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Abstract 
Walking is an extremely challenging problem due to its dynamically unstable 
nature. It is further complicated by the high dimensional continuous state 
and action spaces. We use locally weighted projection regression (LWPR) as a 
locally structurally adaptive nonlinear function approximator as the basis for 
learned control policies. Empirical evidence suggests that control policies for 
high dimensional problems exist on low dimensional manifolds. The LWPR 
algorithm models this manifold in a computationally efficient manner as it only 
models those states which are visited using a local dimensionality reduction 
technique based on partial least squares regression. 

We show that local models are capable of learning control policies for physics-
based simulations of planar bipedal walking. Locally structured control policies 
are learned from observation of a variety of different inputs including observa­
tion of human control and existing parametrized control policies. We extend 
the pose control graph to the concept of policy control graph and show that 
this representation allows for the learning of transition points between different 
control policies. 

Kevin Loken 

University of British Columbia 
August 2006 
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Chapter 1 

i 

Introduction 

Humanoid robots have long been a fascination of man-kind. First visualized in 

the 1926 silent movie Metropolis [23, 31] the vision of intelligent and dynamic 

humanoid robots has been a powerful symbol. Yet, despite nearly eighty years 

of these images we are only now beginning to see some progress in mobile hu­

manoid robots. Engineering marvels like the Honda Asimo [49] are impressive 

in their accomplishments, able to travel at a steady walk, run at up to 6 km/h, 

walk up and down stairs, and perform simple tasks such as pushing a cart or 

carrying a tray of coffee mugs. The Honda team has even made Asimo perform 

traditional Japanese folk dances [33]. However, these impressive machines are 

still sorely lacking in truly dynamic maneuvers such as those involved in playing 

any ordinary game of soccer. These limitations are imposed both by the limits 

of the electromechanical design of the system and the inherent complexity of 

the control algorithms which must be developed. 

1.1 Imitating skillful human motion 

The imitation of skillful human motion is useful both from a computer animation 

stand point and in the realm of robotics. For computer animation, the ability to 

create physically realistic motion quickly and easily is desirable both in the film 

industry and in the interactive entertainment (video game) industry. Currently 

animation is either generated by hand through the talents of skilled animators 
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or it is replicated from human motion capture data. 

The former method is time consuming and expensive, and if certain aspects 

of a motion change then whole new motion segments need to be created. The 

use of motion capture aids in this regard, but it comes with its own issues: the 

actor used to generate the motion is not necessarily of the same size as the avatar 

that will display the motion. How does an ogre move anyway? Having avatars 

that are capable of performing realistic-looking, and physically plausible, motion 

would greatly improve the quality of the animation in interactive entertainment. 

In robotics, projects such as the NASA Robonaut [2] aim to produce hu­

manoid robots that are capable of performing the same actions as the astro­

nauts they would replace. This raises the question of how you create a control 

system that can replicate the many different tasks the Robonaut would have to 

perform, from performing a space-walk to using a screwdriver. 

The study of how humans plan and execute skilled motion is a vast area 

of research that is extraordinarily interdisciplinary in its nature. Researchers 

from such diverse fields as anatomy, control theory, robotics, machine learn­

ing, bio-mechanics, kinesiology and neuroscience all study the problem. Each 

field approaches the problem with its own set of techniques, motivations and 

constraints. 

1.2 Why is motor control hard? 

On the face of it, one would think that motor control is not a particularly 

difficult problem to solve. After all, we all learn to perform hundreds, possibly 

even thousands, of skilled actions in our lifetime. We learn to walk at around 

one year of age purely from observation and trial and error. We walk without 

thinking about it, and are capable of navigating varying terrain with ease. This 

apparent ease with which we all perform these actions belies the underlying 
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complexity of the problem. 

The goals of each field change the underlying assumptions that researchers 

make, and the types of approximations that they bring to a problem. While a 

computer scientist might be interested in applying dynamics to a generated com­

puter animation to make it more realistic looking, a bio-mechanics researcher 

might be interested in exactly computing forces and torques involved in a mo­

tion for the design of a new prosthetic limb. These two different goals will yield 

different techniques for attempting to solve a particular dynamics problem, one 

concerned with speed of computation, the other with accuracy of results. 

M o d e l i n g Issues 

There are many different ways in which a human can be represented for a 

simulation. Common representations use idealized joints and idealized motors 

to power motions. For example, the knee joint is usually modeled as a single 

degree of freedom joint with an idealized motor that can move the calf. In 

reality, the joint consists of four bones coupled together through flexible tendons 

and muscles, cushioned by cartilage and powered through the contraction of 

hundreds (thousands) of antagonistic and synergistic muscle fibers. 

C o n t r o l Issues 

A human is also an extremely high dimensional mechanism. When performing 

an action such as walking, hundreds of muscle fibers are activating in a coor­

dinated fashion to drive the overall motion while maintaining balance. There 

are easily more than one hundred controllable degrees of freedom embedded in 

an equally as large state space. Even idealized models of humans such as video 

game characters may have as many as thirty controllable degrees of freedom 

embedded in a sixty dimensional state space. This brings up Bellman's curse of 
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dimensionality [5] which states that complexity of control grows exponentially 

in the number of dimensions. 

With a motion such as walking we are also faced with a credit assignment 

problem. When a robot falls over it is usually not a result of the action just 

taken, but as the result of some action taken in the past. When a control 

strategy fails identifying the "wrong" action is nearly impossible. Learning 

algorithms must often employ techniques such as eligibility traces [46] to update 

their internal state. This ultimately slows the learning process requiring many 

more trials to reach a stable control strategy. 

S i m u l a t i o n Issues 

Once a researcher has chosen their approach and built their computing infras­

tructure, they can then go about simulating the physics of human motion. Un­

fortunately, the problems do not end here. Depending on the physical represen­

tation used and the detail used in the model (e.g. motors vs. muscles, inclusion 

of tendon dynamics) simulation times may be long. It is also possible that the 

simulation will not produce the desired result. Sources of failure can be due 

to defects in the coding of the algorithm, numerical instability, or the inherent 

instability of the model under control. With a simulation of dynamically unsta­

ble action such as walking, if there is even a single error in one component the 

robot is likely to lose balance or fail in its task in some other way. 

1.3 Recent Progress 

Given that trying to teach a robot how to perform a skilled motion like walking 

seems so difficult, why is now such a good time to be involved in this area of 

research? The interdisciplinary nature of motor control research is both a curse 

and a blessing. The curse is that in order to make progress on the problem we 
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must gain an understanding of several different areas of research. The blessing 

is that researchers from multiple fields are tackling the problem from different 

points of view. Promisingly we are beginning to see convergence in the various 

computational, mechanical, neuro- and biological aspects of motor control. 

Over the last fifteen years there has been significant advancement in the 

control of walking robots. In two seminal papers Tad McGeer showed that a 

purely passive mechanical system is capable of walking, provided it is given 

enough energy to overcome friction [26, 27]. This spawned an area of research 

known as passive dynamic walking that aims to leverage the natural mechanics 

of leg configurations to produce highly efficient walk cycles. Trajectory tracking 

approaches from robotics, modulated with zero-moment point (ZMP) balance 

control, have been successfully applied to create walking robots such as Honda's 

Asimo [47, 49]. 

Moore's Law is a blessing and in the last decade computing power has in­

creased substantially so what were once intractable simulation problems are now 

routinely solved in a few seconds. This allows numerical optimization techniques 

such as space-time constraints [58] to be used to generate physically valid joint 

torque trajectories. 

Machine learning techniques have also improved substantially in the last 

decade, and various imitation based learning algorithms exist that can generalize 

from relatively few points of observed data. 

Lastly, the rise of video games and computer generated animated films has 

pushed the advancement of techniques for recording human motion. Mechanical, 

magnetic and optical methods have been perfected for observing human motion 

and generating joint angle trajectories from the recorded motion. These mo­

tion capture systems have allowed researchers to capture many types of human 

motion and millions of frames of animation quickly and easily. This provides a 
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vast repository of human motion data that can be used as reference solutions 

when developing control techniques. 

1.4 Goals 

The grand vision of this thesis is to find a method for providing robots with the 

ability to learn the way humans do, through observation and trial and error. 

The learned information should then be placed within a framework that lets 

controllers be shared and that thus endows robots with multiple skills that can 

be sequenced in time. 

To reduce the scope of this problem, this thesis tries to answer the following 

more specific questions: 

• Can control strategies involving balance, such as walking, be learned from 

observation of a known solution? This observation can take at least two 

forms, either purely kinematic observations like motion capture data or 

through known control actions. 

• Can locally weighted learning techniques such as locally weighted projec­

tion regression (cf. Chapter 4) be applied effectively for difficult control 

tasks involving under-actuated systems? 

• Can the locally weighted learning techniques be used to support transitions 

between different classes of motion, such as walking at different speeds? 

The previous work related to these questions will be discussed in Chapter 2 

and Chapter 4. 

Balance is a challenging problem, as the control strategy needs to incorporate 

the numerous small corrective actions that are layered on top of the large scale 

gross motor movement of walking. It is unclear whether a learning algorithm 
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II 

(a) A 3-link planar biped. (b) A 5-link planar biped with knees. 

Figure 1.1: The two planar biped models used in the experiments 

will be able to identify these corrective behaviors given the various sources of 

noise within the observations of motion. The various locally-weighted learning 

algorithms that exist seem promising in their ability to control certain types of 

robotic systems, though to date they seem to have been applied to fully actuated 

systems. 

Most current work in motor control also only addresses skills in isolation such 

as walking at a fixed speed. Walks of different speeds provide a well defined 

family of motions for testing the ability of learned locally defined control policies 

to cope with transition motions. 

1.5 Overview of Approach 

Models 

Throughout the experiments presented in Chapter. 5 the two models shown 

in Figure 1.1 were used. These are planar biped models, restricted to two 

dimensional motion. This use of planar bipeds allows for much faster simulation 

times, with the focus being on the learning of control policies from observations. 
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Control Policy 
0 

Joint PD Control 
r 

Simulation X 
Control Policy Joint PD Control Simulation Display 

Figure 1.2: A simple block diagram of the simulation. The bold block denoting 
the control policy is the main focus of this thesis. We wish to use observation 
data to learn the control policy IT. 

C o n t r o l S t r u c t u r e 

The overall simulation structure is shown in Figure 1.2. Observations of a control 

policy are used in a supervised learning algorithm (cf. Chapter 4) to create an 

approximate control policy jr. The control policy outputs target joint angles, 9, 

based on the current system state x or a projection of the current system state. 

These target joint angles are passed to a joint proportional derivative controller 

which converts them to joint torques r. The joint torques are used by the 

simulation to compute accelerations, including forces generated by interaction 

with the ground (cf. Chapter 3). The resulting accelerations are integrated with 

a simple forward Euler scheme. 

The details of each block are presented in the associated chapters. The pri­

mary focus of this thesis is on the mechanism of learning the control policy 

7r and the details of the other blocks could be replaced with equivalent sys­

tems, as there are many different choices and compromises within each of the 

implementations. 

L o c a l l y W e i g h t e d C o n t r o l P o l i c i e s 

We are attempting to learn a control policy of the form 

6 = ir{x) (1.1) 

The observation data is assumed to contain examples of 7r(x), thus we have 
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Left Hip 

VPS 

-4 -3 - 2 - 1 0 1 
d 

Figure 1.3: An example of how local linear models are created in the projected 
state space of a 3-link planar biped. The large ellipses represent the 0.1 weight 
contour of a Gaussian kernel function (Equation 4.2), and the small circles 
represent the centers of the receptive fields. 

a supervised learning problem. The control law w(x) is extracted through ob­

servation of joint torque trajectories during a walk cycle. Direct access to these 

joint torques is available in our simulations, though inverse dynamic techniques 

can be used to calculate them if a purely kinematic description of motion is 

available, such as motion capture data. The locally weighted projection re­

gression algorithm builds locally linear models that approximate the non-linear 

function in Equation 1.1. 

During the training of the locally weighted models, receptive fields are cre­

ated that define the area of support for the locally linear approximations. An 

example of how these fields are created is shown in Figure 1.3. The contours 

are for a 10% weight, as defined by Equation 4.2. When receptive fields over­

lap, a weighted average of the linear approximations is used as the result, see 

Equation 4.3. 
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1.6 Contributions 

The main contribution of this thesis is to show that locally weighted control 

policies are capable of controlling the walking gait of biped robots. The learned 

control policies are trained with observations of both human control and existing 

hard-coded control policies. The use of these techniques in control of walking 

has been limited to active walk gaits, with starting and stopping being handled 

through specialized controllers. Our application is capable of learning to initiate 

a walk cycle in addition to controlling the periodic gait. 

We also extend the pose control graph [52] to that of the policy control 

graph. We show that this representation allows the development of transition 

points between different speeds of walk cycles allowing for planning of motion. 

This is shown through control of a planar biped simulation walking back and 

forth between two points. 

1.7 Thesis Organization 

The target audience of this thesis is a computer scientist experienced in kine­

matic animation techniques who is interested in applying this knowledge and 

expertise towards dynamic motion. Since motor control is such a difficult prob­

lem, and draws from so many different subject areas, the early parts of this 

thesis provide overviews of key areas that should provide sufficient background 

to understand the experiments performed in this thesis. 

The rest of this thesis is organized as follows. Chapter 2 begins with def­

initions of many of the terms and concepts used in dynamics, motor control 

and machine learning. This is followed by an overview of related research which 

spans a large number of areas. Much of the related work is necessarily presented 

in terms of a high-level review with references representative of approaches, 
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rather than as an exhaustive list, with a few exceptions. An overview of the 

dynamic simulation used in this thesis is provided in Chapter 3. The specific 

machine learning algorithm, locally weighted project regression, is discussed in 

Chapter 4. Experimental results are presented in Chapter 5 and conclusions are 

presented in Chapter 6. 
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Chapter 2 

Definitions and Related 

Work 

The study of human walking covers a broad collection of disciplines, including 

bio-mechanics, robotics, kinematics, dynamics, signal processing and machine 

learning. We are concerned with the application and extension of existing tech­

niques drawn from these many disciplines. 

This chapter provides sufficient definitions and background material for an 

overall understanding and context of the work that was performed for this thesis. 

Readers who are interested in gaining a greater understanding of how individual 

components work should consult the bibliography and the various papers refer­

enced throughout this section. There are also numerous conferences (CLAWAR, 

IROS, ICRA) that present current research on this and many related topics. 

Additional information regarding the machine learning techniques used in 

this thesis are presented in Chapter 4. 

2.1 Definitions 

Because the study of human walking draws on so many different disciplines, 

there are often references to terms which may be unfamiliar to the reader. Many 

terms are also often overloaded with different meanings (e.g. "state"). Thus we 

provide specific explanations for the terms used throughout this thesis. 
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System State 

The state of a system is defined as the smallest set of numbers that must be 

known in order that its future response to any given input can be calculated 

from the equations of motion [44] for a single point in time. This is a Markov 

model of the motion. This thesis uses articulated figures to represent ideal­

ized virtual humans. The hierarchical skeleton is a collection of local frames, 

each characterized by the position and orientation with respect to its parent 

frame. The set 6 = (#i,f?2, • • • ,&N) of parameters corresponding to the degrees 

of freedom of the figure, together with their derivatives with respect to time 

6 = (9\, f ? 2 , . . . , ON) represent the generalized coordinates of the articulated 

figure. This generalized coordinate vector is referred to as the ful l b o d y state 

in this thesis. 

For our work, the state consist of all the relevant joint angles and velocities, 

as well as the global position and velocity, and global orientation and angular 

velocity of the root of the hierarchical skeleton, which for our representation is 

the hips. Each limb of the skeleton uses a thin-rod approximation of its inertia. 

The 3-link biped has the following state description: 

The state-space representation of a system is not unique, although it is 

minimum in terms of the number of dimensions and it is also the representation 

used by the dynamics simulation. There are many different sets of state variables 

that can be utilized for a given system. 

For purposes of control, it is often useful to work with projections of the full 

state. One such useful projection is the center of mass position and velocity 

relative to the current stance foot. This is illustrated in Figure 2.1. This (d, d) 
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Figure 2.1: The projection of the full body state to the (d, d) state for the 3-link 
biped. The center of mass state is (dx,dx,dy,dy). In this thesis we only use 
{dx, dx) which we hereafter refer to as simply (d, d). 

parametrization provides sufficient information on the current phase of the walk 

cycle and allow control to be exerted on the biped. Note that the full body state 

can not be recovered from this (d, d) projection as many different poses lead to 

the same projection. 

Under-actuated systems 

There is a large body of research that deals with the dynamics and control of 

robot structures. Much of this research is based on industrial style robots that 

are bolted to the ground, or world reference frame. By providing a joint between 

the root of the robot and the world reference frame, the robot is in principle 

able to achieve any desired set of joint accelerations. 

In contrast humans, or bipedal robots, are under-actuated systems. The 

stance foot is not bolted to the ground and so not all possible accelerations are 

possible. By way of example, if you start pushing on a bipedal robot, the only 

way to maintain balance is to take a step. When the center of mass of the robot 

is sufficiently outside the base of support and leads to loss of balance and a 

fall. The robot is incapable of exerting a sufficient torque in any of its joints to 
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prevent this loss of balance, so the only option is to move the base of support 

(by taking a step). Recovery can also happen if the velocity of the center of 

mass is such that the momentum is sufficient to regain balance. Because these 

types of systems are under-actuated, control becomes much more difficult. 

Open- and Closed-Loop Control 

Control systems are often defined as open loop or closed loop depending on 

the feedback arrangement of the system. In control theory, the system under 

control is often referred to as the plant. In some motor control literature open 

loop control is often referred to as feed-forward control, while closed loop 

control is referred to as feedback control. 

An open loop control system (Figure 2.2(a)) provides a time-varying refer­

ence signal signal R(t) to the plant G(t), regardless of the state of the plant. In 

a perfect world, with no errors in modeling and no perturbations created by the 

environment, this type of control is capable of producing the desired controlled 

output C(t). 

By contrast, a closed loop control system (Figure 2.2(b)) measures the cur­

rent state of the system C(t) transformed by an arbitrary feedback law H(t) 

against the reference input R(t) and applies an error correcting term E(t). This 

improves the ability of a control system based on an incomplete or approximate 

model of the plant to achieve the desired result. 

Feed forward control can serve a number of useful purposes. It may be 

impossible, or simply impractical, to measure the current state of the plant. It 

may not be obvious what error correcting signal should be applied as a result 

of the feedback that is received. Delays in the feedback path may also result in 

instability within high-gain feedback loops. In many cases open loop control is 

good enough to meet the required performance criteria. 
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R(t) 

E(t) 

G(t) G(t) H(t) R(t) 
G(t) C(t) H(t) 

G(t) 
C(t) 

(a) An open loop control system. (b) A closed loop control system. 

Figure 2.2: Block diagrams of two different control systems. R(t) is an input 
reference signal, G(t) denotes the transfer function of the plant, C[t) is the 
controlled output signal, H(t) denotes an arbitrary feedback law, and E(t) is 
the error signal. 

Control Policy 

A control policy is a mapping between a system state and the action to per­

form in order to accomplish a particular goal or terminal state. The general 

control policy can be represented as ir(x,t). A control policy is often referred 

to as simply a policy or as a controller in the control systems literature. 

An optimal control policy is denoted n*(x,t) and is defined such that 

from any given state x the optimal control policy will reach the desired terminal 

state or follow a trajectory in a way that minimizes a quantity such as energy 

or time. 

For under-actuated systems there are states from which it will be impossible 

to reach a desired terminal state or to track a given trajectory. For example, if 

one of the bipeds used in this thesis falls over it may lack sufficient torque to 

stand back up again. For these types of systems we define the set of states from 

which it is possible to reach the terminal state or track a desired trajectory as 

the controllable region. 

Forward and Inverse Dynamics 

There are two general formulations of the equations of motion for a bipedal 

robot: the Lagrangian formulation and the Newton-Euler formulation. The 
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Lagrangian equations of motion can be written as 

r = M(0)0 + C(0,0)0 + N(0) + ATX (2.1) 

where M(0) represents the inertia matrix of the articulated figure in the current 

pose 0, C is the matrix of Coriolis and centrifugal forces, N contains gravity 

terms, A is the constraint matrix, A contains the corresponding Lagrange mul­

tipliers, and r are the generalized forces. 0 are the generalize coordinates, 0 

represents the current joint angular accelerations and 0 are the joint angular 

velocities. 

The Lagrangian equations of motion have the advantage that the internal 

forces of constraint need not be explicitly represented in order to determine 

the motion of the robot. However, in general, the Newton-Euler formulation is 

computationally the most efficient with the computation time growing linearly 

with the number of degrees of freedom. For a discussion of this formulation 

applied to articulated skeletons see [4, 11, 12, 16]. 

Forward dynamics is the application of these equations to calculate the 

motion generated by a given force or torque. This is what our simulations use. 

The accelerations are integrated to update the system state. Inverse dynamics 

methods calculate the forces that would generate a given motion as defined by 

a set of accelerations. 

Online Learning Algorithms 

Many types of function approximators find approximate solutions to large sys­

tems of equations. These algorithms would be characterized as offline or mem­

ory based algorithms, as they require all of the data to be present in order to 

generate a solution. This is typical of parametric methods such as standard 

linear regression. 
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By contrast online learning algorithms do not need to store all of the 

data points but can perform incremental updates of their approximate solution 

as each new data point arrives. 

Online algorithms are preferable in many situations because the models can 

be easily updated, they are adaptive to a slowly changing system, and are 

a more plausible model for human motor control. The online algorithms do 

not necessarily produce an identical solution to the batch algorithms, because 

without retaining all of the data certain error minimization criteria such as 

leave-one-out cross validation can only be approximated. 

2.2 I m i t a t i o n - b a s e d L e a r n i n g 

Humans learn to perfect skilled tasks through practice. Each attempt at per­

forming a task provides information which updates an internal model leading 

to improved performance in the next trial [10]. The computational equivalent 

of this is the field known as reinforcement learning [46]. 

If we model the skilled task as a Markov Decision Process (MDP) or partially 

observable Markov Decision Process (POMDP) there are many algorithms for 

finding near optimal solutions to the control problem [6, 46]. When the dynamics 

of the MDP are not known in advance the parameters of the MDP typically need 

to be learned from observations of the system. 

State-of-the-art algorithms such as [20] guarantee near-optimal perfor­

mance can be obtained in time polynomial in the number of states of the system. 

The E3 algorithm forces exploration of poorly modeled states in order to gain 

sufficient accurate statistics to determine state transition probabilities. In ap­

plications such as robotics where many states would lead to falls this seems 

wasteful in terms of computational resources. The dimensionality of the robot 

control problem also makes the polynomial time limits of the algorithm nearly 
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intractable for practical purposes. 

With readily abundant kinematic descriptions of tasks, available as motion 

capture data, we wonder if these can be used to replace or speed up the learning 

of skilled tasks. As noted in Atkeson and Schaal [3] attempts to learn balance 

related tasks by replaying recorded human motion trajectories will fail. They 

identify many reasons for the failure of merely replaying trajectories including an 

imperfect inverse dynamic model of the robot arm, the task is slightly different 

(i.e. the robot grip of the pendulum is different than the human grip), and 

unstable tasks like balancing require feedback control. 

Abbeel and Ng [1] describe an algorithm which avoids the aggressive explo­

ration of state space and utilizes an initial teacher demonstration of the task. 

Rather than employing exploration moves, they concentrate on exploiting the 

dynamics learned so far. The basic algorithm is outlined below. 

1. Have a teacher demonstrate the task to be learned. Record all state-action 

trajectories of the demonstration. 

2. Use all state-action trajectories seen so far to learn a dynamics model of 

the system. For this model, find a near-optimal control policy using any 

reinforcement learning algorithm. 

3. Test the policy by running it on the real system. If the performance is as 

good as the teacher's performance stop. Otherwise, add the state-action 

trajectories from the (possibly unsuccessful) test to the training set and 

go back to step (2). 

The action taken at each step is represented by the joint torques. The state 

could either be the full body state or a projection such as the (d, d) projection 

used in this thesis. This method has the benefit that at each evaluation of the 

policy the algorithm is making its best attempt to solve the problem. 
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Aside from reinforcement learning, we can also cast methods such as space-

time constraints [58] as an imitation-based learning algorithm. The space-time 

constraints algorithm is a numerical optimization procedure which creates mo­

tion that respects physical laws. The minimization criteria is usually specified 

as minimum x , where x is one of jerk, energy, or torque depending on the type 

of motion required. We can consider this technique as imitation-based learning 

since it is always seeded with an initial trajectory, usually from motion capture 

data, that provides the initial guess at the solution. 

2.3 A Review of Walking 

The synthesis of walking motion can be roughly broken into three broad cat­

egories: purely kinematic methods, hybrid kinematic-dynamic methods and 

purely dynamic methods. This thesis focuses on purely dynamic methods. 

While a complete review of all methods is virtually impossible, the popular 

and widely used techniques from each are briefly described below. 

Kinematic based methods of walking 

Purely kinematic descriptions of motion are widely used in computer animated 

films and video games. In kinematics only the description of motion trajecto­

ries is explicitly denned, there is no attempt to ensure that any of the motion 

trajectories respect Newton's laws of motion (Equation 2.1). 

The first set of tools developed for motion specification were based on forward 

and inverse kinematics [32]. Forward kinematics consists of specifying the state 

vector of an articulated figure over time. This specification is usually done for 

a small set of key frames and interpolation techniques are used to generate in-

between positions [24]. Defining key frames is usually left to a skilled animator, 

and the quality of motion is highly dependent upon their skill. 
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The use of forward kinematics makes it difficult to apply constraints to a 

motion, such as ensuring that the feet don't penetrate the ground. These con­

straints can be solved with inverse kinematic algorithms [57]. The relationship 

between the main task AX as expressed in Cartesian coordinates and the an­

gular displacements AO takes the form 

AX = JAd (2.2) 

where J is the Jacobian matrix of the system. The Jacobian is often not directly 

invertible, leading to a family of solutions that maintain the constraints. 

Methods for synthesis of walking gaits based on bio-mechanical information 

were first introduced by Zeltzer [59] who used finite state machines parametrized 

by step length and velocity. 'The finite state machines generate key poses and 

linear interpolation is used to generate the in-between frames. 

Methods for avoiding penetration of the ground with the stance foot were 

introduced by Bruderlin and Calvert [7] who use an inverted pendulum model 

for computing realistic gates. The root of the model is changed to be the current 

stance foot during the simulation and its position is fixed in the world frame. 

Kovar et al. [22] introduce yet another technique that allows for the stretch 

of leg bones in order to enforce constraints on the feet to remove artifacts in­

troduced during blending and interpolation of the in-between frames. 

In addition to the specification of key frames by an animator, motion can be 

represented by directly capturing human performance. Motion capture systems 

use magnetic or optical technologies that record the global positions of markers 

in space during the performance of motion. A post-processing optimization step 

computes the pose of a hierarchical skeleton with respect to the marker positions 

for each frame of captured motion. Advances in motion capture technology have 

made it possible to easily capture thousands of motions [50]. 
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For most applications the resulting captured motion needs to be modified 

in order to be useful. This may include some of the clean up techniques noted 

above to enforce foot placement constraints or simply to trim frames from the 

recorded motions to provide appropriate blend points. 

Once a large motion capture database is generated there are numerous tech­

niques for generating connections between motions. Motion graphs [21] com­

pute the distance between each frame of motion in the database and generate 

a directed graph of connections between frames that are below some distance 

threshold. The resulting graph can be traversed in a manner that generates 

motion that was not originally captured. 

Motions can also be described as a hybrid system of multiple local linear 

dynamical systems (LDS). In [25] motion clips are turned into linear dynamic 

systems called motion textons. These LDSs are then blended together at their 

end points to synthesize new longer motion sequences. 

Hybrid Kinematic-Dynamic methods 

All of the kinematic methods described previously have no guarantee that the 

resulting motions respect physical laws. They are primarily concerned with 

creating a particular look and feel of motion, which is important in the enter­

tainment industry. 

If the goal is to add realism or a certain amount of dynamics into motion 

then there are hybrid kinematic-dynarnic^methods that may be employed to add 

realism. 

Space-time constraints [58] which were mentioned previously would fall in 

to this category. Given an initial motion trajectory, a numerical optimization 

operation is performed to ensure that defined constraints are respected. These 

can include modifying a jumping motion to leap a greater distance [45] or adding 
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a limp to a character by restricting motion in one joint [15]. 

In addition to global modifications that are performed by space-time con­

straints, small modifications can be added, particularly in interactive environ­

ments. Zordan and Hodgins [60] layer rigid body dynamics on top of motion 

capture data to allow captured motion to appear to react to pushes and hits. 

Dynamic Walking 

Kinematic and hybrid methods are very useful for generating realistic looking 

motions. The translation of these motions onto real robotic systems is not 

guaranteed to work, however. The generation of real dynamic motion is an 

extremely challenging problem. 

Recent advances in biped walking robots have shown that techniques such 

as zero-moment point (ZMP) control [18] is an effective technique for creating 

real motion in robots. This is the technique which is used for the Honda Asimo 

robot [49]. ZMP techniques generally require flat footed robots, and generate 

slow moving trajectories. A feedback based balance control is also usually also 

employed. This tends to result in the "bent knee" stance of these robots to 

avoid singularity problems in the inverse kinematic algorithms used to maintain 

balance. The result is a rather unnatural looking walk cycle. 

Passive dynamic walking is based on the natural dynamics of a walk cycle [26, 

27]. A three dimensional passive dynamic walking robot with knees can walk 

on its own, requiring only a small amount of energy input to overcome energy 

lost due to friction with the ground [8]. 

Controllers, or control policies, aim to animate simulated figures or real 

robots with forward dynamics. This automatically accounts for the interactions 

with the environment. The difficulty is in creating the necessary torques that 

will make it perform the desired motion [9, 19]. 
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Dynamic Simulation 

3.1 Overview 

This chapter describes the details of the dynamical simulation which we use to 

model the various simple robot systems that we experiment with. The simu­

lation of physical systems is a major area of research on its own. There are 

many choices and compromises that must be made with regard to numerical 

integration techniques, ground model interactions, and required precision of re­

sults. As presented earlier in Chapter 1 the biped simulations have the block 

structure shown in Figure 3.1. 

Control 
Policy 

Joint PD 
Control 

Equations 
of Motion 

Control 
Policy ed 

Joint PD 
Control 

T 

Equations 
of Motion 

x,y,±,y,0,0 Integration x,y,0 

Figure 3.1: A block diagram of the simulation loop. Several significant com­
ponents are represented, including the equations of motion for the biped, the 
ground interaction forces, the control policy in use and the various feedback 
loops involved. 
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link parent attach x attach y mass inertia mass x mass y 
1 0 0.0 0.0 70.0 1.475 0.0 0.0 
2 1 0.0 0.0 5.0 0.0885 0.0 -0.225 
3 2 0.0 -0.45 4.0 0.0696 0.0 -0.225 
4 1 0.0 0.0 5.0 0.0885 0.0 -0.225 
5 4 0.0 -0.45 4.0 0.0696 0.0 -0.225 

Figure 3.2: An example of a physical description of a biped. This description 
corresponds to the 5-link biped used in some of the experiments. The attach 
x and attach y columns represent the joint position in the parent, frame coor­
dinates; the inertia column is the thin rod inertia scalar; and the mass x and 
moss y columns represent the coordinates for the center of mass of the link. 

3.2 Equations of Motion 

In an articulated figure with n links, the state vector {x, x, y, y, 0i:n, 0i:n, cicft, crjght} 

represents the full body state. The variables x, x, y, y represent the global po­

sition and velocity of the root link of the articulated figure. Global orientation 

and angular velocity of the root link are described by Q\ and d\. The variables 

(?2:n and ()2-.n represent angular positions and velocities relative to the link's 

parent frame of reference. The variables cicft and cright are discrete Boolean 

variables representing contact of the left and right foot, respectively, with the 

ground. 

A dynamics compiler [34] takes a description of the biped structure and 

parameters and produces C code for the equations of motion using the Newton-

Euler equations of motion. A linear system having n + 2 equations and n + 2 

unknowns solves for the unknown accelerations at each time step. An example 

description is shown in Figure 3.2. 

The accelerations produced by the equations of motion are integrated using a 

simple forward Euler scheme. More sophisticated numerical techniques such as a 

4th order Runge-Kutta integration scheme could be employed, though the very 

small time step imposed by the high gains in the ground reaction force would 

likely not produce much advantage to using a more sophisticated method. 
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3.3 Joint Proportional-Derivative Control 

The joints of the articulated figure are driven by proportional-derivative control 

laws. A desired target angle and angular velocity is specified. When attempting 

to match a particular pose, rather than follow a trajectory, the angular velocity 

is specified as 0 rad/s. For this case, a PD controller can be visualized as a 

virtual spring and damper acting in parallel to pull a link to a desired angle 

from its current angle. A graphical depiction of this arrangement is shown in 

Figure 3.3. A joint torque is generated according to the following equation 

T = Kp(Od-0)-Kd(dd-0) (3.1) 

where T is the torque, Kv is the proportional gain, Kd is the damping factor, 

0d is the desired joint angle, f)d is the desired joint angular velocity, and 0 and 

0 represent the current angle and angular velocity of the joint. 

The quality of control is determined by the magnitudes of Kv and Kd. High 

gain values imply quick response, but with the risk of overshooting the desired 

target angle, resulting in oscillation about 6d. Small gain values, on the other 

hand, result in failing to reach the target angle due to lack of torque. 

3.4 Ground Model 

A significant aspect of the simulation of'walking is the computation of ground 

reaction forces. There are numerous ways to compute collision and contact 

forces. We use a simple penalty method in our work. A set of points, called 

m o n i t o r p o i n t s are defined on the feet of the biped. When one of these monitor 

points penetrates the ground plane (y < 0), an external force is applied trying 

to drive the monitor point back towards the ground plane. The force applied to 

the monitor point, M is computed as 
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Parent 

Current position 

Figure 3.3: The effects of the proportional-derivative (PD) control law for a 
joint. The link is pulled towards the desired position with a torque r that is 
proportional (Kp) to the angular displacement with the motion slowed by the 
damping factor Kd. 

F = KP'P - M) - Kd{M) (3.2) 

where P and M are as defined in Figure 3.4. 

Due to the high gains involved in simulating contact with the ground a small 

time step is required to ensure the Courant-Friedreichs-Lewy condition (CFL 

condition) is met and the simulation does not become numerically unstable. 

The fast simulation times of the two dimensional bipeds is not impacted by this 

small time step, though in a more complicated three dimensional simulation it 

is highly likely that a more sophisticated collision model would be required to 

avoid excessively slow simulations. Control torques are calculated every 0.005 s 

(200 Hz), while the time step of the simulation is 0.0001 s (10,000 Hz). 

Other models for ground reaction forces include constraint based meth-
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P 

Figure 3.4: The model of ground interaction forces used in the dynamic simula­
tions. The monitor point M is driven towards the entry point P with a force F 
as if it was connected with a spring of gain Kp and a damper of magnitude Kd-

ods [36], impulse based methods [29], and hybrid methods which handle ini­

tial contact with an impulse based method followed by the use of additional 

constraints during simulation [28]. 



Chapter 4 

29 

Locally Weighted Learning 

This chapter provides an overview of locally weighted control policies and lo­

cally weighted learning, as well as the detailed workings of the specific locally 

weighted learning technique that we shall use in our control experiments. We 

are concerned with learning a control policy for biped walking. The control 

policies we choose to work with are of the general form 

0 = it(x,t) 

where 6 is the set of desired joint angles, x represents the state vector of the 

biped, or a projection of the state space such as (d,d), and t is time. 

The joint angle trajectories of a walk are generally smooth non-linear func­

tions of time, with the exception of a few points of discontinuity introduced 

during foot-ground interactions. We will model the control policy n(x, t) as a 

smooth non-linear function. There are numerous non-linear function approxi­

mation algorithms that could be used to model -n(x) in a supervised learning 

setting. We have set ourselves the following criteria: 

1. free of negative interference during the learning process; 

2. requires little knowledge of problem structure prior to learning; 

3. fast to compute both in terms of learning speed and in evaluation; 

4. capable of incremental learning; 
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5. scalable to a high number of dimensions; 

6. ability to ignore irrelevant input dimensions. 

Criteria (3) and (4) immediately eliminate a number of offline and memory 

based algorithms, restricting our search for learning algorithms to those that 

have online or incremental versions. Criterion (1) implies that we are looking 

for an algorithm capable of building local models, rather than trying to perform 

some sort of global function fitting to the training data. Criterion (2) implies 

a system that is structurally adaptive. A resource allocating network (RAN) of 

radial basis functions (RBF) would be one possible solution [35]. The method 

is constructive, so it only models areas where training data exists. The initial 

size of the RBF covers the entire input space and is optimized as more training 

data is presented. The resulting slow convergence [38] means that RAN fails to 

meet criterion (3). Criterion (6) suggests that some sort of principle component 

analysis (PCA) or other dimensionality reduction technique is required. 

With the above considerations, our search is narrowed to non-linear func­

tion approximators that are structurally adaptive, based on local models and 

that can operate in high dimensions. These include Locally Weighted Principal 

Component Analysis [41], Locally Weighted Factor Analysis [55], and Locally 

Weighted Partial Least Squares [56]. 

We chose Locally Weighted Partial Least Squares. The incremental on­

line version of LWPLS is known as Locally Weighted Projection Regression 

(LWPR) [53]. This is a sophisticated function approximation scheme that builds 

local linear regressions of a non-linear function. It is capable of operating in an 

online-fashion, including certain optimizations that make learning from trajec­

tories (i.e. temporally coherent data points) extremely fast. The underlying 

partial least squares algorithm is also particularly appropriate to learning mo­

tion as it is based on the correlation between the input state and the output 
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target joint angles. 

In prior work locally weighted regression techniques have been applied to 

learning "devil-sticking" [39], pole balancing [40] and to approximate the inverse 

dynamics model of a 7 degree-of-freedom robot arm [42]. These are all examples 

of fully actuated systems. The closest work to our own is found in [30] which 

decomposes a walk cycle into two steps and learns a target trajectory for each 

step based on a Poincare-Map projection of the state of a 5-link biped. In that 

work a set of via-points are learned that define a trajectory over half the walk 

cycle. This model lacks the continuous feedback that is present in our system. 

The learned control policy is also incapable of starting to walk, and Morimoto 

et al. use a manually initiated step to start the cycle. 

The remainder of this chapter outlines the details of the LWPR algorithm. 

4.1 Local ly Weighted Project ion Regression 

The LWPR algorithm is an extension of Receptive Field Weighted Regres­

sion [37] which builds local linear regression models of non-linear functions. The 

name receptive field was coined by Schaal and Atkeson to reflect the biological 

inspiration for areas of local support in sensorimotor function [13]. 

A receptive field measures the relevance of a data point with respect to the 

current model using the Mahalanobis distance: 

dM(x, c) = \J(x-c)TD(x-c) (4.1) 

where D is a symmetric positive definite learned distance matrix, x is the query 

point, and c is the center of the receptive field. 

A diagonal distance matrix D effectively represents the dimensions of a.n axis 

aligned hyper-ellipse, where all points on a given hyper-ellipse are considered 
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equidistant to the center. Put in another way, it allows for a relative weighting of 

various dimensions before a Euclidean distance from the center is computed. A 

distance matrix that is not diagonal (i.e. has off-diagonal elements) corresponds 

to an arbitrarily rotated hyper-ellipse. It is possible for some diagonal elements 

of D to be zero, indicating that the corresponding input dimension has no 

relevance to the regression. The distance matrix is usually stored as an upper 

triangular matrix M such that D = MTM. 

We convert the Mahalanobis distance CLM into a relative weight using a 

Gaussian kernel function 

This Gaussian kernel defined by the Mahalanobis distance has an infinite 

support region. In practice, a threshold value such as lU thrcsh = 0.001 is used 

such that if K((1M) < w t hrcsh '•hen the associated receptive field is not updated 

or used in prediction to enforce finite support. 

Table 4.1 provides a glossary of all symbols used in the locally weighted 

projection regression algorithms. 

A receptive field defines the area over which a local model is learned. In 

contrast to competitive learning scenarios like neural-networks, the local linear 

models are learned completely independently of each other. Each receptive field 

is defined by its center c and its distance matrix D. As will be seen later, 

the distance matrix is optimized during the learning process (cf. Equation 4.5). 

Throughout the optimization process the center c of each receptive field remains 

fixed. 

The activation weight for a receptive field with respect to a training or 

query point is calculated according to Equation 4.2. When new training data is 

encountered that fails to activate a receptive field by a given creation threshold, 

(4.2) 
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Symbol Definition 

a 
f3°o 
c 
Ddef 
D 
A 
M 
MSE 
n 
P°r 
Pi 
r 
R 
u°r 

ul

r 

w 
W° 
Wi 

x 
X g 

XQ 

Xq 

y 
Vi 
Vq,i 

A meta-learning rate that affects updates to M 
Initial regression parameters for the learned local model 
Center of the receptive field 
The initial distance matrix for a newly created receptive field 
The distance matrix for the receptive field 
A forgetting factor, the last 1/A data points affect the model 
Upper triangular decomposition of D such that MT M = D 
Mean squared error of predicted values vs. training values 
Number of data points used to train receptive field 
Initial residuals from univariate projection r 
Residuals from univariate projection r after the i'th data point 
Index for the current projection 
Total number of univariate projections in the regression 
Initial direction for univariate projection r 
Direction for univariate projection r after the i'th data point 
Weight of current training point 
Initial average weight of data points used to train receptive field 
Average weight of data points used to train receptive field after i'th data point 
Input vector used for training receptive field 
Initial mean input for receptive field 
Mean input for receptive field after the z'th data point 
A query point that we wish to predict an output value for 
Output value used for training receptive field 
A predicted output value for a query point xq 

A predicted output value for query point xq for the i'th receptive field 

Table 4.1: A glossary of symbols used in the locally weighted projection regres­
sion algorithms 
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Wgen, a new receptive field is initialized according to Algorithm 4.1. 

Algorithm 4.1 Initialize a receptive field 
Input: Center for receptive field c, default distance matrix Ddc;. 
Output: An initialized receptive field. 

0 8 - o 
W° <- 0 
u°<-0,re[l...R] 
p ° < - 0 , r e [1...R] 

The prediction of the output based on a novel input point xq is straightfor­

ward. Each receptive field provides its estimated output yq as shown in Algo­

rithm 4.2. These estimates are then combined in a weighted average according 

to the activation weight (Mahalanobis distance) for the query point with respect 

to each receptive field: 

Algorithm 4.2 Predict with novel data 
Input: An initialized and updated receptive field, a novel data point (xq) 
Output: A prediction yq 

yq *- Po 
Xq < Xq XQ 

for r = 1 to R do 
yq^yg + prujxq 

C <— C 

y{*q) = 
Hi=iyq,iK{dM(xq,Ci)) 

Y!i=1K{dM(xq,Ci)) 
(4.3) 

T 
Xq < Xq Ur Xqpr 

end for 
return yq 

The overall training algorithm is presented in Algorithm 4.3. The model is 

initialized with no receptive fields, and is thus completely structurally adaptive. 

It only builds models in areas for which training data points exist. The LWPR 
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algorithm requires two parameters, £>dcf, the default distance matrix that is 

used to initialize a new receptive field and wgCn the minimum activation energy. 

The initial number of projections is always initialized to 2. Input data should 

be scaled to have a zero-mean and a variance of 1 to ensure that the underlying 

partial least squares regression is valid. 

Algorithm 4.3 Locally Weight Projection Regression 
Input: A minimum activation weight wgcn, a default distance matrix IDdcf 
Output: A set of learned receptive fields 

Initialize the LWPR with no receptive fields, K <— 0 
for every new training point (x, y) do 

for k = 1 to K do 
Calculate activation with Algorithm 4.4 
Calculate current prediction error with Algorithm 4.5 
Update regression parameters and projections with Algorithm 4.6 
Update distance matrix, Equation 4.5 
Check if number of projections needs to increase, Equation 4.4 

end for 
if no receptive field activated by more then w g o n then 

Initialize a new receptive field with Algorithm 4.1 
end if 

end for 

The LWPR initializes itself with two initial projection directions, R = 2. 

Additional projection directions are added if the MSE at the next projection 

does not decrease more than a certain percentage of the previous MSE 

MSE r +i 
MSE,. > (4.4) 

where (f> € [0,1]. 

The underlying regression model of LWPR is based upon partial least squares 

regression. An overview of the non-incremental version of PLS may aid in the 

understanding of Algorithm 4.5 and Algorithm 4.6. This thesis is concerned 

with the application of this technique to a learning problem, rather than the 

invention or modification of the learning technique. If the reader is not interested 
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Algorithm 4.4 Compute activation and update the means 
Input: An initialized receptive field, a training point (x, y) 
Output: Activation weight for this receptive field, updated means 

w <— exp i^—| yj(x — c)rD(x — c)^ 

Wn+l <- XWn + w 
* o + 1 <~ (AWnxJJ + wx)/Wn+1 

[3'0

l+l « - (XWn/3S + wy)/Wn+1 

in the actual mathematics this explanation can be skipped and they can skip 

ahead to Chapter 5. 

Partial Least Squares (PLS) [14] builds a set of linear combinations of the 

inputs for regression. A univariate regression coefficient is first calculated on 

each dimension of the input training data x. From this a derived input is 

constructed, which is the first partial least squares direction. The output y is 

regressed on this derived input. The input data xi... xn is then orthoganalized 

with respect to the projection direction. The process is repeated for m < d 

directions, where d is the dimension of the input training data x. 

Algorithm 4.5 Compute current prediction error 
Input: A receptive field with updated means, an activation weight w, a training 

point (x,y) 
Output: Prediction error ecv 

^ r c s , l * X X Q 

V - 0o+1 

for r = 1 to R do 

y*-y + ffzr 

* C r c s , r + l * >£rcs , r ~ %rPr 

MSEI?+1 *- AMSE? + w{y - yf 
end for 

One of the significant advantages of LWPR over other learning models is 

that not only are the linear regressions optimized as new training data is added, 

but the distance matrix D = M T M for each receptive field is also optimized 

using an approximation of leave-one-out cross validation: 
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Algorithm 4.6 Update the local model 
Input: Updated statistics from Algorithm 4.5 
Output: Updated local regression parameters 

re S l «- y - /30

n + 1 

for r = 1 to R do 

a z r e s , r * ~ " ^ a z r e s , r ~f" ^ 2 r r e S r 

<_ n

n + l /nn+1 ' Mr ^zrea^rl ^zz^r .; _ 1 

resr+i <— resr - z r /?™ + 1 

a " J r * - X a x z , r + WXTOS,TZr 

end for 
for r = 1 to R do 

u n + i <_ + wx r c s ,rres r 

- < r / < r 

end for 
e = resR+i 

dM 

where the cost function to be minimized is: 

J = ^ £ > ( w - f c . - * ) a + £X>« (4-6) 
i=l i,J=l 

where yi,-i denotes the prediction of the model as if it were trained without 

the data point i, N is the total number of input dimensions, and K is the 

number of data points seen by the receptive field. The second term of this cost 

function ensures that as receptive fields see more data points they don't shrink 

to encompasses a single data point. 

The implementation of LWPR is complicated, as there are several optimiza­

tions that may be applied to ensure that computational resources are minimized. 

The software used in this thesis was the reference implementation provided by 

Vijayakumar et al. [54] 
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Chapter 5 

Imitation-based Learning 

Experiments 

In this chapter we provide a detailed description of the experiments that were 

performed in the course of this thesis. Each experiment is designed to explore 

one or more of the goals presented in Chapter 1. The complexity of the ex­

periments progressively increases as each builds on knowledge gained from the 

previous one. 

5.1 Supervised learning of 3-link biped walking 

from observation of human control 

The first experiment in imitation learning deals with the simplest configuration 

that is capable of walking. This is a 3-link biped that consists of a pelvis with a 

concentrated mass and two fixed length legs that are connected with pin joints 

to the pelvis. The model is shown in Figure 5.1. 

G o a l 

The purpose of this experiment is to determine if the locally weighted learning 

infrastructure discussed in Chapter 4 is capable of reproducing a control strategy 

from observations of human input. Given a series of successful trials of human 
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Figure 5.1: The 3-link walking biped. Two straight legs are connected to the 
hip with pin joints. Angles are measured relative to the parent frame, as noted 
by 01, 6*2, and 0%. The legs for this model are lm long, the hip is 0.3m wide. 
Most of the mass is carried in the hips, 50kg, while each leg has a mass of only 
lkg. 

control of a 3-link walking biped, can a control policy be learned? We apply 

this to one of the simplest possible bipedal robot structures that can walk, a 

3-link biped. < . 

Methodology 

A 3-link biped simulation was created that was capable of operating in two 

modes. The first mode allows a human user to interactively direct the current 

target angles for the left and right hip joints of the robot using a mouse. These 

target angles are used by a PD control law (cf. Chapter 3) to generate torques 

in idealized motors in the hip joints resulting in a walking motion of the robot. 

The physical parameters of the simulation are outlined in Table 5.1. 

A trial consists of an attempt to make the robot walk from a standing start a 

minimum of three steps without falling over. At any point in the simulation the 

human user can choose to save the state history for the current trial to a data 

file that will later be used to learn a control policy. The state history consists 
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Parameter Value 
pelvis width 
leg length 

0.3 m 
1.0 m 

pelvis mass 
leg mass 

50 kg 
1 kg 

hip Kp 

hip Kd 

ground Kp 

ground Kd, 

1000 N/rad 
100 Ns/rad 

70,000 N/m 
4,000 Ns/m 

Table 5.1: Physical simulation parameters for a 3-link walking biped 

Trial Data Points 
1 154 
2 134 
3 149 
4 211 
5 219 
Avg 173 
Total 867 

Table 5.2: Details of trials for 3-link biped 

of the horizontal distance from the stance foot to the center of mass of the 

robot and the horizontal velocity of the center of mass of the robot. This (d, d) 

parametrization is a particular projection of the state space of the controller. 

In addition to this body state, the current action represented in terms of target 

angles for both hips are also stored. The sampling rate is 24 Hz. 

After an initial training period the human user was able to consistently create 

a walking gait that traversed several steps without falling over. Five successful 

trials were recorded. Each trial represents data collected from the same user 

and represents between 2 and 5 successful steps. The details of each trial are 

listed in Table 5.2. 

The data file with the five successful trials was used to generate a control 

policy in (d, d) space with an output of target angles for the left and right 

hips. Locally Weighted Projection Regression (cf. Chapter 4) was used to 
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approximate the control policy. The control policy for the left and right hips 

were trained separately. Each policy has two input dimensions (d, d) and one 

output dimension (6). 

d = ir(d,d) (5.1) 

Results 

The data file created during the human trials, as outlined in Table 5.2 was 

used to provide training points for the Locally Weighted Projection Regression 

algorithm. Each input dimension (d, d) is independently zero-mean adjusted 

and scaled to have a standard deviation of 1. This scaling is important, as it 

allows some intuition to be applied regarding initial parameters for the size of 

the default distance matrix D used by the learning algorithm. The learning 

parameters for the LWPR algorithm are outlined in Table 5.3. The values 

chosen for the various learning parameters such as penalty, a, A, and the initial 

D distance matrix are fairly typical. Some tuning of these parameters is done 

by hand, but this tends to be order of magnitude jumps in the parameters values 

and are generally related to the second derivative of the output with respect to 

the input d2y/dx2. That is, how rapidly the output function varies over the 

input space and how much support the local linear models should initially have. 

The training phase consists of presenting each of the 867 data points to the 

LWPR algorithm exactly once. At the end of the training phase the control 

policy is represented by seven receptive fields for each of the left and right hips. 

The resulting policies are shown in Figure 5.2 and Figure 5.3. The resulting 

control policy successfully generates a walking cycle for the 3-link biped that 

does not fall over. The walk cycle repeats indefinitely over flat terrain. 
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Figure 5.2: The learned control policy for a 3-link planar biped. The large flat 
area related to an output target angle of 0° corresponds to areas outside the 
support of the receptive fields. 
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(a) Layout of receptive fields for right hip. 
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(b) Control policy for right hip. 

Figure 5.3: A learned control policy for a 3-link walking biped. The fiat areas 
related to an output angle of 0° corresponds to areas outside of the support 
region for the receptive fields. 
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Parameter Value 
diagonal only true 
meta learning true 
meta learning rate 100 
penalty 1.0 x 107 

initial a 10.0 
initial A 0.99 
initial D 2.501 
prediction cutoff 0.001 

Table 5.3: LWPR parameters for learning 3-link biped walking 

Discuss ion 

This addresses some of the goals for our work: 

• Locally weighted learning can be used to control at least some under-

actuated systems; 

• Relatively few data points are required to generate an initial policy. 

The results of this experiment were very positive compared to a simple 

nearest-neighbor implementation of a control policy. If the training data are 

stored and the nearest point in state space (d, d) is used to look up a set of 

target angles, the 3-link biped fails to move from the starting position. 

5.2 Supervised learning of 3-link biped walking 

policy based on full body state 

Goals 

The learning of the walking policy for the 3-link biped in Section 5.1 was based 

on a state space parametrization of (d, d). Such a parametrization may not 

always be obvious for certain types of tasks, or it may not be measurable with 
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Parameter Value 
input dimensions .9 
diagonal only true 
meta learning true 
meta learning rate 100 
penalty 1.0 x 107 

initial a 10.0 
initial A 0.9999 
initial D 5.01 
prediction cutoff 0.001 

Table 5.4: LWPR parameters for learning 3-link biped walking using full body 
state. 

on-board robotic sensors. The goal of this experiment is to use an existing 

control policy to train a new control policy based on the full body state of the 

robot. 

Methodology 

The initial experiment is set up in the same manner as in Section 5.1. A control 

policy 7rQ is learned based on the five human trials. A second control policy np 

is defined with the parameters as outlined in Table 5.4. Note that some of these 

parameters, A and D are different from the first experiment. The larger initial 

D value means smaller receptive fields. With smaller fields and higher input 

dimensions, each field is activated by fewer input training points. The higher 

A value allows each receptive field to retain more knowledge of previous data 

points as part of it's local linear model. The key difference for this controller is 

that the input state is specified as the full body state (x,y,y,61-3, #1:3), which 

includes all dimensions, exclusive of absolute horizontal position. 

The simulation is setup in an episodic learning environment. Each trial 

consists of allowing na to control the robot and walk to a terminal distance of 

2m. The state history, sampled at 24 Hz, for the entire trial is used as training 
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data to the 7173 control policy. After every 100 trials the control is switched to 

use 7T/3 and the quality of the resulting policy is evaluated for 10 trials. 

Results 

The quality of the second control policy np was very dependent on the LWPR 

parameters shown in Table 5.4. Both the initial distance matrix D and the 

initial A had a large impact on the learning rate of the control policy. With 

the parameters that are outlined in Table 5.4 the control policy np capable of 

generating a stable walk cycle was learned in 900-1100 trials. 

Discussion 

The higher dimensionality of the control policy, np, requires more training data 

to develop a robust and stable control policy. The LWPR algorithm was able to 

reject irrelevant dimensions and there were 4 projections per receptive field, on 

average. The (d, d) projection used in the first experiment seems to imply that 

two projections should be enough to control the 3-link biped. However, d and 

d are measured relative to the stance foot, so during the walk cycle the values 

switch signs. This implies that during the two phases of the walk the stance hip 

angle and stance hip angular velocity are the important controlling variables. 

The sensitivity to the initial parameters was surprising, as all other exper­

iments were relatively immune to changes in these values. Further analysis 

should be performed to determine if inappropriate scaling of the training data 

was occurring, which would affect the underlying partial least squares regression. 

However, this experiment does show that if a suitable parametrization exists, 

such as our (d, d) projection, where rapid learning can occur, then a supervised 

learning task in a simulation environment can be used to create a control policy 

based on a perhaps more general representation of the state. 
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5.3 Improving the 3-link biped walking policy 

Having shown in Section 5.1 that the elements of the learning infrastructure we 

have created are capable of imitating a specific simple observed control policy, 

we are now interested in improving a policy that is represented as a set of 

receptive fields. 

G o a l s 

There is currently no guarantee that the observed policy is an optimal policy, 

or that it would even be a successful policy if the observations were of a slightly 

different configuration (e.g. different masses or leg lengths). We wish to use 

a policy search method to improve the existing policy to better meet some 

criterion. We chose to maximize the horizontal velocity of the walking cycle. 

The horizontal velocity for a given policy starting in state x is defined as 

J*W = | (5.2) 

where T is the time taken to travel a distance x. 

The optimal horizontal velocity starting from state x is denoted by J*(x), 

that is 

J*(x) = maxJ'r(x) (5.3) 
7T 

M e t h o d o l o g y 

There are a large number of optimization algorithms that can be employed 

when attempting to improve a policy. The method chosen for this experiment 

was Stochastic Policy Gradient Descent [48]. The intuition for this method is 

straightforward. A small random vector is chosen to modify the parameters of a 
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system. The policy is evaluated, and if it improves the change is kept, otherwise 

the opposite change is applied. This latter step is not used in our case, as it 

tended to force the biped out of the controllable region. 

At the beginning of each trial a random vector is drawn uniformly from 

the unit hypersphere. Each dimension of the vector is drawn uniformly from 

the unit hypercube. If the resulting vector lies within the unit hypersphere it 

normalized to lie on the surface of the hypersphere, otherwise it is rejected and 

each dimension is drawn from the unit hypercube again. This rejection sampling 

ensures that the direction of the perturbing vector is uniformly samples and is 

not biased towards the poles. 

Each element of the vector represents a modification to the mean out­

put value for a receptive field. For example, with seven receptive fields, a 

7-dimensional vector is created A7Tj ~ W(—1,1) and the result is normalized 

|A7r| = 1. This normalized vector is then scaled by another value M which is 

drawn from a Gaussian distribution with a mean of 5 and standard deviation of 

1: M <— AA(5,1). This scale factor is clamped to a range of [0,10] to keep the 

new policy guess close to the existing policy. The numbers represent degrees in 

our case. The clamping limits and the Gaussian distribution parameters were 

chosen through trial and error. They produce sufficient step changes to modify 

the behavior of the 3-link biped while remaining close to the existing policy. 

Each time the control policy is queried, the output from each receptive field 

is modified according to the appropriate element of An. A trial is terminated if 

the 3-link biped falls over (failure), time expires t > 10 (failure), or a distance 

of 2m is traveled (success). If a trial is successful then the average horizontal 

velocity is calculated: 

p r _ • _ 
"N ~ X N ~~ rp 

(5.4) 
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where a;AT is the terminal horizontal position and Tjv is the time taken for the 

trial. 

We let J be our current estimate of J*. If JN > J then the state history for 

the current trial is used as training data and applied to the LWPR representa­

tion, in exactly the same manner that the initial policy was trained. We present 

the state history as new training data, rather than modifying the regression pa­

rameters Po directly, so that the internal statistics of the learning algorithm are 

maintained in a consistent manner. This algorithm is outlined in Algorithm 5.1. 

Algorithm 5.1 Improve A Policy 
Input: An initial policy 7r and a maximum number of trials T > 1 
Output: An improved policy IT* 

7T 0 <— 7T 

7T* <— 7To 

Jo <— Simulate^) 
Jo 

N <- 1 
while N < T do 

A 7 r ~ W ( - l , l ) 
A7r <- A7r/ |A7r| 
M <- A/"(5,1) 
TTN <- -K* + MAn 
JN <— Simulate(7TAf) 
if JN > J then 

Train (7Tiv) 
7T* *— TTN 
J <— JN 

end if 
N <- N + \ 

end while 
return 7r* 

Results 

Out of a total of five runs of the policy improvement algorithm, each consisting 

of T = 100 trials, the overall improvement of the policy is plotted in Figure 5.4. 

Each trial represents a new control policy n. The mean overall improvement 
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Figure 5.4: Policy improvement results from five trials consisting of 100 episodes 
each. The mean average velocity improves from 38 cm/s to 58 cm/s. Note the 
large differential between minimum and maximum on the individual trials, a 
result of the random nature of Stochastic Gradient Policy Descent 

within 100 episodes is 52%. We should note the high variability, as shown by the 

min-max bars, for the individual trials. The random nature of the stochastic 

policy gradient descent algorithm requires numerous restarts to generate an 

improved policy. 

D i s c u s s i o n 

This experiment shows that locally weighted control policies that are initialized 

by one means can be improved with respect to particular criteria using a form 

of policy search. By presenting improvements as new training data we maintain 

the internal statistical representation of the learning models without having to 

directly manipulate the regression parameters. 
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Figure 5.5: The 5-link walking biped. Two legs with knees are connected to the 
hip with pin joints. The thighs and calves for this model are 0.45m long. Most 
of the mass is carried in the hips, 70kg, while each leg has a mass of only 9kg. 
All angles are measured relative to the parent frame, as noted by 61...5 

5.4 Supervised learning of 5-link walking from 

finite-state-machine control observations 

The results of Section 5.1 and Section 5.3 are encouraging. We now move on 

to experiments involving a less stable robot design, a planar 5-link biped. This 

robot has more degrees of freedom to control, as it has knees. The robot is very 

unstable, given its lack of ankles and so the only method of maintaining balance 

is to take steps. Figure 5.5 shows the model. 

Goals 

For this experiment we are looking to achieve the following goals. First, can 

the locally weighted policy technique support more degrees of freedom and deal 

with a more difficult problem. Second, can an existing control policy be learned 

from the direct expression of that policy? 
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Parameter Value 
pelvis width 0.1 m 
thigh length 0.45 m 
calf length 0.45 m 
pelvis mass 70 kg 
thigh mass 5 kg 
calf mass 4 kg 
hip Kp 300 N/rad 
hip Kd 30 Ns/rad 
knee Kp 300 N/rad 
knee Kd 30 Ns/rad 
ground Kp 70,000 N/m 

\ ground Kd 4,000 Ns/m 

Table 5.5: Physical simulation parameters for a 5-link walking biped 

M e t h o d o l o g y 

The 5-link walking biped has a concentrated mass at the hips, and two legs 

with knees, as shown in Figure 5.5. The physical parameters are outlined in 

Table 5.5. The 5-link biped has an existing controller that is based on a pose 

control graph similar to the one developed in [52], and described below. 

The training data is provided by an existing control policy that has a pose 

control graph structure of the form §i = fi(x) for the joints numbered 1.. .4. 

The joint numbering corresponds to the left hip, left knee, right hip and right 

knee. For the purposes of this thesis, the specific details of the reference func­

tions fi(-) are not relevant, as we are interested in learning control policies from 

partially observable systems. 

The existing pose control graph controller is essentially an open loop control 

policy. Each state is defined by a target pose parametrized by desired speed, 

stride length, and velocity. State transitions occur either after a specified period 

of time has elapsed (timing states) or the swing foot contacts the ground (contact 

states). A total of four states exist, corresponding to the states left foot takeoff 

(LTO), left foot plant (LFP), right foot takeoff (RTO), and right foot plant 
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Figure 5.6: A walking cycle can be decomposed into four distinct phases: left 
foot takeoff (LTO), left foot plant (LFP), right foot takeofT (RTO), and right 
foot plant (RFP) 

(RFP). This is shown graphically in Figure 5.6. 

Initially we attempted to learn the control policy directly but this exposed a 

weakness in the LWPR framework. Discontinuities are not handled particularly 

well in the LWPR framework, as the distance optimization algorithm works 

aggressively to shrink receptive fields away from the discontinuities that exists 

at the state transitions. 

This failure led to the creation of an enhanced pose control graph structure, 

which we term the policy control graph. The policy control graph, rather than 

having each node in the graph represent a pose, in our framework it represents 

a control policy. Termination criteria for the policies are time based for the left 

foot and right foot take off (LTO and RTO) phases, and contact based for the 

left foot and right foot placement phases (LFP and RFP). These are identical 

to those in the pose control graph, though the duration of the take off phase is 

slightly shorter in the policy control graph (0.2 vs. 0.3 seconds) as this provided 

a more robust walking controller. 

Learning is now accomplished by sampling the pose control graph output 

over an expected range of the parametrized state space (d, d). The original pose 

control graph expresses a desired pose, and in this implementation contains a 

small amount of feedback related to the stride length d and horizontal velocity 

d. We uniformly sample across the expected range of (d, d) and train a set of 
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Figure 5.7: The policy control graph structure. Each phase of the walk cycle 
is now represented by an approximation of the original control policy and thus 
has its own distinct set of receptive fields. 

Parameter Value 
diagonal only true 
meta learning true 
meta learning rate 15 
penalty 1.0 x IO7 

initial a 10.0 
initial A 0.99999 
initial D 25.01 
prediction cutoff 0.001 
samples 100,000 

Table 5.6: LWPR parameters for learning 5-link biped walking 

receptive fields using the LWPR algorithm. The range is slightly larger than that 

observed to provide robust control in the existing pose control graph structure. 

The control policy for each of the hips and knees is learned independently for 

each of the four poses represented in the original pose control graph. The LWPR 

learning parameters are shown in Table 5.6. These parameters are slightly 

different from those presented in previous experiments. No attempt has been 

made to find the lower limits to learning the pose control graph structure. 

Results 

The resulting walk cycle generated from the policy control graph learned using 

this technique produced walk cycles that were qualitatively indistinguishable 

from the original pose control graph. Different walk cycles can be generated 
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Figure 5.8: A comparison of a walk cycle generated from a pose control graph 
and the learned policy control graph 

with horizontal velocities that range from — 0.4m/s to 1.2m/s. Each distinct 

speed requires learning a different control policy with a new set of training 

data. A comparison of the pose control graph (original) walk cycle compared 

to the learned policy control graph is shown in Figure 5.8. Note the slight 

difference in the pose control graph output with respect to the learned policy 

control graph functions. The difference is attributable to the difference in take 

off phase duration, resulting in the learned policy control graph having a slightly 

faster gait than the original policy. 

D i s c u s s i o n 

It is not really surprising that the learning algorithm can replicate the smooth 

control provided by the pose control graph. What this experiment has shown is 

that the policy control graph structure is capable of controlling more complex 
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movements in unstable and underactuated systems. It has also highlighted the 

difficulties in trying to model systems with discontinuities. We have chosen 

to solve this problem through the use of a finite state machine, represented 

by the policy control graph,' to distinguish between the distinct phases of the 

motion. Other methods, such as those proposed in [51] have also been proposed 

to automatically decompose an observed system into a set of models. 

One limitation of the approach taken in this experiment is that we still need 

access to a working controller in order to collect the data. This situation is rare 

and led us to experiment with deriving a control policy from direct kinematic 

descriptions of data. We allowed the existing control law to run through 100 

trials each of which had a random external force in the range of [—20,20] Nm/s 2 

applied horizontally to the center of mass. Full state information was recorded 

along with the output torques for each joint and the phase of the walk cycle that 

the sample corresponded to. A policy control graph was trained using this data. 

The resulting walk cycle, though it was capable of making the planar 5-link biped 

walk, was not nearly as stable as the existing control law. This is likely due 

to poor modeling of the torques required by the stance leg's knee joint which 

must remain locked to prevent the robot from falling. The quality of the learned 

model is sensitive to the simulation time step and control sampling frequency. 

The method shows promise and will likely be explored in the future, using 

motion segmentation techniques such as Kinematic Centroid Segmentation [17] 

to derive phase information and inverse dynamics techniques [11] to compute 

required torques. 
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5.5 Learning to transition between different 

walking speeds on a 5-link biped 

The preceding experiments have shown that it is possible to learn a skilled 

task, in this case walking, on different bipeds and with different means (existing 

control law, human observation, and kinematic description). A robot that can 

perform a single task, while useful in assembly plant operations, is not particu­

larly interesting when considering a larger context of a robot that can interact 

with its environment. 

G o a l s 

This final experiment has two goals. The first goal is to determine if it is possible 

to switch between different control policy graphs at natural transition points. 

For example, can we switch from left foot takeoff (LTO) at one speed to left 

foot plant (LFP) at another speed, either faster or slower. The second goal 

is to automatically discover feasible transition points between existing control 

policy graphs. Given working control policies for different motions, how do we 

go about creating a probabilistic transition matrix between graphs? We wish to 

define a transition matrix that provides probability of successfully transitioning 

between two nodes of different policy control graphs. 

M e t h o d o l o g y 

A family of 11 policy control graphs for biped walking were created, based on 

the results of Section 5.4. These walking controllers were parametrized by speed 

such that the average velocity generated by policy iTi is strictly less than the 

average velocity generated by policy ffi+i-

The first goal of the experiment is tested by allowing the user to set a desired 
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Figure 5.9: Transitioning between policy control graphs. The solid lines repre­
sent the usual transitions, successful with probability 1. The dotted line repre­
sents a test transition between the two different policy control graphs. 

velocity interactively. At the termination of each node in the policy control 

graph the current velocity is compared to the desired velocity. If the desired 

velocity is less than the current velocity then the next slower control policy 

graph is chosen. If the desired velocity is greater than the current velocity then 

the next faster control policy graph is chosen. Only a single step in speed is 

allowed at each termination test. 

For the development of the probabilistic transition matrix, the following 

technique is used. Transitions between nodes of a policy control graph occur 

when the active node reaches its termination criterion. Normally the next node 

would correspond to the next phase of the walk cycle. With a set of policy 

control graphs we wish to potentially transition to a node in a different policy 

control graph. A simplified example with just two policy control graphs is 

depicted in Figure 5.9. The dotted line represents a potential new transition. 

A default transition matrix of dimension 55 x 55 was created. The 55 dimen­

sions correspond to each of the 4 phases of the walk cycle, plus an additional 

start phase that corresponds to the beginning of a new trial and always transi­

tions to left foot takeoff (LTO) when contact with the ground is made. These 

five phases exist for each of the 11 speeds of the policy control graph that we 

have generated. The normal probability transitions were encoded, such that 

the natural cycle of each policy control graph was maintained. That is, for each 
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policy 7Ti, there are four nodes, corresponding to the four phases of the walk 

cycle. Each node has a probability of 1 that it will successfully transition to the 

next node in the normal cycle. A portion of this default matrix is shown below. 

The fifth (start) phase has a transition probability of 1 to the LTO phase of its 

policy control graph. 

T = 

I 0 1 0 0 0 

0 0 1 0 0 

0 0 0 1 0 

1 0 0 0 0 

\ 1 0 0 0 0 

\ 

A systematic exploration of transitions could be created, where test tran­

sitions are setup between all possible pairs of nodes in the graph. This would 

be thorough, but the simulations would have to be exhaustive in order to start 

populating the higher speed policies. Instead a random test connection is made 

so that some connections between all policy control graphs are examined early 

in the exploration phase. 

Prior to each trial a random connection with a probability weight of 1 is 

made between two arbitrary nodes in the family of policy control graphs. The 

restrictions on placing this temporary connection were that nodes can not con­

nect to themselves, and they can not connect to another node in their own policy 

control graph (i.e. we want to transition to a different speed walk). When se­

lecting the next node, the transition matrix is examined and the next node is 

selected based on the cumulative probability within the transition matrix. 

The simulations were setup to conduct trials, terminating when the biped 

fell down (failure), simulation time exceeded 10 s (success), or the robot traveled 

more than 5 m (success). Each trial started from the same initial stationary 
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pose. When a trial is terminated it is evaluated in terms of success or failure. 

If the temporary connection between policy control graphs was used at some 

point in the trial, and the trial was a success, then the appropriate entry in the 

transition matrix is incremented by 0.01. The simulations are allowed to run 

for 7,500 episodes to populate the values in the transition matrix. 

R e s u l t s 

The interactive active aspect of this experiment produced very favorable results. 

The different policy control graphs are able to transition to the next natural 

phase in adjacent speeds at all phases. The model does not need to recover in 

any way, that is there is no stumble or disruption of the walk cycle. In this 

manner it is possible to have the robot walk backwards and forwards in the 

simulation essentially indefinitely. 

For the development of the probabilistic transition matrix the following re­

sults were observed. When left to execute, a transition matrix is built up that 

supports transitioning between families of controllers. Some of the transitions 

are unstable, and while they do not produce a fall, end up putting the biped 

through a small recovery phase (which it is capable of doing due to its robust­

ness). Think of stubbing your toe, you don't fall down unless on your recovery 

step you also stub your other toe. These unstable transitions are identifiable by 

a probability p < 0.5 when all values have been normalized. The 0.5 threshold is 

determined arbitrarily, to indicate that the robot fails to transition more often 

than it succeeds. 

If left to run for too long, then too many possible transitions exist the next 

node selection can lead to hopping from family to family too often and the biped 

falls over. This could be changed through a modification of the transition law 

to favor same family transitions only until the user requests a different speed. 
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Empirically, it seems that more than 15,000 trials results in a probabilistic 

transition matrix that fails to produce a robust walk cycle. 

D i s c u s s i o n 

The results from this experiment were successful. The biped is capable of tran­

sitioning to both faster and slower walk cycles from every node of each policy 

control graph. The most successful transitions are those that branch to the 

next natural phase in an adjacent speed policy control graph. Random tran­

sitions to arbitrary nodes in any policy control graph are possible, though the 

robot requires at least one complete walk cycle to recover from any induced 

perturbations. 

A limitation in extrapolating from the results of this experiment is that the 

motions that were part of the transition matrix were all very similar, that is 

they are all walk cycles of varying speeds. The addition of more types of motion 

such as walking up or down stairs or a hop would add considerable variation to 

the possible motions and yield more interesting results. 

The receptive field implementation also allows for the inter-state transition 

to occur not just at termination of state nodes in the policy control graph but 

also in overlapping receptive fields of different motions. This would require 

all control policies to work with the same projection of the system states (i.e. 

(d, d)) or the full state x. That is, if a jump is described using a different state 

parametrization it can still be tested for safe transitions with the method used 

in this experiment. 
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Conclusions 

As noted in the introduction, the study of motor control is a large inter­

disciplinary area of research. There are many ways to view the problem and 

equally as many avenues for trying to replicate skilled motion on robots. This 

thesis has explored a specific subset of approaches, based on imitation-based 

learning and locally weighted control policy representations. This thesis has 

not fully solved the problem of teaching a robot how to walk. However it has 

shown that recent advances in areas of machine learning can be successfully ap­

plied to this very challenging problem. The specific contributions of this thesis 

are outlined in the following section, followed by a discussion of future research. 

6.1 Contributions 

Locally Weighted Projection Regression 

We have shown, through a series of experiments, that locally weighted projection 

regression is capable of learning control policies in under-actuated robotic sys­

tems. Previously this learning method had been primarily used to learn aspects 

of motor control to fully actuated systems (e.g. a robot arm). While similar in 

nature to [30], we have shown that higher degree of freedom robots, including 

those with knees, can be controlled with policies represented by LWPR. 
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Policy Control Graph 

We are no longer limited to simple open-loop control systems, but can direct 

coordinated actions through the ability to transition between multiple control 

policies. Each node within the policy control graph represents a complete control 

policy that has full feedback information. 

We have shown that transitions between control policy graphs may be de­

fined at the node level. An approach to evaluating the probability of success 

of a transition was described, with the result being a probabilistic transition 

matrix indicating the likelihood that a particular switch in the active control 

policy graph will succeed. We also showed that transitions to the next natural 

phase in a walk cycle in adjacent speeds of policy control graphs are always 

successful. This opens the possibility of performing motion planning using the 

information regarding transition capabilities. 

6.2 Future Work 

Animation with Physics Based Characters 

The extension to three dimensional models and simulation is an obvious piece 

of future research. The use of planar bipeds in this thesis greatly reduces the 

simulation time, making the exploration of ideas significantly faster. With the 

establishment of some of the fundamental ideas and the presence of a working 

learning infrastructure the extension to higher dimensions should be straight­

forward. 

The use of higher degree of freedom models is also a next logical step. The 5-

link biped used in some of the experiments has a total of four controllable degrees 

of freedom in a twelve dimensional state space. Character models used in video 

games have closer to twenty-seven controllable degrees of freedom in a sixty 
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dimensional state space. The use of LWPR should help, as the computational 

complexity has been shown to be linear in input dimensions, not exponential. 

Improving Observation 

In the experiment that learned a control policy from observed joint torque data 

we had access to the actual target joint angles produced by an existing control 

policy. This is generally not the case and we would like to extend our learning 

framework to support inverse dynamic calculations based on observed kinematic 

motion (i.e. motion capture data). 

The use of techniques such as the Articulated Body Method [11], or the use 

of space-time constraints [58] to generate joint torques for an observed motion 

would provide us with a wealth of new training examples, accessible through 

public motion capture databases and our own motion capture facility. 

Improving Optimization 

The optimization techniques used in this thesis are fairly straightforward, and 

are not particularly fast when applied to higher dimensional problems. There 

exist sophisticated nonlinear optimization algorithms which could potentially 

be employed to improve the quality of the control policies. A technique such 

as Stochastic Meta Descent [43] is a very fast technique that works in high 

dimensions. 

Learning motion of points of support 

Balance is related to the center of mass of an articulated figure and the points 

of support. An exploration of how the points of support are placed in relation 

to the dynamics of the center of mass is worth investigating. The discontinuity 

of this function suggests that recent work in [51] might be required. 
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