- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Imitation-based learning of bipedal walking using locally...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Imitation-based learning of bipedal walking using locally weighted learning Loken, Kevin
Abstract
Walking is an extremely challenging problem due to its dynamically unstable nature. It is further complicated by the high dimensional continuous state and action spaces. We use locally weighted projection regression (LWPR) as a locally structurally adaptive nonlinear function approximator as the basis for learned control policies. Empirical evidence suggests that control policies for high dimensional problems exist on low dimensional manifolds. The LWPR algorithm models this manifold in a computationally efficient manner as it only models those states which are visited using a local dimensionality reduction technique based on partial least squares regression. We show that local models are capable of learning control policies for physics-based simulations of planar bipedal walking. Locally structured control policies are learned from observation of a variety of different inputs including observation of human control and existing parametrized control policies. We extend the pose control graph to the concept of policy control graph and show that this representation allows for the learning of transition points between different control policies.
Item Metadata
Title |
Imitation-based learning of bipedal walking using locally weighted learning
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2006
|
Description |
Walking is an extremely challenging problem due to its dynamically unstable nature. It is further complicated by the high dimensional continuous state and action spaces. We use locally weighted projection regression (LWPR) as a locally structurally adaptive nonlinear function approximator as the basis for learned control policies. Empirical evidence suggests that control policies for high dimensional problems exist on low dimensional manifolds. The LWPR algorithm models this manifold in a computationally efficient manner as it only models those states which are visited using a local dimensionality reduction technique based on partial least squares regression. We show that local models are capable of learning control policies for physics-based simulations of planar bipedal walking. Locally structured control policies are learned from observation of a variety of different inputs including observation of human control and existing parametrized control policies. We extend the pose control graph to the concept of policy control graph and show that this representation allows for the learning of transition points between different control policies.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2010-01-16
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.
|
DOI |
10.14288/1.0051510
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2006-11
|
Campus | |
Scholarly Level |
Graduate
|
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.