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Abstract

There has been a growing interest in solving Visual Question Answering
(VQA) tasks that require the model to reason beyond the content present
in the image. In this work, we focus on questions that require common-
sense reasoning. In contrast to previous methods which inject knowledge
from static knowledge bases, we investigate the incorporation of contextu-
alized knowledge using Commonsense Transformer (COMET), an existing
knowledge model trained on human-curated knowledge bases. We propose
a method to generate, select, and encode external commonsense knowledge
alongside visual and textual cues in a new pre-trained Vision-Language-
Commonsense transformer model, VLC-BERT. Through our evaluation on
the knowledge-intensive OK-VQA and A-OKVQA datasets, we show that
VLC-BERT is capable of outperforming existing models that utilize static
knowledge bases. Furthermore, through a detailed analysis, we explain
which questions benefit, and which don’t, from contextualized commonsense
knowledge from COMET.
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Lay Summary

Visual Question Answering (VQA) is the task of answering a question given
an image. In our work, we focus on the challenging problem of common-
sense knowledge based VQA, where external knowledge about the world is
necessary for a model to answer the question. We propose VLC-BERT, a
model that can incorporate external commonsense knowledge by using a
knowledge generation language model, COMET, to obtain knowledge in a
contextual manner, specific to the question and the image. This method
yields a model that outperforms models of its size on two datasets, OK-
VQA and A-OKVQA. Our investigation reveals the possibility of building
smaller language models while incorporating commonsense knowledge into
them.
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Chapter 1

Introduction

Recent progress in multimodal vision-language learning has been fueled
by large-scale annotated datasets for Visual Question Answering (VQA)
[1, 6, 12, 38, 50], in which models are presented with questions about an
image. To answer questions correctly, models are required to perform scene
understanding and learn meaningful connections between the two modali-
ties. In recent years, transformer-based vision and language (VL) models
[8, 21, 45], pre-trained on large-scale multimodal corpora, have reached im-
pressive accuracies on standard VQA datasets.

VQA often necessitates not only visual comprehension of the scene de-
picted by the image (e.g., “A plate with meat, potatoes and bread”) but also
making inferences about plausible stories behind the image (e.g., “The plate
is likely found at a restaurant”). Humans make such inferences based on
prior experience and commonsense knowledge (e.g., “This is likely a lunch
or dinner at a restaurant, people may be enjoying themselves...”). Most
existing methods rely on world knowledge implicitly encoded by language
models, which often lacks in both accuracy and coverage [33]. This is pri-
marily due to the fact that commonsense knowledge is extremely broad,
and frequently assumed. Commonsense knowledge learned from text suf-
fers from reporting bias [11]: over-representation of exceptional facts (e.g.,
“people die in accidents”) in text corpora, at the expense of rarely discussed
trivial facts known to everyone (e.g., “people eat”).

Several visual question answering benchmarks were proposed, in which
the questions require either factual [28, 46] or commonsense knowledge
[37, 50] beyond the visual scene comprehension. This prompted the devel-
opment of neurosymbolic methods combining transformer-based representa-
tions with knowledge bases (KBs) [9, 29, 48]. However, retrieving relevant
facts directly from a KB is challenging due to lack of coverage, and because
KB facts are only appropriate in certain contexts.

In this work, we propose VLC-BERT (Vision-Language-Commonsense
BERT), a model designed to incorporate contextualized commonsense knowl-
edge into a Vision-Language transformer built on VL-BERT [42]. As an
alternative to the retrieval paradigm often used in knowledge-based VQA,

1



Chapter 1. Introduction

Figure 1.1: A question from the OK-VQA [28] dataset: Where might one
buy this? In order to answer this question, a model requires commonsense
knowledge about the contents of the image (the food on the plate), and where
such food may be obtained (restaurant), that humans often infer from past
experiences and their world knowledge.

our model generates contextualized commonsense inferences on the question
phrase combined with image object tags using COMET [2, 15], a language
model trained on commonsense knowledge graphs. We augment sentence
transformers [32] to rank, filter and embed the commonsense inferences. We
incorporate the filtered inferences into VLC-BERT using an attention-driven
fusion mechanism that learns to focus on the most important inferences for
each question. Commonsense knowledge may not be necessary for answer-
ing every question, as some questions are either purely visual, factual, or
straight-forward. To eliminate injecting noisy knowledge in such cases, we
employ weak supervision to help us discriminate between situations when
commonsense knowledge may or may not be valuable.

Our evaluations on the challenging OK-VQA [28] and A-OKVQA [37]
datasets confirm that leveraging commonsense is consistently useful for knowl-
edge intensive visual question answering tasks. We analyze the successful
predictions and show how the commonsense inferences help answering dif-
ficult questions. Ultimately, VLC-BERT performs favourably compared to
other similarly sized models on both datasets.

2



Chapter 2

Related Work

2.1 Vision-Language Transformer Models

Pre-trained Vision-Language models based on BERT [8] have shown impres-
sive performances on downstream multimodal tasks such as Visual Question
Answering. ViLBERT [25] and LXMERT [43] use a two-stream architecture
to first encode language and vision modalities independently, and then ap-
ply a cross-modality encoder to align textual and visual tokens. VL-BERT
[42], OSCAR [22] and OSCAR+ [51] use a single-stream architecture to
directly learn inter-modality interactions. Large-scale pre-training is com-
monly done using the Conceptual Captions [39] dataset, with objectives that
are designed to encourage interaction between modalities, such as predicting
masked tokens or image regions [22, 25, 42, 43], and using contrastive loss
between modalities [22]. As a result, such models inherently capture some
commonsense knowledge through their pre-training regime. While these
models perform impressively on downstream tasks such as VQA [1], they
typically perform worse on questions requiring reasoning about knowledge
beyond the image content or involving multiple reasoning hops.

In more recent years, the emergent capabilities of large-scale vision-
language models (VLLMs) such as OpenAI’s GPT-4V [30] have shown the
potential of implicit commonsense knowledge obtained through an extensive
training regime. However, these models are often monetarily expensive to
train and use.

In our work, we introduce VLC-BERT, a multimodal transformer model
based on VL-BERT that explicitly incorporates external knowledge to alle-
viate the knowledge gap in pre-trained VL-models, while being significantly
smaller and less expensive to train and use compared to recent VLLMs.

2.2 Knowledge-based Visual Question Answering

In recent years, several VQA datasets were designed specifically to require
reasoning about external knowledge beyond the image, whether using fac-

3



2.3. Knowledge incorporation in NLP

tual and web information (FVQA [46], WebQA [5], a provided text passage
(VLQA [35]), commonsense-driven reasoning (VCR [50]), or external com-
monsense knowledge (OK-VQA [28], A-OKVQA[37]). This motivated a line
of work on knowledge-enhanced VL transformer models. External knowl-
edge is typically retrieved from a structured knowledge base like ConceptNet
[41], in the form of a subgraph, and integrated into the VL transformer as
an additional input [9, 20, 29, 48]. Alternative sources of knowledge in-
clude image captions [34], Google Search results [26], and textual and visual
knowledge from Wikipedia, and Google Images [48]. In contrast to most
of the preceding work, PICa [49] and Knowledge Augmented Transformer
(KAT) [13] attempt to use GPT-3 [3] in a few-shot setting on the VQA task,
by building prompts containing the caption and object tags generated using
the image, followed by the question statement, asking the model to produce
an answer.

In our proposed model, we focus on a specific subset of the knowledge-
intensive datasets that require commonsense knowledge. Our approach, that
uses COMET [15] for generating relevant commonsense knowledge, is dis-
tinctly different, far simpler, and more cost-effective than other alternatives
described above.

2.3 Knowledge incorporation in NLP

Structured knowledge bases, or KBs, like ConceptNet [41] and ATOMIC [36]
are widely used in NLP tasks to provide additional commonsense knowledge
to models. ConceptNet contains 3.4M assertions focusing on concept and
entity relations (such as RelatedTo, Synonym, IsA, MadeOf). ATOMIC
contains 1.33M triplets focusing on event-centric social commonsense about
causes, effects, mental states of the event participants. Several approaches
were proposed for incorporating symbolic knowledge from these KBs into
downstream NLP tasks such as encoding subgraphs of relevant knowledge
[9, 23] and pre-training on commonsense knowledge bases or tasks [52].

Despite the performance improvements, incorporating knowledge directly
from KBs suffers from two limitations: lack of coverage and lack of consid-
eration for context. Commonsense Transformer, COMET [15], attempts to
alleviate these issues by fine-tuning pre-trained language models on KBs.
COMET can generate inferences for the various KB relations dynamically
for new inputs. It has been successfully used for generating knowledge in
language tasks [4, 27, 40, 44]. Inspired by the success of these models, we
chose to use COMET [15] to generate relevant contextual expansions rather

4



2.3. Knowledge incorporation in NLP

than directly retrieving knowledge from KBs. To the best of our knowledge,
we are the first to incorporate commonsense knowledge using COMET in
VQA tasks.

Newer COMET variants [31, 47] are less applicable to OK-VQA and
A-OKVQA as they focus more on event commonsense than entities. While
obtaining implicitly learned commonsense from LLMs is a more recent al-
ternative to using KBs [13, 49], this method is prohibitively expensive, both
monetarily and in terms of compute resources.

5



Chapter 3

VLC-BERT

We briefly outline the overall architecture of our model and then delve
deeper into its individual components. Figure 3.1 illustrates the VLC-BERT
pipeline. Given an image with corresponding image regions I precomputed
using Fast RCNN [10] and a question Q related to the image, we generate
commonsense inferences C on the events and entities in the question phrase
and two object tags O, and select the set of commonsense inferences which
is the most useful for answering the question, C = {C1, C2, ..., Ck} (§3.1).
Finally, we embed Q, I and C, as input to VLC-BERT and train it to predict
an answer A to Q (§3.2).

3.1 Structured knowledge generation and
selection

3.1.1 Knowledge Generation

To generate commonsense knowledge, we employ the most recent version of
COMET [15] initialized using BART [19] in a zero-shot setting. COMET
is trained to complete 50 relation types from both ConceptNet [41] (such
as AtLocation, Madeof) and ATOMIC [36] (such as xNeed, xWants), thus
capturing concept as well as event oriented knowledge. We generate infer-
ences based on 30 relation types most relevant to our work and supported
by COMET.2Consider the example shown in Figure 3.2. For the given ques-
tion, “What is the purpose of the umbrella?” we first process each question
using AllenNLP’s constituency parser [17] and convert it into a declarative
sentence, since COMET was mainly trained on declarative sentences. In
the example shown, “What is the purpose of the umbrella?” is rephrased
as “The purpose of the umbrellas is”. We then adopt a state-of-the-art ob-
ject detection model, YOLOv5 [16], to translate the corresponding image
into object tags that COMET can understand. We select the top two most
confident object tags and combine it with the question phrase to obtain

2We include the full list of relation types in the supplementary material.
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3.1. Structured knowledge generation and selection

VLC-BERT Transformer

Question

Question (Q)

Why do they have
umbrellas?  

Answer

Commonsense Inferences (C)

Knowledge
Generation &

Selection

Fast(er) R-CNN

Image

Image Regions (I)

YOLOv5

Object tags

dog, chair... 

Figure 3.1: Architecture of VLC-BERT: Given an image, VLC-BERT
generates commonsense inferences for the question-object phrase using
COMET. These inferences are relevance ranked, and top ones (C) are se-
lected and fed along with image regions (I) and the question (Q) into a
VL-Transformer in order to produce an answer.

a question-object (QO) phrase, “The purpose of the umbrella is, with dog
and chair”. We restrict the number of the object tags used in COMET’s
input to two because the addition of multiple tags make the inferences more
conflated and noisy. In this manner, we can obtain inferences that can pro-
vide additional knowledge about both the visual and language inputs to
VLC-BERT.

We use beam search to decode the top 5 inferences for each relation type,
ranked according to the model’s confidence. Overall, we get 30 × 5 = 150
inferences for each input phrase. Finally, we convert each inference to a
sentence in natural language using relation-specific templates as defined in
[7]. In the shown example, the assertion < umbrella,Located At, store > is
expressed as “You are likely to find umbrella at store”. In order to remove
redundant sentences of the same relation type, we measure the lexical overlap
by measuring the percentage of common words between two given sentences.
We exclude the sentences which have more than 70% overlap with previously
constructed sentences of the same relation.

7



3.1. Structured knowledge generation and selection

Relations
CapableOf 

HasProperty 
MadeOf 

AtLocation 
Causes 
xWant 

...

umbrella protects
from sun, 

umbrella protects
from rain 

COMET

Knowledge Generation & Selection

Semantic  
search 

(SBERT) 

Q
What is the

purpose of the
umbrella? 

Question to
declarative

AtLocation

 umbrella 
 umbrella stand 
 store 
 garage 
 park

UsedFor 

 protect from rain 
 protect from sun 
 protect themselves 
 keep dog dry 
 use as weapon

MadeOf
umbrella handle 
umbrella head 
umbrella 
umbrella blade 
umbrella cap 

... 

... 

... 

...

C1...Cn

C1...CK

Sentence
construction

Odog, chair The purpose of the umbrellas
with dog and chair

You are likely to find umbrella at store
Umbrellas is made of umbrella head

...

Figure 3.2: Knowledge generation and selection: We generate knowl-
edge using COMET for fixed set of relations, using the object tags (O) and
the question (Q). Semantic search is used to rank the most relevant knowl-
edge associated with the question, to obtain a list of commonsense inferences
(C).

3.1.2 Knowledge Selection

Due to the high cost of computation, and the noise associated with feeding
such a large number of text tokens, feeding up to 150 COMET inferences
into the VL Transformer model is impractical. In order to rank and select
the inferences, we employ semantic search based on sentence transformers
(SBERT) [32], which are pre-trained on tasks that retrieve candidate answers
to a search query. In this method, the question and the inferences are
embedded into the same vector space using SBERT [32] and cosine similarity
between the question and the inference embeddings is used to rank the
inferences. We prune the set of inference sentences C by picking K =
5 inferences which are expected to be the most useful for answering the
question Q.

Augmented-SBERT We augment the SBERT used for semantic search
by starting with a pre-trained SBERT model and continuing to train it for 2
epochs on question-inference instances from the training set of our datasets.
To achieve this, we label the inferences for each question with similarity
scores based on the proportion of overlap with the human-annotated an-
swers. Since SBERT is trained on corpora that are distinct from our task,
the augmentation ensures that the model understands the nature of query-
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3.2. VLC-BERT

VLC-BERT Transformer

Emb Emb Emb Emb

Multi-Head Attn.

Emb Emb Emb V. Emb V. Emb Emb

[CLS] q1 qend [SEP]

SBERT SBERT

[SEP] [MASK] [SEP] RoI1 RoIend [END]

C1 Ck

Question (Q)

Inferences (C)

Masked Answer Image Regions (I)

Classifier

Answer

...

...

...

SBERT

Q

K
Q,V

C. Emb

Emb Text Embedding

SBERT SBERT for sentence embeddings

C. Emb Commonsense Embedding

V. Emb Visual Embedding

Commonsense 
Fusion (F)

Question (Q)

Figure 3.3: VLC-BERT Transformer is a single-stream Transformer that
can attend across language, vision, and commonsense representations. We
use the MHA block to fuse commonsense inferences into a useful common-
sense representation.

inference pairings in our tasks. The augmented SBERT especially helps
with narrowing down the right relations to the question. For instance, the
question in shown in Figure 3.2 benefits most from the relations that talk
about what the umbrella (UsedFor) is used for or capable of (CapableOf.)

3.2 VLC-BERT

We use a single-stream multimodal transformer encoder, VL-BERT [42],
as the basis of VLC-BERT. VL-BERT is pre-trained on large-scale vision-
language and language-only datasets with a goal of aligning the visual and
linguistic features and building robust multimodal representations for down-
stream tasks. It is trained on the vision-language Conceptual Captions
dataset [39], to predict regions-of-interests (RoIs) from language cues, and
on the language-only BookCorpus [53] and English Wikipedia corpora, with
a masked language modeling objective.

Figure 3.3 shows the VLC-BERT Transformer architecture. In the fol-
lowing paragraphs, we share how the input sequence is constructed and how
the predicted answer is selected.
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3.2. VLC-BERT

3.2.1 Inputs

Like VL-BERT, VLC-BERT accepts word token embeddings for language
inputs and RoI token embeddings from the image for vision inputs. The
architecture of VLC-BERT Transformer is shown in Figure 3.3. We use
the [CLS] in the beginning of the sequence, [END] to mark the end of the
sequence, and the separator token [SEP] between different inputs. We feed
the question Q as a sequence of word tokens and the image regions I as
sequences of RoIs. A [MASK] token is used to represent the unknown an-
swer. In addition, we introduce a commonsense fusion token, F , to the input
sequence, to incorporate our commonsense inferences.

A straightforward way to leverage the commonsense inferences C =
{C1, C2, ..., Ck} is to embed each word token in every inference sentence
as an input token. However, this would lead to a very long input sequence,
where the majority of inputs consist of inferences, thus potentially drawing
the model’s attention away from the other inputs. To overcome the chal-
lenge, we summarize the information contained in each inference sentence
Ci into a single token representation C⃗i, by embedding the inference using
SBERT [32]:

C⃗i = SBERT(Ci) (3.1)

Next, in order to obtain a fused representation of the k commonsense
inferences, we attend to the corresponding SBERT embeddings, [C⃗i...C⃗k]
against the SBERT embedding of the question, Q⃗ = SBERT(Q). The intu-
ition behind this approach is that the model learns to assign a higher score
to the most important inference to the question. The key (KA), query (QA)
and value (VA) are assigned as shown below,

KA = Q⃗ (3.2)

QA, VA = append([C⃗i...C⃗k], Q⃗) (3.3)

F⃗ = MHA(KA, QA, VA) (3.4)

where MHA is the standard multi-head attention [45], that delivers a single
vector incorporating all relevant commonsense knowledge required to answer
the question. Note that we append the question embedding Q⃗ to list of
commonsense inference embeddings for Q and V because there may be cases
where none of the inferences are useful to answer the question. In such a
case, the model may choose to ignore the inferences by attending to the
question embedding Q⃗ instead.
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3.2. VLC-BERT

Weak Supervision In order to train the MHA block effectively, we em-
ploy weak supervision on the attention weights. For a small subset of the
questions in the training set, we obtain label attention weights by following
these steps: (1) we initialize a vector Â of length k + 1 where all values are
0.05, (2) for each Ci, if Ci contains a word in the ground-truth answer list,
then we set the Âi to 0.8, (3) if none of the C inferences contain answer
words, we assign a weight of 0.8 to Âk+1 so that the question has the largest
weight, and (4) we normalize Â so that its values sum up to 1. We then
apply cross-entropy loss between the predicted attention weights from MHA
and our label attention weights Â, and sum this with the answer prediction
loss.

Finally, a positional encoding is added to all input tokens following the
method described in VL-BERT. In addition, a different segment type en-
coding is applied to the four segments in the input sequence: the question
segment, the commonsense segment, the masked answer segment, and the
image region segment.

3.2.2 Answer Selection

We use the encoded [MASK] token to represent the answer, thereby making
VQA a masked language modelling task with visual cues. To predict the
final answer, we apply a classifier over the entire answer vocabulary, as done
in VL-BERT. During training, we follow VL-BERT and use a cross-entropy
loss over picking the correct answer from an answer vocabulary.
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Chapter 4

Datasets

We perform experiments on the OK-VQA [28] and A-OKVQA [37] datasets.
In order to utilize the existing VL-BERT model effectively, we pre-train
VLC-BERT on the larger VQA 2.0 [12].

4.1 Dataset Descriptions

OK-VQA In the Outside-Knowledge VQA dataset [28], questions require
external knowledge in addition to the information in the images. The dataset
is composed of 14,031 images and 14,055 questions, and the crowsourced
questions are divided into ten knowledge categories: Vehicles and Trans-
portation; Brands, Companies and Products; Objects, Materials and Cloth-
ing; Sports and Recreation; Cooking and Food; Geography, History, Lan-
guage and Culture; People and Everyday Life, Plants and Animals; Science
and Technology; and Weather and Climate. OK-VQA only contains open-
ended questions with five human-provided answers. Since OK-VQA does
not have a validation set, we dedicate 1,000 of the 9,009 training questions
for validation.

A-OKVQA A-OKVQA [37] is the augmented successor to OK-VQA and
consists of 25K questions that require a combination of commonsense, vi-
sual, and physical knowledge. In contrast to other knowledge-based visual
question answering datasets, the questions in A-OKVQA are conceptually
diverse, involving knowledge that is not contained in the image, and cannot
be resolved by a simple knowledge base query. A-OKVQA is split into train-
ing, validation, and test sets based on images used from the COCO 2017
[24] dataset. Moreover, all questions in the dataset have human annotated
direct answers as well as multiple-choice options, but we focus on the direct
answers. The A-OKVQA test set is blind, requiring us to submit to the
leaderboard to obtain a test accuracy.
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4.2. Evaluation Metric

VQA 2.0 The Visual Question Answering (v2.0) dataset contains 1.1 mil-
lion crowdsourced questions about 204,721 images from the COCO dataset
[24]. Each question is annotated with 10 ground truth answers obtained
using Amazon Mechanical Turk. A majority of the questions in this dataset
do not require external commonsense knowledge.

4.2 Evaluation Metric

Both datasets use the same accuracy-based evaluation metric. Each question
has a set of 10 ground truth answers provided by different annotators. Accu-
racy is calculated as the percentage of predicted answers that were proposed
by at least 3 human annotators: acc = min( # humans gave the answer

3 , 1).3

3Following the same evaluation, each of the 5 answers in OK-VQA is used twice
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Chapter 5

Experiment Setup

The implementation of our model builds on VL-BERT [42]. To that end, we
follow the fine-tuning steps provided in the official codebase of the VL-BERT
model for VQA 2.0, and modify it to support the OK-VQA and A-OKVQA
datasets. We maintain the recommended hyperparameter values, and train
the BERTBASE size of the model, with a hidden feature dimension of 768.
The model is trained for 20 epochs on the OK-VQA and A-OKVQA datasets.
For all models, we use a batch size of 16 and gradient accumulation step size
of 4. We train the models presented in the main result thrice and report the
average test accuracy on the OK-VQA dataset, and the best (leaderboard)
test accuracy on the A-OKVQA dataset.

Answer Vocabulary Due to the large number of unique answers to ques-
tions in visual question answering datasets, it is infeasible to use all answers
in the answer vocabulary. For the OK-VQA dataset, following KRISP [29],
we build an answer vocabulary of 2,249 answers by selecting all answers
in the training set that appear at least 10 times. This answer vocabulary
ignores the empty space answer, and includes an <UNK> answer token.
During training, if a ground truth answer is not present in the answer vo-
cabulary, we assign it to the (<UNK> ) token. For the A-OKVQA dataset,
we use the answer dictionary that is already provided in the dataset [37].

VQA Pre-Training (VQA P.T) Following the idea that pre-training
is beneficial for Transformer models, we initialize VLC-BERT with weights
obtained after fine-tuning VL-BERT on the VQA 2.0 dataset for 5 epochs.
Note that KRISP [29] benefits from pre-training on the VQA 2.0 dataset,
and PICa [49] and KAT [14] utilize GPT-3, a large-scale pre-trained model,
for external commonsense. Furthermore, because OK-VQA and A-OKVQA
are significantly smaller than VQA 2.0, this initialization favourably benefits
the training process and gives us a stronger baseline to work with.
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Chapter 6

Results

In this chapter, we focus on evaluating VLC-BERT on the OK-VQA and
A-OKVQA datasets and comparing against existing state-of-the-art models
for VQA with external commonsense knowledge. Table 6.1 highlights our
performance improvements on the test set for OK-VQA and A-OKVQA
against other models. Later in this chapter, we ablate on the components
of our model.

6.1 Main Results

Table 6.1 specifies which knowledge sources each model leverages. In the
top section, we consider models that utilize knowledge bases such as Con-
ceptNet and Wikipedia, as well as models that utilize web search APIs
to obtain external knowledge. VLC-BERT incorporates COMET, which is
trained on ConceptNet and ATOMIC, and we compare favourably against
these models. Notably, VLC-BERT achieves an accuracy of 43.14 on OK-
VQA, outperforming KRISP (Wikipedia + ConceptNet + VQA P.T.) by
over 4 points, and MAVEx (Wikipedia + ConceptNet + Google Images)
by about 2 points. While our model clearly outperforms previous methods
that use knowledge bases, it does not outperform models with large-scale
pre-training and large number of parameters such as GPT-3 [3] and GPV2
[18], which incorporate implicit commmonsense knowledge and require ex-
tensive resources to train. However, on OK-VQA, we achieve very similar
results to PICa-Base [49], despite not having access to GPT-3. We expect
that the use of a large pre-trained model like GPT-3 can further boost the
performance of VLC-BERT.

6.2 Ablation Tests

We perform comprehensive ablations on the validation set of the A-OKVQA
dataset, as represented in Table 6.2.4

4We present additional ablations in supplementary material Sec 2.3
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6.2. Ablation Tests

Table 6.1: Accuracy of our model against other models for OK-VQA and A-
OKVQA datasets. Our model improves upon existing knowledge base based
models due to the contextualized commonsense inferences from COMET,
which is trained on ConceptNet and ATOMIC. We compare favourably
against the highlighted models that utilize external knowledge bases. Note:
P.T. stands for Pre-Training, W stands for Wikipedia, and CN stands for
ConceptNet.

Method Knowledge Sources OK-VQA A-OKVQA Appx. Params

ViLBERT [37] - - 25.85 116M
LXMERT [37] - - 25.89 -
BAN + AN [28] W 25.61 - -
BAN + KG-AUG [20] W + CN 26.71 - -
MUTAN + AN [28] W 27.84 - -
ConceptBert [9] CN 33.66 - 118M
KRISP [29] W + CN 32.31 27.1 116M
KRISP [29] W + CN + VQA P.T. 38.9 - 116M
Visual Retriever-Reader [26] Google Search 39.2 - -
MAVEx [48] W + CN + Google Images 41.37 - -
GPV2 [18, 37] Web10k + COCO P.T. - 40.7 220M

PICa-Base [49] GPT-3 43.3 - 175B
PICa-Full [49] GPT-3 48.0 - 175B
KAT [14] Wikidata + GPT-3 54.41 - 175B

VLC-BERT (Ours) VQA P.T. + COMET 43.14 38.05 118M

VQA P.T We begin by training A-OKVQA on the baseline VL-BERT
model without VQA pre-training. This gives us a score of 36.24. Next,
obtain a new baseline for our model with VQA pre-training, where we then
initialize VLC-BERT with pre-trained weights on the VQA 2.0 dataset, and
further train it on the A-OKVQA dataset. This results in a score of 43.46,
over 7 points better, highlighting the impact of pre-training with a large-
scale dataset. This model is a strong baseline for our VQA tasks.

Comm. Inference Representation In the full model, we use SBERT
to summarize each commonsense inference into a single vector, and use the
multi-head attention block to capture useful information from the list of
inference vectors. To test the effectiveness of our commonsense inference
representation method, we first ablate SBERT, i.e., we incorporate all in-
ferences as an additional text input for VLC-BERT, feeding them token-
by-token. This results in an accuracy score of 43.44, which is slightly lower
than our baseline with VQA pre-training. Next, we use SBERT to summa-
rize inferences, and feed the SBERT embeddings directly into VLC-BERT
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6.2. Ablation Tests

Table 6.2: Ablation of various components in VLC-BERT, evaluated on the
A-OKVQA validation set. We observe that all the components of our model
play a critical role in empirical performance.

VQA P.T. Aug. SBERT SBERT Attn. Val

VQA Pre-training
– – – – 36.24
✓ – – – 43.46

Comm. Inference Representation
✓ ✓ – – 43.44
✓ ✓ ✓ – 43.64
✓ ✓ ✓ ✓ 44.95

Augmentation of SBERT
✓ – ✓ ✓ 44.10
✓ ✓ ✓ ✓ 44.95

with only a linear projection layer rather than the MHA block. This variant
performs worse than the model with the MHA block by 1.25 points.

Augmented SBERT In order to familiarize SBERT with our question-
inference pairs, we fine-tune SBERT on the training set of A-OKVQA and
OK-VQA (Sec 3.1.2). We perform an ablation by evaluating our model on
SBERT that has never been exposed to the question-inference-pairs. This
results in a drop of 0.85 points in accuracy, which shows that our augmen-
tation of SBERT is effective.
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Chapter 7

Analysis

7.1 Commonsense subsets

Questions in OK-VQA and A-OKVQA datasets are diverse and require com-
monsense reasoning, visual understanding, as well as factual knowledge.
While COMET can generate contextualized commonsense knowledge, it
does not help with questions that require scene understanding (e.g., “What is
to the left of the computer?”), factual knowledge (e.g., “Where was this food
invented?”), or text/symbol recognition (e.g., “What does this sign say?”).
Moreover, averaging results on the entirety of OK-VQA and A-OKVQA ob-
fuscates the improvements brought about to a subset of questions that truly
require commonsense knowledge. We propose subsets to assess the perfor-
mance of our model on questions that are more likely to require external
commonsense knowledge. We obtain the subsets by eliminating questions
that are mostly factual or visual, and hence do not require commonsense,
following these conditions: (1) factual : The question or answer contains
named entities (e.g., “USA”); (2) numerical : The answers contain numbers
or number words (e.g., “twenty”) or the question has date or time words
(e.g., “century”); (3) visual : The question contains directional words (e.g.,
“left of”) and words referring to symbols (e.g., “mascot”).

Table 7.1: Evaluation on the subsets of OK-VQA test (OKs) and A-OKVQA
validation (A-OKs) sets, where factual, numerical and visual questions are
pruned. The performance gain observed on the subsets shows a better pic-
ture of where external commonsense is effective.

Method OK OKs A-OK A-OKs

Base 42.29 47.4 43.46 46.52
w/ COMET 43.14 48.21 44.95 49.53

In Table 7.1, we show that VLC-BERT with COMET performs 3 points
better on the A-OKVQA subset, and maintains an 0.8 point improvement
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7.2. Attention Analysis

Figure 7.1: Attention analysis: (a) is from A-OKVQA, and (b) and (c)
are from OK-VQA. We observe that the weakly supervised attention layer
in VLC-BERT accurately picks useful commonsense inferences. In (c), we
observe how object tags are useful to guide COMET to produce contextu-
alized knowledge.

on the OK-VQA subset. This substantiates our claim that utilizing our
COMET pipeline substantially increases VLC-BERT’s ability to answer
questions that require external knowledge.

7.2 Attention Analysis

In this section, we show qualitative examples to demonstrate questions
where VLC-BERT benefits from contextualized commonsense knowledge
from COMET. We also show the corresponding attention weights, to show
the effectiveness of the proposed weakly-supervised attention mechanism.
Fig 7.1a shows an example from A-OKVQA, where COMET’s inferences on
the question and the object tags, weighted by the attention score, results
in the correct answer. Fig 7.1b shows an example from OK-VQA where
VLC-BERT COMET exhibits higher attention towards the fire despite the
object tags missing the fireplace. This is an example where deriving infer-
ences from the question phrase is equally important as doing so with the
object tags. Fig 7.1c shows that inferences on the object tag kite drove the
model to answer correctly. The supplementary material includes additional
examples of improvements and failures.
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Chapter 8

Discussion

VLC-BERT is more capable than other models of its size in its ability to ob-
tain relevant commonsense knowledge, and effectively use it while answering
questions. However, our analysis of VLC-BERT highlighted a few limita-
tions of our model and the datasets we evaluate on. We highlight some of
these limitations in the following paragraphs:

Limitations of object tags: Some questions require a deeper under-
standing and linking of multiple entities and events in the image, that ob-
ject tags lack, for deriving relevant commonsense inferences. In future work,
it would be valuable to experiment with more complex image descriptions
in the form of captions or a larger set of object tags, or even scene graphs
generated from the image.

Semantic compression of inferences: Condensing the commonsense
inferences using SBERT and MHA leads to a compressed representation
will likely cause the model to lose some information. In some cases, this
information loss can be detrimental to the model.

Limitations of COMET: Our model is limited by COMET, and the
knowledge bases it is trained on, as we observe that large-scale models like
GPT-3 outperform it. The increasing availability of LLMs and VLMs may
reduce the necessity of a commonsense LM such as COMET. In future work,
with the democratization of large scale models, we may attempt to incor-
porate open-source LLMs and VLMs to build and summarize contextual
commonsense inferences, in line with recent works.
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Chapter 9

Conclusion

We presented Vision-Language-Commonsense BERT (VLC-BERT) for ex-
ternal knowledge-driven VQA tasks. VLC-BERT outperforms previous mod-
els based on knowledge bases on the OK-VQA and A-OKVQA datasets by
incorporating contextualized commonsense knowledge from COMET and
combining it with visual and linguistic inputs. Through our evaluation, we
show the effectiveness of our knowledge generation, selection, and incorpo-
ration strategies, and the positive impact of VQA pre-training.

We view our work as a first step in analyzing the potential of genera-
tive commonsense incorporation, and exploring approaches to decide when
commonsense is needed. We plan to investigate the potential of multi-hop
reasoning with COMET to bridge the question and image-based expansions
closer, in addition to experimenting with novel large-scare models.
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Appendix A

Supporting Material

A.1 Implementation Details

In this section, we provide additional information about the implementation
of each of the components of VLC-BERT.

A.1.1 Object Tags with YOLO

As described in Sec 3 of our paper, we utilize object tags to incorporate
image context for generating commonsense inferences. In order to obtain
the object tags, we use an off-the-shelf YOLO model for PyTorch, YOLOv5
by Ultralytics [16]. We use the pretrained yolov5l model to obtain object
bounding boxes and the associated class name for each bounding box, on
COCO 2014 and 2017 images for OK-VQA and A-OKVQA datasets respec-
tively. We then use a confidence threshold of 0.5 to prune out objects that
are unlikely to be useful. In addition, we prune out the person object name
as well as the objects already present in the question phrase, to avoid un-
necessary tags or repetitions. Finally, the two object names associated with
the highest confidence bounding boxes are picked as the object tags for our
model, O.

A.1.2 Knowledge Generation

As described in Sec 3.1.1 of our paper, we generate commonsense inferences
from COMET [15] by inputting the question followed by “with” and two
object tags into it. If S is the sentence consisting of the question and object
tags and R is the relation type we want to generate from COMET, we
provide it to COMET in the form S(i) R(i) [GEN] and let comet generate the
commonsense inferences. Though COMET can support 50 relation types, we
cherry-pick 30 relation types by removing duplicate relations and relations
that are irrelevant to our work (e.g.HasPainIntensity). Table A.1 provides
the list of the 30 relations we used to generate commonsense expansions from
COMET and the corresponding templates we used to convert COMET’s
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output to natural language sentences. {0} usually indicates the subject in
the input sentence to COMET, and {1} indicates the generated expansion.

Table A.1: Relations used for generating expansions from COMET and their
corresponding sentence templates

# Relation Sentence template
1 AtLocation You are likely to find {0} in {1}
2 CapableOf {0} can {1}
3 Causes Sometimes {0} causes {1}
4 CreatedBy {1} is created by {0}
5 Desires {0} wants {1}
6 HasA {0} has {1}
7 HasFirstSubevent The first thing you do when you {0} is {1}
8 HasProperty {0} is {1}
9 HinderedBy {0} is hindered by {1}
10 IsA {0} is {1}
11 isAfter {0} happens before {1}
12 isBefore {1} happens before {0}
13 LocatedNear {0} is located near {1}
14 MadeOf {0} is made of {1}
15 MadeUpOf {0} is made up of {1}
16 NotCapableOf {0} is not capable of {1}
17 NotHasProperty {0} does not have the property of {1}
18 NotIsA {0} is not {1}
19 NotMadeOf {0} is not made of {1}
20 ObjectUse {0} is used for {1}
21 PartOf {1} has {0}
22 SymbolOf {0} is a symbol of {1}
23 UsedFor {0} is used for {1}
24 xAttr {0} is seen as {1}
25 xEffect {0} then {1}
26 xIntent Because {0} wanted {1}
27 xNeed Before {0} needed {1}
28 xReact As a result {0} feels {1}
29 xReason {0} reasons {1}
30 xWant As a result {0} wants {1}
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Table A.2: Hyperparameters of our model

Hyperparameter VQA P.T. OK-VQA A-OKVQA
Batch Size 16 16 16
Gradient Accumulation 4 4 4
Epochs 5 20 20
Learning Rate 6.25e-7 6.25e-7 6.25e-7
Visual Size 768 768 768
Hidden Size 768 768 768
Warmup Method linear linear linear
Warmup Steps 1000 1000 1000
MHA Heads – 3 3
MHA Dropout – 0.1 0.1

A.1.3 Knowledge Selection

As described in Sec 3.1.2 of our paper, we augment S-BERT to perform se-
mantic search and filter and rank the relevance of commonsense inferences.
In order to perform semantic search, we utilize the sentence-transformers
package for SBERT5 [32]. We initialize our SBERT model from the pre-
trained msmarco-roberta-base-ance-firstp model and train this model for 2
epochs on the training set of the corresponding task. To create the labels for
this augmentation, we measure the overlap of the expansions to human anno-
tated answers and assign a similarity score of 0.8 for overlapping expansions
and a score of 0.2 for non-overlapping expansions. This augmented S-BERT
model is then used to encode the question and commonsense sentences, be-
fore computing the sentence similarity between every commonsense sentence
and the question, and picking the top k (K = 5) sentences to use in the input
sequence of the VLC-BERT transformer.

A.1.4 VLC-BERT Transformer

Our implementation of the VLC-BERT transformer encoder is based on the
publicly available implementation of VL-BERT6 [42]. The hyperparameters
we use for training VLC-BERT on the VQA 2.0 (only for pre-training),
OK-VQA and A-OKVQA datasets are given in Table A.2.

For generating sentence embeddings for commonsense inferences that are
fed into the MHA block, we use the all-mpnet-base-v2 pre-trained model
from SBERT.

5https://www.sbert.net
6https://github.com/jackroos/VL-BERT
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A.1.5 Implementation of Commonsense Subsets

In Sec 7.1, we describe the need for commonsense-specific subsets of OK-
VQA and A-OKVQA, to show that our model improves on the baseline
significantly. The lack of any annotations for the type of reasoning required
to answer the question led us to develop our own method to obtain the
subsets. Below, we have the exact details required to re-create the subsets:

Named Entities. We use spaCy’s entity recognizer7. If any word in the
question or list of answers is recognized as an entity, we prune the question.

Numerical. We first attempt to check if a string is a number using Python’s
built-in function, isdigit(). If it is not a digit, then we use the word2number
package8 to attempt to convert words (e.g.”twenty”) into numbers. If it is
successful in doing so, we deem the word to be a number. If any word in the
question or list of answers is recognized as a number, we prune the question.

Directional. We list commonly used directional words: right, left,

top, bottom, behind, under, inside, over, front, back, near, next.
If any word in the question is recognized as a directional word, we prune the
question.

Symbol. We list commonly used symbol words: logo, symbol, name,

company, mascot, word, brand. If any word in the question is recognized
as a symbol word, we prune the question.

Color. We list commonly used color words: blue, green, red, black,

white, grey, purple, pink, yellow, orange. If any word in the ques-
tion or list of answers is recognized as a color word, we prune the question.

Time. Finally, we list commonly used time words: century, year, time,

month, day. If any word in the question is recognized as a time word, we
prune the question.

As the task of recognizing the type of a question is challenging in itself,
we tried to simplify it to a basic, reproducible method, in order to better
evaluate on commonsense reasoning specific questions on the OK-VQA test
set and the A-OKVQA validation set.

7https://spacy.io/api/entityrecognizer
8https://pypi.org/project/word2number/

32



A.2. Additional Results

Figure A.1: Qualitative examples with Obj Tags: (a) Object Tags
may include contents in the image that may have been missed in the model,
giving us the right answer. (b) In some cases, object tags may lead to the
model making erroneous predictions.

A.2 Additional Results

A.2.1 Main Evaluation

The standard deviation on our scores for the OK-VQA test set is 0.20 and
for the A-OKVQA validation is 0.47.

A.2.2 Including the Object Tags in the VL Model

We extend VLC-BERT to incorporate the generated object tags by YOLOv5
[16] (obtained in our Knowledge Generation step). Object tags serve as ad-
ditional natural language information to the VLC-BERT model, that could
be useful for answering certain questions where the information in the cap-
tion is limited. In this setting, a comma separated list of all object tags
obtained using YOLOv5 are fed into the VLC-BERT Transformer as text
tokens before the [MASK] token (Figure 3.3).

We test this method only on the OK-VQA test set. As we run these
experiments separately from our main results, we have re-run the baseline
model. Our baseline VLC-BERT model obtains a test set score of 44.86 ,

while the model trained with the object tags achieves 45.43 , indicating
a significant improvement in performance. We show an example of where
object tags can be useful, and where they may fail, in Figure A.1
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Table A.3: Performance of our model on OK-VQA question categories.

Category Base w/ COMET

Vehicles and Transportation 40.1 41.16
Plants and Animals 42.58 41.65
People and Everyday Life 40.09 39.95
Sports and Recreation 51.53 52.31
Cooking and Food 42.36 45.04
Objects, Material and Clothing 39.86 39.95
Science and Technology 37.38 38.57
Weather and Climate 50.7 48.99
Brands, Companies and Products 33.6 35.81
Geog, Hist, Language and Culture 40.14 43.4
Other 41.23 42.68

A.2.3 Evaluation on OK-VQA Question Categories

The results provided in our paper only show the overall scores of our models
on the OK-VQA [28] dataset. In Table A.3, we share the results for each
question category in the OK-VQA dataset. The OK-VQA dataset has ques-
tions divided into 11 different categories [28]. The results show that our
model with external knowledge from COMET improves upon the baseline
in all but three categories. Across all the models, we see that the ‘Brands,
Companies and Products’ is the most challenging category, with low accu-
racy for both the baseline and the VLC-BERT with COMET models. This
is expected, because the questions in this category often require the model
to read text or symbols in the image, or identify company names and logos,
which are challenging tasks outside the domain of our model.

A.2.4 Ablations

In this section, we present additional ablations to show the impact of differ-
ent components of the VLC-BERT pipeline.

Ablation on number of sentences. In order to test the impact of the
number of commonsense inferences K, we report the performance with dif-
ferent K values. We ran our latest model with K = 10 and K = 15 sen-
tences. On the A-OKVQA validation set, we obtain the following results:
K = 5 : 44.95; K = 10 : 44.57; K = 15 : 43.93 . We thus feed K = 5 com-

34



A.2. Additional Results

monsense inference sentences into VLC-BERT transformer, because we had
observed that adding too many commonsense inferences also adds unneces-
sary noise in the model, which hurts performance.

Use of Object tags. In order to assess the importance of the number
of object tags used in deriving commonsense inferences, we ran experiments
with no (0) object tags, as well as all (>2) tags. For zero tags, we get 44.42 ,

and for all tags, we get 44.62 . These are slightly worse than the two tags

version ( 44.95 ). This is in line with what we expected, since COMET
is not designed to deal with complex sentences containing multiple entities,
and 2 object tags stands as a good trade-off. Furthermore, in our qualitative
results, we show examples of where object tags are useful in providing image
context.

Impact of weak attn. supervision. Disabling weak attn. supervision,
we obtain a result of 44.89 which is slightly worse compared to 44.95 with
supervision. However, qualitative analysis shows that our model with super-
vision produces stronger attention weights for useful inferences compared to
the model without.
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Appendix B

Error Analysis and Examples

In this chapter, as mentioned in Section 7.2 of our paper we provide ad-
ditional qualitative examples along with their attention scores, of where
VLC-BERT improved as well as failed.

B.1 Error examples

   ① Visual

② Missing Facts

③ Missing Commonsense

④ Incorporation Error

⑤ OCR

Categories (%) of 50 sampled errors
0 0 0 0 0

8%

14%

16%

16%

46%

Figure B.1: Error analysis: Percentage of error categories from AOKVQA

We analyze the errors from the best version of VLC-BERT model. We
randomly sample 50 erroneous examples from the validation set of A-OKVQA,
analyze the errors, and classify them into five categories as shown in Figure
B.1. We provide an example of each category in Figure B.2.

1 Visual: The model is lacking deep scene understanding that either
required to answer the question, or to generate relevant commonsense
inferences. This includes cases where the object tags are insufficient for
describing the scene. A majority of the errors we see in VLC-BERT fall
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in this category, in line with our conclusions and motivations for future
work on commonsense models that involve deep scene understanding.

2 Missing Facts: The model failed due to missing factual knowledge
about named entities, types of entities and well-known facts.

3 Missing Commonsense: The final commonsense inferences provided
to VLC-BERT are missing the commonsense knowledge required to an-
swer the question, either due to COMET not capturing this knowledge
or semantic search not picking the right inferences.

4 Incorporation Error: Though the answer is provided in the com-
monsense inferences, and we attended highly to these inferences, it
is still ignored by VLC-BERT, probably because the visual represen-
tation took priority. The commonsense inferences being much more
condensed compared to other inputs of VLC-BERT could be one of
the reasons for this.

5 OCR: The question involves reading text in the images and requires
the VLC-BERT to support Optical Character Recognition (OCR).

B.2 Improvement examples

In Figure B.3, we provide additional qualitative examples where common-
sense from COMET helped in driving the model to make the right prediction.
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Q: What are the riders about to do now? 
Tags: motorcycle 
VLC-BERT baseline: drive 
VLC-BERT COMET: race 

Commonsense Inferences (C):

Sometimes, the riders causes the motorcycle to go fast (0.27)

The riders is located near to ride the motorcycle (0.26)

Sometimes, the riders causes the motorcycle to go faster (0.22)

The riders can get off the motorcycle (0.1)

The riders can get on the motorcycle (0.06)

Ground Truth Answers: 
straighten out, tricks, flip over, skate, fall down, fall 
down, land, tricks, flip, tip over 

① Error Category: Visual

Q: How are these balloons floating? 
Tags: dog, couch 
VLC-BERT baseline: wind 
VLC-BERT COMET: magnets 

Commonsense Inferences (C):

These balloons is these balloons are floating in water (0.22) 

These balloons is these balloons float in the water (0.19) 

Sometimes, these balloons causes these balloons are flying (0.18) 

These balloons can use as a parachute (0.17) 

You are likely to find these balloons in dog toy (0.07)

Ground Truth Answers: 
helium, helium, helium, helium, helium, helium, 
helium, helium, on air, helium 

② Error Category: Missing Fact

Q: What is used to pick up the suitcases? 
Tags: book, suitcase 
VLC-BERT baseline: cart 
VLC-BERT COMET: truck 

Commonsense Inferences (C):

The suitcases is made up of used to carry suitcase (0.3)

You are likely to find the suitcases in book bag (0.25)

The suitcases is used for put in the suitcase (0.15)

The suitcases wants use suitcase to carry books (0.11)

The suitcases wants used to carry books (0.11)

Ground Truth Answers: 
handle, handles, handle, handle, handle, handle, 
handle, handles, handles, handle 

③ Error Category: Missing Commonsense

Q: What appliance is unhooked and placed by the 
sink? Tags: oven, sink 
VLC-BERT baseline: trash 
VLC-BERT COMET: garbage 

Commonsense Inferences (C):

You are likely to find appliance in stove (0.25) 

You are likely to find appliance in oven (0.2) 

Appliance can turn on stove (0.14)

You are likely to find appliance in fridge (0.13) 

You are likely to find appliance in refrigerator (0.12) 

Ground Truth Answers: 
stove/oven, stove, washing machine, stove, stove, 
stove, washing machine, stove, oven, stove 

④ Error Category: Incorporation Error

Q: What does it say on the boys hat? 
Tags: book, bed 
VLC-BERT baseline: sun 
VLC-BERT COMET: happy 

Commonsense Inferences (C):

It wants put on a hat (0.13) 

Sometimes, it causes happy (0.1) 

It can put on head (0.07) 

It is not made of does not know what it says (0.06) 

It is used for put on the head (0.05) 

Ground Truth Answers: 
happy birthday, happy birthday, happy birthday, 
happy birthday, happy birthday, happy birthday…

⑤ Error Category: OCR

Figure B.2: Error analysis: We sample 50 erroneous examples from the
A-OKVQA validation set, and categorize it into five categories.
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Figure B.3: Qualitative examples: (a) is from A-OKVQA, and (b) and
(c) are from OK-VQA.
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Appendix C

Additional Works

In addition to this work, the author has contributed to other research ac-
tivities during the Master of Science degree. This includes:

1. PD-EST: Process-disentangling Event Sequence Transformer
Aditya Chinchure, Fredrick Tung, Leonid Sigal
Research conducted as a part of an internship at Borealis AI. Not
included in this thesis.
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