- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Visual question answering with contextualized commonsense...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Visual question answering with contextualized commonsense knowledge Chinchure, Aditya Aravind
Abstract
There has been a growing interest in solving Visual Question Answering (VQA) tasks that require the model to reason beyond the content present in the image. In this work, we focus on questions that require commonsense reasoning. In contrast to previous methods which inject knowledge from static knowledge bases, we investigate the incorporation of contextualized knowledge using Commonsense Transformer (COMET), an existing knowledge model trained on human-curated knowledge bases. We propose a method to generate, select, and encode external commonsense knowledge alongside visual and textual cues in a new pre-trained Vision-Language-Commonsense transformer model, VLC-BERT. Through our evaluation on the knowledge-intensive OK-VQA and A-OKVQA datasets, we show that VLC-BERT is capable of outperforming existing models that utilize static knowledge bases. Furthermore, through a detailed analysis, we explain which questions benefit, and which don’t, from contextualized commonsense knowledge from COMET.
Item Metadata
Title |
Visual question answering with contextualized commonsense knowledge
|
Creator | |
Supervisor | |
Publisher |
University of British Columbia
|
Date Issued |
2024
|
Description |
There has been a growing interest in solving Visual Question Answering (VQA) tasks that require the model to reason beyond the content present in the image. In this work, we focus on questions that require commonsense reasoning. In contrast to previous methods which inject knowledge from static knowledge bases, we investigate the incorporation of contextualized knowledge using Commonsense Transformer (COMET), an existing knowledge model trained on human-curated knowledge bases. We propose a method to generate, select, and encode external commonsense knowledge alongside visual and textual cues in a new pre-trained Vision-Language-Commonsense transformer model, VLC-BERT. Through our evaluation on the knowledge-intensive OK-VQA and A-OKVQA datasets, we show that VLC-BERT is capable of outperforming existing models that utilize static knowledge bases. Furthermore, through a detailed analysis, we explain which questions benefit, and which don’t, from contextualized commonsense knowledge from COMET.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2024-04-11
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0441296
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2024-05
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International