 1 due to neglecting both a constant and a linear term in (A.43). Shifting 

the indices in (A.44), we obtain 

2(n - 1)4+V = c n _ 2 a ^ 2 - a{

n

0) for n e [2, AT + 2] (4.46) 
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and 

2(n + l)ai+V = cnaW - o ^ 2 forn€[0,/V] (A.47) 

and sybstituting (A.46) and (A.47) in (A.45), yields 

,(+2) _ 
2n 2{n + 1) 

(A.48) 

for n € [2, TV] since [2, TV + 2] n [0, TV] = [2, TV]. 

Going through the algebra and eliminating c„_i , c n (always equal to one), we 

finally arrive at the desired expression, which reads 

( + 2) C"-2 (0) 1 (0) , I (0) f _ „ N { A q ) 

4 ( n - l ) n a - 2 2 ( n 2 - l ) a " + 4n(n + 1) °"+ 2 t o r " ~ 2 ' •" • < ^ lAA9) 

A.5 The Chebychev Transform of sin(7rx). 

The analytic derivation of the Chebychev transform of u(x) = sin7rx proceeds as 

follows: 

The magnitude of the n-th spectral component is given as 

2 f  +  i sin(7rx) cos(recos 1 x) , . 
«- = — / ./ ,_1/2 dx (A.50) 

n 7-1 (1 — X2) ' TTCn . / _ , (1 - x2) 

or under the familiar transformation x — cos 0 

2 r 
an — / sin(7r cos 0) cos(n0) d0 (A.51) 

TCn Jo 
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At this point, an appropriate manipulation of the integrand allows us to proceed 

with the integration directly. This involves an expansion of sin(7r cos 9) into a particular 

infinite cosine series according to the formula 

oo 

sin(.zcos0) = 2 ^ ( - l ) f c J 2 f c + 1 ( 2 ) c o s ( 2 A : + 1)0 (4.52) 
k=0 

(Abramowitz and Stegun, 1964), where Ji(z) is a Bessel function of the first kind. 

Substitution of s i n ( 7 r c o s # ) according to (A.52) results into 

4 °° fw 

J3 ( - l ) * J 2 f c + i ( * r ) / cos(2k + 1)0cosn0d9 (4.53) 

n C n k=o J o 

and applying the well-known formula 

/•TT 

/ 7 F 

/ cos mx cos Ix dx — —Cmdmi (4.54) 
Jo 2 

where m, / are integers, we obtain the desired expression, which reads 

oo 

an = 2 Y {-1)kj2k+iM <$n,2fc+i (4.55) 
fc=o 
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A P P E N D I X B 

B . l The Fast Chebychev Transform (F.C.T) Algorithm 

The direct Chebychev transform of a function f(x) amounts to the calculation of 

the coefficients of the decomposition 

TV 
f(x) = Ta^Tn(x) (B.l) 

n = 0 

via the integrals 

2 f + 1 Tn(x) 
TTC n J-i VI — X 

The inverse Chebychev transform performs the summation, after knowledge of the 

an°^'s has been acquired. 

Two factors contribute to devising a fast algorithm for evaluating both the direct 

and the inverse Chebychev transforms. 

First comes the realization that by substituting x = cos 6, the Chebychev transform 

reduces to a cosine transform, that is to say, 

4°) = — I cosnd f(9) d0 (B.3) 
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and 

f($) = ^ 4 o ) c o s n 0 (BA) 
n=0 

where f(9) needs to known (or it will be evaluated, respectively) at the nodes 

The second factor is the possibility of constructing a fast cosine transform through 

the use of the FFT algorithm. 

Before proceeding further, we would like to clarify a point, which appears to be a 

common source of confusion. This regards the normalization of the transform, where 

two different types appear to be applied. If consistency when applying both the di­

rect and the inverse transforms is maintained, then both methods lead to identical 

formulations. 

According to the first version, the inverse transform is defined as 

Xi = cos 9i 0 < 0, < 7T (B.5) 

for 0 < i' < TV (B.6) 

with the coefficients given as 

for 0 < n < N (B.7) 
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2 i f j=0; 
cj• = \ 1 if 1 < j < N - 1; (B.o) 

2 if j = N. 

(Fox and Parker, 1968). 

In the second version, the expansion reads defined as 

N / -\ 

/ ( c o s ^ ) = E a n
 c o s ( ^ T ) torO<t<N (B.9) 

n=0 ^ ' 

and the forward transform is defined as 

2 / 1 ^ " 
a l 0 ) = ^ ( — ^ ̂ ^ ^ / ( c o s ^ ) c o s ^ ^ ^ for 0 < n < N (5.10) 

N \ c n . 

(Haidvogel and Zang, 1979). In this thesis, the Chebychev transform pair follows the 

definition expressed by (B.9-10). 

The development of the fast cosine transform is briefly outlined below (for further 

details and justification of the process, see Cooley et al, (1970), Gentleman, (1972) 

and Deville and Labrosse, (1982)). 

Let us assume, that the real, (TV + l)-long vector z for j — 0,... , N is given as 

input to be cosine transformed. 

We start by defining the 2iV-long vector y as 

yj = Zj for j = 0,... ,N and y2N-0 = Vj for j = 1,..., JV - 1 {B.ll) 
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This vector is real and symmetric. 

Now, we define a TV-long vector x as 

Xj = V2j + i[V2j + i ~ V2i-\\ for j = 0,... ,TV - 1 (£.12) 

The elements of this array are complex and conjugate symmetric. 

In the next step, we construct another complex array b, which is (TV/2)-long, as 

follows 

The plus sign (+) corresponds to direct transform, whereas the minus sign ( —) to the 

inverse transform. The Fourier transform of b 

7V/2-1 

B:•= Y K e ± 2 v x / { N ' 2 ) f o r j = 0 , . . . , T V / 2 - 1 (5.14) 
n—0 

is then taken using a complex F F T subroutine on TV/2 points; the array B is, in 

general, complex. 

The recovery of the Fourier transform X of x is done according to 

X2j = R{Bj) and X2j + 1 = I (By) for j = 0,..., TV/2 - 1 (£.15) 



276 

and, subsequently, the Fourier transform Y of y are obtained via the expression 

Y' = \{x' + XN-d±2^Mm{x'-XH-') forj" = 1 JV~l (B16) 

The elements of the TV-long array Y are real and symmetric (Yjj/v—j = Yj for j = 

l , . . . , i V - 1). 

Finally, we obtained the desired (N + l)-long real coefficient vector Z as 

Zj = 2Yj for j = 1,..., N - 1 (13.17) 

and 
N-l N-l 

Zo — Xo + ^ 22n+l , ZN = Xo — ̂  22n+l (5.18) 
n=0 n=0 

Appropriate normalizations depending on the version and the direction of the trans­

form complete the procedure. 

When more than one dimension needs to be transformed, a straightforward ap­

plication of the above algorithm in each coordinate may not be considered efficient 

enough, as it might lead to excessive memory requirements and computational bur­

den. For multi-dimensional cases, then, an extensive use of symmetry considerations 

combined with the proper pre- and post-processing can provide both computational 

acceleration and memory economization gains (Deville and Labrosse, 1982). 
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B.2 Fast Inversion of Quasi-Tridiagonal Systems 

Employing the Chebychev integrated tau method for the solution of either ordi­

nary differential equations, or (in combination with a Crank-Nicolson time differencing 

scheme) partial differential equations, which involve second order differential opera­

tors, results in linear systems of quasi-tridiagonal structure. 

Let us say, that the system to be solved is 

F n m a J ' = b n for n, m = 0, N (£.19) 

The elements of the matrix F n m differ slightly from equation to equation, but the 

structure remains the same and the system to be solved is 

( /oo / 02 / 0 4 

/ l l / l 3 / l 5 

fn,n 

+ 1 -1 
V + i + i 

In, n+2 

\ 

/ n , n +4 

•1 +1 

/ 4 0 ) \ f b 0 \ 

+ 1 J \bNj 

(£.20) 
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A closer look at the matrix of the expansion coefficients 

n = 0 n = N 

n = 0 

n = N - 1 

n = TV-

Zoo /o2 /04 

/ l l / l 3 / l 5 

+ 1 -1 

V +i +i 

In, n fn, n + 2 fn.n + 4 

•1 +1 

+i y 

(5.21) 

shows that, it is the the last two rows (which correspond to homogeneous Dirichlet 

boundary conditions at x — —1 and x = +1, respectively) that cause a departure from 

a tridiagonal structure. 

For the Helmholtz equation, the non-zero elements are defined as 

fn,n — 
k2C n-2 

4n(n — 1) fn,n + 2 — 1 — 
k2e n+2 j , _ k 2 e n + 4 

and ;n,n+4 - 7-7——r 
4n(n + 1) 2{n2 - 1) 

(£.22) 

for 2 < n < N and 

2, if n = 0; 
1, if 1 < n < N 

and 1, if 1 < n < N; 
0, i fn>JV ( £ . 2 3 ) 
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The elements of the vector b are zero for this case. 

For the heat equation (with conductivity unity), these elements are 

f c " - 2 , (~ At \ en+2 en+4 , D O . X 
Jn,n = — 7 -T, / n , n + 2 = ( — T — j+rr-- 7T and / n,n+4 = ~"7 ~ 7 (B.24) 

4n(n - 1) \ 2 / 2[nJ- - 1) 4n(n + 1) 

whereas for the Schrodinger equation (in atomic units), the presence of the imaginary 

unity i results in 

/n,n — ~ / TT, Jn,n + 2 — I ~ I T" -7—5 ~ r ana /n,re + 4 
4 n ( n - l ) ' J n ^ V 2 7 2(n2 - 1) — J n ^ 4n(n + 1) 

(5.25) 

The elements bn above are calculated from the multiplication of the right hand side 

Crank-Nicolson matrix with the solution vector from the previous time step and they 

are, in general, non-zero. 

We observe that the even and the odd a„°^'s could be decoupled, if it was not for 

the last two rows. To decouple them, we transform the boundary conditions 

£ > S ? > = 0 and £ ( - ! ) " « < ? > = 0 (£-26) 
n=0 n=0 

to 
N/2 N/2 

Y a 2 n = 0 and X > & - i = 0 (B.27) 
n = 0 n = l 

Now the (N — l)th row elements alternate between 0 and 1 (odd coefficients), whereas 

the elements of the (jV)th row alternate between 1 and 0 (even coefficients). 
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Now the matrix looks like 

n = 0 

n = JV - 1 

n = N 

n = 0 -»• 

/OO fo2 fo4 

III / l 3 / l 5 

n = N 

fn,n fn,n + 2 In, 

+ 1 +1 

V +1 +1 

n+4 

+ 1 

+ 1 J 

(5.28) 

and the transformed system 

/ /oo fo2 fo4 

/ l l /l3 /l5 

/n,n fn,n + 2 fn,n + 4 

+ 1 +1 
V +1 + i 

+1 
+1 / 

(5.29) 
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/ 9oo 9oi 902 

9\i 9\2 9i3 a<°> 
f b0\ 

°2 

(5.30) 

V+l + 1/ 

for the even part of a'0) and 

/ / i n h l 3 

h22 h22 
( h \ 

h 
(5.31) 

V +1 + 1J \bN-iJ 

for the odd part of it. 

The elements of the matrices G and H are given directly from the elements of the 

decomposed matrix F as g n > m = / 2 „ | 2 m for n - 0,..., JV'j2 - 1, m = 0,..., N/2 and 

9N/2,m = IN,2m for m = 0,..., N/2. The elements of the matrix H are given, in a 

similar fashion, as h n t m - f2n-i,2m-i for n = 1,.. .,N/2 - 1, m = 1,..., N/2 and 

h-N/2,m = / / v - i , 2 m - i for m = I,..., N/2. 

Let us proceed with the solution process for the first of these sub-systems (since 

they are identical). 

A special forward elimination procedure is applied. Thus, the bottom row of G 

is eliminated, in such a way that the sparseness the matrix is fully exploited. At this 

point the question of whether pivoting should be applied (when appropriate) arises. 
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This is an essential point, since if the elimination is performed without pivoting, there 

will be no row interchanges and subsequently the resulting matrix G will be upper 

triangular with bandwidth 2 (or upper tridiagonal). Therefore, the resulting system is 

G a 2 ° n

) = L - 1 b 2 n = : b 2 n (£.32) 

(where information on the multipliers are kept in L x) or 

/ Soo Qoi 902 
Q\\ 9i2 Q\z a<°> 

aN/2,N/2 J \bN J 

(£.33) 

Such a system may then be solved very efficiently via back substitution procedures 

specialized on banded matrices (Golub and van Loan, 1983). It is interesting to ob­

serve, however, that pivoting is advisable from the very first elimination step, because 

the presence of 1 in the last row makes the multiplier of the first row larger than unity. 

Application of pivoting tends to expand the upper bandwidth of G resulting in 

G a 2 ° J = = b 2 n (£.34) 

(where information regarding both the multipliers and the permutations are kept in 
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M - 1 ) or 

/ Qoo 

0ii 
00,^/2 \ ( b Q \ 

(B.34) 

V 9N/2,N/2 J \bNJ 

The matrix G is upper triangular with full bandwidth and a straightforward back 

substitution is necessary. 

If the former approach fails to work (due to a zero pivot during the elimination) 

the latter pivoting procedure will have to be implemented, degrading inevitably the 

efficiency of the algorithm. The prospect of confronting an upper triangular matrix 

with full bandwidth is not particularly inviting; it is, nevertheless, inevitable due to 

the transfer of the full row of one's at the top of the matrix during the initial pivoting. 

If implementation of the no-pivoting procedure is not possible, we can only consider 

an optimization of the alternative algorithm. Minimization of "fill-in" may not be 

possible but an improvement of the forward elimination should be explored. Pivoting 

results in a system of an awkward form and subsequently, the amount of searches can 

not be reduced; eliminations of trivial entries can not be bypassed either. Continuation 

of the elimination-pivoting process does not permit any shortcuts, leading to a general 

Gaussian elimination algorithm. 

The following reformulation of the problem allows the derivation of an equivalent 

system. A simple transformation induces diagonal dominance in the system and it 

also gives rise to elegant pivoting algoritms. We start with a simple transformation 

of the original system, so that the rows of alternating 0's and l's occupy its first two 
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. This introduces a slight modification in the structure of the matrix F 

n = 0 

n = 1 

n - 0 -> 

+ 1 

+ 1 

/20 /22 

/31 /33 

+ 1 

24 

35 

n = N V 

n = N 

+ 1 

/n,n-2 /n,n /n , 7 i + 2 

(5.36) 

where the elements / n m that lie in the diagonals are obtained by a mere shift of the 

row index n by a factor of 2. 

Evidently, the components G 

n = 0 

n = 0 

n = TV/2 

+ 1 

010 011 012 

+ 1 

921 922 923 
(5.37) 
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(with gn,m = f2n,2m for n = l,...,JV/2, m = 0, . . . , /V /2 and g0>m = / 0 , 2 m for 

m = 0,. . . , iV/2) and H 

n = 1 

n - l -» • • • n = JV/2 

n = A//2 \ 

+ 1 

h2l h22 h22, 

1*32 ^33 ^34 

+ 1 

(5.38) 

(with hn>rn = / 2 n - i , 2 m - i for n = 2,...,N/2, m = 0,...,N/2 and / i 1 ) m = / i , 2 m - i for 

m = 1,..., N/2) of the even—odd matrix decomposition of F exhibit corresponding 

alterations; the row of l's has been transferred to the first row and the diagonals 

have undergone a lateral shift, introducing a new main diagonal. Two fundamental 

points are to be identified: the introduction of a more vigorous main diagonal (recall 

equations (B.22-25) and the upper Hessenberg structure of the decomposed systems. 

The reinforcement of the main diagonal tends to allow an accurate and efficient forward 

elimination without pivoting. Furthermore, the reported structure of the matrix may 

be exploited to provide a substantial decrease in the number of searche-comparisons 

associated with pivoting, if the latter is necesary. 

Concluding the presentation of the special LU decompositions of the tau integrated 

systems analysed previously, we summarize them briefly as follows: 
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1) S L U l : The boundary row is at the bottom of the matrix originally. Its elimi­

nation proceeds without pivoting and, subsequently, backsubstitution is applied on an 

upper tridiagonal matrix. 

2) SLU2 The boundary row is originally at the top of the matrix. Elimination 

of lower off-diagonal is performed without pivoting. A full upper triangular matrix is 

obtained and a full bandwidth backsubstitution is applied. 

3) SLU3 Identical to the SLU2 procedure, but for the pivoting incorporated in 

the SLU3 algorithm. The pivoting process follows an "upper Hessenberg" pattern. 

An analysis of the applicability and the performance of fast solvers for the heat, 

the Schrodinger and the migration problems is given in (4.4.7), (5.7) and (6.11) re­

spectively. 

B.3 Inversion of Tridiagonal Systems 

Tridiagonal systems may be inverted very efficiently; the following algorithm is 

taken from Vichnevetsky (1981). Let us assume that we have to solve the system 

Au = d, i.e 

/ <*1 Ci 
62 a-2 

V 
aN-l Cjv - l 
bpi apj 

(U1] (dl \ 

W W 
(73.39) 

The algorithm is based on a special LU decomposition and includes the following steps: 

An LU decomposition of the problem is performed: 

ai = ax 
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Pi = ci/ai 

For i' = 2,..., N 

oti = al - 6,-/?i_! 

ft = Ci/ai 

The system Ly = d, is then solved by forward substitution: 

yi = 

For i = 2,..., JV 

yi = (di - blyi^i)/al 

The procedure is completed by solving U u = y with backsubstitution: 

UN = VN 

For t = JV — 1,..., 1 

Besides its dramatic increase in speed, the method succeeds in bypassing the 

error-growth due to the backsubstitution and in reducing the storage requirements 

significantly (Mitchell and Griffiths, 1980). Pivoting has not been introduced in this 

algorithm. Consequently, this routine fails if a zero pivot is encountered; such a case 

is possible even for a non-singular matrix. Despite this theoretical flaw, tridiagonal 

solvers very rarely fail in practice. Furthermore, if the tridiagonal matrix is diagonally 

dominant, i.e |a t| > + |c,-| for i = 1,..., TV, it may be shown that division by zero 

never occurs (Press et al, 1985). Of course, if a zero pivot is encountered, we have to 

introduce pivoting in the algorithm. 


