
Imitation-based Learning of Bipedal Walking Using
Locally Weighted Learning

by

Kevin Loken

B.A.Sc., Simon Fraser University, 1992

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

The Faculty of Graduate Studies

(Computer Science)

The University Of British Columbia

August 2006

© Kevin Loken 2006

11

Abstract
Walking is an extremely challenging problem due to its dynamically unstable
nature. It is further complicated by the high dimensional continuous state
and action spaces. We use locally weighted projection regression (LWPR) as a
locally structurally adaptive nonlinear function approximator as the basis for
learned control policies. Empirical evidence suggests that control policies for
high dimensional problems exist on low dimensional manifolds. The LWPR
algorithm models this manifold in a computationally efficient manner as it only
models those states which are visited using a local dimensionality reduction
technique based on partial least squares regression.

We show that local models are capable of learning control policies for physics-
based simulations of planar bipedal walking. Locally structured control policies
are learned from observation of a variety of different inputs including observa­
tion of human control and existing parametrized control policies. We extend
the pose control graph to the concept of policy control graph and show that
this representation allows for the learning of transition points between different
control policies.

Kevin Loken

University of British Columbia
August 2006

iii

Contents

Abstract ii

Contents iii

List of Tables v

List of Figures vi

List of Algorithms vii

Acknowledgements viii

1 Introduction 1
1.1 Imitating skillful human motion 1
1.2 Why is motor control hard? 2
1.3 Recent Progress 4
1.4 Goals 6
1.5 Overview of Approach 7
1.6 Contributions 10
1.7 Thesis Organization 10

2 Definitions and Related Work 12
2.1 Definitions 12
2.2 Imitation-based Learning 18
2.3 A Review of Walking 20

3 Dynamic Simulation 24
3.1 Overview • 24
3.2 Equations of Motion 25
3.3 Joint Proportional-Derivative Control 26
3.4 Ground Model 26

4 Locally Weighted Learning 29
4.1 Locally Weighted Projection Regression 31

Contents iv

5 Imitation-based Learning Experiments 38
5.1 Supervised learning of 3-link biped walking from observation of

human control 38
5.2 Supervised learning of 3-link biped walking policy based on full

body state 44
5.3 Improving the 3-link biped walking policy 47
5.4 Supervised learning of 5-link walking from finite-state-machine

control observations 51
5.5 Learning to transition between different walking speeds on a 5-

link biped 57

6 Conclusions 62
6.1 Contributions 62
6.2 Future Work 63

Bibliography 65

List of Tables

4.1 Glossary of symbols 33

5.1 Physical simulation parameters for a 3-link walking biped 40
5.2 Details of trials for 3-link biped 40
5.3 LWPR parameters for learning 3-link biped walking 44
5.4 LWPR parameters for learning 3-link biped walking using full

body state 45
5.5 Physical simulation parameters for a 5-link walking biped 52
5.6 LWPR parameters for learning 5-link biped walking 54

vi

List of Figures

1.1 Depiction of two planar biped models 7
1.2 Block diagram of simulation loop 8
1.3 Graphical layout of receptive fields to control a 3-link biped . . . 9

2.1 Projection of full body state to a smaller dimensional state . . . 14
2.2 Block diagrams of simple open- and closed-loop control systems . 16

3.1 Block diagram of simulation loop denoting important components 24
3.2 An example text description of a biped 25
3.3 Depiction of virtual spring and damper for PD control 27
3.4 Depiction of ground reaction forces as virtual spring and damper 28

5.1 Detailed view of 3-link biped 39
5.2 Learned control policy for left hip 42
5.3 Learned control policy for right hip of 3-link biped 43
5.4 Graph of improved horizontal velocity after Stochastic Policy

Gradient Descent optimization 50
5.5 Detailed depiction of the 5-link walking biped 51
5.6 A walk cycle decomposed to four distinct states 53
5.7 The policy control graph structure, associating a policy with each

phase of the walk cycle 54
5.8 State history plot of pose control graph walk cycle and learned

policy control graph 55
5.9 Graphical depiction of temporary link inserted between arbitrary

nodes of a family of policy control graphs 58

vii

List of Algorithms
4.1 Initialize a receptive field 34
4.2 Predict with novel data 34
4.3 Locally Weight Projection Regression 35
4.4 Compute activation and update the means 36
4.5 Compute current prediction error 36
4.6 Update the local model 37
5.1 Improve A Policy 49

Vlll

Acknowledgement s

I wish to thank my supervisor, Michiel van de Panne, for his continuous enthu­
siasm, his interest in so many areas of computer science, and his willingness to
let me go off on tangents for weeks on end. I also wish to thank my second
reader Ian Mitchell for his thorough review of this thesis. The clarity of many
of the explanations is due in large part to his comments.

No acknowledgment section is complete with the requisite thanks to previous
bullpen mates and current lab mates. Mike Yurick, David White, Tyson Brochu,
Kang Kang Yin, and Phillipe Beaudoin made it a great pleasure to venture on
to campus each week.

Special thanks go to my parents for instilling in me a love of learning from
a very young age. Last, but definitely not least, I have to thank my family —
my wife Susan, children Sarah, David, Andrew, and Graham — for allowing me
the opportunity to leave my job and come back to school.

Chapter 1

i

Introduction

Humanoid robots have long been a fascination of man-kind. First visualized in

the 1926 silent movie Metropolis [23, 31] the vision of intelligent and dynamic

humanoid robots has been a powerful symbol. Yet, despite nearly eighty years

of these images we are only now beginning to see some progress in mobile hu­

manoid robots. Engineering marvels like the Honda Asimo [49] are impressive

in their accomplishments, able to travel at a steady walk, run at up to 6 km/h,

walk up and down stairs, and perform simple tasks such as pushing a cart or

carrying a tray of coffee mugs. The Honda team has even made Asimo perform

traditional Japanese folk dances [33]. However, these impressive machines are

still sorely lacking in truly dynamic maneuvers such as those involved in playing

any ordinary game of soccer. These limitations are imposed both by the limits

of the electromechanical design of the system and the inherent complexity of

the control algorithms which must be developed.

1.1 Imitating skillful human motion

The imitation of skillful human motion is useful both from a computer animation

stand point and in the realm of robotics. For computer animation, the ability to

create physically realistic motion quickly and easily is desirable both in the film

industry and in the interactive entertainment (video game) industry. Currently

animation is either generated by hand through the talents of skilled animators

Chapter 1. Introduction 2

or it is replicated from human motion capture data.

The former method is time consuming and expensive, and if certain aspects

of a motion change then whole new motion segments need to be created. The

use of motion capture aids in this regard, but it comes with its own issues: the

actor used to generate the motion is not necessarily of the same size as the avatar

that will display the motion. How does an ogre move anyway? Having avatars

that are capable of performing realistic-looking, and physically plausible, motion

would greatly improve the quality of the animation in interactive entertainment.

In robotics, projects such as the NASA Robonaut [2] aim to produce hu­

manoid robots that are capable of performing the same actions as the astro­

nauts they would replace. This raises the question of how you create a control

system that can replicate the many different tasks the Robonaut would have to

perform, from performing a space-walk to using a screwdriver.

The study of how humans plan and execute skilled motion is a vast area

of research that is extraordinarily interdisciplinary in its nature. Researchers

from such diverse fields as anatomy, control theory, robotics, machine learn­

ing, bio-mechanics, kinesiology and neuroscience all study the problem. Each

field approaches the problem with its own set of techniques, motivations and

constraints.

1.2 Why is motor control hard?

On the face of it, one would think that motor control is not a particularly

difficult problem to solve. After all, we all learn to perform hundreds, possibly

even thousands, of skilled actions in our lifetime. We learn to walk at around

one year of age purely from observation and trial and error. We walk without

thinking about it, and are capable of navigating varying terrain with ease. This

apparent ease with which we all perform these actions belies the underlying

Chapter 1. Introduction 3

complexity of the problem.

The goals of each field change the underlying assumptions that researchers

make, and the types of approximations that they bring to a problem. While a

computer scientist might be interested in applying dynamics to a generated com­

puter animation to make it more realistic looking, a bio-mechanics researcher

might be interested in exactly computing forces and torques involved in a mo­

tion for the design of a new prosthetic limb. These two different goals will yield

different techniques for attempting to solve a particular dynamics problem, one

concerned with speed of computation, the other with accuracy of results.

M o d e l i n g Issues

There are many different ways in which a human can be represented for a

simulation. Common representations use idealized joints and idealized motors

to power motions. For example, the knee joint is usually modeled as a single

degree of freedom joint with an idealized motor that can move the calf. In

reality, the joint consists of four bones coupled together through flexible tendons

and muscles, cushioned by cartilage and powered through the contraction of

hundreds (thousands) of antagonistic and synergistic muscle fibers.

C o n t r o l Issues

A human is also an extremely high dimensional mechanism. When performing

an action such as walking, hundreds of muscle fibers are activating in a coor­

dinated fashion to drive the overall motion while maintaining balance. There

are easily more than one hundred controllable degrees of freedom embedded in

an equally as large state space. Even idealized models of humans such as video

game characters may have as many as thirty controllable degrees of freedom

embedded in a sixty dimensional state space. This brings up Bellman's curse of

Chapter 1. Introduction 4

dimensionality [5] which states that complexity of control grows exponentially

in the number of dimensions.

With a motion such as walking we are also faced with a credit assignment

problem. When a robot falls over it is usually not a result of the action just

taken, but as the result of some action taken in the past. When a control

strategy fails identifying the "wrong" action is nearly impossible. Learning

algorithms must often employ techniques such as eligibility traces [46] to update

their internal state. This ultimately slows the learning process requiring many

more trials to reach a stable control strategy.

S i m u l a t i o n Issues

Once a researcher has chosen their approach and built their computing infras­

tructure, they can then go about simulating the physics of human motion. Un­

fortunately, the problems do not end here. Depending on the physical represen­

tation used and the detail used in the model (e.g. motors vs. muscles, inclusion

of tendon dynamics) simulation times may be long. It is also possible that the

simulation will not produce the desired result. Sources of failure can be due

to defects in the coding of the algorithm, numerical instability, or the inherent

instability of the model under control. With a simulation of dynamically unsta­

ble action such as walking, if there is even a single error in one component the

robot is likely to lose balance or fail in its task in some other way.

1.3 Recent Progress

Given that trying to teach a robot how to perform a skilled motion like walking

seems so difficult, why is now such a good time to be involved in this area of

research? The interdisciplinary nature of motor control research is both a curse

and a blessing. The curse is that in order to make progress on the problem we

Chapter 1. Introduction 5

must gain an understanding of several different areas of research. The blessing

is that researchers from multiple fields are tackling the problem from different

points of view. Promisingly we are beginning to see convergence in the various

computational, mechanical, neuro- and biological aspects of motor control.

Over the last fifteen years there has been significant advancement in the

control of walking robots. In two seminal papers Tad McGeer showed that a

purely passive mechanical system is capable of walking, provided it is given

enough energy to overcome friction [26, 27]. This spawned an area of research

known as passive dynamic walking that aims to leverage the natural mechanics

of leg configurations to produce highly efficient walk cycles. Trajectory tracking

approaches from robotics, modulated with zero-moment point (ZMP) balance

control, have been successfully applied to create walking robots such as Honda's

Asimo [47, 49].

Moore's Law is a blessing and in the last decade computing power has in­

creased substantially so what were once intractable simulation problems are now

routinely solved in a few seconds. This allows numerical optimization techniques

such as space-time constraints [58] to be used to generate physically valid joint

torque trajectories.

Machine learning techniques have also improved substantially in the last

decade, and various imitation based learning algorithms exist that can generalize

from relatively few points of observed data.

Lastly, the rise of video games and computer generated animated films has

pushed the advancement of techniques for recording human motion. Mechanical,

magnetic and optical methods have been perfected for observing human motion

and generating joint angle trajectories from the recorded motion. These mo­

tion capture systems have allowed researchers to capture many types of human

motion and millions of frames of animation quickly and easily. This provides a

Chapter 1. Introduction 6

vast repository of human motion data that can be used as reference solutions

when developing control techniques.

1.4 Goals

The grand vision of this thesis is to find a method for providing robots with the

ability to learn the way humans do, through observation and trial and error.

The learned information should then be placed within a framework that lets

controllers be shared and that thus endows robots with multiple skills that can

be sequenced in time.

To reduce the scope of this problem, this thesis tries to answer the following

more specific questions:

• Can control strategies involving balance, such as walking, be learned from

observation of a known solution? This observation can take at least two

forms, either purely kinematic observations like motion capture data or

through known control actions.

• Can locally weighted learning techniques such as locally weighted projec­

tion regression (cf. Chapter 4) be applied effectively for difficult control

tasks involving under-actuated systems?

• Can the locally weighted learning techniques be used to support transitions

between different classes of motion, such as walking at different speeds?

The previous work related to these questions will be discussed in Chapter 2

and Chapter 4.

Balance is a challenging problem, as the control strategy needs to incorporate

the numerous small corrective actions that are layered on top of the large scale

gross motor movement of walking. It is unclear whether a learning algorithm

Chapter 1. Introduction 7

II

(a) A 3-link planar biped. (b) A 5-link planar biped with knees.

Figure 1.1: The two planar biped models used in the experiments

will be able to identify these corrective behaviors given the various sources of

noise within the observations of motion. The various locally-weighted learning

algorithms that exist seem promising in their ability to control certain types of

robotic systems, though to date they seem to have been applied to fully actuated

systems.

Most current work in motor control also only addresses skills in isolation such

as walking at a fixed speed. Walks of different speeds provide a well defined

family of motions for testing the ability of learned locally defined control policies

to cope with transition motions.

1.5 Overview of Approach

Models

Throughout the experiments presented in Chapter. 5 the two models shown

in Figure 1.1 were used. These are planar biped models, restricted to two

dimensional motion. This use of planar bipeds allows for much faster simulation

times, with the focus being on the learning of control policies from observations.

Chapter 1. Introduction 8

Control Policy
0

Joint PD Control
r

Simulation X
Control Policy Joint PD Control Simulation Display

Figure 1.2: A simple block diagram of the simulation. The bold block denoting
the control policy is the main focus of this thesis. We wish to use observation
data to learn the control policy IT.

C o n t r o l S t r u c t u r e

The overall simulation structure is shown in Figure 1.2. Observations of a control

policy are used in a supervised learning algorithm (cf. Chapter 4) to create an

approximate control policy jr. The control policy outputs target joint angles, 9,

based on the current system state x or a projection of the current system state.

These target joint angles are passed to a joint proportional derivative controller

which converts them to joint torques r. The joint torques are used by the

simulation to compute accelerations, including forces generated by interaction

with the ground (cf. Chapter 3). The resulting accelerations are integrated with

a simple forward Euler scheme.

The details of each block are presented in the associated chapters. The pri­

mary focus of this thesis is on the mechanism of learning the control policy

7r and the details of the other blocks could be replaced with equivalent sys­

tems, as there are many different choices and compromises within each of the

implementations.

L o c a l l y W e i g h t e d C o n t r o l P o l i c i e s

We are attempting to learn a control policy of the form

6 = ir{x) (1.1)

The observation data is assumed to contain examples of 7r(x), thus we have

Chapter 1. Introduction 9

Left Hip

VPS

-4 -3 - 2 - 1 0 1
d

Figure 1.3: An example of how local linear models are created in the projected
state space of a 3-link planar biped. The large ellipses represent the 0.1 weight
contour of a Gaussian kernel function (Equation 4.2), and the small circles
represent the centers of the receptive fields.

a supervised learning problem. The control law w(x) is extracted through ob­

servation of joint torque trajectories during a walk cycle. Direct access to these

joint torques is available in our simulations, though inverse dynamic techniques

can be used to calculate them if a purely kinematic description of motion is

available, such as motion capture data. The locally weighted projection re­

gression algorithm builds locally linear models that approximate the non-linear

function in Equation 1.1.

During the training of the locally weighted models, receptive fields are cre­

ated that define the area of support for the locally linear approximations. An

example of how these fields are created is shown in Figure 1.3. The contours

are for a 10% weight, as defined by Equation 4.2. When receptive fields over­

lap, a weighted average of the linear approximations is used as the result, see

Equation 4.3.

Chapter 1. Introduction 10

1.6 Contributions

The main contribution of this thesis is to show that locally weighted control

policies are capable of controlling the walking gait of biped robots. The learned

control policies are trained with observations of both human control and existing

hard-coded control policies. The use of these techniques in control of walking

has been limited to active walk gaits, with starting and stopping being handled

through specialized controllers. Our application is capable of learning to initiate

a walk cycle in addition to controlling the periodic gait.

We also extend the pose control graph [52] to that of the policy control

graph. We show that this representation allows the development of transition

points between different speeds of walk cycles allowing for planning of motion.

This is shown through control of a planar biped simulation walking back and

forth between two points.

1.7 Thesis Organization

The target audience of this thesis is a computer scientist experienced in kine­

matic animation techniques who is interested in applying this knowledge and

expertise towards dynamic motion. Since motor control is such a difficult prob­

lem, and draws from so many different subject areas, the early parts of this

thesis provide overviews of key areas that should provide sufficient background

to understand the experiments performed in this thesis.

The rest of this thesis is organized as follows. Chapter 2 begins with def­

initions of many of the terms and concepts used in dynamics, motor control

and machine learning. This is followed by an overview of related research which

spans a large number of areas. Much of the related work is necessarily presented

in terms of a high-level review with references representative of approaches,

Chapter 1. Introduction 11

rather than as an exhaustive list, with a few exceptions. An overview of the

dynamic simulation used in this thesis is provided in Chapter 3. The specific

machine learning algorithm, locally weighted project regression, is discussed in

Chapter 4. Experimental results are presented in Chapter 5 and conclusions are

presented in Chapter 6.

12

Chapter 2

Definitions and Related

Work

The study of human walking covers a broad collection of disciplines, including

bio-mechanics, robotics, kinematics, dynamics, signal processing and machine

learning. We are concerned with the application and extension of existing tech­

niques drawn from these many disciplines.

This chapter provides sufficient definitions and background material for an

overall understanding and context of the work that was performed for this thesis.

Readers who are interested in gaining a greater understanding of how individual

components work should consult the bibliography and the various papers refer­

enced throughout this section. There are also numerous conferences (CLAWAR,

IROS, ICRA) that present current research on this and many related topics.

Additional information regarding the machine learning techniques used in

this thesis are presented in Chapter 4.

2.1 Definitions

Because the study of human walking draws on so many different disciplines,

there are often references to terms which may be unfamiliar to the reader. Many

terms are also often overloaded with different meanings (e.g. "state"). Thus we

provide specific explanations for the terms used throughout this thesis.

Chapter 2. Definitions find Related Work 13

System State

The state of a system is defined as the smallest set of numbers that must be

known in order that its future response to any given input can be calculated

from the equations of motion [44] for a single point in time. This is a Markov

model of the motion. This thesis uses articulated figures to represent ideal­

ized virtual humans. The hierarchical skeleton is a collection of local frames,

each characterized by the position and orientation with respect to its parent

frame. The set 6 = (#i,f?2, • • • ,&N) of parameters corresponding to the degrees

of freedom of the figure, together with their derivatives with respect to time

6 = (9\, f ? 2 , . . . , ON) represent the generalized coordinates of the articulated

figure. This generalized coordinate vector is referred to as the ful l b o d y state

in this thesis.

For our work, the state consist of all the relevant joint angles and velocities,

as well as the global position and velocity, and global orientation and angular

velocity of the root of the hierarchical skeleton, which for our representation is

the hips. Each limb of the skeleton uses a thin-rod approximation of its inertia.

The 3-link biped has the following state description:

The state-space representation of a system is not unique, although it is

minimum in terms of the number of dimensions and it is also the representation

used by the dynamics simulation. There are many different sets of state variables

that can be utilized for a given system.

For purposes of control, it is often useful to work with projections of the full

state. One such useful projection is the center of mass position and velocity

relative to the current stance foot. This is illustrated in Figure 2.1. This (d, d)

Chapter 2. Definitions and Related Work 14

Figure 2.1: The projection of the full body state to the (d, d) state for the 3-link
biped. The center of mass state is (dx,dx,dy,dy). In this thesis we only use
{dx, dx) which we hereafter refer to as simply (d, d).

parametrization provides sufficient information on the current phase of the walk

cycle and allow control to be exerted on the biped. Note that the full body state

can not be recovered from this (d, d) projection as many different poses lead to

the same projection.

Under-actuated systems

There is a large body of research that deals with the dynamics and control of

robot structures. Much of this research is based on industrial style robots that

are bolted to the ground, or world reference frame. By providing a joint between

the root of the robot and the world reference frame, the robot is in principle

able to achieve any desired set of joint accelerations.

In contrast humans, or bipedal robots, are under-actuated systems. The

stance foot is not bolted to the ground and so not all possible accelerations are

possible. By way of example, if you start pushing on a bipedal robot, the only

way to maintain balance is to take a step. When the center of mass of the robot

is sufficiently outside the base of support and leads to loss of balance and a

fall. The robot is incapable of exerting a sufficient torque in any of its joints to

Chapter 2. Definitions and Related Work 15

prevent this loss of balance, so the only option is to move the base of support

(by taking a step). Recovery can also happen if the velocity of the center of

mass is such that the momentum is sufficient to regain balance. Because these

types of systems are under-actuated, control becomes much more difficult.

Open- and Closed-Loop Control

Control systems are often defined as open loop or closed loop depending on

the feedback arrangement of the system. In control theory, the system under

control is often referred to as the plant. In some motor control literature open

loop control is often referred to as feed-forward control, while closed loop

control is referred to as feedback control.

An open loop control system (Figure 2.2(a)) provides a time-varying refer­

ence signal signal R(t) to the plant G(t), regardless of the state of the plant. In

a perfect world, with no errors in modeling and no perturbations created by the

environment, this type of control is capable of producing the desired controlled

output C(t).

By contrast, a closed loop control system (Figure 2.2(b)) measures the cur­

rent state of the system C(t) transformed by an arbitrary feedback law H(t)

against the reference input R(t) and applies an error correcting term E(t). This

improves the ability of a control system based on an incomplete or approximate

model of the plant to achieve the desired result.

Feed forward control can serve a number of useful purposes. It may be

impossible, or simply impractical, to measure the current state of the plant. It

may not be obvious what error correcting signal should be applied as a result

of the feedback that is received. Delays in the feedback path may also result in

instability within high-gain feedback loops. In many cases open loop control is

good enough to meet the required performance criteria.

Chapter 2. Definitions and Related Work 16

R(t)

E(t)

G(t) G(t) H(t) R(t)
G(t) C(t) H(t)

G(t)
C(t)

(a) An open loop control system. (b) A closed loop control system.

Figure 2.2: Block diagrams of two different control systems. R(t) is an input
reference signal, G(t) denotes the transfer function of the plant, C[t) is the
controlled output signal, H(t) denotes an arbitrary feedback law, and E(t) is
the error signal.

Control Policy

A control policy is a mapping between a system state and the action to per­

form in order to accomplish a particular goal or terminal state. The general

control policy can be represented as ir(x,t). A control policy is often referred

to as simply a policy or as a controller in the control systems literature.

An optimal control policy is denoted n*(x,t) and is defined such that

from any given state x the optimal control policy will reach the desired terminal

state or follow a trajectory in a way that minimizes a quantity such as energy

or time.

For under-actuated systems there are states from which it will be impossible

to reach a desired terminal state or to track a given trajectory. For example, if

one of the bipeds used in this thesis falls over it may lack sufficient torque to

stand back up again. For these types of systems we define the set of states from

which it is possible to reach the terminal state or track a desired trajectory as

the controllable region.

Forward and Inverse Dynamics

There are two general formulations of the equations of motion for a bipedal

robot: the Lagrangian formulation and the Newton-Euler formulation. The

Chapter 2. Definitions and Related Work 17

Lagrangian equations of motion can be written as

r = M(0)0 + C(0,0)0 + N(0) + ATX (2.1)

where M(0) represents the inertia matrix of the articulated figure in the current

pose 0, C is the matrix of Coriolis and centrifugal forces, N contains gravity

terms, A is the constraint matrix, A contains the corresponding Lagrange mul­

tipliers, and r are the generalized forces. 0 are the generalize coordinates, 0

represents the current joint angular accelerations and 0 are the joint angular

velocities.

The Lagrangian equations of motion have the advantage that the internal

forces of constraint need not be explicitly represented in order to determine

the motion of the robot. However, in general, the Newton-Euler formulation is

computationally the most efficient with the computation time growing linearly

with the number of degrees of freedom. For a discussion of this formulation

applied to articulated skeletons see [4, 11, 12, 16].

Forward dynamics is the application of these equations to calculate the

motion generated by a given force or torque. This is what our simulations use.

The accelerations are integrated to update the system state. Inverse dynamics

methods calculate the forces that would generate a given motion as defined by

a set of accelerations.

Online Learning Algorithms

Many types of function approximators find approximate solutions to large sys­

tems of equations. These algorithms would be characterized as offline or mem­

ory based algorithms, as they require all of the data to be present in order to

generate a solution. This is typical of parametric methods such as standard

linear regression.

Chapter 2. Definitions and Related Work 18

By contrast online learning algorithms do not need to store all of the

data points but can perform incremental updates of their approximate solution

as each new data point arrives.

Online algorithms are preferable in many situations because the models can

be easily updated, they are adaptive to a slowly changing system, and are

a more plausible model for human motor control. The online algorithms do

not necessarily produce an identical solution to the batch algorithms, because

without retaining all of the data certain error minimization criteria such as

leave-one-out cross validation can only be approximated.

2.2 I m i t a t i o n - b a s e d L e a r n i n g

Humans learn to perfect skilled tasks through practice. Each attempt at per­

forming a task provides information which updates an internal model leading

to improved performance in the next trial [10]. The computational equivalent

of this is the field known as reinforcement learning [46].

If we model the skilled task as a Markov Decision Process (MDP) or partially

observable Markov Decision Process (POMDP) there are many algorithms for

finding near optimal solutions to the control problem [6, 46]. When the dynamics

of the MDP are not known in advance the parameters of the MDP typically need

to be learned from observations of the system.

State-of-the-art algorithms such as [20] guarantee near-optimal perfor­

mance can be obtained in time polynomial in the number of states of the system.

The E3 algorithm forces exploration of poorly modeled states in order to gain

sufficient accurate statistics to determine state transition probabilities. In ap­

plications such as robotics where many states would lead to falls this seems

wasteful in terms of computational resources. The dimensionality of the robot

control problem also makes the polynomial time limits of the algorithm nearly

Chapter 2. Definitions and Related Work 19

intractable for practical purposes.

With readily abundant kinematic descriptions of tasks, available as motion

capture data, we wonder if these can be used to replace or speed up the learning

of skilled tasks. As noted in Atkeson and Schaal [3] attempts to learn balance

related tasks by replaying recorded human motion trajectories will fail. They

identify many reasons for the failure of merely replaying trajectories including an

imperfect inverse dynamic model of the robot arm, the task is slightly different

(i.e. the robot grip of the pendulum is different than the human grip), and

unstable tasks like balancing require feedback control.

Abbeel and Ng [1] describe an algorithm which avoids the aggressive explo­

ration of state space and utilizes an initial teacher demonstration of the task.

Rather than employing exploration moves, they concentrate on exploiting the

dynamics learned so far. The basic algorithm is outlined below.

1. Have a teacher demonstrate the task to be learned. Record all state-action

trajectories of the demonstration.

2. Use all state-action trajectories seen so far to learn a dynamics model of

the system. For this model, find a near-optimal control policy using any

reinforcement learning algorithm.

3. Test the policy by running it on the real system. If the performance is as

good as the teacher's performance stop. Otherwise, add the state-action

trajectories from the (possibly unsuccessful) test to the training set and

go back to step (2).

The action taken at each step is represented by the joint torques. The state

could either be the full body state or a projection such as the (d, d) projection

used in this thesis. This method has the benefit that at each evaluation of the

policy the algorithm is making its best attempt to solve the problem.

Chapter 2. Definitions and Related Work 20

Aside from reinforcement learning, we can also cast methods such as space-

time constraints [58] as an imitation-based learning algorithm. The space-time

constraints algorithm is a numerical optimization procedure which creates mo­

tion that respects physical laws. The minimization criteria is usually specified

as minimum x , where x is one of jerk, energy, or torque depending on the type

of motion required. We can consider this technique as imitation-based learning

since it is always seeded with an initial trajectory, usually from motion capture

data, that provides the initial guess at the solution.

2.3 A Review of Walking

The synthesis of walking motion can be roughly broken into three broad cat­

egories: purely kinematic methods, hybrid kinematic-dynamic methods and

purely dynamic methods. This thesis focuses on purely dynamic methods.

While a complete review of all methods is virtually impossible, the popular

and widely used techniques from each are briefly described below.

Kinematic based methods of walking

Purely kinematic descriptions of motion are widely used in computer animated

films and video games. In kinematics only the description of motion trajecto­

ries is explicitly denned, there is no attempt to ensure that any of the motion

trajectories respect Newton's laws of motion (Equation 2.1).

The first set of tools developed for motion specification were based on forward

and inverse kinematics [32]. Forward kinematics consists of specifying the state

vector of an articulated figure over time. This specification is usually done for

a small set of key frames and interpolation techniques are used to generate in-

between positions [24]. Defining key frames is usually left to a skilled animator,

and the quality of motion is highly dependent upon their skill.

Chapter 2. Definitions and Related Work 21

The use of forward kinematics makes it difficult to apply constraints to a

motion, such as ensuring that the feet don't penetrate the ground. These con­

straints can be solved with inverse kinematic algorithms [57]. The relationship

between the main task AX as expressed in Cartesian coordinates and the an­

gular displacements AO takes the form

AX = JAd (2.2)

where J is the Jacobian matrix of the system. The Jacobian is often not directly

invertible, leading to a family of solutions that maintain the constraints.

Methods for synthesis of walking gaits based on bio-mechanical information

were first introduced by Zeltzer [59] who used finite state machines parametrized

by step length and velocity. 'The finite state machines generate key poses and

linear interpolation is used to generate the in-between frames.

Methods for avoiding penetration of the ground with the stance foot were

introduced by Bruderlin and Calvert [7] who use an inverted pendulum model

for computing realistic gates. The root of the model is changed to be the current

stance foot during the simulation and its position is fixed in the world frame.

Kovar et al. [22] introduce yet another technique that allows for the stretch

of leg bones in order to enforce constraints on the feet to remove artifacts in­

troduced during blending and interpolation of the in-between frames.

In addition to the specification of key frames by an animator, motion can be

represented by directly capturing human performance. Motion capture systems

use magnetic or optical technologies that record the global positions of markers

in space during the performance of motion. A post-processing optimization step

computes the pose of a hierarchical skeleton with respect to the marker positions

for each frame of captured motion. Advances in motion capture technology have

made it possible to easily capture thousands of motions [50].

Chapter 2. Definitions and Related Work 22

For most applications the resulting captured motion needs to be modified

in order to be useful. This may include some of the clean up techniques noted

above to enforce foot placement constraints or simply to trim frames from the

recorded motions to provide appropriate blend points.

Once a large motion capture database is generated there are numerous tech­

niques for generating connections between motions. Motion graphs [21] com­

pute the distance between each frame of motion in the database and generate

a directed graph of connections between frames that are below some distance

threshold. The resulting graph can be traversed in a manner that generates

motion that was not originally captured.

Motions can also be described as a hybrid system of multiple local linear

dynamical systems (LDS). In [25] motion clips are turned into linear dynamic

systems called motion textons. These LDSs are then blended together at their

end points to synthesize new longer motion sequences.

Hybrid Kinematic-Dynamic methods

All of the kinematic methods described previously have no guarantee that the

resulting motions respect physical laws. They are primarily concerned with

creating a particular look and feel of motion, which is important in the enter­

tainment industry.

If the goal is to add realism or a certain amount of dynamics into motion

then there are hybrid kinematic-dynarnic^methods that may be employed to add

realism.

Space-time constraints [58] which were mentioned previously would fall in

to this category. Given an initial motion trajectory, a numerical optimization

operation is performed to ensure that defined constraints are respected. These

can include modifying a jumping motion to leap a greater distance [45] or adding

Chapter 2. Definitions and Related Work 23

a limp to a character by restricting motion in one joint [15].

In addition to global modifications that are performed by space-time con­

straints, small modifications can be added, particularly in interactive environ­

ments. Zordan and Hodgins [60] layer rigid body dynamics on top of motion

capture data to allow captured motion to appear to react to pushes and hits.

Dynamic Walking

Kinematic and hybrid methods are very useful for generating realistic looking

motions. The translation of these motions onto real robotic systems is not

guaranteed to work, however. The generation of real dynamic motion is an

extremely challenging problem.

Recent advances in biped walking robots have shown that techniques such

as zero-moment point (ZMP) control [18] is an effective technique for creating

real motion in robots. This is the technique which is used for the Honda Asimo

robot [49]. ZMP techniques generally require flat footed robots, and generate

slow moving trajectories. A feedback based balance control is also usually also

employed. This tends to result in the "bent knee" stance of these robots to

avoid singularity problems in the inverse kinematic algorithms used to maintain

balance. The result is a rather unnatural looking walk cycle.

Passive dynamic walking is based on the natural dynamics of a walk cycle [26,

27]. A three dimensional passive dynamic walking robot with knees can walk

on its own, requiring only a small amount of energy input to overcome energy

lost due to friction with the ground [8].

Controllers, or control policies, aim to animate simulated figures or real

robots with forward dynamics. This automatically accounts for the interactions

with the environment. The difficulty is in creating the necessary torques that

will make it perform the desired motion [9, 19].

Chapter 3

24

Dynamic Simulation

3.1 Overview

This chapter describes the details of the dynamical simulation which we use to

model the various simple robot systems that we experiment with. The simu­

lation of physical systems is a major area of research on its own. There are

many choices and compromises that must be made with regard to numerical

integration techniques, ground model interactions, and required precision of re­

sults. As presented earlier in Chapter 1 the biped simulations have the block

structure shown in Figure 3.1.

Control
Policy

Joint PD
Control

Equations
of Motion

Control
Policy ed

Joint PD
Control

T

Equations
of Motion

x,y,±,y,0,0 Integration x,y,0

Figure 3.1: A block diagram of the simulation loop. Several significant com­
ponents are represented, including the equations of motion for the biped, the
ground interaction forces, the control policy in use and the various feedback
loops involved.

Chapter 3. Dynamic Simulation 25

link parent attach x attach y mass inertia mass x mass y
1 0 0.0 0.0 70.0 1.475 0.0 0.0
2 1 0.0 0.0 5.0 0.0885 0.0 -0.225
3 2 0.0 -0.45 4.0 0.0696 0.0 -0.225
4 1 0.0 0.0 5.0 0.0885 0.0 -0.225
5 4 0.0 -0.45 4.0 0.0696 0.0 -0.225

Figure 3.2: An example of a physical description of a biped. This description
corresponds to the 5-link biped used in some of the experiments. The attach
x and attach y columns represent the joint position in the parent, frame coor­
dinates; the inertia column is the thin rod inertia scalar; and the mass x and
moss y columns represent the coordinates for the center of mass of the link.

3.2 Equations of Motion

In an articulated figure with n links, the state vector {x, x, y, y, 0i:n, 0i:n, cicft, crjght}

represents the full body state. The variables x, x, y, y represent the global po­

sition and velocity of the root link of the articulated figure. Global orientation

and angular velocity of the root link are described by Q\ and d\. The variables

(?2:n and ()2-.n represent angular positions and velocities relative to the link's

parent frame of reference. The variables cicft and cright are discrete Boolean

variables representing contact of the left and right foot, respectively, with the

ground.

A dynamics compiler [34] takes a description of the biped structure and

parameters and produces C code for the equations of motion using the Newton-

Euler equations of motion. A linear system having n + 2 equations and n + 2

unknowns solves for the unknown accelerations at each time step. An example

description is shown in Figure 3.2.

The accelerations produced by the equations of motion are integrated using a

simple forward Euler scheme. More sophisticated numerical techniques such as a

4th order Runge-Kutta integration scheme could be employed, though the very

small time step imposed by the high gains in the ground reaction force would

likely not produce much advantage to using a more sophisticated method.

Chapter 3. Dynamic Simulation 26

3.3 Joint Proportional-Derivative Control

The joints of the articulated figure are driven by proportional-derivative control

laws. A desired target angle and angular velocity is specified. When attempting

to match a particular pose, rather than follow a trajectory, the angular velocity

is specified as 0 rad/s. For this case, a PD controller can be visualized as a

virtual spring and damper acting in parallel to pull a link to a desired angle

from its current angle. A graphical depiction of this arrangement is shown in

Figure 3.3. A joint torque is generated according to the following equation

T = Kp(Od-0)-Kd(dd-0) (3.1)

where T is the torque, Kv is the proportional gain, Kd is the damping factor,

0d is the desired joint angle, f)d is the desired joint angular velocity, and 0 and

0 represent the current angle and angular velocity of the joint.

The quality of control is determined by the magnitudes of Kv and Kd. High

gain values imply quick response, but with the risk of overshooting the desired

target angle, resulting in oscillation about 6d. Small gain values, on the other

hand, result in failing to reach the target angle due to lack of torque.

3.4 Ground Model

A significant aspect of the simulation of'walking is the computation of ground

reaction forces. There are numerous ways to compute collision and contact

forces. We use a simple penalty method in our work. A set of points, called

m o n i t o r p o i n t s are defined on the feet of the biped. When one of these monitor

points penetrates the ground plane (y < 0), an external force is applied trying

to drive the monitor point back towards the ground plane. The force applied to

the monitor point, M is computed as

Chapter 3. Dynamic Simulation 27

Parent

Current position

Figure 3.3: The effects of the proportional-derivative (PD) control law for a
joint. The link is pulled towards the desired position with a torque r that is
proportional (Kp) to the angular displacement with the motion slowed by the
damping factor Kd.

F = KP'P - M) - Kd{M) (3.2)

where P and M are as defined in Figure 3.4.

Due to the high gains involved in simulating contact with the ground a small

time step is required to ensure the Courant-Friedreichs-Lewy condition (CFL

condition) is met and the simulation does not become numerically unstable.

The fast simulation times of the two dimensional bipeds is not impacted by this

small time step, though in a more complicated three dimensional simulation it

is highly likely that a more sophisticated collision model would be required to

avoid excessively slow simulations. Control torques are calculated every 0.005 s

(200 Hz), while the time step of the simulation is 0.0001 s (10,000 Hz).

Other models for ground reaction forces include constraint based meth-

Chapter 3. Dynamic Simulation 28

P

Figure 3.4: The model of ground interaction forces used in the dynamic simula­
tions. The monitor point M is driven towards the entry point P with a force F
as if it was connected with a spring of gain Kp and a damper of magnitude Kd-

ods [36], impulse based methods [29], and hybrid methods which handle ini­

tial contact with an impulse based method followed by the use of additional

constraints during simulation [28].

Chapter 4

29

Locally Weighted Learning

This chapter provides an overview of locally weighted control policies and lo­

cally weighted learning, as well as the detailed workings of the specific locally

weighted learning technique that we shall use in our control experiments. We

are concerned with learning a control policy for biped walking. The control

policies we choose to work with are of the general form

0 = it(x,t)

where 6 is the set of desired joint angles, x represents the state vector of the

biped, or a projection of the state space such as (d,d), and t is time.

The joint angle trajectories of a walk are generally smooth non-linear func­

tions of time, with the exception of a few points of discontinuity introduced

during foot-ground interactions. We will model the control policy n(x, t) as a

smooth non-linear function. There are numerous non-linear function approxi­

mation algorithms that could be used to model -n(x) in a supervised learning

setting. We have set ourselves the following criteria:

1. free of negative interference during the learning process;

2. requires little knowledge of problem structure prior to learning;

3. fast to compute both in terms of learning speed and in evaluation;

4. capable of incremental learning;

Chapter 4. Locally Weighted Learning 30

5. scalable to a high number of dimensions;

6. ability to ignore irrelevant input dimensions.

Criteria (3) and (4) immediately eliminate a number of offline and memory

based algorithms, restricting our search for learning algorithms to those that

have online or incremental versions. Criterion (1) implies that we are looking

for an algorithm capable of building local models, rather than trying to perform

some sort of global function fitting to the training data. Criterion (2) implies

a system that is structurally adaptive. A resource allocating network (RAN) of

radial basis functions (RBF) would be one possible solution [35]. The method

is constructive, so it only models areas where training data exists. The initial

size of the RBF covers the entire input space and is optimized as more training

data is presented. The resulting slow convergence [38] means that RAN fails to

meet criterion (3). Criterion (6) suggests that some sort of principle component

analysis (PCA) or other dimensionality reduction technique is required.

With the above considerations, our search is narrowed to non-linear func­

tion approximators that are structurally adaptive, based on local models and

that can operate in high dimensions. These include Locally Weighted Principal

Component Analysis [41], Locally Weighted Factor Analysis [55], and Locally

Weighted Partial Least Squares [56].

We chose Locally Weighted Partial Least Squares. The incremental on­

line version of LWPLS is known as Locally Weighted Projection Regression

(LWPR) [53]. This is a sophisticated function approximation scheme that builds

local linear regressions of a non-linear function. It is capable of operating in an

online-fashion, including certain optimizations that make learning from trajec­

tories (i.e. temporally coherent data points) extremely fast. The underlying

partial least squares algorithm is also particularly appropriate to learning mo­

tion as it is based on the correlation between the input state and the output

Chapter 4. Locally Weighted Learning 31

target joint angles.

In prior work locally weighted regression techniques have been applied to

learning "devil-sticking" [39], pole balancing [40] and to approximate the inverse

dynamics model of a 7 degree-of-freedom robot arm [42]. These are all examples

of fully actuated systems. The closest work to our own is found in [30] which

decomposes a walk cycle into two steps and learns a target trajectory for each

step based on a Poincare-Map projection of the state of a 5-link biped. In that

work a set of via-points are learned that define a trajectory over half the walk

cycle. This model lacks the continuous feedback that is present in our system.

The learned control policy is also incapable of starting to walk, and Morimoto

et al. use a manually initiated step to start the cycle.

The remainder of this chapter outlines the details of the LWPR algorithm.

4.1 Local ly Weighted Project ion Regression

The LWPR algorithm is an extension of Receptive Field Weighted Regres­

sion [37] which builds local linear regression models of non-linear functions. The

name receptive field was coined by Schaal and Atkeson to reflect the biological

inspiration for areas of local support in sensorimotor function [13].

A receptive field measures the relevance of a data point with respect to the

current model using the Mahalanobis distance:

dM(x, c) = \J(x-c)TD(x-c) (4.1)

where D is a symmetric positive definite learned distance matrix, x is the query

point, and c is the center of the receptive field.

A diagonal distance matrix D effectively represents the dimensions of a.n axis

aligned hyper-ellipse, where all points on a given hyper-ellipse are considered

Chapter 4. Locally Weighted Learning 32

equidistant to the center. Put in another way, it allows for a relative weighting of

various dimensions before a Euclidean distance from the center is computed. A

distance matrix that is not diagonal (i.e. has off-diagonal elements) corresponds

to an arbitrarily rotated hyper-ellipse. It is possible for some diagonal elements

of D to be zero, indicating that the corresponding input dimension has no

relevance to the regression. The distance matrix is usually stored as an upper

triangular matrix M such that D = MTM.

We convert the Mahalanobis distance CLM into a relative weight using a

Gaussian kernel function

This Gaussian kernel defined by the Mahalanobis distance has an infinite

support region. In practice, a threshold value such as lU thrcsh = 0.001 is used

such that if K((1M) < w t hrcsh '•hen the associated receptive field is not updated

or used in prediction to enforce finite support.

Table 4.1 provides a glossary of all symbols used in the locally weighted

projection regression algorithms.

A receptive field defines the area over which a local model is learned. In

contrast to competitive learning scenarios like neural-networks, the local linear

models are learned completely independently of each other. Each receptive field

is defined by its center c and its distance matrix D. As will be seen later,

the distance matrix is optimized during the learning process (cf. Equation 4.5).

Throughout the optimization process the center c of each receptive field remains

fixed.

The activation weight for a receptive field with respect to a training or

query point is calculated according to Equation 4.2. When new training data is

encountered that fails to activate a receptive field by a given creation threshold,

(4.2)

Chapter 4. Locally Weighted Learning 33

Symbol Definition

a
f3°o
c
Ddef
D
A
M
MSE
n
P°r
Pi
r
R
u°r

ul

r

w
W°
Wi

x
X g

XQ

Xq

y
Vi
Vq,i

A meta-learning rate that affects updates to M
Initial regression parameters for the learned local model
Center of the receptive field
The initial distance matrix for a newly created receptive field
The distance matrix for the receptive field
A forgetting factor, the last 1/A data points affect the model
Upper triangular decomposition of D such that MT M = D
Mean squared error of predicted values vs. training values
Number of data points used to train receptive field
Initial residuals from univariate projection r
Residuals from univariate projection r after the i'th data point
Index for the current projection
Total number of univariate projections in the regression
Initial direction for univariate projection r
Direction for univariate projection r after the i'th data point
Weight of current training point
Initial average weight of data points used to train receptive field
Average weight of data points used to train receptive field after i'th data point
Input vector used for training receptive field
Initial mean input for receptive field
Mean input for receptive field after the z'th data point
A query point that we wish to predict an output value for
Output value used for training receptive field
A predicted output value for a query point xq

A predicted output value for query point xq for the i'th receptive field

Table 4.1: A glossary of symbols used in the locally weighted projection regres­
sion algorithms

Chapter 4. Locally Weighted Learning 34

Wgen, a new receptive field is initialized according to Algorithm 4.1.

Algorithm 4.1 Initialize a receptive field
Input: Center for receptive field c, default distance matrix Ddc;.
Output: An initialized receptive field.

0 8 - o
W° <- 0
u°<-0,re[l...R]
p ° < - 0 , r e [1...R]

The prediction of the output based on a novel input point xq is straightfor­

ward. Each receptive field provides its estimated output yq as shown in Algo­

rithm 4.2. These estimates are then combined in a weighted average according

to the activation weight (Mahalanobis distance) for the query point with respect

to each receptive field:

Algorithm 4.2 Predict with novel data
Input: An initialized and updated receptive field, a novel data point (xq)
Output: A prediction yq

yq *- Po
Xq < Xq XQ

for r = 1 to R do
yq^yg + prujxq

C <— C

y{*q) =
Hi=iyq,iK{dM(xq,Ci))

Y!i=1K{dM(xq,Ci))
(4.3)

T
Xq < Xq Ur Xqpr

end for
return yq

The overall training algorithm is presented in Algorithm 4.3. The model is

initialized with no receptive fields, and is thus completely structurally adaptive.

It only builds models in areas for which training data points exist. The LWPR

Chapter 4. Locally Weighted Learning 35

algorithm requires two parameters, £>dcf, the default distance matrix that is

used to initialize a new receptive field and wgCn the minimum activation energy.

The initial number of projections is always initialized to 2. Input data should

be scaled to have a zero-mean and a variance of 1 to ensure that the underlying

partial least squares regression is valid.

Algorithm 4.3 Locally Weight Projection Regression
Input: A minimum activation weight wgcn, a default distance matrix IDdcf
Output: A set of learned receptive fields

Initialize the LWPR with no receptive fields, K <— 0
for every new training point (x, y) do

for k = 1 to K do
Calculate activation with Algorithm 4.4
Calculate current prediction error with Algorithm 4.5
Update regression parameters and projections with Algorithm 4.6
Update distance matrix, Equation 4.5
Check if number of projections needs to increase, Equation 4.4

end for
if no receptive field activated by more then w g o n then

Initialize a new receptive field with Algorithm 4.1
end if

end for

The LWPR initializes itself with two initial projection directions, R = 2.

Additional projection directions are added if the MSE at the next projection

does not decrease more than a certain percentage of the previous MSE

MSE r +i
MSE,. > (4.4)

where (f> € [0,1].

The underlying regression model of LWPR is based upon partial least squares

regression. An overview of the non-incremental version of PLS may aid in the

understanding of Algorithm 4.5 and Algorithm 4.6. This thesis is concerned

with the application of this technique to a learning problem, rather than the

invention or modification of the learning technique. If the reader is not interested

Chapter 4. Locally Weighted Learning 36

Algorithm 4.4 Compute activation and update the means
Input: An initialized receptive field, a training point (x, y)
Output: Activation weight for this receptive field, updated means

w <— exp i^—| yj(x — c)rD(x — c)^

Wn+l <- XWn + w
* o + 1 <~ (AWnxJJ + wx)/Wn+1

[3'0

l+l « - (XWn/3S + wy)/Wn+1

in the actual mathematics this explanation can be skipped and they can skip

ahead to Chapter 5.

Partial Least Squares (PLS) [14] builds a set of linear combinations of the

inputs for regression. A univariate regression coefficient is first calculated on

each dimension of the input training data x. From this a derived input is

constructed, which is the first partial least squares direction. The output y is

regressed on this derived input. The input data xi... xn is then orthoganalized

with respect to the projection direction. The process is repeated for m < d

directions, where d is the dimension of the input training data x.

Algorithm 4.5 Compute current prediction error
Input: A receptive field with updated means, an activation weight w, a training

point (x,y)
Output: Prediction error ecv

^ r c s , l * X X Q

V - 0o+1

for r = 1 to R do

y*-y + ffzr

* C r c s , r + l * >£rcs , r ~ %rPr

MSEI?+1 *- AMSE? + w{y - yf
end for

One of the significant advantages of LWPR over other learning models is

that not only are the linear regressions optimized as new training data is added,

but the distance matrix D = M T M for each receptive field is also optimized

using an approximation of leave-one-out cross validation:

Chapter 4. Locally Weighted Learning 37

Algorithm 4.6 Update the local model
Input: Updated statistics from Algorithm 4.5
Output: Updated local regression parameters

re S l «- y - /30

n + 1

for r = 1 to R do

a z r e s , r * ~ " ^ a z r e s , r ~f" ^ 2 r r e S r

<_ n

n + l /nn+1 ' Mr ^zrea^rl ^zz^r .; _ 1

resr+i <— resr - z r /?™ + 1

a " J r * - X a x z , r + WXTOS,TZr

end for
for r = 1 to R do

u n + i <_ + wx r c s ,rres r

- < r / < r

end for
e = resR+i

dM

where the cost function to be minimized is:

J = ^ £ > (w - f c . - *) a + £X>« (4-6)
i=l i,J=l

where yi,-i denotes the prediction of the model as if it were trained without

the data point i, N is the total number of input dimensions, and K is the

number of data points seen by the receptive field. The second term of this cost

function ensures that as receptive fields see more data points they don't shrink

to encompasses a single data point.

The implementation of LWPR is complicated, as there are several optimiza­

tions that may be applied to ensure that computational resources are minimized.

The software used in this thesis was the reference implementation provided by

Vijayakumar et al. [54]

38

Chapter 5

Imitation-based Learning

Experiments

In this chapter we provide a detailed description of the experiments that were

performed in the course of this thesis. Each experiment is designed to explore

one or more of the goals presented in Chapter 1. The complexity of the ex­

periments progressively increases as each builds on knowledge gained from the

previous one.

5.1 Supervised learning of 3-link biped walking

from observation of human control

The first experiment in imitation learning deals with the simplest configuration

that is capable of walking. This is a 3-link biped that consists of a pelvis with a

concentrated mass and two fixed length legs that are connected with pin joints

to the pelvis. The model is shown in Figure 5.1.

G o a l

The purpose of this experiment is to determine if the locally weighted learning

infrastructure discussed in Chapter 4 is capable of reproducing a control strategy

from observations of human input. Given a series of successful trials of human

Chapter 5. Imitation-based Learning Experiments 39

Figure 5.1: The 3-link walking biped. Two straight legs are connected to the
hip with pin joints. Angles are measured relative to the parent frame, as noted
by 01, 6*2, and 0%. The legs for this model are lm long, the hip is 0.3m wide.
Most of the mass is carried in the hips, 50kg, while each leg has a mass of only
lkg.

control of a 3-link walking biped, can a control policy be learned? We apply

this to one of the simplest possible bipedal robot structures that can walk, a

3-link biped. < .

Methodology

A 3-link biped simulation was created that was capable of operating in two

modes. The first mode allows a human user to interactively direct the current

target angles for the left and right hip joints of the robot using a mouse. These

target angles are used by a PD control law (cf. Chapter 3) to generate torques

in idealized motors in the hip joints resulting in a walking motion of the robot.

The physical parameters of the simulation are outlined in Table 5.1.

A trial consists of an attempt to make the robot walk from a standing start a

minimum of three steps without falling over. At any point in the simulation the

human user can choose to save the state history for the current trial to a data

file that will later be used to learn a control policy. The state history consists

Chapter 5. Imitation-based Learning Experiments 40

Parameter Value
pelvis width
leg length

0.3 m
1.0 m

pelvis mass
leg mass

50 kg
1 kg

hip Kp

hip Kd

ground Kp

ground Kd,

1000 N/rad
100 Ns/rad

70,000 N/m
4,000 Ns/m

Table 5.1: Physical simulation parameters for a 3-link walking biped

Trial Data Points
1 154
2 134
3 149
4 211
5 219
Avg 173
Total 867

Table 5.2: Details of trials for 3-link biped

of the horizontal distance from the stance foot to the center of mass of the

robot and the horizontal velocity of the center of mass of the robot. This (d, d)

parametrization is a particular projection of the state space of the controller.

In addition to this body state, the current action represented in terms of target

angles for both hips are also stored. The sampling rate is 24 Hz.

After an initial training period the human user was able to consistently create

a walking gait that traversed several steps without falling over. Five successful

trials were recorded. Each trial represents data collected from the same user

and represents between 2 and 5 successful steps. The details of each trial are

listed in Table 5.2.

The data file with the five successful trials was used to generate a control

policy in (d, d) space with an output of target angles for the left and right

hips. Locally Weighted Projection Regression (cf. Chapter 4) was used to

Chapter 5. Imitation-based Learning Experiments 41

approximate the control policy. The control policy for the left and right hips

were trained separately. Each policy has two input dimensions (d, d) and one

output dimension (6).

d = ir(d,d) (5.1)

Results

The data file created during the human trials, as outlined in Table 5.2 was

used to provide training points for the Locally Weighted Projection Regression

algorithm. Each input dimension (d, d) is independently zero-mean adjusted

and scaled to have a standard deviation of 1. This scaling is important, as it

allows some intuition to be applied regarding initial parameters for the size of

the default distance matrix D used by the learning algorithm. The learning

parameters for the LWPR algorithm are outlined in Table 5.3. The values

chosen for the various learning parameters such as penalty, a, A, and the initial

D distance matrix are fairly typical. Some tuning of these parameters is done

by hand, but this tends to be order of magnitude jumps in the parameters values

and are generally related to the second derivative of the output with respect to

the input d2y/dx2. That is, how rapidly the output function varies over the

input space and how much support the local linear models should initially have.

The training phase consists of presenting each of the 867 data points to the

LWPR algorithm exactly once. At the end of the training phase the control

policy is represented by seven receptive fields for each of the left and right hips.

The resulting policies are shown in Figure 5.2 and Figure 5.3. The resulting

control policy successfully generates a walking cycle for the 3-link biped that

does not fall over. The walk cycle repeats indefinitely over flat terrain.

Chapter 5. Imitation-based Learning Experiments 42

Figure 5.2: The learned control policy for a 3-link planar biped. The large flat
area related to an output target angle of 0° corresponds to areas outside the
support of the receptive fields.

Chapter 5. Imitation-based Learning Experiments 43

Right Hip

-1

-2

-3h

•/••••

i

v

_ 4 L
-3 0

d

(a) Layout of receptive fields for right hip.

2 N

(b) Control policy for right hip.

Figure 5.3: A learned control policy for a 3-link walking biped. The fiat areas
related to an output angle of 0° corresponds to areas outside of the support
region for the receptive fields.

Chapter 5. Imitation-based Learning Experiments 44

Parameter Value
diagonal only true
meta learning true
meta learning rate 100
penalty 1.0 x 107

initial a 10.0
initial A 0.99
initial D 2.501
prediction cutoff 0.001

Table 5.3: LWPR parameters for learning 3-link biped walking

Discuss ion

This addresses some of the goals for our work:

• Locally weighted learning can be used to control at least some under-

actuated systems;

• Relatively few data points are required to generate an initial policy.

The results of this experiment were very positive compared to a simple

nearest-neighbor implementation of a control policy. If the training data are

stored and the nearest point in state space (d, d) is used to look up a set of

target angles, the 3-link biped fails to move from the starting position.

5.2 Supervised learning of 3-link biped walking

policy based on full body state

Goals

The learning of the walking policy for the 3-link biped in Section 5.1 was based

on a state space parametrization of (d, d). Such a parametrization may not

always be obvious for certain types of tasks, or it may not be measurable with

Chapter 5. Imitation-based Learning Experiments 45

Parameter Value
input dimensions .9
diagonal only true
meta learning true
meta learning rate 100
penalty 1.0 x 107

initial a 10.0
initial A 0.9999
initial D 5.01
prediction cutoff 0.001

Table 5.4: LWPR parameters for learning 3-link biped walking using full body
state.

on-board robotic sensors. The goal of this experiment is to use an existing

control policy to train a new control policy based on the full body state of the

robot.

Methodology

The initial experiment is set up in the same manner as in Section 5.1. A control

policy 7rQ is learned based on the five human trials. A second control policy np

is defined with the parameters as outlined in Table 5.4. Note that some of these

parameters, A and D are different from the first experiment. The larger initial

D value means smaller receptive fields. With smaller fields and higher input

dimensions, each field is activated by fewer input training points. The higher

A value allows each receptive field to retain more knowledge of previous data

points as part of it's local linear model. The key difference for this controller is

that the input state is specified as the full body state (x,y,y,61-3, #1:3), which

includes all dimensions, exclusive of absolute horizontal position.

The simulation is setup in an episodic learning environment. Each trial

consists of allowing na to control the robot and walk to a terminal distance of

2m. The state history, sampled at 24 Hz, for the entire trial is used as training

Chapter 5. Imitation-based Learning Experiments 46

data to the 7173 control policy. After every 100 trials the control is switched to

use 7T/3 and the quality of the resulting policy is evaluated for 10 trials.

Results

The quality of the second control policy np was very dependent on the LWPR

parameters shown in Table 5.4. Both the initial distance matrix D and the

initial A had a large impact on the learning rate of the control policy. With

the parameters that are outlined in Table 5.4 the control policy np capable of

generating a stable walk cycle was learned in 900-1100 trials.

Discussion

The higher dimensionality of the control policy, np, requires more training data

to develop a robust and stable control policy. The LWPR algorithm was able to

reject irrelevant dimensions and there were 4 projections per receptive field, on

average. The (d, d) projection used in the first experiment seems to imply that

two projections should be enough to control the 3-link biped. However, d and

d are measured relative to the stance foot, so during the walk cycle the values

switch signs. This implies that during the two phases of the walk the stance hip

angle and stance hip angular velocity are the important controlling variables.

The sensitivity to the initial parameters was surprising, as all other exper­

iments were relatively immune to changes in these values. Further analysis

should be performed to determine if inappropriate scaling of the training data

was occurring, which would affect the underlying partial least squares regression.

However, this experiment does show that if a suitable parametrization exists,

such as our (d, d) projection, where rapid learning can occur, then a supervised

learning task in a simulation environment can be used to create a control policy

based on a perhaps more general representation of the state.

Chapter 5. Imitation-based Learning Experiments 47

5.3 Improving the 3-link biped walking policy

Having shown in Section 5.1 that the elements of the learning infrastructure we

have created are capable of imitating a specific simple observed control policy,

we are now interested in improving a policy that is represented as a set of

receptive fields.

G o a l s

There is currently no guarantee that the observed policy is an optimal policy,

or that it would even be a successful policy if the observations were of a slightly

different configuration (e.g. different masses or leg lengths). We wish to use

a policy search method to improve the existing policy to better meet some

criterion. We chose to maximize the horizontal velocity of the walking cycle.

The horizontal velocity for a given policy starting in state x is defined as

J*W = | (5.2)

where T is the time taken to travel a distance x.

The optimal horizontal velocity starting from state x is denoted by J*(x),

that is

J*(x) = maxJ'r(x) (5.3)
7T

M e t h o d o l o g y

There are a large number of optimization algorithms that can be employed

when attempting to improve a policy. The method chosen for this experiment

was Stochastic Policy Gradient Descent [48]. The intuition for this method is

straightforward. A small random vector is chosen to modify the parameters of a

Chapter 5. Imitation-based Learning Experiments _ 48

system. The policy is evaluated, and if it improves the change is kept, otherwise

the opposite change is applied. This latter step is not used in our case, as it

tended to force the biped out of the controllable region.

At the beginning of each trial a random vector is drawn uniformly from

the unit hypersphere. Each dimension of the vector is drawn uniformly from

the unit hypercube. If the resulting vector lies within the unit hypersphere it

normalized to lie on the surface of the hypersphere, otherwise it is rejected and

each dimension is drawn from the unit hypercube again. This rejection sampling

ensures that the direction of the perturbing vector is uniformly samples and is

not biased towards the poles.

Each element of the vector represents a modification to the mean out­

put value for a receptive field. For example, with seven receptive fields, a

7-dimensional vector is created A7Tj ~ W(—1,1) and the result is normalized

|A7r| = 1. This normalized vector is then scaled by another value M which is

drawn from a Gaussian distribution with a mean of 5 and standard deviation of

1: M <— AA(5,1). This scale factor is clamped to a range of [0,10] to keep the

new policy guess close to the existing policy. The numbers represent degrees in

our case. The clamping limits and the Gaussian distribution parameters were

chosen through trial and error. They produce sufficient step changes to modify

the behavior of the 3-link biped while remaining close to the existing policy.

Each time the control policy is queried, the output from each receptive field

is modified according to the appropriate element of An. A trial is terminated if

the 3-link biped falls over (failure), time expires t > 10 (failure), or a distance

of 2m is traveled (success). If a trial is successful then the average horizontal

velocity is calculated:

p r _ • _
"N ~ X N ~~ rp

(5.4)

Chapter 5. Imitation-based Learning Experiments 49

where a;AT is the terminal horizontal position and Tjv is the time taken for the

trial.

We let J be our current estimate of J*. If JN > J then the state history for

the current trial is used as training data and applied to the LWPR representa­

tion, in exactly the same manner that the initial policy was trained. We present

the state history as new training data, rather than modifying the regression pa­

rameters Po directly, so that the internal statistics of the learning algorithm are

maintained in a consistent manner. This algorithm is outlined in Algorithm 5.1.

Algorithm 5.1 Improve A Policy
Input: An initial policy 7r and a maximum number of trials T > 1
Output: An improved policy IT*

7T 0 <— 7T

7T* <— 7To

Jo <— Simulate^)
Jo

N <- 1
while N < T do

A 7 r ~ W (- l , l)
A7r <- A7r/ |A7r|
M <- A/"(5,1)
TTN <- -K* + MAn
JN <— Simulate(7TAf)
if JN > J then

Train (7Tiv)
7T* *— TTN
J <— JN

end if
N <- N + \

end while
return 7r*

Results

Out of a total of five runs of the policy improvement algorithm, each consisting

of T = 100 trials, the overall improvement of the policy is plotted in Figure 5.4.

Each trial represents a new control policy n. The mean overall improvement

Chapter 5. Imitation-based Learning Experiments 50

60 h

. 40

£ 30r

20 r

0 10 20 30 40 50 60 70
Episode number

90 100

Figure 5.4: Policy improvement results from five trials consisting of 100 episodes
each. The mean average velocity improves from 38 cm/s to 58 cm/s. Note the
large differential between minimum and maximum on the individual trials, a
result of the random nature of Stochastic Gradient Policy Descent

within 100 episodes is 52%. We should note the high variability, as shown by the

min-max bars, for the individual trials. The random nature of the stochastic

policy gradient descent algorithm requires numerous restarts to generate an

improved policy.

D i s c u s s i o n

This experiment shows that locally weighted control policies that are initialized

by one means can be improved with respect to particular criteria using a form

of policy search. By presenting improvements as new training data we maintain

the internal statistical representation of the learning models without having to

directly manipulate the regression parameters.

Chapter 5. Imitation-based Learning Experiments 51

Figure 5.5: The 5-link walking biped. Two legs with knees are connected to the
hip with pin joints. The thighs and calves for this model are 0.45m long. Most
of the mass is carried in the hips, 70kg, while each leg has a mass of only 9kg.
All angles are measured relative to the parent frame, as noted by 61...5

5.4 Supervised learning of 5-link walking from

finite-state-machine control observations

The results of Section 5.1 and Section 5.3 are encouraging. We now move on

to experiments involving a less stable robot design, a planar 5-link biped. This

robot has more degrees of freedom to control, as it has knees. The robot is very

unstable, given its lack of ankles and so the only method of maintaining balance

is to take steps. Figure 5.5 shows the model.

Goals

For this experiment we are looking to achieve the following goals. First, can

the locally weighted policy technique support more degrees of freedom and deal

with a more difficult problem. Second, can an existing control policy be learned

from the direct expression of that policy?

Chapter 5. Imitation-based Learning Experiments 52

Parameter Value
pelvis width 0.1 m
thigh length 0.45 m
calf length 0.45 m
pelvis mass 70 kg
thigh mass 5 kg
calf mass 4 kg
hip Kp 300 N/rad
hip Kd 30 Ns/rad
knee Kp 300 N/rad
knee Kd 30 Ns/rad
ground Kp 70,000 N/m

\ ground Kd 4,000 Ns/m

Table 5.5: Physical simulation parameters for a 5-link walking biped

M e t h o d o l o g y

The 5-link walking biped has a concentrated mass at the hips, and two legs

with knees, as shown in Figure 5.5. The physical parameters are outlined in

Table 5.5. The 5-link biped has an existing controller that is based on a pose

control graph similar to the one developed in [52], and described below.

The training data is provided by an existing control policy that has a pose

control graph structure of the form §i = fi(x) for the joints numbered 1.. .4.

The joint numbering corresponds to the left hip, left knee, right hip and right

knee. For the purposes of this thesis, the specific details of the reference func­

tions fi(-) are not relevant, as we are interested in learning control policies from

partially observable systems.

The existing pose control graph controller is essentially an open loop control

policy. Each state is defined by a target pose parametrized by desired speed,

stride length, and velocity. State transitions occur either after a specified period

of time has elapsed (timing states) or the swing foot contacts the ground (contact

states). A total of four states exist, corresponding to the states left foot takeoff

(LTO), left foot plant (LFP), right foot takeoff (RTO), and right foot plant

Chapter 5. Imitation-based Learning Experiments 53

®

Figure 5.6: A walking cycle can be decomposed into four distinct phases: left
foot takeoff (LTO), left foot plant (LFP), right foot takeofT (RTO), and right
foot plant (RFP)

(RFP). This is shown graphically in Figure 5.6.

Initially we attempted to learn the control policy directly but this exposed a

weakness in the LWPR framework. Discontinuities are not handled particularly

well in the LWPR framework, as the distance optimization algorithm works

aggressively to shrink receptive fields away from the discontinuities that exists

at the state transitions.

This failure led to the creation of an enhanced pose control graph structure,

which we term the policy control graph. The policy control graph, rather than

having each node in the graph represent a pose, in our framework it represents

a control policy. Termination criteria for the policies are time based for the left

foot and right foot take off (LTO and RTO) phases, and contact based for the

left foot and right foot placement phases (LFP and RFP). These are identical

to those in the pose control graph, though the duration of the take off phase is

slightly shorter in the policy control graph (0.2 vs. 0.3 seconds) as this provided

a more robust walking controller.

Learning is now accomplished by sampling the pose control graph output

over an expected range of the parametrized state space (d, d). The original pose

control graph expresses a desired pose, and in this implementation contains a

small amount of feedback related to the stride length d and horizontal velocity

d. We uniformly sample across the expected range of (d, d) and train a set of

Chapter 5. Imitation-based Learning Experiments 54

Figure 5.7: The policy control graph structure. Each phase of the walk cycle
is now represented by an approximation of the original control policy and thus
has its own distinct set of receptive fields.

Parameter Value
diagonal only true
meta learning true
meta learning rate 15
penalty 1.0 x IO7

initial a 10.0
initial A 0.99999
initial D 25.01
prediction cutoff 0.001
samples 100,000

Table 5.6: LWPR parameters for learning 5-link biped walking

receptive fields using the LWPR algorithm. The range is slightly larger than that

observed to provide robust control in the existing pose control graph structure.

The control policy for each of the hips and knees is learned independently for

each of the four poses represented in the original pose control graph. The LWPR

learning parameters are shown in Table 5.6. These parameters are slightly

different from those presented in previous experiments. No attempt has been

made to find the lower limits to learning the pose control graph structure.

Results

The resulting walk cycle generated from the policy control graph learned using

this technique produced walk cycles that were qualitatively indistinguishable

from the original pose control graph. Different walk cycles can be generated

Chapter 5. Imitation-based Learning Experiments 55

Figure 5.8: A comparison of a walk cycle generated from a pose control graph
and the learned policy control graph

with horizontal velocities that range from — 0.4m/s to 1.2m/s. Each distinct

speed requires learning a different control policy with a new set of training

data. A comparison of the pose control graph (original) walk cycle compared

to the learned policy control graph is shown in Figure 5.8. Note the slight

difference in the pose control graph output with respect to the learned policy

control graph functions. The difference is attributable to the difference in take

off phase duration, resulting in the learned policy control graph having a slightly

faster gait than the original policy.

D i s c u s s i o n

It is not really surprising that the learning algorithm can replicate the smooth

control provided by the pose control graph. What this experiment has shown is

that the policy control graph structure is capable of controlling more complex

Chapter 5. Imitation-based Learning Experiments 56

movements in unstable and underactuated systems. It has also highlighted the

difficulties in trying to model systems with discontinuities. We have chosen

to solve this problem through the use of a finite state machine, represented

by the policy control graph,' to distinguish between the distinct phases of the

motion. Other methods, such as those proposed in [51] have also been proposed

to automatically decompose an observed system into a set of models.

One limitation of the approach taken in this experiment is that we still need

access to a working controller in order to collect the data. This situation is rare

and led us to experiment with deriving a control policy from direct kinematic

descriptions of data. We allowed the existing control law to run through 100

trials each of which had a random external force in the range of [—20,20] Nm/s 2

applied horizontally to the center of mass. Full state information was recorded

along with the output torques for each joint and the phase of the walk cycle that

the sample corresponded to. A policy control graph was trained using this data.

The resulting walk cycle, though it was capable of making the planar 5-link biped

walk, was not nearly as stable as the existing control law. This is likely due

to poor modeling of the torques required by the stance leg's knee joint which

must remain locked to prevent the robot from falling. The quality of the learned

model is sensitive to the simulation time step and control sampling frequency.

The method shows promise and will likely be explored in the future, using

motion segmentation techniques such as Kinematic Centroid Segmentation [17]

to derive phase information and inverse dynamics techniques [11] to compute

required torques.

Chapter 5. Imitation-based Learning Experiments. 57

5.5 Learning to transition between different

walking speeds on a 5-link biped

The preceding experiments have shown that it is possible to learn a skilled

task, in this case walking, on different bipeds and with different means (existing

control law, human observation, and kinematic description). A robot that can

perform a single task, while useful in assembly plant operations, is not particu­

larly interesting when considering a larger context of a robot that can interact

with its environment.

G o a l s

This final experiment has two goals. The first goal is to determine if it is possible

to switch between different control policy graphs at natural transition points.

For example, can we switch from left foot takeoff (LTO) at one speed to left

foot plant (LFP) at another speed, either faster or slower. The second goal

is to automatically discover feasible transition points between existing control

policy graphs. Given working control policies for different motions, how do we

go about creating a probabilistic transition matrix between graphs? We wish to

define a transition matrix that provides probability of successfully transitioning

between two nodes of different policy control graphs.

M e t h o d o l o g y

A family of 11 policy control graphs for biped walking were created, based on

the results of Section 5.4. These walking controllers were parametrized by speed

such that the average velocity generated by policy iTi is strictly less than the

average velocity generated by policy ffi+i-

The first goal of the experiment is tested by allowing the user to set a desired

Chapter 5. Imitation-based Learning Experiments 58

Figure 5.9: Transitioning between policy control graphs. The solid lines repre­
sent the usual transitions, successful with probability 1. The dotted line repre­
sents a test transition between the two different policy control graphs.

velocity interactively. At the termination of each node in the policy control

graph the current velocity is compared to the desired velocity. If the desired

velocity is less than the current velocity then the next slower control policy

graph is chosen. If the desired velocity is greater than the current velocity then

the next faster control policy graph is chosen. Only a single step in speed is

allowed at each termination test.

For the development of the probabilistic transition matrix, the following

technique is used. Transitions between nodes of a policy control graph occur

when the active node reaches its termination criterion. Normally the next node

would correspond to the next phase of the walk cycle. With a set of policy

control graphs we wish to potentially transition to a node in a different policy

control graph. A simplified example with just two policy control graphs is

depicted in Figure 5.9. The dotted line represents a potential new transition.

A default transition matrix of dimension 55 x 55 was created. The 55 dimen­

sions correspond to each of the 4 phases of the walk cycle, plus an additional

start phase that corresponds to the beginning of a new trial and always transi­

tions to left foot takeoff (LTO) when contact with the ground is made. These

five phases exist for each of the 11 speeds of the policy control graph that we

have generated. The normal probability transitions were encoded, such that

the natural cycle of each policy control graph was maintained. That is, for each

Chapter 5. Imitation-based Learning Experiments 59

policy 7Ti, there are four nodes, corresponding to the four phases of the walk

cycle. Each node has a probability of 1 that it will successfully transition to the

next node in the normal cycle. A portion of this default matrix is shown below.

The fifth (start) phase has a transition probability of 1 to the LTO phase of its

policy control graph.

T =

I 0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

1 0 0 0 0

\ 1 0 0 0 0

\

A systematic exploration of transitions could be created, where test tran­

sitions are setup between all possible pairs of nodes in the graph. This would

be thorough, but the simulations would have to be exhaustive in order to start

populating the higher speed policies. Instead a random test connection is made

so that some connections between all policy control graphs are examined early

in the exploration phase.

Prior to each trial a random connection with a probability weight of 1 is

made between two arbitrary nodes in the family of policy control graphs. The

restrictions on placing this temporary connection were that nodes can not con­

nect to themselves, and they can not connect to another node in their own policy

control graph (i.e. we want to transition to a different speed walk). When se­

lecting the next node, the transition matrix is examined and the next node is

selected based on the cumulative probability within the transition matrix.

The simulations were setup to conduct trials, terminating when the biped

fell down (failure), simulation time exceeded 10 s (success), or the robot traveled

more than 5 m (success). Each trial started from the same initial stationary

Chapter 5. Imitation-based Learning Experiments 60

pose. When a trial is terminated it is evaluated in terms of success or failure.

If the temporary connection between policy control graphs was used at some

point in the trial, and the trial was a success, then the appropriate entry in the

transition matrix is incremented by 0.01. The simulations are allowed to run

for 7,500 episodes to populate the values in the transition matrix.

R e s u l t s

The interactive active aspect of this experiment produced very favorable results.

The different policy control graphs are able to transition to the next natural

phase in adjacent speeds at all phases. The model does not need to recover in

any way, that is there is no stumble or disruption of the walk cycle. In this

manner it is possible to have the robot walk backwards and forwards in the

simulation essentially indefinitely.

For the development of the probabilistic transition matrix the following re­

sults were observed. When left to execute, a transition matrix is built up that

supports transitioning between families of controllers. Some of the transitions

are unstable, and while they do not produce a fall, end up putting the biped

through a small recovery phase (which it is capable of doing due to its robust­

ness). Think of stubbing your toe, you don't fall down unless on your recovery

step you also stub your other toe. These unstable transitions are identifiable by

a probability p < 0.5 when all values have been normalized. The 0.5 threshold is

determined arbitrarily, to indicate that the robot fails to transition more often

than it succeeds.

If left to run for too long, then too many possible transitions exist the next

node selection can lead to hopping from family to family too often and the biped

falls over. This could be changed through a modification of the transition law

to favor same family transitions only until the user requests a different speed.

Chapter 5. Imitation-based Learning Experiments 61

Empirically, it seems that more than 15,000 trials results in a probabilistic

transition matrix that fails to produce a robust walk cycle.

D i s c u s s i o n

The results from this experiment were successful. The biped is capable of tran­

sitioning to both faster and slower walk cycles from every node of each policy

control graph. The most successful transitions are those that branch to the

next natural phase in an adjacent speed policy control graph. Random tran­

sitions to arbitrary nodes in any policy control graph are possible, though the

robot requires at least one complete walk cycle to recover from any induced

perturbations.

A limitation in extrapolating from the results of this experiment is that the

motions that were part of the transition matrix were all very similar, that is

they are all walk cycles of varying speeds. The addition of more types of motion

such as walking up or down stairs or a hop would add considerable variation to

the possible motions and yield more interesting results.

The receptive field implementation also allows for the inter-state transition

to occur not just at termination of state nodes in the policy control graph but

also in overlapping receptive fields of different motions. This would require

all control policies to work with the same projection of the system states (i.e.

(d, d)) or the full state x. That is, if a jump is described using a different state

parametrization it can still be tested for safe transitions with the method used

in this experiment.

Chapter 6

62

Conclusions

As noted in the introduction, the study of motor control is a large inter­

disciplinary area of research. There are many ways to view the problem and

equally as many avenues for trying to replicate skilled motion on robots. This

thesis has explored a specific subset of approaches, based on imitation-based

learning and locally weighted control policy representations. This thesis has

not fully solved the problem of teaching a robot how to walk. However it has

shown that recent advances in areas of machine learning can be successfully ap­

plied to this very challenging problem. The specific contributions of this thesis

are outlined in the following section, followed by a discussion of future research.

6.1 Contributions

Locally Weighted Projection Regression

We have shown, through a series of experiments, that locally weighted projection

regression is capable of learning control policies in under-actuated robotic sys­

tems. Previously this learning method had been primarily used to learn aspects

of motor control to fully actuated systems (e.g. a robot arm). While similar in

nature to [30], we have shown that higher degree of freedom robots, including

those with knees, can be controlled with policies represented by LWPR.

Chapter 6. Conclusions 63

Policy Control Graph

We are no longer limited to simple open-loop control systems, but can direct

coordinated actions through the ability to transition between multiple control

policies. Each node within the policy control graph represents a complete control

policy that has full feedback information.

We have shown that transitions between control policy graphs may be de­

fined at the node level. An approach to evaluating the probability of success

of a transition was described, with the result being a probabilistic transition

matrix indicating the likelihood that a particular switch in the active control

policy graph will succeed. We also showed that transitions to the next natural

phase in a walk cycle in adjacent speeds of policy control graphs are always

successful. This opens the possibility of performing motion planning using the

information regarding transition capabilities.

6.2 Future Work

Animation with Physics Based Characters

The extension to three dimensional models and simulation is an obvious piece

of future research. The use of planar bipeds in this thesis greatly reduces the

simulation time, making the exploration of ideas significantly faster. With the

establishment of some of the fundamental ideas and the presence of a working

learning infrastructure the extension to higher dimensions should be straight­

forward.

The use of higher degree of freedom models is also a next logical step. The 5-

link biped used in some of the experiments has a total of four controllable degrees

of freedom in a twelve dimensional state space. Character models used in video

games have closer to twenty-seven controllable degrees of freedom in a sixty

Chapter 6. Conclusions 64

dimensional state space. The use of LWPR should help, as the computational

complexity has been shown to be linear in input dimensions, not exponential.

Improving Observation

In the experiment that learned a control policy from observed joint torque data

we had access to the actual target joint angles produced by an existing control

policy. This is generally not the case and we would like to extend our learning

framework to support inverse dynamic calculations based on observed kinematic

motion (i.e. motion capture data).

The use of techniques such as the Articulated Body Method [11], or the use

of space-time constraints [58] to generate joint torques for an observed motion

would provide us with a wealth of new training examples, accessible through

public motion capture databases and our own motion capture facility.

Improving Optimization

The optimization techniques used in this thesis are fairly straightforward, and

are not particularly fast when applied to higher dimensional problems. There

exist sophisticated nonlinear optimization algorithms which could potentially

be employed to improve the quality of the control policies. A technique such

as Stochastic Meta Descent [43] is a very fast technique that works in high

dimensions.

Learning motion of points of support

Balance is related to the center of mass of an articulated figure and the points

of support. An exploration of how the points of support are placed in relation

to the dynamics of the center of mass is worth investigating. The discontinuity

of this function suggests that recent work in [51] might be required.

65

Bibliography

[1] Pieter Abbeel and Andrew Y. Ng. Exploration and apprenticeship learning

in reinforcement learning. In ICML 05: Proceedings of the 22nd Interna­

tional Conference on Machine Learning, pages 1-8, August 2005.

[2] Robert O. Ambrose, R. S. Askew, W. Bluethmann, M. A. Diftler, S. M.

Goza, D. Magruder, and F. Rehnmark. The development of the robo-

naut system for space operations. In ICAR 2001 Invited Session on Space

Robotics, August 2001.

[3] Chris G. Atkeson and Stefan Schaal. Learning tasks from a single demon­

stration. In ICRA 1997: Proceedings of the 1997 IEEE International Con-

verence on Robotics and Automation, volume 2, pages 1706-1712, April

1997.

[4] Ronen Barzel and Alan H. Barr. A modeling system based on dynamic

constraints. In Proceedings of the 15th annual conference on Computer

graphics and Interactive techniques, pages 179 - 188. ACM Press, 1988.

[5] Richard Bellman. Dynamic Programming. Princeton University Press,

Princeton, New Jersey, 1957.

[6] D. P. Bertsekas and J. Tsitsiklis. Neuro-dynamic programming. Athena

Scientific, 1996.

Bibliography 66

[7] A. Bruderlin and T. W. Calvert. Goal-directed, dynamic animation of

human walking. In SIGGRAPH '89: Proceedings of the 16th annual con­

ference on Computer graphics and interactive techniques, pages 233-242,

New York, NY, USA, 1989. ACM Press.

[8] Steven H. Collins, Martijn Wisse, and Andy Ruina. A three-dimensional

passive-dynamic walking robot with two legs and knees. International Jour­

nal of Robotics Research, 20(7):607-615, 2001.

[9] Steven H. Collins, Martijn Wisse, and Andy Ruina. A three-dimensional

passive-dynamic walking robot with two legs and knees. The International

Journal of Robotics Research, 20(7):607-615, 2001.

[10] Opher Donchin and Reza Shadmehr. Linking motor learning to function

approximation: Learning in an unlearnable force field. In Advances in

Neural Information Processing Systems, volume 14, pages 195-204. MIT

Press, 2002.

[11] R. Featherstone. Robot Dynamics Algorithms. Kluwer Academic Publish­

ers, Norwell, MA, USA, 1987.

[12] R. Featherstone and D. E. Orin. Robot dynamics: Equations and algo­

rithms. In ICRA 00: Proceedings of the 2000 IEEE International Confer­

ence on Robotics and Automation, volume 1, pages 826-834, April 2000.

[13] A. P. Georgopoulos. Higher order motor control. Annual Review of Neu­

roscience, 14:361-377, March 1991.

[14] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements

of Statistical Learning: Data Mining, Inference and Prediction. Springer,

New York, NY, USA, 2001.

Bibliography 67

[15] Eugene Hsu, Kari Pulli, and Jovan Popovic. Style translation for human

motion. ACM Transactions on Graphics, 24(3): 1082-1089, 2005.

[16] Paul M. Isaacs and Michael F. Cohen. Controlling dynamic simulation

with kinematic constraints. In SIGGRAPH '87: Proceedings of the 14th

annual conference on Computer graphics and interactive techniques, pages

215-224, New York, NY, USA, 1987. ACM Press.

[17] Odest Chadwicke Jenkins and Maja J. Mataric. Automated derivation of

behavior vocabularies for autonomous humanoid motion, fn AAMAS '03:

Proceedings of the second international joint conference on Autonomous

agents and multiagent systems, pages 225-232, New York, NY, USA, 2003.

ACM Press.

[18] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, and

H. Hirukawa. Biped walking pattern generation by using preview control

of zero-moment point. In ICRA 2003: Proceedings of the 2003 IEEE Inter­

national Conference on Robotics and Automation, 2003, volume 2, pages

1620-1626, 2003.

[19] S. Kajita, T. Yamaura, and A. Kobayashi. Dynamic walking control of a

biped robot along a potential energy conserving orbit. IEEE Transactions

on Robotics and Automation, 8(4):431-438, August 1992.

[20] Michael Kearns and Satinder Singh. Near-optimal reinforcement learning

in polynomial time. Machine Learning, 49(2-3):209-232, November 2002.

[21] Lucas Kovar, Michael Gleicher, and Frederic Pighin. Motion graphs. In

SIGGRAPH '02: Proceedings of the 29th annual conference on Computer

graphics and interactive techniques, pages 473-482, New York, NY, USA,

2002. ACM Press.

Bibliography 68

[22] Lucas Kovar, John Schreiner, and Michael Gleicher. Footskate cleanup

for motion capture editing. In SCA '02: Proceedings of the 2002 ACM

SIGGRAPH/Eurographics symposium on Computer animation, pages 97-

104, New York, NY, USA, 2002. ACM Press.

[23] Fritz Lang and Thea von Harbou. Metropolis, 1926.

[24] John Lasseter. Principles of traditional animation applied to 3d computer

animation. SIGGRAPH '87: Proceedings of the 14th annual conference on

Computer Graphics and interactive techniques, 21(4):35-44, 1987.

[25] Yan Li, Tianshu Wang, and Heung-Yeung Shum. Motion texture: a two-

level statistical model for character motion synthesis. In SIGGRAPH '02:

Proceedings of the 29th annual conference on Computer graphics and inter­

active techniques, pages 465-472, New York, NY, USA, 2002. ACM Press.

[26] Tad McGeer. Passive dynamic walking. International Journal of Robotics

Research, 9(2):62-82, 1990.

[27] Tad McGeer. Passive walking with knees. In Proceedings 1990 IEEE

Robotics and Automation Conference, pages 1640-1645, 1990.

[28] B. Mirtich. Hybrid simulation: combining constraints and impulses. Tech­

nical report, University of California, Berkeley, 1996.

[29] Brian Mirtich and John Canny. Impulse-based simulation of rigid bodies. In

SI3D '95: Proceedings of the 1995 symposium on Interactive 3D graphics,

pages 181-ff., New York, NY, USA, 1995. ACM Press.

[30] Jun Morimoto, Jun Nakanishi, Gen Endo, G. Cheng, Chris Atkeson, and

G. Zeglin. Poincare-map-based reinforcement learning for biped walking.

In ICRA 2005: Proceedings of the 2005 IEEE International Convference

on Robotics and Automation, pages 2381-2386, April 2005.

Bibliography 69

[31] Georgio Moroder. Metropolis, 1984.

[32] Franck Multon, Laure France, Marie-Paule Cani-Gascuel, and Giles De-

bunne. Computer animation of human walking: a survey. The Journal of

Visualization and Computer Animation, 10:39-54, 1999.

[33] Shinichiro Nakaoka, Atsushi Nakazawa, Kazuhito Yokoi, Hirohisa

Hirukawa, and Katsushi Ikeuchi. Generating whole body motions for a

biped humanoid robot from captured human dances. In Proceedings of 2003

IEEE International Conference on Robotics and Automation, September

2003.

[34] Michiel Van De Panne. Control techniques for physically-based animation.

PhD thesis, 1994. Adviser-Zvonke G. Vranesic and Adviser-Eugene L. Fi-

urne.

[35] J. Piatt. A resource allocating network for function interpolation. Neural

Computation, 3:213-225, 1991.

[36] Jorg Sauer and Elmar Schomer. A constraint-based approach to rigid body

dynamics for virtual reality applications. In VRST '98: Proceedings of the

ACM symposium on Virtual reality software and technology, pages 153-162,

New York, NY, USA, 1998. ACM Press.

[37] Stefan Schaal and Christopher G. Atkeson. Receptive field weighted regres­

sion. Technical Report TR-H-209, ATR Human Information Processing

Laboratories, Kyoto, Japan, 1997.

[38] Stefan Schaal and Christopher G. Atkeson. Constructive incremental learn­

ing from only local information. Neural Computation, 10(8):2047-2084,

1998.

Bibliography 70

[39] Stefan Schaal, Christpoher G. Atkeson, and Sethu Vijayakumar. Real­

time robot learning with locally weighted statistical learning. In ICRA

2000: Proceedings of the 2000 IEEE Internationl Conference on Robotics

and Automation. IEEE, 2000.

[40] Stefan Schaal, Christpoher G. Atkeson, and Sethu Vijayakumar. Scalable

techniques from nonparametric statistics for realtime robot learning. Ar-

tifical Intelligence, 17(l):49-60, 2002.

[41] Stefan Schaal, Sethu Vijayakumar, and Christopher G. Atkeson. Local

dimensionality reduction. In NIPS '97: Proceedings of the 1997 conference

on Advances in neural information processing systems 10, pages 633-639,

Cambridge, MA, USA, 1998. MIT Press.

[42] Stefan Schaal, Sethu Vijayakumar, A. D'Souza, A. Isjpeert, and Jun Nakan-

ishi. Real-time statistical learning for robotics and human augmentation.

In International Symposium on Robotics Research, November 2001.

[43] Nicol N. Schraudoplh, Jin Yu, and Douglas Aberdeen. Fast online pol­

icy gradient learning with SMD gain vector adaptation. In NIPS 2005:

Proceedings of the 2005 conference on Advances in neural information pro­

cessing systems 18, 2005.

[44] Naresh K. Sinha. Control Systems. Holt, Rinehart and Winston, Inc., New

York, 1988.

[45] Adnan Sulejmanpasic and Jovan Popovic. Adaptation of performed ballistic

motion. ACM Transactions on Graphics, 24(1):165-179, 2005.

[46] Richard S. Sutton and Andrew G. Barto. Reinforcement learning: an in­

troduction. MIT Press, Cambridge, Massachusetts, 1998.

Bibliography 71

[47] Russ Tedrake. Applied Optimal Control for Dynamically Stable Legged Lo­

comotion. PhD thesis, Massachusetts Institute of Technology, September

2004.

[48] Russ Tedrake, T. W. Zhang, and H. S. Seung. Stochastic policy gradient

reinforcement learning on a simple 3d biped. In IROS 2004: Proceedings of

2004 IEEE/RSJ International Conference on Intelligent Robots and Sys­

tems, volume 3, pages 2849-2854. IEEE, September 2004.

[49] Honda Robotics h t t p : / / a s i m o . h o n d a . c o m .

[50] Vicon Motion Systems h t t p : / / w w w . v i c o n . c o m .

[51] Marc Toussaint and Sethu Vijayakumar. Learning discontinuities with

products-of-sigmoids for switching between local models. In ICML 05: Pro­

ceedings of the 22nd international conference on Machine learning, pages

904-911, New York, NY, USA, 2005. ACM Press.

[52] M. van de Panne, R. Kim, and E. Fiume. Virtual wind-up toys. In Pro-

ceedsing of Graphics Interface '94, pages 208-215, May 1994.

[53] Sethu Vijayakumar, Aaron D'Souza, and Stefan Schaal. Incremental online

learning. Technical Report EDI-INF-RR-0284, University of Edinburgh,

2005.

[54] Sethu Vijayakumar, Aaron D'souza, and Stefan Schaal. Incremental online

learning in high dimensions. Neural Computation, 17(12):2602-2634, 2005.

[55] Sethu Vijayakumar and Stefan Schaal. Local dimensionality reduction for

locally weighted learning. In CIRA 97: Proceedings of the 1997 IEEE

International Symposium on Computational Intelligence in Robotics and

Automation, page 220, Washington, DC, USA, 1997. IEEE Computer So­

ciety.

http://asimo.honda.com
http://www.vicon.com

Bibliography 72

[56] Sethu Vijayakumar and Stefan Schaal. Locally weighted projection regres­

sion: Incremental real time learning in high dimensional space. In ICML

00: Proceedings of the Seventeenth International Conference on Machine

Learning, pages 1079-1086, San Francisco, CA, USA, 2000. Morgan Kauf-

mann Publishers Inc.

[57] Chris Welman. Inverse Kinematics and Geometric Constraints For Ar­

ticulated Figure Manipulation. Master's thesis, Simon Fraser University,

September 1993.

[58] Andrew Witkin and Michael Kass. Spacetime constraints. In SIGGRAPH

'88: Proceedings of the 15th annual conference on Computer graphics and

interactive techniques, pages 159-168, New York, NY, USA, 1988. ACM

Press.

[59] David Zeltzer. Knowledge-based animation (abstract only). SIGGRAPH

'84-' Proceedings of the 11th annual conference on Computer Graphics and

interactive techniques, 18(l):27-27, 1984.

[60] Victor Brian Zordan and Jessica K. Hodgins. Motion capture-driven sim­

ulations that hit and react. In SCA '02: Proceedings of the 2002 ACM

SIGGRAPH/Eurographics symposium on Computer animation, pages 89-

96, New York, NY, USA, 2002. ACM Press.

