- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- A macroscopic view of two discrete random models
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
A macroscopic view of two discrete random models Alma Sarai, Hernandez Torres
Abstract
This thesis investigates the large-scale behaviour emerging in two discrete models: the uniform spanning tree on ℤ³ and the chase-escape with death process. We consider the uniform spanning tree (UST) on ℤ³ as a measured, rooted real tree, continuously embedded into Euclidean space. The main result is on the existence of sub-sequential scaling limits and convergence under dyadic scalings. We study properties of the intrinsic distance and the measure of the sub-sequential scaling limits, and the behaviour of the random walk on the UST. An application of Wilson’s algorithm, used in the study of scaling limits, is also instrumental in a related problem. We show that the number of spanning clusters of the three-dimensional UST is tight under scalings of the lattice. Chase-escape is a competitive growth process in which red particles spread to adjacent uncoloured sites while blue particles overtake adjacent red particles. We propose a variant of the chase-escape process called chase-escape with death (CED). When the underlying graph of CED is a d-ary tree, we show the existence of critical parameters and characterize the phase transitions.
Item Metadata
Title |
A macroscopic view of two discrete random models
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2020
|
Description |
This thesis investigates the large-scale behaviour emerging in two discrete models: the uniform spanning tree on ℤ³ and the chase-escape with death process.
We consider the uniform spanning tree (UST) on ℤ³ as a measured, rooted real tree, continuously embedded into Euclidean space. The main result is on the existence of sub-sequential scaling limits and convergence under dyadic scalings. We study properties of the intrinsic distance and the measure of the sub-sequential scaling limits, and the behaviour of the random walk on the UST. An application of Wilson’s algorithm, used in the study of scaling limits, is also instrumental in a related problem. We show that the number of spanning clusters of the three-dimensional UST is tight under scalings of the lattice.
Chase-escape is a competitive growth process in which red particles spread to adjacent uncoloured sites while blue particles overtake adjacent red particles. We propose a variant of the chase-escape process called chase-escape with death (CED). When the underlying graph of CED is a d-ary tree, we show the existence of critical parameters and characterize the phase transitions.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2020-08-31
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0394111
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2020-11
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International