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Abstract

This thesis investigates the large-scale behaviour emerging in two discrete
models: the uniform spanning tree on Z3 and the chase-escape with death
process.

Uniform spanning trees

We consider the uniform spanning tree (UST) on Z3 as a measured, rooted
real tree, continuously embedded into Euclidean space. The main result is on
the existence of sub-sequential scaling limits and convergence under dyadic
scalings. We study properties of the intrinsic distance and the measure of
the sub-sequential scaling limits, and the behaviour of the random walk on
the UST. An application of Wilson’s algorithm, used in the study of scaling
limits, is also instrumental in a related problem. We show that the number
of spanning clusters of the three-dimensional UST is tight under scalings of
the lattice.

Chase-escape with death

Chase-escape is a competitive growth process in which red particles spread to
adjacent uncoloured sites while blue particles overtake adjacent red particles.
We propose a variant of the chase-escape process called chase-escape with
death (CED). When the underlying graph of CED is a d-ary tree, we show
the existence of critical parameters and characterize the phase transitions.
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Lay Summary

Statistical mechanics states that natural phenomena arise as the average
behaviour of a large number of particles with random interactions. A central
endeavour in probability theory is to establish a mathematical foundation
for this paradigm. Our objective is to obtain precise relations between the
microscopic and macroscopic descriptions of a phenomenon. This thesis is a
contribution to the task. In particular, we are interested in the macroscopic
properties emerging in two discrete random models. In this work, we study
the “uniform spanning tree” and the “chase-escape with death” process. The
first one is a combinatorial model that provides insights into other models
in statistical mechanics. In a different setting, “chase-escape with death”
mimics the behaviour of predators chasing prey on space, or the spread of
a rumor throughout a social network.
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Preface

Part I is the introduction for this thesis. Chapter 1 is an overview, while
Chapters 2, 3 and 4 are surveys on background material.

Part II presents original research on uniform spanning trees. Chap-
ter 5 and Chapter 6 are based on the preprints “Scaling limits of the three-
dimensional uniform spanning tree and associated random walk” [11] and
“The number of spanning clusters of the uniform spanning tree in three di-
mensions” [10], respectively. Our work in [10] will appear in the proceedings
of “The 12th Mathematical Society of Japan, Seasonal Institute (MSJ-SI)
Stochastic Analysis, Random Fields and Integrable Probability”, while [11]
is under review for publication. The research leading to these was an equal
collaboration between Omer Angel, David Croydon, Daisuke Shiraishi, and
myself. The writings of [11] and [10] were done in equal parts between Omer
Angel, David Croydon, Daisuke Shiraishi, and myself.

Part III is original work on competitive growth processes. The re-
search and writing was conducted in equal collaboration with Erin Beckman,
Keisha Cook, Nicole Eikmeier and Matthew Junge. Chapter 7 is based on
“Chase-escape with death on trees” [25] and has been submitted for publi-
cation.
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Chapter 1

Discrete and Continuous
Probability Models

A modern scientific paradigm is that natural phenomena arise from the
collective behaviour of random microscopic interactions. This principle
gained widespread acceptance with the introduction of Brownian motion
to physics. Brownian motion was first described by and named after, the
botanist Robert Brown in 1827. Brown observed the irregular movement of
particles of pollen immersed in water. In 1905, Albert Einstein explained
the physical mechanism for this motion as the result of random interactions
at the molecular level [65]. This explanation gave evidence for the discrete
nature of matter. Jean Perrin verified Einstein’s predictions experimentally
and hence confirmed molecular-kinetic theory in 1909 [145]. With exper-
imental evidence firmly established and the pioneering theoretical work of
James Clerk Maxwell, Ludwig Boltzmann, and J. Willard Gibbs, statistical
mechanics gained a central place within modern physics. Since then, physics
has thrived with successful applications of statistical mechanics. Its influence
has spread to all the sciences. Statistical physics has driven ground-breaking
developments in chemistry [70, 71], mathematical biology [12, 47, 142, 163]
and theoretical computer science [137, 158], to cite some examples. The
success of such applications, including further advancements in physics, re-
quires a precise mathematical understanding of the relation between discrete
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models and their continuous counterparts.
In the last fifty years, mathematicians have reformulated problems from

classical statistical physics (without quantum mechanics) within the frame-
work of probability theory. Roland Dobrushin and Frank Spitzer started
the study of interacting particle systems (see [75, 139] for surveys of their
respective contributions), while Simon Broadbent, John Hammersley, and
Dominic Welsh introduced percolation and first-passage percolation, respec-
tively [37, 81]. These models have a simple description in terms of particle
interactions. Even though the model is simple at a local (microscopic) level,
it gains complexity when we consider a large number of particles. The lat-
ter is the most relevant case since it corresponds to the phenomena at a
macroscopic scale. Research in the interface of probability and mathemat-
ical physics has flourished, and it has involved insights and methods from
analysis and combinatorics. Nevertheless, some central questions in the area
result in challenging mathematical problems. The work in this thesis is part
of this continuing endeavour.

In this thesis, we study two discrete models: the uniform spanning tree
and a competitive growth process called chase-escape with death. Our objec-
tive is to understand their large scale behaviour. For the uniform spanning
forest, our main result is the existence of its scaling limits. The three-
dimensional case is particularly interesting since it exhibits non-Gaussian
behaviour. In the case of chase-escape with death, we study its phase tran-
sitions as we vary the model parameters. Our results touch on two main
topics in statistical physics, namely scaling limits and phase transitions. In
the next two sections, we present the probabilistic approach to these con-
cepts.

1.1 Scaling limits as weak convergence of
probability measures

A scaling limit is a formal connection between discrete and continuous prob-
ability models. In line with the interpretation from statistical physics, a
phenomenon may be described either by a discrete or a continuous model.
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The discrete model represents a microscopic scale and is usually defined over
a graph, whereas the continuous model reflects a macroscopic scale and it is
defined on Rd. Some properties are understood more easily in the discrete
setting, where combinatorial tools are at hand, but the continuous model
usually presents symmetries absent in the discrete space. Examples of these
symmetries are scale and rotational invariance or conformal invariance in
the two-dimensional case. (See Propositions 2.2.10, 2.2.11, and 2.4.3.) We
remark that the physics community was the first to observe symmetries on
scaling limits, e.g. conformal invariance was predicted by Belavin, Polyakov,
and Zamolodchikov [26].

Let us describe the general framework of a scaling limit. Consider a dis-
crete model with a parameter describing its size (for example, the number of
vertices of the underlying graph). We obtain a tractable problem by choos-
ing a meaningful object associated with the discrete model. We say that the
scaling limit exists when, after appropriate normalization, the chosen object
converges as we increase the size parameter.

The archetypical example is the convergence of simple random walk on
Z to Brownian motion. In this case, we scale the simple random walk by
defining the processes on δZ := {δv : v ∈ Z}. Note that the distance between
nearest-neighbour vertices on δZ decreases as δ → 0; the geometric effect is
a zoom-out of the space. The corresponding size parameter is the number of
vertices on [0, 1], while the meaningful object for the scaling limit is the curve
defined by interpolation of the random walk path. We have the convergence
of this curve with respect to the space of continuous curves C[0, 1] endowed
the supremum norm, and we thus say that the scaling limit exists. Chapter 2
expands our discussion on the simple random walk and Brownian motion.

Now, let us we specify the type of convergence of these random objects.
Recall that we choose a representative object for studying the scaling limit
of a given model. With this choice, we determine a Polish space E where
these objects are defined. We thus get a probability measure µn, valued
on E, associated with each size parameter n. The precise meaning of the
existence of the scaling limit is that µn converges weakly to µ as n → ∞,
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i.e.
lim
n→∞

∫
f dµn =

∫
fdµ for all f ∈ Cc(E),

where Cc(E) is the space of continuous functions on E with compact support.
The scaling limit operation is applicable to a large variety of discrete

models. In some situations, the limit object is deterministic, but it may also
be random. The latter corresponds to phenomena exhibiting fluctuations
at every scale. This behaviour is typical of critical phenomena, which we
present in the following section.

1.2 Phase transitions
The models studied in statistical physics depend on a set of parameters.
Among others, these could be the dimension of the underlying space, tem-
perature, pressure, or rate of change. A phase is determined by a set of
parameters with common qualitative properties. We observe a phase tran-
sition when we move between different phases as we modify the model pa-
rameters. The phases of water provide a well-known example. As we vary
temperature or pressure, water abruptly transitions between solid, liquid,
and gaseous states.

Branching processes provide a simple example of a phase transition.
They are also a fundamental piece of our analysis in Chapter 7. Here we
follow [157]; this reference provides more illustrations of critical phenomena
for the interested reader. Branching processes are a model for population
growth, where we represent individuals with identical particles ordered in a
genealogical tree. For our purposes in this section, we restrict to branching
processes with binomial offspring distribution. We remark that this a fun-
damental model in probability theory and its definition is more general (see
[85, Chapter 3], [60, Section 2.1]).

We start with one particle occupying the root of a d-ary tree, while the
rest of the vertices on the tree are vacant. Any particle reproduces only
once in its lifetime. The offspring of a particle occupies some of the children
nodes on the d-ary tree, leaving the rest of the children nodes vacant. Hence,
the number of descendants of each individual follows a binomial distribu-
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tion with parameters d (maximum number of children) and p (reproduction
probability). The number of individuals (or occupied vertices) at generation
t is a Galton-Watson process with offspring distribution Bin(d, p). Let Zd(p)
be the total number of individuals.

One fundamental question for this model is on the size of the branch-
ing process: is it finite, or does the process generate an infinite number of
generations? Let

θd(p) = P (Zd(p) = ∞)

be the survival probability, and let

ξd(p) = E (Zd(p))

be the average family size. A classical theorem states that the survival
probability has a phase transition (see [85, 157]):

θd(p) =

0 if p ≤ 1
d ,

s if p > 1
d ,

where s > 0 is the non-trivial solution to s = ((1−p)+ps)b. The value pc :=
1
d is known as the critical parameter, since the model changes between
phases at that point. Accordingly, a branching process is subcritical if
p < 1

d , critical if p = pc, and supercritical if p > d. A simple calculation
shows that the average family size also exhibits a phase transition around
the critical parameter:

ξd(p) =


1

1−dp if p < 1
d ,

∞ if p ≥ 1
d .

We remark that at the critical parameter, the expected family size is infinite,
even when survival probability at criticality is 0.

A crucial observation is that universal exponents govern the asymptotic
behaviour around the critical point. For each d ≥ 2, there exists constants
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C1(d) > 0, C2(d) > 0 depending on d such that

θd(p) ∼ C1(d)(p− pc)β, p → p+
c ,

ξc(p)(p) ∼ C2(d)(pc − p)−γ , p → p−
c .

In the asymptotic formulas above, β and γ are known as the critical ex-
ponents. They take the values β = 1 and γ = 1 for all d-ary trees. The
independence of the critical exponents from the parameter d is an instance
of universality.

The different phases of a discrete model explain the qualitative properties
of the modelled phenomenon. However, quantitative conclusions depend on
the details of the model, for example, the dimension of the underlying graph.
In the case of the branching process, a qualitative property is the positivity
of the survival probability, but the values of θd(p) and ξd(p) depend on the
parameters d and p. Note that the parameter d is a significant restriction on
the model since it establishes a maximum number of offspring. Nevertheless,
this restriction is irrelevant around the critical parameter. The principle
of universality suggests that, at a critical point, the mathematical model
approximates the physical reality. Therefore critical exponents determine
the behaviour of physical phenomena at criticality. This principle justifies
the value of understanding the simple discrete model. Moreover, several
systems converge to the same behaviour as they approach criticality; we
obtain a division of these systems into universality classes.

A common hypothesis in modelling is a convergence to the Gaussian uni-
versality class. When a model has enough (stochastic) independence among
its different components, the central limit theorem applies, and its statis-
tics converge to Gaussian random variables. However, several models have
strong intrinsic dependencies, and their limit behaviour is non-Gaussian.
Understanding non-Gaussian limits is a challenge for modern probability
theory.
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1.3 Structure of this thesis
The rest of the chapters in Part I introduce background material for this
thesis. Chapter 2 and Chapter 3 are concise surveys on random walks and
uniform spanning forests, respectively. These two chapters focus on essential
definitions for Part II. Chapter 4 is an introduction to competitive growth
processes, which are the main topic in Part III.

Part II and Part III report on original work on uniform spanning trees
and competitive growth processes, respectively.

Chapter 8 presents the conclusions. In the concluding chapter, we sum-
marize the contributions included in this thesis and future research direc-
tions.
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Chapter 2

Random Walks

In this chapter, we define the simple random walk and the loop-erased ran-
dom walk on Zd and present their relevant properties for this work.

2.1 Notation
We begin with some notation that we will use through this thesis.

Following standard set notation N,Z,R, and C represent the natural,
integer, real and complex numbers, respectively. Rd is the d-dimensional
real space, R+ = {x ∈ R : z ≥ 0}, Z+ := {z ∈ Z : z ≥ 0}, and N0 := Z+.
The indicator function 1{x ∈ P} : Rd → {0, 1} is defined as

1{B}(x) :=

1, if x satisfies property P,

0, otherwise.

2.1.1 Subsets

For x ∈ Zd and z ∈ Rd, the discrete ℓ2 Euclidean ball and the Euclidean
ℓ2 ball are the sets

B(x, r) :=
{
y ∈ Zd : |x− y| < r

}
, BE(x, r) :=

{
y ∈ Rd : |x− y| < r

}
,
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respectively. We use the abbreviations B(R) = B(0, R) and BE(0, R) =
BE(R). The discrete cube (or ℓ∞ ball of radius r) with side-length 2r
centred at x is defined to be the set

D(x, r) :=
{
y ∈ Zd : ∥x− y∥∞ < r

}
.

Similarly to the definitions above, but with ℓ∞ balls, DE(x, r) denotes the
Euclidean cube. We further write D(R) = D(0, R). The Euclidean distance
between a point x and a set A is given by

dist(x,A) := inf {|x− y| : y ∈ A} .

The Euclidean diameter and the radius of A are

diamA := sup
x,y∈A

|x− y|, radA := min{n ∈ N : A ⊂ B(n)}.

If A ⊂ Zd, we denote by ∂A the discrete boundary of A. It is defined as the
set

{x /∈ A : there exists y ∈ A such that x and y are nearest-neighbours }.

2.1.2 Paths and curves

A path in Zd is a finite or infinite sequence of vertices [v0, v1, . . .] such that
vi−1 and vi are nearest neighbours, i.e. |vi−1 − vi| = 1, for all i ∈ {1, 2, . . . }.
The length of a finite path γ = [v0, v1, ..., vm] will be denoted len(γ) and is
defined to be the number of steps taken by the path, that is len(γ) = m.

A (parameterized) curve is a continuous function γ : [0, T ] → Rd.
For a curve γ : [0, T ] → R3, we say that T < ∞ is its duration, and will
sometimes use the notation T (γ) := T . The curve γ is simple if it is an
injective function. When the specific parameterization of a curve γ is not
important, then we might consider only its trace, which is the closed subset
of R3 given by tr γ = {γ(t) : t ∈ [0, T ]}. To simplify notation, we sometimes
write γ, instead of tr γ, where the meaning should be clear.
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The space of parameterized curves of finite duration, Cf , will be endowed
with a metric ψ, as defined by

ψ(γ1, γ2) := |T1 − T2| + max
0≤s≤1

|γ1(sT1) − γ2(sT2)| ,

where γi : [0, Ti] → R3, i = 1, 2 are elements of Cf . Alternatively, consider
the metric

ρC(γ1, γ2) := inf sup
t∈[0,1]

|γ1 ◦ θ1(t) − γ2 ◦ θ2(t)|,

where the infimum is over all the reparameterizations θ1 : [0, 1] → [0, T1]
and θ2 : [0, 1] → [0, T2]. In the literature, ρC is known as the metric of the
space of unparameterized paths.

A continuous map γ∞ : [0,∞) → Rd is a transient curve if |γ∞(t)| →
∞ as t → ∞. Let C be the set of transient curves, and endow C with the
metric χ given by

χ(γ∞
1 , γ∞

2 ) =
∞∑
k=1

2−k
(

1 ∧ max
t≤k

|γ∞
1 (t) − γ∞

2 (t)|
)
.

2.1.3 Constants and asymptotic notation

We denote constants with the letters C, Cn c and cn, with n ∈ N. The
values of these constants change from line to line, and we indicate their
dependencies.

Let f, g, h be real valued functions with f, g, h ≥ 0. We write f(x) =
O (g(x)) to indicate that there exists a constant C > 0 such that

f(x) ≤ Cg(x), for all x.

Similarly, we write f(x) = h(x) +O(g(x)) to indicate that

|f(x) − h(x)| ≤ Cg(x), for all x.
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If f(x)⪯g(x), it means that there exists C such that

f(x) ≤ Cg(x), for all x.

Similarly, we write f(x)≍g(x) if there exist c1, c2 > 0 such that

c1g(x) ≤ f(x) ≤ c2g(x), for all x.

Finally, if f and g are positive functions, we write f∼g if

lim
x→∞

f(x)
g(x)

= 1.

2.2 Simple random walk
The simple random walk is a random path on a given graph, where each
step is chosen uniformly at random. For this work, we delimit our discus-
sion to simple random walks on Zd. Consider the set of directions on Zd,
E = {±e1, . . . ,±en}, where ek(j) = 1{k = j}. Let (ηj)j∈N be independent
random variables, each one with uniform distribution over E . For x ∈ Zd,
the simple random walk S = (Sn)n∈N started at x is

S0 := x, Sn := S0 +
n∑
j=1

ηj .

We denote by P x the probability measure of S. The distribution of ηj is
called the step distribution. Thorough this work, we may also use de notation
S(n) = Sn.

The simple random walk is a Markovian process. Our interest is in the
geometry of the random walk, and hence the most relevant stopping times
are those related to exit and hitting times. We define the hitting and
positive hitting times of S by

τA := inf{n ≥ 0 : Sn ∈ A}, and τ+
A := inf{n > 0 : Sn ∈ A}. (2.1)
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We write τm and τ+
m for the hitting times of the ball B(m). A related

stopping time is the escape from a set. We write

ξA := inf{n ≥ 0: Sn ∈ Ac} (2.2)

for the escape time from A. If A = B(m), we write

ξm := inf{n ≥ 0: Sn ∈ B(m)c}. (2.3)

2.2.1 Recurrence and transience

A random walk S is recurrent if

P (Sn = 0 i.o ) = 1,

otherwise, we say that S is transient. The recurrence of the simple random
walk on Zd depends on the dimension d.

Theorem 2.2.1. The simple random walk on Zd is recurrent in d = 1, 2
and transient in d ≥ 3.

A simple proof of Theorem 2.2.1 is in [61, Subsection 5.4]. The basis for
the proof is the following characterization of recurrence in terms of hitting
probabilities.

Proposition 2.2.2 ([61, Theorem 5.4.3]). For a simple random walk S on
Zd, the following are equivalent:

(i) S is recurrent,

(ii) P 0(τ+
{0} < ∞) = 1, and

(iii)
∞∑
m=0

P 0(Sn = 0) = ∞.

The next proposition is a quantified version of Proposition 2.2.2 (ii) in
the transient case.
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Proposition 2.2.3 ([117, Proposition 6.4.2]). Let d ≥ 3. For x ∈ Zd\B(m)

P x
(
τ+
m < ∞

)
=
(
m

|x|

)d−2
[1 +O(m−1)].

Throughout this work, we often make a distinction between dimensions
d = 2 and d ≥ 3 of the lattice Zd. This distinction is due to the difference
between recurrent and transient behaviour.

2.2.2 Harmonic measure and hitting probabilities

Estimates on hitting probabilities of a random walk lie at the core of this
work. We review hitting probabilities, harmonic measure, and capacity to
provide some background. We follow [113, 117], where more details are
available.

Let A ⊂ Zd be a finite set. The harmonic measure of A is defined as
the limit

hmA(y) := lim
|x|→∞

P x
(
Sτ+

A
= y : τ+ < ∞

)
.

In the two-dimensional case, the simple random walk is recurrent and the
harmonic measure is simply defined by

hmA(y) := lim
|x|→∞

P x
(
Sτ+

A
= y

)
.

We refer to [113, Theorem 2.1.3] for a proof of the existence of this limit.
The following result gives bounds on the harmonic measure of straight

segments.

Theorem 2.2.4 ([113, Section 2.4]). Let L ⊂ Zd be the line segment on the
x-axis from (0, . . . , 0) to (n, 0, . . . , 0). Then

hmL(0) ≍

cn
−1/2, d = 2,

c(logn)1/2n−1, d = 3.

We define below the capacity of a set and relate it to the hitting proba-
bility of a random walk and the harmonic measure.
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Capacity in the transient case

On Zd, and for d ≥ 3, the capacity of a finite set A is defined as

cap(A) := lim
m→∞

∑
x∈A

Px
(
τ+
A > ξm

)
=
∑

Px(τ+
A = ∞).

It follows that we can write the harmonic measure as

hmA(x) =
Px
(
τ+
A = ∞

)
cap(A)

.

The capacity of a set A indicates how much “hittable” is A by a random
walk starting at a large distance. We formally state this relation in the
proposition below.

Proposition 2.2.5 ([117, Proposition 6.5.1]). Assume that A ⊂ B(n) and
∥x∥ ≥ 2n, then

Px
(
τ+
A < ∞

)
= Cd∥x∥2−d cap(A)

[
1 +O

(
n

∥x∥

)]
,

where Cd is a constant depending on the dimension.

An example to keep in mind is the capacity of the closed ball of radius
n. This is

cap(B̄(n)) = a−1
d nd−2 +O

(
nd−3

)
;

where the constant ad takes the value

ad = d

2
Γ
(
d

2
− 1

)
π−d/2 = 2

(d− 2)ωd
.

In the expression above, Γ is the Gamma function and ωd is the volume
of the unit ball in Rd [113, (2.16) and Theorem 1.5.4]. In comparison, for
an arbitrary connected set, we limit our calculations to bounds over the
harmonic measure, e.g. Theorem 2.2.7 gives an upper bound.

The recurrence of the two-dimensional random walk entails a different
definition of capacity for Z2. We will not use this definition, and instead,
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refer the reader to [113]. In exchange, we state below a general theorem for
the hitting probability of a connected subset of C.

Beurling estimate

The Beurling projection theorem is a classical result for the hitting proba-
bilities of a two-dimensional Brownian motion. Consider a Brownian motion
on C, started at 0 and stopped when it hits the unit circle; and let A be
the collection of connected subsets of C containing the origin and intersect-
ing the unit circle. The Beurling projection theorem states that, among all
subsets in A, this Brownian motion is most likely to avoid the straight line
[0, 1] (see [27, 166]). This theorem is a consequence of Beurling’s theorem
[32], formulated originally in potential theory.

We have a discrete analogue for simple random walks. In this case,
we consider A ⊂ Zd path connected, meaning that there is a path between
any two points in A. In terms of hitting probabilities, the statement is the
following.

Theorem 2.2.6 (Beurling estimate [115, Theorem 6.8.1]). Let A ⊆ Z2 be
an infinite and path-connected set containing the origin. Then, for a simple
random walk starting at the origin

P
(
ξn < τ+

A

)
≤ c

n1/2 .

In terms of the harmonic measure, the Beurling estimate states that the
harmonic measure of a line (hmL in Theorem 2.2.4) is an upper bound of
the harmonic measure of any path-connected set. We state this version of
the Beurling estimate as follows.

Theorem 2.2.7 ([113, Theorem 2.5.2]). Let A ⊂ Zd be a path-connected set
of radius n containing 0. Then

hmA(0) ≤


cn−1/2, d = 2,

c(logn)1/2n−1, d = 3,

cn−1, d ≥ 4.
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Kesten proved the two-dimensional case in [97], while the argument in
[113] appeared first in [112]. The proof in [112] uses the following lower
bound on the capacity of connected sets with radius n.

Proposition 2.2.8 ([113, Lemma 2.5.4]). Let A ⊂ Zd be a connected set of
radius n containing 0. Then

cap(A) ≥

cn (logn)−1 , d = 3,

cn, d ≥ 4.

In Chapter 5, we will require a better estimate in the three-dimensional
case. In that case, the set to hit is the trace of a loop-erased random walk
and we use properties specific to the loop-erased random walk. However, we
still refer to such results as a Beurling-type estimate (see Subsection 2.3.3).

2.2.3 Scaling limit of the simple random walk

For simplicity, consider a simple random walk S = (S(n)) in the line. If we
interpolate between S(0), S(1), . . . , S(n), we obtain a continuous function in
R. Denote by S(t), t ≥ 0 the function defined by this interpolation. In this
sense, the random walk S is a model for a discrete random function.

The continuous analogue for a random function is Brownian motion. In
this subsection, we introduce Brownian motion and its relation to the simple
random walk through the scaling limit.

Brownian motion

Let (Ω,F , P ) be a probability space. We say that a random variable X

follows a normal distribution with mean 0 and variance σ2, denoted by
N (0, σ2) if for any Borel set A ⊂ B(R)

P (X ∈ A) = P (ω ∈ Ω: X(ω) ∈ A) = 1√
2πσ

∫
A

exp
(

− x2

2σ2

)
.

Definition 2.2.9. A Brownian motion in R (or linear Brownian motion) is
a collection of random variables W := (W (t, ω) : t ≥ 0, ω ∈ Ω) satisfying
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the following properties:

(i) The distribution at time 0 is identically 0, i.e. W (0, ω) = 0, for all
ω ∈ Ω.

(ii) For any 0 ≤ t < s, the random variable Wt −Ws := W (t, ·) −W (s, ·)
follows a normal distribution N (0, t− s).

(iii) For any 0 ≤ t1 ≤ t2 ≤ . . . ≤ tn, the increments Wtn −Wtn−1 ,Wtn−1 −
Wtn−2 , . . . ,Wt2 −Wt1 are independent random variables.

(iv) For P -almost all ω ∈ Ω, the function t 7→ W (t, ω) is continuous.

The extension to higher dimensions is straightforward. Let W 1, . . . ,W d

be d independent linear Brownian motions. The collection of random vari-
ables (B(t) : t ≥ 0) given by

B(t) = (W 1
t , . . . ,W

d
t )T

is a d-dimensional Brownian motion. In the case d = 2, we call B a
planar Brownian motion. An equivalent definition for the d-dimensional
Brownian motion (B(t) : t ≥ 0, ω ∈ Ω) is the analogue of Definition 2.2.9,
but we exchange condition (ii) by the requirement that B(t) −B(s) follows
a d-dimensional normal distribution with mean 0 and covariance matrix
(t− s)Id.

We assume above that Brownian motion starts at 0, but the initial point
may be any z ∈ Rd. In this case, we change condition (i) for B(0) =
z with probability one. We thus say that B starts at z and denote the
corresponding probability measure by P z(·) We interpret B as a random
continuous function. That is, for each ω ∈ Ω we get a continuous function
B = B(·, ω) : [0,∞) → Rd.

We will see below that Brownian motion is a limit object. Accordingly,
Brownian motion satisfies translation, scale, and rotation invariance. We
refer to [140] for the proof of Proposition 2.2.10 and Proposition 2.2.11.
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Proposition 2.2.10. Let B = (B(t) : t ≥ 0) be a d-dimensional Brownian
motion. For a > 0, z ∈ Rd and an orthogonal linear transformation L :
Rd → Rd, the processes

(
B̃(t) : t ≥ 0

)
and

(
B̄(t) : t ≥ 0

)
given by

B̃(t) = 1
a
B(a2t) + z, B̄(t) = L(B(t)),

are also Brownian motions, started at z and at 0, respectively.

In the two-dimensional case, the planar Brownian motion satisfies con-
formal invariance. We consider planar Brownian in the complex plane by
setting

B(t) = W1 + iW2,

where W1 and W2 are two independent linear Brownian motions. For a
domain D ⊂ C, let

ξBD = inf{t ≥ 0 : B(t) /∈ D}

be the exist time of the Brownian motion from the domain D

Proposition 2.2.11. Let B = (B(t) : t ≥ 0) be a planar Brownian motion.
For a conformal map φ : D → D̂, the process

(
B̂(t) : t ≥ 0

)
given by

B̂(t) = φ(B(t))

is a time-changed Brownian motion such that ξB̂
D̂

= φ(ξBD).

Convergence of the simple random walk to Brownian motion

We begin with a discussion of the one-dimensional case. Consider the func-
tion in [0, 1] given by

S∗
n(t) = S(nt)√

n
, for all t ∈ [0, 1].

With this normalization, the central limit theorem implies that S∗
n(1) con-

verges in distribution to N (0, 1). On the other hand, note that W (1) =
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N (0, 1) in distribution. In general, for each fixed time t,

S∗
n(t) D=⇒ W (t), as n → ∞,

and we see that S∗
n converges weakly to W pointwise. However, if we think

of S∗ as a continuous curve, pointwise convergence is unsatisfactory. It cor-
responds to the convergence of finite-dimensional distributions. Donsker’s
invariance principle extends this convergence to the space of continuous
functions C[0, 1], endowed with the supremum norm.

Donker’s invariance principle holds in all dimensions. In the general case,
we scale a d-dimensional simple random walk by

S∗,d
n =

√
d√
n
Sd([nt]), t ∈ [0, 1].

We state it below, and we refer to [66, Chapter 5, Theorem 1.2] for a proof.

Theorem 2.2.12 (Donsker’s Invariance Principle). S∗,d
n converges weakly

to a standard Brownian motion on Rd in the space of continuous functions
CRd [0, 1].

We thus say that Brownian motion is the scaling limit of the simple
random walk.

As we have stated above, we are mainly interested in the simple random
walk on Zd. We remark that the convergence of the simple random walk
to Brownian motion holds in a large class of graphs. For example, finite
range, symmetric and irreducible random walks on Zd converge to Brown-
ian motion [117, Chapter 3]. The convergence also holds for centred step
distributions with finite variance, [102, Theorem 21.43] gives a proof in the
one-dimensional case. The fact that this scaling limit holds in such gener-
ality is an instance of the universality phenomenon, and we thus say that
Brownian motion is a universal object.
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2.3 Loop-erased random walks
The loop-erased random walk is a model for simple curves motivated by the
self-avoiding walk (SAW) model [110]. In Zd, for d ≥ 2, consider a curve
γ : {0, 1, . . . , n} → Zd. We define the loop-erasure of γ as a curve created
by deleting the loops of γ in chronological order. Let

s0 := sup{j : γ(j) = γ(0)},

and for i > 0,
si := sup{j : γ(j) = γ(si−1 + 1)}.

The length of the loop-erasure is m = inf{i : si = n}. Then, the loop-erasure
of γ is

LE(γ) := [γ(s0), γ(s1), . . . , γ(sm)].

Let D be a subset of Zd. Consider a simple random walk S on Zd

starting at x ∈ D. The loop-erased random walk on D is defined as the
loop-erasure of S up to its first exit from D

γ = LES[0, ξD], (2.4)

where ξD is the escape time defined in (2.3).

2.3.1 The infinite loop-erased random walk

The infinite loop-erased random walk is the loop-erasure of a simple random
walk without an stopping condition. The latter statement has an immediate
interpretation when the simple random walk is transient, which is the case
of Zd with d ≥ 3. In Z2, the simple random walk is recurrent, but we can
define the loop-erased random walk as a weak limit. We discuss both cases
below.

Transient case

Let S = (Sn)n≥0 be a simple random walk on Zd. We assume that the
dimension is d ≥ 3. In this case, the simple random walk is transient, and

21



the loop-erasure of S is well-defined, with probability one. Similarly to the
finite case, we set

s0 := sup{j : S(j) = S(0)},

and for i > 0,
si := sup{j : γ(j) = γ(si−1 + 1)}.

We note that si is finite with probability one due to the transience of the
simple random walk. Then, the infinite loop-erased random walk (IL-
ERW) is the transient path

LE(S) := [γ(s0), γ(s1), . . . , ].

Two-dimensional case

For each ℓ ≥ 1, let Ωℓ be the set of simple paths ω = [0, ω1, . . . , ωk] from 0
to the boundary of Bℓ i.e. ω1, . . . , ωj−1 ∈ Bℓ and ωj ∈ ∂Bℓ. Let γm be a
loop-erased random walk on Bm and γm|ℓ be the restriction of γm up to its
first exit from Bℓ. We denote by

νm,ℓ(ω) = P (γm|ℓ = ω), ω ∈ Ωℓ

the probability measure on Ωℓ induced by γm.

Proposition 2.3.1 (Lawler [113, Proposition 7.4.2]). Let ω ∈ Ωℓ. If γm is
a loop-erased random walk on Bm, then

lim
m→∞

P (γm|ℓ = ω) = lim
m→∞

νm,ℓ(ω) = ν̂ℓ(ω)

exists.

The collection {ν̂ℓ}ℓ≥1 is consistent and defines a measure ν̂ on infinite
paths. The two-dimensional infinite loop-erased random walk is the random
infinite path with measure ν̂.
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Restrictions of infinite loop-erased random walks

The LERW and ILERW are different objects. However, the definition of
the ILERW suggests that their respective measures are comparable within
a small ball.

Proposition 2.3.2 (Masson [136, Corollary 4.5]). Let ℓ ≥ 1 and n ≥ 4. Let
K be a subset containing B(nℓ) and such that, for the escape time defined
in (2.2), P 0(ξK < ∞) = 1. If γ∞ is an infinite loop-erased random walk
and γK is a loop-erased random walk on K and ω ∈ Ωℓ then

P (γ∞[0, ξ∞
ℓ ] = ω) =


[
1 +O

(
1

logn

)]
P (γK [0, ξKℓ ] = ω) d = 2,[

1 +O
(
n2−d

)]
P (γK [0, ξKℓ ] = ω) d ≥ 3,

where ξ∞
ℓ and ξKℓ are the escape times from the ball B(ℓ) of γ∞ and γK ,

respectively.

2.3.2 Growth exponent

The growth exponent of the d-dimensional loop-erased random walk is
the asymptotic number of steps necessary to reach Euclidean distance n. In
a sense, it indicates the efficiency of the random path to reach a macroscopic
distance.

It is convenient to compare the growth exponent of the LERW with two
examples. A growth exponent equal to 1 indicates linear growth, and a
straight line provides an example. The second example is a simple random
walk. Its growth exponent is 2 since the loops increase the number of steps
in the path. It is intuitively clear that the growth exponent depends on the
dimension of the lattice.

Let S = (S(t)) be a simple random walk in Zd started at the origin and
let ξn = inf{t ≥ 0: ∥S(t)∥ > n} be the first exit time from the Euclidean
ball of radius n. Then

Md(n) := | LE(S[0, ξn])|,
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is the number of steps it takes to the LERW to exit a ball of radius n in the
d-dimensional space.

We define the growth exponent of the loop-erased random walk
as

βd := lim
n→∞

logE(Md(n))
logn

, (2.5)

provided that the limit exists. In this case, we write that E(Md(n)) ≈ nβd

The following theorem summarizes results on the existence of the growth
exponent for the LERW. Kenyon determined the planar case in [95]. Shi-
raishi established the existence in d = 3 [155, Theorem 1.4], and the upper
and lower bounds come from work in [114].

Theorem 2.3.3. The growth exponent βd for the LERW on Zd exists for all
d ≥ 2. The growth exponent takes the following values in each dimension:

(a) β2 = 5
4 ,

(b) β3 ∈ (1, 5/3],

(c) βd = 2, for d ≥ 4.

Further work has obtained a more precise asymptotic behaviour for the
planar LERW and in higher dimensions d ≥ 4. We present below some of
these results.

In the two-dimensional case, Lawler obtained the asymptotic probability
that the path of a LERW contains the edge [0, 1] while it crosses a square
of length 2n [116, Theorem 1.1]. This estimate gives a precise asymptotic
for the growth exponent. We refer to [18, Corollary 3.15] for details on the
connection between the crossing probability and the growth exponent.

Theorem 2.3.4 (Lawler [116]). There exist absolute constant c1, c2 > 0
such that

c1n
5/4 ≤ E(M2(n)) ≤ c2n

5/4. (2.6)

The result extends to more general planar graphs. Proposition 2.3.5
shows that the growth exponent is a function of the dimension, and it does
not depend on the particularities of Z2. This is an instance of the universality
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of the growth exponent. Let S̄ be an irreducible bounded symmetric random
walk, starting at the origin, on a two-dimensional lattice. As in Z2, we set
ξ̄n = inf{t ≥ 0: ∥S(t)∥ > n} and M̄(n) = | LE(S̄[0, ξ̄n]).

Proposition 2.3.5 (Masson [136]). The limit

lim
n→∞

logE(M̄(n))
logn

= 5
4

and hence the growth exponent for the LERW on a two-dimensional lattice
is 5

4 .

In the critical dimension d = 4, Lawler obtained the logarithmic correc-
tions for a related exponent. The physics community has predicted these
logarithmic corrections. Let Kn := | LE(Sn)|, that is, the number of points
kept in the loop-erasure of a simple random walk of n steps. It was proved
on [114] that for loop-erased random walks in d = 4

lim
n→∞

E(Kn)
c4n(logn)−1/2 = 1.

In comparison, E(Kn) ∼ cdn, for d ≥ 5.
In higher dimensions, the behaviour is Gaussian, and precise asymptotics

are available (see [114]). For d ≥ 5, there exist c1, c2 > 0 such that

c1n
2 ≤ E(Md(n)) ≤ c2n

2.

2.3.3 Hitting probabilities

General estimates on the harmonic measure are enough for the study of the
two-dimensional loop-erased random walk. In three-dimensions, we require
a result specific for loop-erased random walks.

Theorem 2.3.6 (Sapozhnikov-Shiraishi [148, Theorem 3.1]). Let γ be a
loop-erased random walk on B(n). There exist η > 0 and an absolute con-
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stant C < ∞ such that for all ε > 0 and n ≥ 1,

P

 For all x ∈ B(n) with dist(x, γ) ≤ ε2n

P x
(
ξS
B(x,

√
εn) <

(
τSγ

)+
)

≤ εη

 ≥ 1 − Cε,

where S is an independent simple random walk on Z3 started at x.

Subsection 5.3.4 presents variants of Theorem 2.3.6 for infinite loop-
erased random walks and loop-erased random walks stooped at a random
boundary.

2.4 Scaling limits of loop-erased random walks
In this section, we discuss the scaling limits of loop-erased random walks.
In contrast with the case of simple random walks, the limit process depends
on the dimension of the space.

2.4.1 Two dimensions

We begin with the planar case Z2. The complex plane reveals a rich structure
for two-dimensional processes. In this subsection, we work on C and denote
the unit ball (or disk) by D = B(0, 1).

We have an explicit description of the scaling limit of the two-dimensional
loop-erased random walk. This is the Schramm-Loewner evolution with
parameter 2 (SLE(2)). We introduce SLE in this specific case for comparison
with the scaling limits in higher dimensions.

Radial SLE

The Schramm-Loewner evolution (SLE(κ)) is a one-parameter family of con-
formally invariant scaling limits of two-dimensional discrete models. The
following results are known as we take the scaling limit.

• The loop-erased random walk converges to SLE(2) [122, 149].

• The interface of the planar critical Ising model converges to SLE(3)
[46].
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• The harmonic explorer converges to SLE(4) [150].

• SLE(6) corresponds to the scaling limit of critical percolation on the
triangular lattice (proof outlined in [159, 160] and completed in [41,
42]).

• The Peano curve of the uniform spanning tree converges to SLE(8)
[122].

SLE(8/3) is the conjectured limit of the self-avoiding random walk; close
relation between Brownian motion and SLE(8/3) supports this conjecture
[121].

SLE(κ) is defined over domains D ⊂ C. We distinguish two points on D,
where the process starts and finishes. Radial SLE corresponds to D with the
process starting at a point in the boundary and finishing at the origin. On
the other hand, chordal SLE refers to the process on the upper-half plane
H starting at 0 and ending at ∞.

Let us describe radial SLE(2). We follow the construction in [122] and
refer the reader to proofs in [30]. The proofs in [30] are for the chordal case,
but they also apply to radial SLE after a conformal transformation.

We say that K is a D−hull if K is a compact subset of D̄ and D \K is
a simply connected domain. There is a one-to-one correspondence between
D-hulls and conformal homeomorphisms

gK : D \K → D (2.7)

satisfying gK(0) = 0 and g′
K(0) ≥ 0. The Riemann mapping theorem and

the Schwarz lemma provide this bijection (see [30, Corollary 1.4]). We will
look at families of D-hulls. We say that (Kt : t ≥ 0) is increasing if Kt ⊊ Ks

for t < s. Moreover, a family (Kt : t ≥ 0) satisfies the local growth property
if

diam(Kt,t+h) → 0 as h ↓ 0 uniformly on compacts in t,

where Kt,t+h = gKt(Kt+h \Kt). Simple continuous curves provide the most
relevant example of a family of D-hulls. If η : [0,∞) → D̄ is a continuous
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simple curve with η(0) ∈ ∂D, limt→∞ η(t) = 0 and η(0,∞) ⊂ D, then
Kt = η[0, t] defines an increasing family of D − hulls with the local growth
property.

We also have a correspondence between continuous functions

W : [0,∞) → ∂D

and increasing families of D-hulls satisfying the local growth property

(Kt : t ≥ 0) (2.8)

with K0 ∈ ∂D, Kt \K0 ⊂ D for t ∈ (0,∞), and the assumption that 0 is in
the closure of ∪t≥0Kt.

Given (Kt : t ≥ 0) satisfying (2.8), let gt := gKt be as in (2.7) for each
t ≥ 0. We further assume that the conformal maps are parameterized so
that g′

t(0) = exp(t). Then, for all t ≥ 0, there exist a unique real number in
K̄t,t+h for all h > 0. We have that

W (t) := lim
h→0

K̄t,t+h = W (t) (2.9)

exists and W : [0,∞) → R defines a real-valued continuous function [30,
Proposition 7.1].

Loewner’s Slit Mapping Theorem [131] provides a crucial observation to
reverse the construction.

Theorem 2.4.1 (Loewner [131]). The conformal homeomorphism gt satis-
fies the differential equation

∂tgt(z) = −gt(z)
gt(z) +W (t)
gt(z) −W (t)

, (2.10)

where W is the continuous map (2.9). Clearly g0(z) = z, for all z ∈ D.

In light of (2.10), we call W the driving function of (Kt : t ≥ 0).
Now, we start with a continuous function W : [0,∞) → ∂D. We define

a conformal map gt as the solution of the ODE (2.10) with initial value
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g0(z) = z up to some time τ(z) ∈ (0,∞]. For t ≥ τ(z), the solution to (2.10)
does not exist. We then define the hull at time t as

Kt = {z ∈ D̄ : τ(z) ≤ t},

and Dt := D \ Kt, so the domain of gt is Dt and maps onto D. Then
(Kt : t ≥ 0) is an increasing family of D-hulls with the local growth-property
and W is its driving function. [30, Proposition 8.2].

Schramm defined the Schramm-Loewner evolution (first known as the
stochastic Loewner evolution) in his influential work on scaling limits of the
loop-erased random walk [149].

Definition 2.4.2. Radial Schramm-Loewner evolution with parameter k
(SLE(k)) is the process of random D-hulls (Kt, t ≥ 0) with driving function

W (t) = exp(iB(kt)),

where B : [0,∞) → R is a Brownian motion.

We define radial SLE similarly in any simply connected domain. If D is
a simply connected domain containing 0, the radial SLE curves in D start
at ∂D and converge to 0 as t → ∞. A fundamental property of SLE is its
conformal invariant.

Proposition 2.4.3 (Conformal invariance). Let D be a simply connected
domain containing 0 and let x ∈ ∂D. Let ηD,1,0(κ) denote the law of SLE(κ)
in D between 1 and 0, and let νD,x,0 be the law of SLE(κ) in D between x

and 0. If g : D 7→ D is the unique conformal map between D and D with
g(1) = x and fixing 0, then

νD,x,0 = g ◦ ηD,1,0(κ).

Convergence of LERW to SLE

Let D ⊊ C be a simply connected domain with 0 ∈ D and let Dδ = δZ2 ∩D.
Let νDδ be the law of a loop-erased random walk on Dδ, started at 0 and
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stopped when it hits ∂Dδ. Let ηD be the law of a radial SLE2 path from 0
to the boundary of D.

Theorem 2.4.4 (Lawler-Schramm-Werner [122, Theorem 1.1]). The mea-
sures νDδ converge weakly to ηD as δ → 0, in the space of unparameterized
curves (C̄, ρC).

The planar case is well-understood for the scaling limit of the simple
random walk. Here, let W denote the law of a planar Brownian motion
started at 0 and stopped on its first exist from the disk D = B(0, 1) on the
complex plane. Let G be a planar graph such that the simple random walk
on it is irreducible. We denote by µδ the law of the simple random walk on
the scaled graph δG, started at 0 and stopped when it exits D, and νD,Gδ is
the law of the loop-erased random walk on δG ∩ D.

Theorem 2.4.5 ([171, Theorem 1.1]). Let (δn)n∈N be a sequence converging
to 0. If µδn converges weakly to W as n → ∞, then νD,Gδn

converges weakly
to ηD.

Lawler and Viklund proved the convergence of [122] for the natural
parametrization. They considered a planar LERW parameterized by its
renormalized length, and showed that these curves converge to SLE(2) pa-
rameterized by its Minkowski content [119].

2.4.2 Three dimensions

In the three-dimensional case, Kozma proved the existence of the scaling
limit of the loop-erased random walk in a polyhedral domain, along the
scaling subsequence 2−n [107].

For a set D ⊂ R3 and a ∈ R3, we write D2−n := D ∩ 2−nZ3 and a2n for
the closest point to a in 2−nZ3.

Theorem 2.4.6 (Kozma [107, Theorem 6 and Subsection 6.1]). Let D ⊂ R3

be a polyhedron and let a ∈ D. Let L2n be a loop-erased random walk on
D2n, started at a2n and stopped at ∂D2n. Then the law of L2n converges
weakly as n → ∞, with respect to the Hausdorff topology.
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Moreover, if K is a sample of the scaling limit of L2n, then K is invariant
under dilations and rotations.

Sapozhnikov and Shiraishi proved further topological properties.

Theorem 2.4.7 (Sapozhnikov-Shiraishi [148, Theorem 1.2]). The scaling
limit K is a simple path, almost surely.

Heuristically, the growth exponent gives an estimate of the number of
boxes (or cells in Z3), which are hit by the loop-erased random walk. The
number of such boxes is related to the Hausdorff dimension of the LERW.
Shiraishi proved that, in the scaling limit of loop-erased random walks, the
growth exponent is the Hausdorff dimension. The next theorem builds up
from an upper bound in [148].

Theorem 2.4.8 (Shiraishi [156, Theorem 1.1.1]). The Hausdorff dimension
of K is equal to β3 (as defined in (2.5)), almost surely.

2.4.3 Four and higher dimensions

In dimensions d ≥ 4, the loop-erased random walk converges to Brownian
motion. In this case, the exponents present logarithmic corrections d = 4
[110, 111]. The scaling is the following.

Theorem 2.4.9 (Lawler [113, Theorem 7.7.6]). Let d = 4. Consider a sim-
ple random walk S on Z4 and denote its loop-erasure by L[0, n] = LES[0, n].
There exists a non-negative sequence (an)

L∗
n(t) =

√
d
√
anL([nt])√
n

, t ∈ [0, 1].

converges weakly to a 4-dimensional Brownian motion with respect to the
the space of continuous Cd[0, 1].

The scaling is easier for d ≥ 5. In these high dimensions, the simple
random walk intersects itself infrequently and in relatively small loops. After
loop-erasure, the LERW preserves a positive fraction of the points in the
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simple random walk. We denote this fraction by a. Moreover, the erased
loops are negligible when we re-scale the space. Hence, as we take the scaling
limit, the loop-erased random walk behaves like a random walk scaled by
a. Therefore, a high-dimensional loop-erased random walk converges to
Brownian motion, in the scaling limit. Lawler proved this convergence in
[110]; for a concise proof, we refer to [113].

Theorem 2.4.10 (Lawler [113, Theorem 7.7.6]). Let S be a simple random
walk on Zd, with d ≥ 5. Denote its loop-erasure by Ln, L[0, n] = LES[0, n],
and write

L∗
n(t) =

√
d
√
aL([nt])√
n

, t ∈ [0, 1].

Then L∗
n converges weakly to a d-dimensional Brownian motion, in the space

of continuous functions Cd[0, 1], endowed with the supremum norm.
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Chapter 3

Uniform Spanning Forests

The uniform spanning forest on Zd arises from the infinite-volume limit of
uniform spanning tree measures of a growing sequence of boxes. Within
probability theory, Pemantle was the first to study uniform spanning forests
[143], while the work of Benjamini, Lyons, Peres, and Schramm brought the
field to maturity [29]. In this chapter, we first introduce the definition and
first properties of the uniform spanning forest in Section 3.1. A remarkable
feature of the USF is its close relation to other probabilistic models. Sec-
tion 3.2 describes the relation of uniform spanning forests with other models
in statistical mechanics, while Section 3.3 includes more connections in the
form of sampling algorithms. We finish the chapter with a survey of results
on scaling limits of uniform spanning forests in Section 3.5.

3.1 Definition and basic properties
We follow the definition of uniform spanning forests in [132, Chapter 10]. In
a finite and connected graph G = (V,E), a spanning tree of G is a connected
subgraph T such that, for any pair of vertices v, w ∈ G, there is a unique
path in T connecting v and w. The uniform spanning tree (UST) of G
is a uniform sample over the collection of spanning trees of G.

For an infinite graph, we take a weak limit of the uniform spanning
tree measure over an increasing sequence of graphs. Let G be an infinite
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connected and locally finite graph. An exhaustion of G is a sequence Gn =
(Vn, En) of induced subgraphs of G that are finite and connected, and such
that Vn ⊂ Vn+1 and V = ∪nVn. Let USTF

Gn
be the uniform spanning tree

measure on Gn. We add a superscript F to indicate free boundary conditions.
Alternatively, for each induced subgraph Gn, we let GWn be Gn with a wired
boundary. We denote the uniform spanning tree measure of GWn by USTW

Gn
.

The superscript W indicates wired boundary conditions.
Let Ω = {0, 1}E be the space of subgraphs of the infinite graph G.

Each element ω = (ωe)e∈E ∈ Ω represents a subgraph of G, under the
correspondence that an edge e ∈ E is present in the associated graph if, and
only if, ωe = 1. We endow Ω with the product topology, and BΩ denotes
the corresponding Borel sets. Let B be a finite set of edges of E and let T
be a random spanning tree, then the limits

lim
n→∞

USFFGn
(B ⊂ T ) , lim

n→∞
USFWGn

(B ⊂ T )

exist and do not depend on the exhaustion Gn (see [132, Section 10.1]).
We thus define the free uniform spanning forest measure (FUSF) and
the wired uniform spanning forest (WUSF) measure of G as the weak
limits

USTF
Gn

===⇒
n→∞

FUSF, USTW
Gn

===⇒
n→∞

WUSF,

respectively.
In this thesis, we study uniform spanning forests of Zd. In Zd the free

and the wired uniform spanning forests coincide WUSF = FUSF, so we refer
to both as the uniform spanning forest measure of Zd (USF).

Theorem 3.1.1 (Pemantle [143]). The support of the uniform spanning
forest measure of Zd is on disconnected subgraphs in dimensions d ≥ 5, and
connected subgraphs in dimensions d ≤ 4.

We refer to a random subgraph U of Zd with the USF measure as a
uniform spanning forest, for d ≥ 5. In dimensions, d = 2, 3, and 4, U is
simply called a uniform spanning tree.

Given that a uniform spanning tree T connects vertices without creating
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cycles, the presence of an edge in T depends on other edges. We state this
intuition as the negative correlation property.

Proposition 3.1.2. Let T be a uniform spanning forest. For two different
edges e, f ∈ E,

P (e ∈ T |f ∈ T ) ≤ P (e ∈ T ).

We refer to [77, Theorem 2.1] for a proof of Proposition 3.1.2 for uniform
spanning trees on a finite graph. It extends to uniform spanning forests by
taking limits.

3.2 Relation to other models
A remarkable feature of uniform spanning forests is its deep relation to
other probabilistic models. These include electric networks [29, 40, 101],
the random-cluster model [76–78], the Gaussian free field [31, 118], the bi-
Laplacian Gaussian field [123], domino tilings [95], the Abelian sandpile
model [15, 89, 91, 92, 134], and the rotor-router model [44, 45, 87]. A
different type of connection is through sampling algorithms, as it is the case
for the simple random walk [5, 38], the loop-erased random walk [29, 169],
and the interlacement process [88]. We review these sampling algorithms in
Section 3.3.

We then refer to [132, Chapter 2, 4] and [90, Section 4] for the con-
nection between electric networks and uniform spanning trees. The lecture
notes [167, Chapter 2] present a concise explanation of the relation between
uniform spanning trees and the discrete Gaussian Free Field. In [90, Section
10], we find the Majumdar-Dhar correspondence between Abelian sandpiles
and uniform spanning trees. In this section, we will focus on the connection
to the random cluster-model, following [77].

3.2.1 The random-cluster model

The random cluster model unifies percolation, the Ising model, and the Potts
model in a single framework. The uniform spanning tree is a limit case, in
the sense of Theorem 3.2.1.
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Let G = (V,E) be a finite graph with configuration space Ω = {0, 1}E .
An edge e ∈ E on state 1 is open while state 0 indicates a closed edge.
For each ω ∈ Ω, let η(ω) = {e ∈ E : ω(e) = 1} and k(ω) is the number
of connected components of the subgraph (V, η(ω)). The random-cluster
measure on Ω with parameters p ∈ [0, 1], q ∈ (0,∞) is given by

ϕp,q(ω) = 1
Z

{∏
e∈E

pω(e)(1 − p)1−ω(e)
}
qk(ω), ω ∈ Ω,

where Z is the normalizing constant, also known as partition function.

Theorem 3.2.1. The random-cluster measure converges ϕp,q weakly to the
uniform spanning tree measure UST as q → 0, under the condition that
p → 0 and q/p → 0.

3.3 Sampling algorithms
In the subsections above, presented above the simple random walk, loop-
erased random walk, the interlacement process, and the continuum random
tree. Our next task is to show the connection of these models to the uniform
spanning forest. In the case of the interlacement process, simple random
walk and loop-erased random walks, these connections appear as sampling
algorithms.

3.3.1 Wilson’s algorithm

Wilson’s algorithm is an essential theoretical tool in the study of USF [132].
Since it gives an explicit connection between loop-erased random walks and
spanning trees, we can translate questions about uniform spanning forests
to questions about loop-erased random walks.

Algorithm. Let G be a graph with a finite number of vertices V = {vi}.

• Set v1 as the root and T1 = {v1}.

• For i = 1, . . . , |V |, given a subtree Ti, let γ be loop-erased random
walk starting at vi+1 and finishing at Ti. Then we set Ti+1 = Ti∪ {γ}.
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Theorem 3.3.1 (Wilson [169]). The tree T|V | is a uniform spanning tree of
G, and Ti is the subtree of T|V | spanned by {v1, . . . , vi}.

Wilson’s algorithm also works for infinite recurrent graphs. In the case of
an infinite transient graph, Benjamini, Lyons, Peres, and Schramm extended
Wilson’s algorithm in [29] as follows. Note that in Wilson’s algorithm, we
consider a loop-erased random walk until it hits the root v0. In the extension
for transient graphs, we let the loop-erased random walk continue until it
“hits infinity”. For this reason, we call the extension Wilson’s algorithm
rooted at infinity.

Algorithm (Wilson’s algorithm rooted at infinity). Let G be an infinite tran-
sient graph and let V = {v0, v1, . . .} be an enumeration of its vertices.

• Let γ0 be an infinite loop-erased random walk starting at 0. Let T0 =
γ0 and set v0 as its root.

• Given Ti, let γi be a loop-erased random walk starting at vi+1. This
loop-erased random walk can be either infinite, or stopped when it hits
Ti. Then set Ti+1 = Ti ∪ γi.

Theorem 3.3.2 (Benjamini-Lyons-Peres-Schramm, [29]). Tk is the subtree
of the uniform spanning forest of G spanned by {v0, . . . , vk}.

3.3.2 Aldous-Broder algorithm

The Aldous-Broder algorithm samples a uniform spanning tree over a finite
graph. It was proposed, simultaneously, by Aldous and Broder [5, 38]. Given
a finite and connected graph G, let R be a simple random walk on G. For
each vertex v ∈ G, let τ(v) := τ{v} the hitting time of v, as defined in (2.1).
Then the oriented edge

e(v) := {R(τ(v) − 1)}

is the first entrance edge of v.
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Theorem 3.3.3 (Aldous-Broder [5, 38]). The set of first entry edges

{−e(v) : v ∈ G}

has the distribution of a uniform spanning tree on G, oriented towards the
root.

3.3.3 Interlacement Aldous-Broder algorithm

The interlacement Aldous-Broder algorithm extends the classic algorithm
to infinite graphs. Instead of taking the first entrance edges in the sim-
ple random walk, the interlacement Aldous-Broder algorithm takes the first
entrance edges in an interlacement process [88].

Process (Interlacement Aldous-Broder). Let I be an interlacement process
on Zd. For each v ∈ Zd, we define the first hitting time of the vertex v as

τ t(v) := inf{s ≥ t : ∃(W, s) ∈ I such that v ∈ W}. (3.1)

Let et(v) be the oriented edge of Zd that is traversed by the trajectory
Wτ t(v), as it enters v for the first time. For each t ∈ R, let

ABt := {−et(v) : v ∈ Zd}. (3.2)

Theorem 3.3.4 (Hutchcroft [88, Theorem 1.1]). The set ABt has the law
of the uniform spanning forest of Zd, oriented towards the root.

3.4 Encodings of uniform spanning trees
The uniform spanning tree of Zd has a natural embedding on the space R3.
As we take the scaling limit, the number of vertices of the UST within any
neighbourhood increases, and eventually fills the space. The scaling limit
is no longer a graph. Therefore, the study of these scaling limits requires
encoding of the uniform spanning tree that carries properties on to the limit.
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3.4.1 Paths

Schramm proposed an encoding for the uniform spanning tree in terms of
the collection of its paths [149]. Let Un be the UST in 2−nZ3, with the point
at ∞ added to get a closed set in S3. For a, b ∈ Un, ωa,bn denotes the path in
Un from a to b. The paths ensemble

In :=
{

(a, b, ωa,bn ) : a, b ∈ Un
}

is the collection of all paths in the UST of 2−nZ3. Note that In is a subset
of P := S3 × S3 × H(S3), where H(S3) is the collection of closed subsets of
S3. P is a compact space and we endow it with the Hausdorff topology:

dH(A,B) = inf {r ≥ 0 : A ⊂ Br, B ⊆ Ar} , A,B ∈ P,

where Br = {x ∈ X : d(x,B) ≤ r} is the r-expansion of B.
The topology of paths ensemble quantifies the shape difference among

paths between vertices. In particular, it does not take into account the
length of these paths inherited from the graph distance. This path-length is
known as intrinsic distance. A simple approach for studying the convergence
of the intrinsic distance is in terms of finite-dimensional distributions.
For each fixed k ∈ N, we consider the joint distribution of the distance
between k vertices chosen uniformly at random. This approach gives insight
into the structure of the typical sub-tree spanned by k vertices.

3.4.2 Graphs as metric spaces

Two compact metric spaces (X, dX) and (Y, dY ) are isometrically equiva-
lent if there exists an isometric map φ : X → Y Let M be the space of
isometry classes of compact metric space. We endow M with the Gromov-
Hausdorff distance dGH, defined by

dGH(X,Y ) = inf
φ,φ̃,Z

dZH(φ(X), φ̃(Y )), X, Y ∈ M,
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where the infimum is over all metric spaces Z and isometries φ : X → Z

and φ̃ : Y → Z.
Additionally to the metric structure, we consider a measure endowed to a

compact metric space. Recall that a Polish space is a metric is separable and
completely metrizable topological space. For a Polish space X, we denote
by Mf (X) the set of all non-negative Borel measures on X. The Prohorov
metric is defined as

dXP (µ, ν) = inf
{
ε > 0 :

µ(A) ≤ ν(Aε) + ε and
ν(A) ≤ µ(Aε) + ε for all Borel sets A

}
.

Let X = (X, dX , µX , ρX) and Y = (Y, dY , µY , ρY ) be two compact rooted
and measure metric space. We define the Gromov-Hausdorff-Prohorov
distance by

dGHP(X ,Y) = inf
Φ,Φ̃,Z

{
dZ(Φ(ρX), Φ̃(ρY ))+

dZH(Φ(X), Φ̃(Y )) + dZP (Φ∗µ
X , Φ̃∗µ

Y )

}
,

where the infimum is over all Polish spaces (Z, dZ) and isometries Φ : X → Z

and Φ̃ : Y → Z.
We are mainly interested in compact metric spaces with a tree-like struc-

ture. A real tree (or R-tree) (T, dT ) is a metric space satisfying the following
conditions for any x, y ∈ T with D = dT (x, y)

(i) there exists a unique isometric map γ(x,y) : [0, D] → T such that
γ(x,y)(0) = x and γ(x,y)(D) = y.

(ii) If φ : [0, 1] → T is a continuous injective map such that φ(0) = x and
φ(1) = y then φ([0, 1]) = γ(x,y)([0, D]).

Let T be the space of real trees and Tc denotes the subspace of compact
real trees. We write TGH

c and TGHP
c for the corresponding isometry classes

under the Gromov-Hausdorff and Gromov-Hausdorff-Prohorov metric, re-
spectively.

Theorem 3.4.1 ([67, Theorem 1], [1, Corollary 3.2]). The metric spaces
(TGH

c , dGH) and (TGHP
c , dGHP) are Polish.
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A graph G is easily described by its set of vertices V and edges E. In
the scaling limit, it is convenient to consider any graph as a metric space.
If G is a connected graph, we endow the set of vertices with the discrete
metric given by

dG(x, y) = inf
λ(x,y)

len(λ(x, y)), x, y ∈ V ;

where the infimum is taken over all paths λ(x, y) on G between x and y.
We thus say that (G, dG) is a metric space. Furthermore, we endow G with
counting measure µG. This measure is uniform over the set of vertices.

If G is a finite graph and U is a uniform spanning tree of G, it is imme-
diate that (U , dU , µU ) is a measured real tree. In Chapter 5 we consider a
uniform spanning tree of Z3 as a locally compact metric space. We extend
the topological framework introduced in Subsection 5.2.

3.5 Scaling limits of uniform spanning trees
In this section, we overview different results for the scaling limit of uniform
spanning trees. We begin discussing the case of uniform spanning trees on
finite graphs, and then we pass to the results known for infinite graphs.

3.5.1 Finite graphs

In the mean-field case, the scaling limit of the uniform spanning tree of a
finite graph is the Brownian continuum random tree. We begin with the
presentation of this universal object.

The Brownian continuum random tree

The Brownian continuum random tree (CRT) is a compact rooted real tree.
Aldous introduced the Brownian CRT as the scaling limit of critical Galton-
Watson trees with finite variance and conditioned to have a large number of
vertices [6]. We can also describe the Brownian CRT in terms of a Brownian
excursion. A Brownian excursion e : [0, 1] → [0,∞) is a Brownian motion
conditioned to be positive in [0, 1) and to take the value e(1) = 0.
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Definition 3.5.1 ([124, Theorem 2.2] ). Let

d(s, t) = 2e(s) + 2e(t) − 2 inf
r∈[s∧t,s∨t]

2e(r) for s, t ≥ 0.

We define T as the quotient space of [0, 1], where we identify points s and t
with d(s, t) = 0. The CRT is the compact real tree (T, dT ).

Let p be the canonical projection of [0, 1] onto T . The interval [0, 1] is
endowed with the Lebesgue measure L. Then we define the uniform measure
µT on T is the push-forward measure given by

µT (B) := p♯(L)(B) = L(p−1(B)),

where B is a Borel subset of T .
Alternatively, we can sample a Brownian CRT with the stick-breaking

algorithm. This description corresponds to the original definition of the
Brownian CRT in [6].

Algorithm (Stick-breaking algorithm). Let R be an inhomogeneous Poisson
process on [0,∞) with intensity measure tdt. We write (Rn)n∈N for the
location of the points of the Poisson process in increasing order. Denote the
length of the sticks by L1 = R1, and Ln = Rn − Rn−1, and consider the
following sequence of compact real trees.

1. T1 is the closed line segment with length L1. Label the ends of T1 as
z1 and z2. The point z1 is the root of T1.

2. For n > 1, let x be a uniform point in Tn−1. Then, attach at x a closed
line segment with length Ln. We label by zn+1 the end of the segment
Ln on the other side of x.

Theorem 3.5.2 (Aldous [7, Corollary 22]). The tree Tn in the stick-breaking
algorithm is equal in distribution to a subtree of the Brownian CRT spanned
by n+ 1 leaves independently sampled from its uniform measure µT . More-
over, the closure of the set

∪
n∈N Tn has the distribution of the Brownian

CRT T .
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For each k ∈ N, let w1, . . . , wk be independent random points with law
µT . We thus define the finite-dimensional distribution of the Brownian CRT
Fk as the joint distribution

(dT (wi, wj))1≤i<j≤k. (3.3)

We remark that dT (w1, w2) corresponds to the length of T1 in Algo-
rithm 3.5.1, then

P (dT (w1, w2) > λ) = exp
(

−λ2

2

)
.

In general, the Brownian CRT is the scaling limit of trees arising in com-
binatorial models. Among others, uniform random finite trees and random
uniform unordered trees converge to the Brownian CRT [135].

Convergence of uniform spanning trees to the Brownian CRT

The scaling limit of the complete graph exhibits the mean-field behaviour
of a model. In the case of the uniform spanning tree, the scaling limit is the
Brownian CRT. The first theorem on this direction is due to Aldous, in the
sense of convergence finite-dimensional distributions. Recall that we define
the joint distribution of the distance between k leaves on the Brownian CRT
in (3.3) as Fk.

Theorem 3.5.3 (Aldous [6]). Let Kn be the complete graph on n vertices
and let Un be the uniform spanning tree of Kn. For a fixed k ∈ N, let
x1, . . . , xk be vertices chosen uniformly at random from Kn and let dn(xi, xj)
be the distance between xi and xj on UST(Kn). Then

(
dn(xi, xj)√

n

)
1≤i<j≤k

→ Fk as n → ∞

in distribution.

Mean-field behaviour is characteristic of high-dimensional graphs. The
threshold for a high dimension depends on the model. In the case of uniform
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spanning trees on Zd, dimensions d = 4 is critical and d ≥ 5 is a high-
dimension. This characterization is related to the scaling limit of the loop-
erased random walk. As we described in Subsection 2.4.3, the LERW on Zd

with d ≥ 4 converges to Brownian motion.
Mean-field behaviour holds for a larger family of connected graphs. Let

us introduce some quantities of a graph relevant to the characterization
of mean-field behaviour. Here we follow [138]. Let G = (V,E) be a finite
connected graph. Let δ̂ be the ratio of the maximum to the minimum degree
of G. The lazy random walk X = (Xt)t≥0 is defined on the set of vertices
V with transition probability pt(·, ·). Given Xt, with probability 1

2 Xt stays
on the same vertex and Xt+1 = Xt. With probability 1

2 , the walk changes
its position, and Xt+1 is one of the nearest-neighbours chosen uniformly at
random. We denote by pt(u, v) = Pu(Xt = v) and by π the stationary
distribution of the lazy random walk. We define the uniform mixing time of
the lazy random walk on G by

tmix(G) := min
{
t ≥ 0 : max

u,v∈V
|p

t(u, v)
π(v)

− 1| ≤ 1
2

}
.

The bubble sum of G is

B(G) :=
tmix∑
t=0

(t+ 1) sup
v∈V

pt(v, v).

We say that

(i) G is D-balanced if d̂(G) ≤ D,

(ii) G is α-mixing if tmix(G) ≤ n1/2−α, and

(iii) G is θ-escaping if B(G) ≤ θ.

The assumptions (i), (ii) and (iii) are proposed by Michaeli, Nachmias
and Shalev in [138] as a characterization of mean-field behaviour for finite
graphs (with respect to the UST). They also show that these assumptions
are sharp on Theorem 3.5.4 for the diameter of the UST of G, which we
denote by diam(UST(G)).
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Theorem 3.5.4 (Michaeli-Nachmias-Shalev [138, Theorem 1.1]). For ev-
ery D,α, θ, ε > 0, there exists a constant C = C(D,α, θ, ε) satisfying the
following. Let G be a connected graph on n-vertices and assume that it is
D-balanced, α-mixing and θ-escaping then

P
(
C−1√

n ≤ diam(UST(G)) ≤ C
√
n
)

≥ 1 − ε.

Graphs satisfying (i), (ii) and (iii) include the d-dimensional torus Zdm,
the hypercube {0, 1}m and expander graphs. A version of the assumptions
(ii) and (iii) was proposed first in [144]. However, instead of (i), the results
in [144] assume vertex transitivity. The transitivity hypothesis holds for the
d-dimensional torus and the hypercube, and we thus state convergence for
finite-dimensional distribution on these cases.

Theorem 3.5.5 (Peres-Revelle [144, Theorem 1.2]). Let d ≥ 5 and let
(Gn) be either the sequence of d-dimensional torus Zdm on n vertices, the
sequence of hypercubes {01}m on n vertices or a d-regular expander family.
For a fixed k ∈ N, let y1, . . . yk be points chosen uniformly at random on Gn

We denote by dn the intrinsic distance on UST(Gn). Then there exists a
sequence of constants (βn) bounded away from 0 and infinity such that the
joint distribution of the distances(

dn(yi, yj
βn|Gn|1/2

)
1≤i<j≤k

→ Fk

in distribution as n → ∞.

The corresponding result for the finite torus Z4
m includes logarithmic

corrections. These are expected for the critical dimension d = 4.

Theorem 3.5.6 (Schweinsberg [151, Theorem 1.1]). Let (Gn) be either the
sequence of d-dimensional torus Zdm on n vertices and we denote by dn the
intrinsic distance on UST(Gn). For a fixed k ∈ N, let z1, . . . , zk be points
chosen uniformly at random on Gn. There exists a sequence of constants
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(γn) bounded away from 0 and infinity, such that(
dn(zi, zj

γnn1/2(logn)1/6

)
1≤i<j≤k

→ Fk

in distribution as n → ∞.

3.5.2 Infinite graphs

In [4], Aizenman, Burchard, Newman, and Wilson described scaling limits
of random trees in terms of their collection of subtrees. Following a different
approach, Schramm studied in [149] the paths ensembles of UST as defined in
Subsection 3.4.1. Both [4] and [149] prove existence of sub-sequential scaling
limits in their respective topologies. We present here the sub-sequential
scaling limit in the paths ensemble topology. Tightness is an immediate
consequence of the definition of the topological space.

Theorem 3.5.7 (Schramm [149, Theorem 1.6]). Let Iδ be the paths ensem-
ble of the UST on δS2. If µδ is the law of Iδ, then there is a sub-sequential
weak limit µδ → µ with respect to the space H

(
S2 × S2 × H(S2)

)
as δ → 0.

Although [149] does not prove the full convergence of the paths-ensemble,
Schramm introduced a characterization of the limit object. He proposed the
Schramm-Loewner evolution (SLE) as the conjectured scaling limit of loop-
erased random walks, the Peano curve of the UST, and other conformally
invariant processes in the plane. As we mentioned in Chapter 2, [122] estab-
lishes the convergence of the LERW to SLE(2). Building up from the work
in [149], [122] proves the existence of scaling limits of wired and free UST
in bounded domains with smooth boundary, with respect to their paths en-
sembles. One of the main results in [122] is on the conformal invariance of
the scaling limit. With this in mind, we define the scaling limit of the UST
on a domain of the complex plane.

Let D ⊊ C be a simple domain. We consider both the wired UST on
δZ2 ∩D, denoted by WTDδ ; and the free UST on δZ2 ∩D, denoted by FTDδ .
Similarly, as in the infinite volume case, we consider their paths ensembles.
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Let WIDδ and FIDδ be the paths ensembles of WTDδ and FTDδ , respectively.
These paths ensembles are elements of the space H(D̄ × D̄ × H(D̄)) with
the Hausdorff topology. We denote their laws by µW,Dδ and µF,Dδ .

Theorem 3.5.8 (Lawler-Schramm-Werner [122, Corollary 1.2]). Let D ⊊ C
be a simple domain such that ∂D is a C1-smooth simple closed curve. Then
the weak limit of the wired UST and the free UST on D exists:

µW,Dδ → µW,D, µF,Dδ → µF,D

as δ → 0. Moreover, the scaling limits µW,D and µF,D are conformally
invariant.

The paths ensemble allows us to study the scaling limit as a subset of
R2. Indeed, Schramm gave a complete topological description of the scaling
limit of the planar UST in [149]. Nevertheless, the topology of the paths
ensemble is inadequate to study other properties, such as the intrinsic metric,
the uniform measure, and the simple random walk over the limit object. For
this latter purpose, it is more convenient to consider the UST as a measured
metric space; in fact, the UST is a real tree.

Barlow, Croydon, and Kumagai considered the uniform spanning tree as
a quintuple T = (U , dU , µU , ϕU , 0), where U is a uniform spanning tree of Z2,
dU is intrinsic metric, µU is the uniform measure, ϕU is an embedding of U
into R2, and 0 indicates that the embedded tree is rooted at the origin. Their
work in [24] proves the existence of subsequential scaling limits of the UST
in a Gromov-Hausdorff-Prohorov type topology. It includes the convergence
of the embedding ϕU . Recall that β2 denotes the growth exponent of the
loop-erased random walk.

Theorem 3.5.9 (Barlow-Croydon-Kumagai [24, Theorem 1.1]). Let Pδ the
law of (U , δ−β2dU , δ

2µU , δϕU , 0). Then the collection (Pδ)δ∈(0,1) is tight with
respect to a Gromov-Hausdorff-Prohorov topology.

We remark that the results in [24] rely on a detailed understanding of
the growth properties of the two-dimensional loop-erased random walk. In
particular, [24] applies results of [116, 136].
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The sub-sequential limit was extended to full convergence in the Gromov-
Hausdorff-Prohorov topology by Holden and Sun [86]. In [86], the authors
prove the existence of the scaling limit of contour functions of the UST; the
convergence is for the space of continuous functions endowed with the topol-
ogy of uniform convergence on compact sets. This topology is sufficiently
strong to imply the convergence of the corresponding real trees (see [1]).

Theorem 3.5.10 (Holden-Sun [86, Theorem 1.1, Remark 1.2] ). The law
of the sequence of measured, rooted spatial trees

(U , δ−β2dU , δ
2µU , δϕU , 0)

converges as δ → 0 with respect to a Gromov-Hausdorff-Prohorov-type topol-
ogy.
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Chapter 4

Competitive Growth
Processes

An interacting particle system is a random model of spatial configurations
evolving. The spatial structure is given by a connected graph G = (V,E).
We often refer to the vertices of G as sites. At any given time, each site
is in a state, which is an element of a the local state space σ. σ may
be a set of numbers or letters. They represent the presence (or absence)
of different types of particles. A set of local rules governs the interaction
of these particles. These interactions induce changes in the state of a site.
The global state (or configuration) of the system is given by a Markov
chain X = (Xt)t≥0 such that Xt = (Xt(v))v∈V takes values in the collection
of functions σV .

The simple random walk S = (Sn : n ≥ 0) provides an elementary
example of a discrete interacting particle system on Zd. In this case, we set
σ = {0, 1} as the state space. Here 0 represents a vacant site, while 1 is a
site occupied by the random walk. Then, at each integer time n ∈ Z+, the
Markov chain for the global configuration is defined as

Xn(z) =

1 if Sn = Xn(z)

0 otherwise,
∀ z ∈ Zd.
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We may think of an occupied site as the position of a single particle. Under
this interpretation, at each time n ∈ N, a particle simultaneously produces
an identical child and dies. The child-particle occupies a neighbouring site
chosen uniformly.

Our next example is the branching random walk. A branching ran-
dom walk represents a growing population of identical particles, where each
of them reproduces and moves randomly around space, independently from
others. A branching process (introduced in Section 1.2) drives the reproduc-
tion mechanism. We restrict to a binomial offspring distribution to simplify
the exposition and refer to [153, 154] for surveys on this model.

Let T be the genealogical tree of a branching process with offspring
distribution Bin(m, p). T is rooted at ρ and has a set of edges E. Consider
a collection of random variables (ζe)e∈E indexed by the edges of T. This
collection is independent and uniformly distributed over the set of directions
on Zd, E = {±e1, . . . ,±ed}, where ek(j) = 1{k = j}. For a vertex x in T,
the ancestral line Jρ, xK is the unique path of edges from the root ρ to the
vertex x. We denote by ∥x∥ the generation of x, defined as the number of
elements in Jρ, xK. With this notation, ∥ρ∥ = 0. Let

V (x) :=
∑

e∈Jρ,xK ζe
be the sum of increments associated with the ancestors of x. The branching
random walk on Zd, with offspring distribution B(m, p), is the collection
of random variables (V (x) : x ∈ T). For each generation n, we obtain a
finite point process

(V (x1,n), . . . V (xN,n) : i = 1, . . . , N) ,

where {xi,n}1≤i≤N is the set of vertices in the n-th generation. Note that
N ≥ 0 is random. The number of vertices at generation n is a Galton-Watson
process. We can also describe the branching random walk like a (discrete-
time) interacting particle system. In this case, the local state space is σ =
{0, 1, 2, . . .}. The state of a site z ∈ Zd indicates the number of particles at
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that position. For each integer time n ≥ 0, the global configuration is

Xn(z) =
∑

x: ∥x∥=n
1{V (x) = z}, ∀ z ∈ Zd.

At each time n ∈ Z+, a particle at site z dies and simultaneously gives birth
to a random number of particles. The offspring occupies positions uniformly
distributed among the nearest-neighbours of z.

For the random walk and the branching random walk, particles evolve
at a discrete time. In the following section, we consider interacting particle
systems in continuous time. We need to introduce a framework to justify
that the Markov chain X = (Xt)t≥0 is well-defined. This construction is
our main task in Section 4.2. A second limitation in the branching random
walk model lies in the independence between different particles. If we think
of these systems as a spatial population model, competition for resources
or predator-prey behaviour are natural assumptions. These assumptions
lead to competitive growth processes. As the first example of a competitive
growth process, we present the two-type Richardson model, and the original
one-type Richardson model, in Section 4.3. The motivation for the study of
the Richardson model is related to first passage percolation and serves as an
inspiration for further questions. We thus present first passage percolation
and its connections to Richardson models in Section 4.4. We finish the
chapter with the second example of a competitive growth process, called
chase-escape. We overview this model in Section 4.5. This process is closely
related to the model that we study in Chapter 7.

4.1 Markov processes
We begin with standard background on Markov process. For this section we
follow [102] and [129].

Let E be a Polish space with Borel σ-algebra B(E). We denote the
collection of continuous functions f : E → R by C(E). A map κ : Ω1×A2 →
[0,∞] is a stochastic kernel between the measure spaces (Ω1,A1) and
(Ω2,A2) if
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(i) ω1 7→ κ(ω1, A2) is A1-measurable for any A2 ∈ A2, and

(ii) A2 7→ κ(ω1, A2) is a probability measure on (Ω2,A2) for any ω1 ∈ Ω1.

Let (Xt)t≥0 be an stochastic process and we write (Ft)t≥0 for the fil-
tration generated by X. The stochastic process X = (Xt)t≥0 is a time-
homogeneous Markov process with distributions (Pη)η∈E if:

(i) For every η ∈ E, X is a stochastic process on an abstract probability
space (Ω,Σ,Pη) with Pη (X0 = η) = 1.

(ii) The map κ : E × B(E)⊗R+ → [0, 1] defined by

(η,B) 7→ Pη (X ∈ B)

is a stochastic kernel. For every t ≥ 0, the transition kernel κt :
E × B(E) → [0, 1] is defined by

κt(η,A) := κ
(
η, {y ∈ ER+ : y(t) ∈ A}

)
= Pη (Xt ∈ A) .

(iii) X satisfies the Markov property: for every A ∈ B(E), η ∈ E and
s, t ≥ 0,

Pη (Xt+s ∈ A | Fs) = PXs (Xt ∈ A) , Pη − a.s.

A function f : [0,∞) → E is càdlàg if it is continuous from the right
and the left limits exist: for every t ≥ 0

f(t) = lim
s↓t

f(s), and lim
s↑t

f(s) exists and is finite.

We let D[0,∞) be the collection of càdlàg functions X : R+ → E and D is
the Borel σ-algebra generated by the evaluation maps X 7→ Xt for t ≥ 0.
Then (D[0,∞),D) is the canonical path space for a stochastic process X,
and in particular for the Markov processes that we define below. We denote
the expectation corresponding to Pη by Eη.
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Now we additionally assume that the space E is locally compact. The
Markov semigroup {Pt : t ≥ 0} associated to the Markov process X =
(Xt)t≥0 starting at η ∈ E is defined as

Ptf(η) := Eη (f(Xt)) :=
∫
E
f(ηt)dPη

for bounded functions f : E → R. A Markov process X = (Xt)t≥0 is a
Feller process if the Markov semigroup maps the collection of continuous
functions C(E) into itself, i.e. for every f ∈ C(E), Ptf ∈ C(E) for all t ≥ 0.
The Markov processes arising from interacting particle systems are Feller
processes. For our purposes, the fundamental property of a Feller process is
that we can define it in terms of its Markov semigroup (see [129, Theorem
1.5]).

The infinitesimal generator (or generator) of the Markov semigroup
{Pt : t ≥ 0} is defined as the operator

Gf := lim
t↓0

Ptf − f

t
, (4.1)

where f belongs to a subset of C(E) where the limit (4.1) exists. The
Hille-Yosida theorem (see [129, Theorem 2.9]) establishes a one-to-one cor-
respondence between infinitesimal generators on C(E) and Markov semi-
groups on C(E). This property is crucial for the definition of interacting
particle systems, as we define them in terms of the corresponding generators.
Such construction requires additional work. In the next section, we present
sufficient conditions for our interacting particle systems and refer to [129,
Chapter 1] for details.

4.2 Interacting particle systems
Let G be a connected graph with a countable set of sites V . Recall that we
write σ = {s1, . . . , sn} for the local state space. Our interest is on the global
configuration of V , where each site has a local state. The configuration
space is σV , which is the collection of functions η : V → σ. We endow σV
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with the product topology and denote the space of real-valued continuous
functions on σV by C(σV ).

For the description of an interacting particle system, we require a set of
possible transitions between global states, and rates at which these transi-
tions occur. Following [129, 130], we describe these two elements as

(i) a set of local maps between global configurations

G = {ηT : σV → σV : T ⊂ V, |T | < ∞},

where the index T indicates the finite subset of sites where the map
ηT changes values on an element η ∈ σV ; and

(ii) a collection of non-negative transition rates

{c(T, η) : ηT ∈ G}.

Another common notation is to write c(η, ηT ) for c(T, η) . We will use
c(T, η) in the construction of interacting particle systems, and c(η, ηT )
for our examples. We assume that the function c is non-negative,
uniformly bounded, and continuous as a function of η.

An interacting particle system is a continuous-time Markov process
X = (Xt)t≥0 on the configuration space σV . Under a suitable set of condi-
tions over the local maps and the rates (see (4.5) and (4.6)), the generator

Gf(x) =
∑
ηT ∈G

c(T, η)
(
f(ηT ) − f(η)

)
, η ∈ σG, f ∈ C(σV ) (4.2)

defines the Markov process X.
The dynamics in our examples change at one or, at most, two sites, at

the same time. Then the collection of local maps and transition rates are

G = {ηx, ηx,y : x, y ∈ V }, {c(x, η), c(x, y, η) : x, y ∈ V }. (4.3)
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We also assume that

c(x, y, η) =

p(x, y) if η(x) = 1, η(y) = 0,

0 otherwise.
(4.4)

for some non-negative sequence of real numbers (p(x, y))x,y∈V . With these
assumptions, the generator of X takes the form

Gf(x) =
∑
x

c(x, η) (f(ηx) − f(η)) +
∑
x,y

c(x, y, η) (f(ηx,y) − f(η)) ,

for η ∈ σV and f ∈ C(σV ).
As pointed out above, we require some assumptions over the local maps

and their rates. For an interacting particle system of the form (4.3) and
satisfying (4.4), it suffices that

sup
x∈V

∑
u∈V

sup
η∈σV

|c(x, η) − c(x, ηu)| < ∞, (4.5)

and
sup
y∈V

∑
x∈V

p(x, y) < ∞. (4.6)

Theorem 4.2.1 (Liggett, [130, Theorem B3]). Consider the description of
an interacting particle system of the form (4.3) and satisfying (4.4). If (4.5)
and (4.6) are also satisfied, then the closure of (4.2) is the generator of a
Feller Markov process X = (Xt)t≥0 on the space of global configurations σV .

A general construction for a finite local state space σ is in [162, Chapter
4], while [129, Theorem 3.9] gives general conditions for the existence of
particle systems with a countable local state space.

The interacting particle systems in this work satisfy the hypothesis of
Theorem 4.2.1. In particular, (4.5) is a consequence of the finite range of
the rates in our examples. We say that a rate c(x, η) has finite range if
there exists a constant C such that c(x, η) depends on η through at most
C coordinates of η. Conditions (4.3), (4.4) are part of the construction and
(4.6) is easy to verify.
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Example 4.2.2. Let us define the continuous-time random walk as an
interacting particle system. The underlying graph is Zd and the state space
is σ = {0, 1}. Similarly to the example above of a simple random walk, 0
indicates a vacant site, while 1 indicates a site occupied by the random walk.
We define the local map ηx,y : σZd → σZ

d for x, y ∈ Zd nearest-neighbours
(i.e. |x− y| = 1) by

ηx,y(z) = ηx,y(η)(z) =


η(z) if z ̸= x, y,

η(y) if z = x,

η(x) if z = y,

and the transition rate of this map is

c(η, ηx,y) = 1{|x− y| = 1}. (4.7)

The rate of any other local map is 0. The map ηx,y exchanges the position
of the particle if (and only if) one of these sites is occupied. The meaning
of (4.7) is that change in positions occurs after a random time T , where
T ∼ Exp(1). For the continuous-time random walk on Z, a simple way to
indicate the local maps and their transition rates is by writing

01 1−→ 10, 10 1−→ 01.

An alternative way to define an interacting particle system is with a
Poisson process. Let us define the Poisson process and then discuss the
construction of interacting particle systems with an example.

A Poisson process on R+ with intensity λ is a continuous-time Markov
process (Nt, t ≥ 0), valued on Z+ and satisfying the following conditions.

(i) N0 = 0

(ii) For any finite collection of indices 0 = t0 < t1 < . . . < tn, the family
of increments (Nti −Nti−1 : i = 1, . . . , n) is independent

(iii) For t > s ≥ 0, the random variable Nt − Ns follows a Poisson distri-
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bution with parameter λ(t− s).

We refer to [102, Chapter 5] for a proof of the existence of the Poisson process
on R+ (and in more general spaces). A classic and beautiful reference on
the general theory of Poisson processes is [100].

Example 4.2.3. We continue Example 4.2.2 with an alternative construc-
tion. Let (Rt : t ≥ 0) and (Lt : t ≥ 0) be two independent Poisson processes
on R+. Then the continuous-time symmetric random walk on Z is equal in
distribution to

Xt = Rt − Lt.

Poisson representations are available for more general interacting particle
systems. These constructions are in [129, Chapter 3, Section 6] and [162,
Theorem 4.14].

4.3 Richardson models
Our first example of competitive growth processes is the Richardson model.
They model populations spreading uniformly through a graph. We represent
the population growth with the occupancy of vacant vertices. The dynamics
are similar to the growth of cells or infections. If an individual is at a given
site, it will “conquer” a vacant nearest-neighbour site (chosen uniformly)
after an exponential waiting period. We consider two variants: the one-type
Richardson model for the growth of a (single) population, and the multiple
type Richardson model. The first model considers unobstructed growth,
while the multiple-type model corresponds to different species competing
for resources.

In the one-type Richardson model, the population is homogeneous. In
this case, we only have two states for a site. It is either vacant or occupied.
Since our graphs are connected, any site will be occupied after some random
time. The main question for this model is on the shape of the occupied sites
in the long run.

The two-type Richardson model considers two species in competition for
vacant spaces. We distinguish these species as red and blue individuals.
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In contrast to the situation for the one-type Richardson model, it is not
necessarily true that both species occupy an infinite number of sites. For
example, if red particles no longer have vacant sites between their nearest-
neighbours (because blue particles are in those sites) then red will not be
able to reproduce any longer. We interpret that situation as an extinction
event for the red particles. A similar event is possible for blue. On the
contrary, if both red and blue particles occupy an infinite number of sites,
we interpret this as coexistence. Our approach to the two-type Richardson
models focusses on sufficient conditions for a coexistence event.

In the final subsection, we consider the multiple type Richardson model.
It is a generalization of the two-type model for k competing species.

4.3.1 The one-type Richardson model

The one-type Richardson model is an interacting particle system on Zd with
two states σ = {0, 1}. We refer to state 0 as vacant and to 1 as occupied. If
y is vacant then it becomes occupied at a rate proportional to the number
of occupied nearest-neighbours. An occupied site remains that way for the
rest of the process.

For a precise definition, we follow the notation in Section 4.2. For each
x ∈ Zd, we define the occupation map (or infection map) Ix : σZd → σZ

d by

Ix(η)(z) =

1 if z = x,

η(z) otherwise,
η ∈ σZ

d
.

The one-type Richardson model is the Markov process taking values in
{0, 1}Zd with transition rates

c(η, Ix(η)) =
∑
y∈Zd

|x−y|=1

1{η(y) = 1},

with the initial configuration η(0) = 1 and η(z) = 0 for any other z ∈ Zd.
Richardson introduced this interacting particle system in [147] as a model
for cell-growth. We remark that the original definition was for a discrete
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time Markov process.
We are interested in the asymptotic shape of the occupied sites. For

each t ≥ 0, we let
B(t) := {z ∈ Zd : Xt(z) = 1} (4.8)

denote the occupied vertices at time t ≥ 0. The main theorem in Richard-
son’s seminal work [147] is on the asymptotic shape of B(t). It is shown in
[147] that there exists a convex and compact deterministic set BR such that,
for any ε > 0, the probability of the event

(1 − ε)BR ⊂ B(t)
t

⊂ (1 + ε)BR (4.9)

tends to 1 as t → ∞. The shape theorem in [147] if the first result of its kind.
Cox and Durrett observed in [48] that a lemma suggested by Kesten in [39]
improves Richardson’s theorem: the event in (4.9) holds almost surely for
t ≥ 0 large enough. In [48], Cox and Durrett generalized the shape theorem
to the setting of first passage percolation. We present this generalization as
Theorem 4.4.2. We discuss the relation between the Richardson model and
first passage percolation in Section 4.4.1.

A model similar to the one-type Richardson model is the Eden model
[63]. The Eden model has a simple construction on Zd. For simplicity, we
describe the process in terms of cell growth, as in its original formulation.
We start with a cell at the origin. This cell divides into an identical daugh-
ter, and the newborn cell occupies one of the neighbouring sites, chosen
uniformly at random. The process continues its reproduction in the same
way. To describe the evolution of the Eden process, for each n ≥ Z+, we let
A(0) = {0} and define A(n) as the set of vertices after the n-th reproduction.

The one-type Richardson model and the Eden model are the same up to
a suitable time scale. Here we follow [17]. From the collection of discrete
balls (B(t))t≥0 in (4.8), we construct a sequence of random times {Nk}k∈Z+ .
We define N0 = 0 and

Nk = inf{t ≥ 0 : B(t) contains k + 1 points of Zd}.
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Richardson observed that the collection of subsets {A(k) : k ≥ 1} and
{B(Nk) : k ≥ 1} have the same distribution [147, Example 9].

4.3.2 The two-type Richardson model

In the two-type Richardson model we have three states: σ = {w, r, b} for
the vertices of Zd, for d ≥ 3. Similarly to the one-type version, only sites at
state w may flip on a rate depending on its number of occupied neighbours.
Once a site reaches states r or b, it remains on that state for the rest of
the process. We identify the sites with state r as red particles, sites with
state b correspond to blue particles, while the state w represents a vacant
site. The blue and red particles represent two different species competing
for space. Häggström and Pemantle defined this variant of the one-type
Richardson model in [79], as a tool for understanding infinite geodesics in
first passage percolation. We expand on the discussion of this connection
in Subsection 4.4.2. For a formal definition of this process, we define the
local maps acting on the model. For each x ∈ Zd, Rx : σZd → σZ

d is the
red-occupation map defined by

Rx(η)(z) =

r if z = x and η(x) = w,

η(z) otherwise,
η ∈ σZ

d
.

The blue-occupation map Bx : σZd → σZ
d is given by

Bx(η)(z) =

b if z = x and η(x) = w,

η(z) otherwise,
η ∈ σZ

d
.

The two-type Richardson model with parameter λ is the Markov process
taking values in {w, r, b}Zd with transition rates

c(η,Rx(η)) = λ
∑
y∈Zd

|x−y|=1

1{η(y) = r}, c(η,Bx(η)) =
∑
y∈Zd

|x−y|=1

1{η(y) = b}.
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The initial condition is the configuration

η(x) =


r if x = 0,

b if x = (1, 0, . . . , 0),

w otherwise.

(4.10)

We denote the probability measure associated to this process by Pλ.
It is reasonable to think that λ rules the coexistence behaviour of red and

blue particles. When λ = 1, the red and blue particles spread at the same
“speed” and, intuitively, one would expect both reach an infinite number of
sites. Let A be set of sites occupied by red particles at some time during
the process. We define B for the blue particles in an analogous way. The
coexistence event is defined as

E = {|A| = ∞, |B| = ∞}. (4.11)

Positive probability for the coexistence event was first proved in Z2 by
Häggström and Pemantle in [79]. The d-dimensional case was proved inde-
pendently by Garet and Marchand [72] and Hoffman [83].

Theorem 4.3.1 (Häggström-Pemantle [79, Theorem 1.2], Garet-Marchand
[72, Theorem 3.1], Hoffman [83, Theorem 2]). For the two-type Richardson
process on Zd with λ = 1, the coexistence event E has positive probability.

Häggström and Pemantle conjectured in [79] and in [80, Conjecture 1.1]
that the converse of Theorem 4.3.1 holds, and the coexistence event E has
probability zero whenever λ ̸= 1 for all Zd with d ≥ 2. The article [80] gives
a partial result, but the general case is an open question.

Theorem 4.3.2 (Häggström-Pemantle [80, Theorem 1.2]). For the two-type
Richardson process on Zd,

Pλ(E) = 0

for all λ ∈ R+ \ Λ, and the cardinality of Λ is at most countable.

A variation is to study the probability of the coexistence event under
different initial conditions. If two sites other than 0 and (1, 0, . . . , 0) are
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occupied at t = 0, then the situation is equivalent to the initial conditions
in (4.10) [79, Proposition 1.1]. The same is true for any initial condition
with a finite number of occupied sites [55, Theorem 1]. We have a change in
the model when a infinite number of particles are present at the beginning
of the process. Consider the initial configuration on Zd, for d ≥ 2:

ηH(x) =


r if x = 0,

b if r1 = 0, x ̸= 0,

w otherwise,

where x = (r1, . . . , rd). We denote the probability measure associated with
this process by PH

λ . Recall that λ corresponds to the transition rate of the
red particles.

Theorem 4.3.3 (Deijfen-Häggström [57, Theorem 1.1]). For the two-type
Richardson process on Zd, with d ≥ 2,

PH
λ (E) > 0 if, and only if λ > 1.

4.3.3 Multiple type Richardson model

An immediate generalization of the two-type Richardson model is to consider
k different species. The process evolves on Zd, and the local state space
is {0, . . . , k}. When a site has state j ≥ 1, it means that it has been
occupied by a particle of type j. It remains at that state for the rest of the
process. Otherwise, the site has state j = 0 , meaning that it is vacant. For
j = 1, . . . , k, the Ixj -occupation map is the analogue of the blue occupation
maps defined for the two-type Richardson model. In words, the j-type
occupies an adjacent vacant vertex after an exponential time Exp(1).

Let x1, . . . , xk be different sites in Zd. The k-type Richardson model with
initial conditions (x1, . . . , xk) is the Markov process Xk = (Xk

t )t≥0 taking
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values in {0, 1, . . . , k}Zd , with rates

c(η, Ixj (η)) =
∑
y∈Zd

|x−y|=1

1{η(y) = j},

and initial conditions

η(z) =

j if z = xj ,

0 otherwise.

For j = 1, . . . , k, we write

Bj = {z ∈ Zd : Xk(t) = j for some t ≥ 0}

for the set of sites that eventually become of type j. The coexistence event
for the k-type Richardson model with initial conditions (x1, . . . , xk) is

E(x1, . . . , xk) := {|Bj | = ∞ : j = 1, . . . , k}. (4.12)

In line with Theorem 4.3.1, Hoffman proved the next theorem as a tool
to obtain a lower bound on the number of infinite geodesics in first passage
percolation (c.f. Theorem 4.4.4).

Theorem 4.3.4 (Hoffman [84, Theorem 1.6]). Consider the 4-type Richard-
son model on Z2. For any ε > 0 there exist x1, x2, x3 and x4 in Z2 such
that

P (E(x1, x2, x3, x4))) > 1 − ε.

4.4 First passage percolation
Hammersley and Welsh introduced first passage percolation (FPP) as an ex-
tension of the percolation model [81]. The traditional example of FPP is the
phenomenon of fluid moving through a random medium. While percolation
studies the sites where the fluid arrives (occupied sites), FPP incorporates
the time of arrival to each site. In this section, we present the definition and
main theorems in the theory of FPP. We follow [17] in the presentation of
these preliminaries.
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Let G = (V,E) be a connected graph and let F be a probability distri-
bution on (0,∞). In particular, in this work we only consider F (0) = 0.
The collection of edge weights (τe)e∈E is a family of independent random
variables with common distribution F . Recall that a path on G between the
vertices x and y is a collection of vertices [v1, . . . , vn] such that (vi, vi+1) ∈ E,
v1 = x and vn = y. We define the passage time of a path γ = [v1, . . . , vn] by

TF (γ) =
n−1∑
i=1

τ(vi,vi+1).

For any x, y ∈ V , we define the passage time between x and y by

TF (x, y) := inf{T (γ) : γ ∈ Γ(x, y)}, (4.13)

where Γ(x, y) is the collection of (finite) paths on G between x and y.

Proposition 4.4.1. If F (0) = 0, then TF defines a (random) metric on V

almost surely.

If G = Zd, we extend the passage time to a metric for Rd. We define the
metric T : R → (0,∞) by

TF (x, y) = TF (x′, y′),

where x′ ∈ Zd is the closest vertex to x (in case of a tie, we choose the
smallest vertex with respect to the lexicographical order). We choose y′

similarly.
We denote by BF (t) the random open ball centred at the origin in the

metric TF
BF (t) := {y ∈ Rd : TF (0, y) < t}.

One of the main results in the theory of FPP is on the shape of the ball
BF (t) at large scales.

Theorem 4.4.2 (Cox-Durrett [48]). There exists a deterministic, convex
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and compact set BF ⊂ Rd such that for each ϵ > 0,

(1 − ϵ)BF ⊂ BF (t)
t

⊂ (1 + ϵ)BF for all large t

almost surely.

4.4.1 First passage competition models

Competitive growth models are interacting particle systems, but we can
define equivalent processes in terms of first passage percolation. We usually
refer to these models as first passage competition models or competing first
passage percolation.

We begin with a construction of the one-type Richardson model, defined
in Subsection 4.3.1. Consider FPP on Zd with exponential (with parameter
1) edge weights and let TExp : Zd×Zd → [0,∞) be the corresponding passage
time metric. The random discrete ball

B(t) = {x ∈ Z : TExp(0, x) ≤ t}

represents the sites occupied at time t. We thus consider the Markov process
X = (Xt)t≥0 taking values in {0, 1}Zd and given by

Xt(z) =

1 if z ∈ B(t),

0 otherwise.

It is well-known that the one-type Richardson model is equal in distribution
to (Xt)t≥0. The process (Xt)t≥0 is also known as the edge representation of
the one-type Richardson model.

Our next example is the two-type Richardson model. For simplicity, we
focus on the case λ = 1. As above, let TExp : Zd×Zd → [0,∞) be the passage
time metric defined by FPP, with Exp(1) passage times. Recall that, for the
two-type Richardson process at time t = 0, the origin x1 = 0 is red, while
the site x2 = (1, 0, . . . , 0) is blue. The idea is to compare the passage times
TExp(x1, z) and TExp(x2, z), which are the passage times from the initial
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red and blue sites, respectively. The colour with a smaller passage time
conquers the site z and occupies it for the rest of the process. This colour
is well-defined since the distribution of the passage times is continuous and
hence {TExp(x1, z), TExp(x2, z)} has a unique minimum. Then, the two-type
Richardson model has the distribution of the Markov process Y = (Yt)t≥0

with Yt(x1) = r and Yt(x2) = b for all t ≥ 0; and for z ∈ Zd different to x1

and x2

Yt(z) =

r if TExp(x1, z) ≤ t and TExp(x1, z) < TExp(x2, z),

b if TExp(x2, z) ≤ t and TExp(x1, z) > TExp(x2, z).

The edge representation of a two-type Richardson model with rate λ ̸=
1 is more complex and requires additional care. We need to enforce the
condition that, for every red site v, there is a nearest-neighbour path of
red sites from 0 to v; and similarly for each blue site. In particular, if
the set of blue sites is surrounded by red sites, then blue will not longer
reproduce (and vice versa). We refer to [55, 80] for the construction of the
edge representation of the asymmetrical two-type Richardson model.

In the following subsection, we will see that the construction of Richard-
son models with first passage percolation also gives insights on FPP.

4.4.2 Geodesics

If a finite path γ between x and y satisfies TF (γ) = TF (v, w) (it achieves the
minimum) we thus say that γ is a geodesic from x to y.

Wierman and Reh proved the existence of geodesics in full generality for
Z2 [168, Corollary 1.3]. In higher dimensions, we require assumptions over
the passage time distribution F . We refer the reader to [17, Section 4.1] for
general conditions, but the next theorem is sufficient for us.

Theorem 4.4.3 (Kesten [96, (9.23)]). For a continuous distribution F ,
there exists a unique geodesic between any two points of Zd almost surely.

From now on, we assume that the distribution F is continuous. We
remark that a crucial point for existence in Theorem 4.4.3 is that F (0) = 0.
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Note that the exponential distribution Exp satisfies this condition. Let
G(x, y) be the unique geodesic between x and y, and let

TF =
∪
z∈Z

{G(0, z)}

be the tree of infection rooted at 0, where F indicates the distribution of
the passage times. Since the geodesics G(0, x) are unique, then TF is a tree.

An infinite self-avoiding path [v1, v2, . . .] is a geodesic ray if [v1, . . . , vk]
is a geodesic from v1 to vk for every k ≥ 1. The number of geodesics
rays is equal to the number of (topological) ends of the tree of infection
TF . With this equivalence in mind, we denote the number of geodesic
rays by K(TF ) A simple compactness argument shows the existence of a
sub-sequential limit for (G(0, (n, 0, . . . , 0)))n∈N, and then K(TF ) ≥ 1.

Newman conjectured in [141] that for a continuous distribution F (with
additional hypothesis over distribution tails and exponential moments),

|K(TF )| = ∞, almost surely. (4.14)

This question is still open, and (4.14) for continuous distributions is stated
as Question 27 in [17]. Progress on (4.14) has been close to the two-type
Richardson model for growth-cell. We defined this model in Subsection 4.3.2
and discussed its relation to FPP in Subsection 4.4.1. Now we present the
consequences of the Theorems in Subsection 4.3.2 for K(TF ).

Häggström and Pemantle observed that the coexistence event for the
two-type Richardson model (defined in (4.11)) implies the existence of two
disjoint geodesic rays starting at 0. This property follows from a compact-
ness argument. They showed that Theorem 4.3.1 implies K(TExp) ≥ 2 with
positive probability on Z2 [79, Theorem 1.1]. Similarly, independent work
of Garet and Marchand [72] and Hoffman [83] for the two-type Richardson
model implied for FPP on Zd, d ≥ 2, that

P (K(TF ) ≥ 2) > 0.
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This positive probability holds for a large family of distributions F , in par-
ticular for the exponential distribution.

Hoffman proved in [84] a more general result for K(TF ). Hoffman’s the-
orem is in terms of the geometry of the limit ball BF appearing in the shape
theorem (Theorem 4.4.2). The distributions considered in [84] constitute a
large family. Here, for simplicity, we state the result for continuous distri-
butions F with finite 2 + α moment.

If BF is a polygon, we define SidesF as the number of sides of ∂BF . If BF
is not a polygon, then SidesF is equal to infinity. By symmetry, SidesF ≥ 4
in Z2. Theorem 4.4.4 is a consequence of a version of Theorem 4.3.4 with
distribution F for the passage times.

Theorem 4.4.4 (Hoffman [84, Theorem 1.2 and Theorem 1.4] ). Let F be
a continuous distribution with E

(
τ2+α
e

)
< ∞ for some α > 0. For any ε > 0

and k ≤ SidesF there exist x1, . . . , xk such that

P (There exist k disjoint geodesics starting at x1, . . . , xk) > 1 − ε.

Moreover, if k ≤ SidesF /2,

P (K(TF ) ≥ k) = 1.

A consequence of Theorem 4.4.4 is the existence of infinite geodesics
when the limit shape BF is not polygonal. This has been proved by Auffinger
and Damron for measures ν (for the distribution of the passage time τe)
which satisfy

supp(ν) ⊂ [1,∞), and ν({1}) = p ≥ p⃗c, (4.15)

where p⃗c is the critical parameter for oriented percolation on Z2.

Theorem 4.4.5 (Auffinger-Damron [16, Theorem 2.3]). Consider FPP on
Z2 and let ν be the law for the passage times τe. If ν is a measure satisfying
(4.15) with p ≥ p⃗c on Z2, then

P (K(Tν) = ∞) = 1.
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We have used that the coexistence event on the Richardson model im-
plies the existence of geodesic rays. Nevertheless, the equivalence between
coexistence, for a k-type Richardson model, and existence, of k ends for the
infection tree, is not immediate. Such equivalence corresponds to a result
announced recently. Recall that E(x1, . . . , xk) was defined in (4.12) as the
coexistence event. We cite the theorem for two dimensions, and remark that
there is a d-dimensional version of Theorem 4.4.6 with additional hypothesis
over distribution moments and the number SidesF .

Theorem 4.4.6 (Ahlberg [2, Theorem 1]). Let F be a continuous distri-
bution with E

(
τ2+α
e

)
< ∞ for some α > 0. For any k ∈ N ∪ {∞}, and

ε > 0:

(i) If P (E(x1, . . . , xk)) > 0 for some x1, . . . , xk ∈ Z2, then

P (K(TF ) ≥ k) = 1.

(ii) If P (K(TF ) ≥ k) > 0, then

P (E(x1, . . . , xk)) > 1 − ε

for some x1, . . . , xk ∈ Z2.

4.5 Chase-escape process
Chase-escape is an interacting particle system on a connected graph G. It
emulates the behaviour of predators chasing prey that are escaping from
them. On the graph G = (V,E) the local state space is σ = {w, r, b}. We
refer to states r and b as red and blue, respectively. The state w is white or
vacant. The transitions on chase-escape are

rw
λ−→ rr, br

1−→ bb. (4.16)

This means that red particles spread to adjacent uncoloured sites according
to a Poisson process with rate λ. Meanwhile, blue particles overtake adjacent
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red particles at rate 1. For a formal definition we follow [35]. We define the
maps Rx : σV → σV and Bx : σV → σV by

Rx(η)(z) =

r if z = x and η(x) = w,

η(z) otherwise,
η ∈ σZ

d
,

Bx(η)(z) =

b if z = x and η(x) = r,

η(z) otherwise,
η ∈ σZ

d
.

The chase-escape model with parameter λ is the Markov process taking
values in {w, r, b}Zd with transition rates

c(η,Rx(η)) = λ1{η(x) = w}
∑
y∈Zd

|x−y|=1

1{η(y) = r},

c(η,Bx(η)) = 1{η(x) = r}
∑
y∈Zd

|x−y|=1

1{η(y) = b}.

Alternative interpretations of the chase-escape process include the spread
of a rumour or an infection. In that case, the white particles represent the
susceptible population (S), the red particles represent infected individuals
(I) and the blue particles are recovered ones (R). Under the chase-escape
dynamics, an individual can recover from an infection when it is in contact
with someone already in state R. In terms of a rumour, this recovery corre-
sponds to the spread of facts. The properties of the graph G correspond to
the social network of the population.

In the context of tree, chase escape is equivalent to the escape process and
the rumour-scotching process. Escape and chase-escape were both proposed
by Kordzakhia [104]. They are similar except that, in the escape process,
blue particles are allowed to conquer both vacant and red sites. A second
variant, introduced by Bordenave, is the rumour-scotching process. We
may think of the rumour-scotching process as a directed version of chase-
escape. In this case, blue particles only conquer red sites, but such spread
is performed only through edges that have spread red particles at some
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previous time. This restriction for the blue particles is associated with usual
social dynamics for the transmission of a rumour. Under this model, a red
site represents an individual believing a rumour, and the blue sites represent
individuals who have additional information that denies such belief. A white
site stands for susceptible individuals who have not heard anything. The
red sites are prone to gossip, and they spread the rumour to their nearest-
neighbours. When a site turns blue, they want to scotch the rumour that
they propagated. However, they only turn to those with whom they shared
the rumour before. Some results for chase-escape on trees were proved first
in the context of the escape or the rumour-scotching processes.

4.5.1 Phase transitions

We distinguish two phases on the chase-escape process, depending on the
cardinality of the set of sites eventually occupied. In the first scenario, the
predator consumes all prey, and then the predator cannot move any further.
On the contrary, if the prey advances fast enough, then there is prey alive
at any time in the process before it ends. (We specify below the end of
the process for finite graphs.) It is intuitively clear that these two phases
depend on the “speed” of the red particles relative to the “speed” of the blue
particles. The parameter λ controls such “speed”. Recall the assumption
in (4.16) that the transition rate for blue particles is 1. This choice is
just a normalization of the parameters. We denote by Pλ the probability
measure of chase-escape with parameter λ for the spread rate of red particles.
The phase transitions and the existence of a critical parameter λ have been
analysed for d-ary trees, and Galton-Watson trees, and complete graphs.
Let us overview the main results for these graphs.

Finite graphs

Let Kn be the complete graph on n vertices. At time t = 0, there is one
blue site, one red site, and n− 2 vacant sites. We add two absorbing states
to the dynamics. The chase-escape process on Kn, with n ≥ 3, finishes if

(a) there are no red particles left; or
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(b) there are no vacant sites left i.e. all sites are occupied by a blue or a
red particle.

Let An be the set of vertices of Kn that are red, at any time, before the
chase-escape process stops. Let

An = {|A| = n− 1}

be the coexistence event, where all vacant sites of Kn were coloured red
at some finite time (with the addition of the initial red site). Note that
the event An is equivalent to the absorbing state (b). We call Pλ(An) the
coexistence probability.

Theorem 4.5.1 (Kortchemski [105, Theorem 1]). Let (Kn)n≥3 be a growing
sequence of complete graphs. Then

lim
n→∞

Pλ(An) =


0 if λ < 1,
1
2 if λ = 1,

1 if λ > 1.

In particular, λ = 1 is the critical parameter.

We see that on the complete graph, the coexistence probability is asymp-
totically positive if λ ≥ 1. Otherwise, the coexistence probability is asymp-
totically 0. The first scenario corresponds to an coexistence phase, while
the second is the extinction phase on the finite graph. The transition
between these two phases occurs at the critical parameter λ = 1.

Infinite graphs

For an infinite graph G with root ρG, we assume that the process evolves
on a modified version of G. We add an additional vertex ρ̂G attached to ρG.
Then the initial conditions of chase-escape at time t = 0 are

X0(ρ̂G) = b, X0(ρG) = r
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and the rest of the vertices are on state w, i.e. these sites are vacant.
Let B denote the set of sites that are blue at some time in the process,

and let
B = {|B| = ∞}.

In the coexistence phase there is a positive probability that red particles
occupy infinitely many sites so Pλ(B) > 0. We define the extinction phase
as Pλ(B) = 0, in the case both types occupy only finitely many sites almost
surely. We define the critical parameter

λc(G) := inf{λ : Pλ(B) > 0}. (4.17)

With this notation, we emphasize the dependence of the critical parameter
on the underlying graph G.

We consider first the case of chase-escape on the ray N. In this case, the
first-guess answer is the correct one.

Proposition 4.5.2 ([62, Proposition 2.1]). For chase-escape on N

λc(N) = 1, (4.18)

and chase-escape is in the extinction phase at criticality.

A tree is a natural generalization from N, since we may consider the tree
is the union of an infinite number of rays. A d-ary tree Td is a rooted infinite
tree were all vertices have d children.

Theorem 4.5.3 (Kordzakhia [104, Theorem 1]). There exists a critical
value

λc(Td) = 2d− 1 − 2
√
d2 − d (4.19)

such that, for chase-escape on a d-ary tree with parameter λ,

(i) the process is in the extinction phase if 0 < λ < λc(Td), and

(ii) coexistence occurs if λ > λc(Td).
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Note that
λc ∼ 1

4d
as d ↑ ∞.

Bordenave extended the previous result and determined the behaviour at
criticality.

Proposition 4.5.4 (Bordenave [35, Corollary 1.5]). Extinction happens for
chase-escape on a d-ary tree at the critical parameter λc(Td).

Durrett, Junge and Tang presented in [62] a simple probabilistic argu-
ment for Theorem 4.5.3 that included the behaviour at criticality of Proposi-
tion 4.5.4. The base of the proof in [62] is a comparison between chase-escape
on trees and N. The arguments in [35] are analytical, but they apply to a
more general setting: Galton-Watson trees with an additional assumption
over the growth rate. The assumptions over the growth rate on [35] follow,
almost surely, from conditioning T on being infinite. We state the following
theorem under this hypothesis.

Theorem 4.5.5 (Bordenave [35, Theorem 1.1., Corollary 1.5]). Let λc(Td)
be as in (4.19). Let T be a realization of a Galton-Watson tree with mean
number of offsprings d > 1 and conditioned to be infinite. The following
holds T -almost surely for chase-escape on T with parameter λ.

(i) If λ ≤ λc(Td) then we have extinction.

(ii) If λ > λc(Td) , then coexistence occurs.

Kortchemski extended the study of chase-escape on Galton-Watson trees.
In [106], he introduced a coupling on Galton-Walton trees of the chase-
escape dynamics and branching random walks killed at 0 [106, Theorem 1].
With this method, Kortchemski obtained a shorter probabilistic proof of
[35, Corollary 1.5] for super-critical Galton-Watson trees [106, Proposition
3] and asymptotics on the tail of the distribution of the number of prey [106,
Theorem 4].

The examples above have a simple geometric structure. The complete
graph represents the mean-field behaviour, while all the paths on trees are
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self-avoiding. Studying chase-escape on other lattices has been a challenging
problem without significant advancements.

Kordzakhia and Martin have conjectured that coexistence is possible for

λc(G) < 1 (4.20)

on two-dimensional lattices. Durrett, Junge, and Tang proved (4.20) for
a variation of chase-escape on high-dimensional oriented lattices [62]. The
variation considered in [62] allowed for infinite passage times for the red
particles. Blue is allowed to cross that edge if the opposite vertex, on that
edge, was reached by red already. To our knowledge, a similar proposition
has not been proved for a non-oriented graph. The main challenge in the
analysis of two-dimensional lattices is the presence of cycles. Some simple
graphs have been candidates for satisfying (4.20). This was the case of
the graph N × [0, 1]. Durrett, Junge, and Tang discarded this graph as an
example for (4.20) by proving that λc(N × [0, 1]) = 1.

Tang, Kordzakhia, and Lalley have obtained simulations in support of
(4.20). Their simulations show that λc(Z2) ≈ 1

2 and λc(Λ) < 1 for different
two-dimensional lattices Λ, including the hexagon, triangle and 8-directional
lattices. Furthermore, the simulations in [164] show fractal behaviour for the
shape of occupied sites in all these latices when the parameter λ is close to its
corresponding critical value. This property is typical in critical phenomena
and gives further support to the following conjecture.

Conjecture 4.5.6 (Kordzakhia-Martin). The critical parameter for chase-
escape on the square lattice is λc

(
Z2) = 1

2 .
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Part II

Scaling Limits of Uniform
Spanning Trees
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Chapter 5

Scaling Limit of the
Three-Dimensional Uniform
Spanning Tree and the
Associated Random Walk1

Summary of this chapter
We show that the law of the three-dimensional uniform spanning tree (UST)
is tight under rescaling in a space whose elements are measured, rooted
real trees, continuously embedded into Euclidean space. We also establish
that the relevant laws actually converge along a particular scaling sequence.
The techniques that we use to establish these results are further applied to
obtain various properties of the intrinsic metric and measure of any limit-
ing space, including showing that the Hausdorff dimension of such is given
by 3/β, where β ≈ 1.624 . . . is the growth exponent of three-dimensional

1Joint work with Omer Angel, David Croydon, and Daisuke Shiraishi.
Acknowledgements. DC would like to acknowledge the support of a JSPS Grant-in-Aid
for Research Activity Start-up, 18H05832 and a JSPS Grant-in-Aid for Scientific Research
(C), 19K03540. DS is supported by a JSPS Grant-in-Aid for Early-Career Scientists,
18K13425.
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loop-erased random walk. Additionally, we study the random walk on the
three-dimensional uniform spanning tree, deriving its walk dimension (with
respect to both the intrinsic and Euclidean metric) and its spectral dimen-
sion, demonstrating the tightness of its annealed law under rescaling, and
deducing heat kernel estimates for any diffusion that arises as a scaling limit.

5.1 Introduction
Remarkable progress has been made in understanding the scaling limits of
two-dimensional statistical mechanics models in recent years, much of which
has depended in a fundamental way on the asymptotic conformal invariance
of the models in question that has allowed many powerful tools from complex
analysis to be harnessed. See [122, 149, 160] for some of the seminal works
in this area, and [115] for more details. By contrast, no similar foothold for
studying analogous problems in the (physically most relevant) case of three
dimensions has yet been established. It seems that there is currently little
prospect of progress for the corresponding models in this dimension.

Nonetheless, in [107], Kozma made the significant step of establishing
the existence of a (subsequential) scaling limit for the trace of a three-
dimensional loop-erased random walk (LERW). Moreover, in work that
builds substantially on this, the time parametrisation of the LERW has
been incorporated into the picture, with it being demonstrated that (again
subsequentially) the three-dimensional LERW converges as a stochastic pro-
cess, see [127] and the related articles [128, 155]. The aim of this work is
to apply the latter results in conjunction with the fundamental connection
between uniform spanning trees (USTs) and LERWs – specifically that paths
between points in USTs are precisely LERWs [143, 169] – to determine the
scaling behaviour of the three-dimensional UST (see Figure 5.1) and the
associated random walk.

Before stating our results, let us introduce some of our notation. We
follow closely the presentation of [24], where similar results were obtained
in the two-dimensional case. Henceforth, we will write U for the UST on
Z3, and P the probability measure on the probability space on which this
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is built (the corresponding expectation will be denoted E). We refer the
reader to [143] for Pemantle’s construction of U in terms of a local limit of
the USTs on the finite boxes [−n, n]3 ∩Z3 (equipped with nearest-neighbour
bonds) as n → ∞, and proof of the fact that the resulting graph is indeed
a spanning tree of Z3. We will denote by dU the intrinsic (shortest path)
metric on the graph U , and µU the counting measure on U (i.e., the measure
which places a unit mass at each vertex). Similarly to [24], in describing
a scaling limit for U , we will view U as a measured, rooted spatial tree.
In particular, in addition to the metric measure space (U , dU , µU ), we will
also consider the embedding ϕU : U → R3, which we take to be simply the
identity on vertices; this will allow us to retain information about U in the
Euclidean topology. Moreover, it will be convenient to suppose the space
(U , dU ) is rooted at the origin of R3, which we will write as ρU . To fit the
framework of [24], we extend (U , dU ) by adding unit line segments along
edges, and linearly interpolate ϕU between vertices.

5.1.1 Scaling limits of the three-dimensional UST

We have defined a random quintuplet (U , dU , µU , ϕU , ρU ). Our main result
(Theorem 5.1.1 below) is the existence of a certain subsequential scaling
limit for this object in an appropriate Gromov-Hausdorff-type topology, the

Figure 5.1: A realisation of the UST in a three-dimensional box, as
embedded into R3 (left), and drawn as a planar graph tree
(right). Source code adapted from two-dimensional version of
Mike Bostock.
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precise definition of which we postpone to Section 5.2. Moreover, the result
incorporates the statement that the laws of the rescaled objects are tight
even without taking the subsequence. One further quantity needed to state
the result precisely is the growth exponent of the three-dimensional LERW.
Let Mn be the number of steps of the LERW on Z3 until its first exit from
a ball of radius n. The growth exponent is defined by the limit:

β := lim
n→∞

log EMn

logn
,

(equivalently, EMn = nβ+o(1)). The existence of this limit was proved in
[155]. Whilst the exact value of β is not known, rigourously proved bounds
are β ∈ (1, 5

3 ], see [114]. Numerical estimates suggest that β = 1.624 . . . ,
see [170]. We remark that in two dimensions the corresponding exponent is
5/4, first proved by Kenyon [95], and in dimension 4 or more its value is 2.
In three dimensions there is no conjecture for an exact value of β.

The exponent β determines the scaling of dU . Specifically, let Pδ be the
law of the measured, rooted spatial tree(

U , δβdU , δ
3µU , δϕU , ρU

)
, (5.1)

when U has law P. For the rooted measured metric space (U , dU , µU , ρ) we
consider the local Gromov-Hausdorff-Prohorov topology. This is extended
with the locally uniform topology for the embedding ϕU . As a straightfor-
ward consequence of our tightness and scaling results with respect to this
Gromov-Hausdorff-type topology, we also obtain the corresponding conclu-
sions with respect to Schramm’s path ensemble topology. The latter topol-
ogy was introduced in [149] as an approach to taking scaling limits of two-
dimensional spanning trees. Roughly speaking this topology observes the
set of all macroscopic paths in an object, in the Hausdorff topology. See
Section 5.2 for detailed definitions of these topologies.

Theorem 5.1.1. The collection (Pδ)δ∈(0,1] is tight with respect to the local
Gromov-Hausdorff-Prohorov topology with locally uniform topology for the
embedding, and with respect to the path ensemble topology. Moreover the
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limit of Pδ exists as δ = 2−n → 0 exists in both topologies.

Remark. The reason we only state convergence along the subsequence (2−n)
stems from the fact that our argument fundamentally depends on Kozma’s
original work on the scaling of three-dimensional LERW, where a similar
restriction was imposed [107]. There is no reason to believe that this is
an essential requirement for the result to hold. (Indeed, Theorem 5.1.1
shows that subsequential limits exist) This is the only place in our proof
where we require δ = 2−n. If one were to generalise Kozma’s result to an
arbitrary sequence of δs, the natural extension of the above theorem would
immediately follow.

Remark. An important open problem, for both the LERW and UST in three
dimensions, is to describe the limiting object directly in the continuum. In
two dimensions, there are connections between the LERW and SLE2, as
well as between the UST and SLE8, see [86, 122, 149], which give a direct
construction of the continuous objects. In the three-dimensional case, there
is as yet no parallel theory. The development of such a representation would
be a significant advance in three-dimensional statistical mechanics.

Before continuing, we briefly outline the strategy of proof for the conver-
gence part of the above result, for which there are two main elements. The
first of these is a finite-dimensional convergence statement: Theorem 5.7.2
states that the part of U spanning a finite collection of points converges un-
der rescaling. Appealing to Wilson’s algorithm [169], which gives the means
to construct U from LERW paths, this finite-dimensional result extends the
scaling result for the three-dimensional LERW of [127]. Here we encounter a
central hurdle: after the first walk, Wilson’s algorithm requires us to take a
LERW in an rough subdomain of Z3, namely the complement of the previous
LERWs. Existing results in [107, 127] on scaling limits of LERWs require
subdomains with smooth boundary, and some care is needed to extend the
existence of the scaling limit. We resolve this difficulty by proving that we
can approximate the rough subdomain with a simpler one, and showing the
corresponding LERWs are close to each other as parametrized curves.

Secondly, to prove tightness, we need to check that the trees spanning a
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finite collection of points give a sufficiently good approximation of the entire
UST U , once the number of points is large. For this, we need to know that
LERWs started from the remaining lattice points hit the trees spanning a
finite collection of points quickly. In two dimensions, such a property was
established using Beurling’s estimate, which says that a simple random walk
hits any given path quickly if it starts close to it in Euclidean terms, see [97].
In three dimensions, Beurling’s estimate does not hold. In its place, we have
a result from [148], which yields that a simple random walk hits a typical
LERW path quickly if it starts close to it. Thus, although the intuition in
the three-dimensional case is similar, it requires us to remember much more
about the structure of the part of the UST we have already constructed as
Wilson’s algorithm proceeds.

5.1.2 Properties of the scaling limit

While uniqueness of the scaling limit is as yet unproved, the techniques we
use to establish Theorem 5.1.1 allow us to deduce some properties of any
possible scaling limit. These are collected below. NB. For the result, the
scaling limits we consider are with respect to the Gromov-Hausdorff-type
topology on the space of measured, rooted spatial trees, see Section 5.2
below. The one-endedness of the limiting space matches the corresponding
result in the discrete case, [143, Theorem 4.3]. We use BT (x, r) to denote
the ball in the limiting metric space T = (T , dT ) of radius r around x. It is
natural to expect that the scaling limit will have dimension

df := 3
β
.

Moreover, one would expect that a ball of radius r in the limiting object has
measure of order r3/β. The following theorem establishes uniform bounds
of this magnitude for all small balls in the limiting tree, with a logarithmic
correction for arbitrary centres and with iterated logarithmic corrections
for a fixed centre, which may be fixed to be ρ. We use f ⪯ g to denote
that f ≤ Cg for some absolute (i.e. deterministic, and not depending on
the particular subsequence) constant C. We denote by γT (x, y) the path
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in the topological tree T between points x and y. We write L to represent
Lebesgue measure on R3. The definition of the ‘Schramm distance’ below is
inspired by [149, Remark 10.15].

Theorem 5.1.2. Let P̂ be a subsequential limit of Pδ as δ → 0, and the
random measured, rooted spatial tree (T , dT , µT , ϕT , ρT ) have law P̂. Then
the following statements hold P̂-a.s.

(a) The tree T is one-ended (with respect to the topology induced by the
metric dT ).

(b) Every ball in (T , dT ) has Hausdorff dimension df .

(c) There exists an absolute constant C < ∞ so that: for any R > 0, there
exists a random r0(T ) > 0 such that

rdf (log r−1)−C ⪯ inf
x∈BT (ρ,R)

µT (BT (x, r))

≤ sup
x∈BT (ρ,R)

µT (BT (x, r)) ⪯ rdf (log r−1)C ,

for all r < r0.

(d) For some absolute C < ∞, there exists a random r0(T ) > 0 such that

rdf (log log r−1)−C ⪯ µT (BT (ρ, r)) ⪯ rdf (log log r−1)C , ∀r < r0.

(e) The metric dT is topologically equivalent to the ‘Schramm metric’ dST
on T , defined by

dST (x, y) := diam (ϕT (γT (x, y))) , (5.2)

where diam is the diameter in the Euclidean metric.

(f) µT = L ◦ ϕT .
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Differences from the two-dimensional case

Analogues for the properties described in Theorem 5.1.2 (and others) were
proved in the two-dimensional case in [24], see also the related earlier work
[149]. There are, however, several notable differences in three dimensions.
Following Schramm [149], consider the trunk of the tree T , denoted T ◦,
which is the set of all points of T of degree greater than 1, where the degree of
x is the number of connected components of T \{x}. In the two-dimensional
case, it is known that the restriction of the continuous map ϕT to the trunk
is a homeomorphism between T ◦ (equipped with the induced topology from
T ) and its image ϕT (T ◦) (equipped with the induced Euclidean topology).
Thus the image of the trunk, which is dense in R2, determines its topology.
We do not expect the same to be true in three-dimensions. Indeed, due
to the greater probability that three LERWs started from adjacent points
on the integer lattice escape to a macroscopic distance before colliding, we
expect that the image of the trunk ϕT (T ◦) is no longer a topological tree
in R3, see Figure 5.2. We aim to establish this as a result in a forthcoming
work.

0

x′

x

∂B(R)

Figure 5.2: In the above sketch, |x − x′| = 1, but the path in the
UST between these points has Euclidean diameter greater than
R/3. We expect that such pairs of points occur with positive
probability, uniformly in R.
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Secondly, for the two-dimensional UST, it was shown in [24] that the
maximal degree in T is 3, and that µT is supported on the leaves of T , i.e.
the set of points of degree 1. We can show that the same is true in three
dimensions, though we also postpone these results to a separate paper, since
they are significantly harder than in two dimensional case. Indeed, as well as
appealing to the homeomorphism between the trunk and its embedding, the
two-dimensional arguments in the literature depend on a duality argument
that does not extend to three dimensions. We replace this with a more
technical direct argument. The aforementioned homeomorphism and duality
also allow it to be shown that in two dimensions maxx∈R3 |ϕ−1(x)| = 3
(where we write |A| to represent the cardinality of a set A), and, although
not mentioned explicitly in [24, 149], it is also easy to deduce the Hausdorff
dimension of the set of points with given pre-image size. Our forthcoming
work will explore the corresponding results in the three dimensional case.

5.1.3 Scaling the random walk on U

The metric-measure scaling of U yields various consequences for the asso-
ciated simple random walk (SRW), which we next introduce. For a given
realisation of the graph U , the SRW on U is the discrete time Markov process
XU = ((XU

n )n≥0, (PU
x )x∈Z3) which at each time step jumps from its current

location to a uniformly chosen neighbour in U . For x ∈ Z3, the law PU
x is

called the quenched law of the simple random walk on U started at x. We
then define the annealed or averaged law for the process started from ρU

as the semi-direct product of the environment law P and the quenched law
PU

0 by setting
PU (·) :=

∫
PU

0 (·)dP.

We use EU for the corresponding annealed expectation.
The behaviour of the random walk on a graph is fundamentally linked

to the associated electrical resistance. We refer the reader to [19, 59, 126,
132] for introductions to this connection, including the definition of effective
resistance in particular. For the three-dimensional UST, we will write RU

for the effective resistance on U , considered as an electrical network with
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unit resistors placed along each edge.
As noted above, the typical measure of BU (ρ,R) is of order Rdf . We show

below that the effective resistance to the complement of the ball is typically
of order R (it is trivially at most R). In light of these, and following [109],
we define the set of well-behaved scales with parameter λ by

J(λ) :=
{
R ∈ [1,∞) :

R−dfµU (BU (ρ,R)) ∈ [λ−1, λ]
and RU (ρ,BU (ρ,R)c) ≥ λ−1R

}
.

In particular, for R to be in J(λ), we require good control over the volume
of the intrinsic ball centred at the root of U of radius R, and control over
the resistance from the root to the boundary of this ball. As our next result,
we show that the these events hold with high probability, uniformly in R.

Theorem 5.1.3. There exist constants c, c1, c2 ∈ (0,∞) such that: for all
R, λ > 1,

P (R ∈ J(λ)) ≥ 1 − ce−c1λc2
.

The motivation for Theorem 5.1.3 is provided by the general random
walk estimates presented by Kumagai and Misumi in [109]. (Which builds
on the work [23].) More specifically, Theorem 5.1.3 establishes the condi-
tions for the main results of [109], which yield several important exponents
governing aspects of the behaviour of the random walk. Indeed, as is made
precise in the following corollary, we obtain that the walk dimension with
respect to intrinsic distance is given by

dw := 1 + df = 3 + β

β
,

the walk dimension with respect to extrinsic (Euclidean) distance dE is given
by βdw = 3+β (this requires a small amount of additional work to the tools
of [109]), and the spectral dimension is given by

ds := 2df
dw

= 6
3 + β

. (5.3)

Various further consequences for the random walk on U also follow from the
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General form d = 2 d = 3
LERW growth exponent β 5/4 = 1.25 1.62

Fractal dimension of U df = d/β 8/5 = 1.60 1.85
Intrinsic walk dimension of U dw = 1 + df 13/5 = 2.60 2.85

Extrinsic walk dimension of U βdw 13/4 = 3.25 4.62
Spectral dimension of U 2df/dw 16/13 = 1.23 1.30

Table 5.1: Exponents associated with the LERW and UST in two and
three dimensions. The two-dimensional exponents are known
rigorously from [20, 21, 24, 95]. The three-dimensional values are
based on the results of this study, together with the numerical
estimate for the growth exponent of the three-dimensional LERW
from [170].

results of [109], but rather than simply list these here, we refer the interested
reader to that article for details. Table 5.1 summarises the numerical esti-
mates for the three-dimensional random walk exponents that follow from the
above formulae, together with the numerical estimate for β from [170], and
compares these with the known exponents in the two-dimensional model.

Corollary 5.1.1. (a) For P-a.e. realisation of U and all x ∈ U ,

lim
R→∞

logEU
x τ

U
x,R

logR
= dw, (5.4)

where τU
x,R := inf{n ≥ 0 : dU (x,XU

n ) > R},

lim
R→∞

logEU
x τ

E
x,R

logR
= βdw, (5.5)

where τEx,R := inf{n ≥ 0 : dE(x,XU
n ) > R}, and

− lim
n→∞

2 log pU
2n(x, x)

logn
= ds. (5.6)
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(b) For PU -a.e. realisation of XU ,

lim
R→∞

log τU
0,R

logR
= dw, lim

n→∞
log max0≤m≤n dU (0, XU

m)
logn

= 1
dw
, (5.7)

lim
R→∞

log τE0,R
logR

= βdw, lim
n→∞

log max0≤m≤n dE(0, XU
m)

logn
= 1
βdw

. (5.8)

(c) It holds that

lim
R→∞

logEU
(
τU

0,R

)
logR

= dw, (5.9)

lim
R→∞

logEU
(
τE0,R

)
logR

= βdw, (5.10)

where EU is the expectation under PU , and

− lim
n→∞

2 log E
(
pU

2n(0, 0)
)

logn
= ds. (5.11)

Remark. In part (c) of the previous result, we do not provide averaged re-
sults for the distance travelled by the process up to time n with respect to
either the intrinsic or extrinsic metrics. In the two-dimensional case, the
corresponding results were established in [21], with the additional input be-
ing full off-diagonal annealed heat kernel estimates. Since the latter require
a substantial amount of additional work, we leave deriving such as an open
problem.

Finally, it is by now well-understood how scaling limits of discrete trees
transfer to scaling limits for the associated random walks on the trees, see
[14, 24, 50, 52–54]. We apply these techniques in our setting to deduce a
(subsequential) scaling limit for XU . As we will explain in Section 5.10, the
limiting process can be written as (ϕT (XT

t ))t≥0, where ((XT
t )t≥0, (P T

x )x∈T )
is the canonical Brownian on the limit space (T , dT , µT ). This Brownian
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motion is constructed in [13, 98]. Moreover, the volume estimates of Theo-
rem 5.1.2, in conjunction with the general heat kernel estimates of [49], yield
sub-diffusive transition density bounds for the limiting diffusion. Modulo the
different exponents, these are of the same sub-Gaussian form as established
for the Brownian continuum random tree in [51], and for the two-dimensional
UST in [24]. Note in particular that our results imply that the spectral di-
mension of the continuous model, defined analogously to (5.6), is equal to
the value ds given at (5.3).

Theorem 5.1.4. If (Pδn)n≥0 is a convergent sequence with limit P̂, then
the following statements hold.

(a) The annealed law of (ϕT (XT
t ))t≥0, where XT is Brownian motion on

(T , dT , µT ) started from ρT , i.e.

PT (·) :=
∫
P T
ρT ◦ ϕ−1

T (·)dP̂,

is a well-defined probability measure on C(R+,R3).

(b) Let (XU
t )t≥0 be the simple random walk on U started from ρU , then the

annealed laws of the rescaled processes(
δnX

U
tδ

−(3+β)
n

)
t≥0

converge to the annealed law of (ϕT (XT
t ))t≥0.

(c) P̂-a.s., the process XT is recurrent and admits a jointly continuous
transition density (pT

t (x, y))x,y∈T ,t>0. Moreover, it P̂-a.s. holds that,
for any R > 0, there exist random constants c1(T ), c2(T ), c3(T ), c4(T )
and t0(T ) ∈ (0,∞) and deterministic constants θ1, θ2, θ3, θ4 ∈ (0,∞)
(not depending on R) such that

pT
t (x, y) ≤c1t

−ds/2ℓ(t−1)θ1

· exp

−c2

(
dT (x, y)dw

t

) 1
dw−1

ℓ(dT (x, y)/t)−θ2

 ,
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pT
t (x, y) ≥c3t

−ds/2ℓ(t−1)−θ3

· exp

−c4

(
dT (x, y)dw

t

) 1
dw−1

ℓ(dT (x, y)/t)θ4

 ,
for all x, y ∈ BT (ρT , R), t ∈ (0, t0), where ℓ(x) := 1 ∨ log x.

(d) (i) P̂-a.s., there exists a random t0(T ) ∈ (0,∞) and deterministic
c1, c2, θ1, θ2 ∈ (0,∞) such that

c1t
−ds/2(log log t−1)−θ1 ≤ pT

t (ρT , ρT ) ≤ c2t
−ds/2(log log t−1)θ2 ,

for all t ∈ (0, t0).

(i) There exist constants c1, c2 ∈ (0,∞) such that

c1t
−ds/2 ≤ ÊpT

t (ρT , ρT ) ≤ c2t
−ds/2,

for all t ∈ (0, 1).

Organization of this chapter

The remainder of the chapter is organised as follows. In Section 5.2, we
introduce the topologies that provide the framework for Theorem 5.1.1, and
set out three conditions that imply tightness in this topology. Then, in Sec-
tion 5.3, we collect together the properties of loop-erased random walks that
will be useful for this article. After these preparations, the three tightness
conditions are checked in Section 5.4, and the volume estimates contained
within this are strengthened in Sections 5.5 and 5.6 in a way that yields more
detailed properties concerning the limit space and simple random walk. In
Section 5.7, we demonstrate our finite-dimensional convergence result for
subtrees of U that span a finite number of points. The various pieces for
proving Theorem 5.1.1 are subsequently put together in Section 5.8, and the
properties of the limiting space are explored in Section 5.9, with Theorem
5.1.2 being proved in this part of the article. Finally, Section 5.10 covers the
results relating to the simple random walk and its diffusion scaling limit.
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5.2 Topological framework
In this section, we introduce the Gromov-Hausdorff-type topology on mea-
sured, rooted spatial trees with respect to which Theorem 5.1.1 is stated.
This topology is metrizable, and for completeness sake we include a possible
metric (see Proposition 5.2.1). Moreover, we provide a sufficient criterion
(Assumptions 1,2, and 3 below) for tightness of a family of measures on
measured, rooted spatial trees in the relevant topology (see Lemma 5.2.2).
This will be applied in order to prove tightness under scaling of the three-
dimensional UST. In the first part of the section, we follow closely the pre-
sentation of [24].

Define T to be the collection of quintuplets of the form

T = (T , dT , µT , ϕT , ρT ),

where: (T , dT ) is a complete and locally compact real tree (for the defini-
tion of a real tree, see [125, Definition 1.1], for example); µT is a locally
finite Borel measure on (T , dT ); ϕT is a continuous map from (T , dT ) into a
separable metric space (M,dM ); and ρT is a distinguished vertex in T . (In
this article, the image space (M,dM ) we consider is R3 equipped with the
Euclidean distance.) We call such a quintuplet a measured, rooted, spa-
tial tree. We will say that two elements of T, T and T ′ say, are equivalent
if there exists an isometry π : (T , dT ) → (T ′, d′

T ) for which µT ◦ π−1 = µ′
T ,

ϕT = ϕ′
T ◦ π and also π(ρT ) = ρ′

T .
We now introduce a variation on the Gromov-Hausdorff-Prohorov topol-

ogy on T that also takes into account the mapping ϕT . In order to introduce
this topology, we start by recalling from [24] the metric ∆c on Tc, which is
the subset of elements of T such that (T , dT ) is compact. In particular, for
two elements of Tc, we set ∆c (T , T ′) to be equal to

inf
Z,ψ,ψ′,C:

(ρT ,ρ
′
T )∈C

{
dZP
(
µT ◦ ψ−1, µ′

T ◦ ψ′−1)+
sup(x,x′)∈C (dZ (ψ(x), ψ′(x′)) + dM (ϕT (x), ϕ′

T (x′)))

}
(5.12)
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where the infimum is taken over all metric spaces Z = (Z, dZ), isometric
embeddings ψ : (T , dT ) → Z, ψ′ : (T ′, d′

T ) → Z, and correspondences C
between T and T ′, and we define dZP to be the Prohorov distance between
finite Borel measures on Z. Note that, by a correspondence C between T and
T ′, we mean a subset of T ×T ′ such that for every x ∈ T there exists at least
one x′ ∈ T ′ such that (x, x′) ∈ C and conversely for every x′ ∈ T ′ there exists
at least one x ∈ T such that (x, x′) ∈ C. (Except for the term involving ϕ and
ϕ′, this is the usual metric for the Gromov-Hausdorff-Prohorov topology.)

Given the definition of ∆c at (5.12), we then define a pseudo-metric ∆
on T by setting

∆
(
T , T ′) :=

∫ ∞

0
e−r

(
1 ∧ ∆c

(
T (r), T ′(r)

))
dr, (5.13)

where T (r) is obtained by taking the closed ball in (T , dT ) of radius r centred
at ρT , restricting dT , µT and ϕT to T (r), and taking ρ(r)

T to be equal to ρT .
We have the following result, and it is the corresponding topology that
provides the framework for Theorem 5.1.1.

Proposition 5.2.1 ([24, Proposition 3.4]). The function ∆ defines a metric
on the equivalence classes of T. Moreover, the resulting metric space is
separable.

We next present a criterion for tightness of a sequence of random mea-
sured, rooted spatial trees. This is a probabilistic version of [24, Lemma 3.5]
(which adds the spatial embedding to the result of [1, Theorem 2.11]) Recall
the definition of stochastic equicontinuity: Suppose for some index set A
there are random metric spaces (Xi, di) and random functions ϕi : Xi → M

for a metric space (M,dM ). The functions are stochastically equicontinuous
if their moduli of continuity converge to 0 uniformly in probability, i.e. for
every ε > 0,

lim
η→0

sup
i∈A

P

 sup
x,y∈Xi:
di(x,y)≤η

dM (ϕi(x), ϕi(y)) > ε

 = 0.
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Lemma 5.2.2. Suppose (M,dM ) is proper (i.e. every closed ball in M is
compact), and ρM is a fixed point in M . Let T δ = (Tδ, dTδ

, µTδ
, ϕTδ

, ρTδ
),

δ ∈ A (where A is some index set), be a collection of random measured,
rooted spatial trees. Moreover, assume that for every R > 0, the following
quantities are tight:

(i) For every ε > 0, the number N (T δ, R, ε) of balls of radius ε required
to cover the ball T (R)

δ ,

(ii) The measure of the ball: µTδ

(
T (R)
δ

)
;

(iii) The distances dM (ρM , ϕTδ
(ρTδ

)).

And additionally the restrictions of ϕTδ
to T (R)

δ are stochastically equicon-
tinuous. Then the laws of (T δ)δ∈A, form a tight sequence of probability
measures on the space of measured, rooted spatial trees.

For convenience in applying Lemma 5.2.2 to the three-dimensional UST,
we next summarise the conditions that we will check for this example. Since
these are of a different form to those given above, we complete the section
by verifying their sufficiency in Lemma 5.2.3. We recall that the notation
BU (x, r) is used for balls in (U , dU ).
Assumption 1. For every R ∈ (0,∞), it holds that

lim
λ→∞

lim sup
δ→0

P
(
δ3µU

(
BU (0, δ−βR)

)
> λ

)
= 0.

Assumption 2. For every ε,R ∈ (0,∞), it holds that

lim
η→0

lim sup
δ→0

P
(

inf
x∈BU (0,δ−βR)

δ3µU
(
BU (x, δ−βε)

)
< η

)
= 0.

Assumption 3. For every ε,R ∈ (0,∞), it holds that

lim
η→0

lim sup
δ→0

P

 inf
x,y∈BU (0,δ−βR):

δdE(x,y)>ε

δβdU (x, y) < η

 = 0.
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Lemma 5.2.3. If Assumptions 1, 2 and 3 hold, then so does the tightness
claim of Theorem 5.1.1.

Proof. We first check that if Assumptions 1 and 2 hold, then, for every
ε,R ∈ (0,∞),

lim
λ→∞

lim sup
δ→0

P
(
NU

(
δ−βR, δ−βε

)
> λ

)
= 0, (5.14)

where NU (δ−βR, δ−βε) is the minimal number of intrinsic balls of radius
δ−βε needed to cover BU (0, δ−βR). Towards proving this, suppose that

δ3µU
(
BU (0, δ−β(R+ ε/2))

)
≤ λη, (5.15)

and also
inf

x∈BU (0,δ−βR)
δ3µU

(
BU (x, δ−βε/2)

)
≥ η. (5.16)

Set x1 = 0, and choose

xi+1 ∈ BU (0, δ−βR)\ ∪ij=1 BU (xj , δ−βε),

stopping when this is no longer possible, to obtain a finite sequence (xi)Mi=1.
The construction ensures that ∪Mi=1BU (xi, δ−βε) contains BU (0, δ−βR), and
so M ≥ NU (δ−βR, δ−βε). Moreover, since dU (xi, xj) ≥ δ−βε for i ̸= j, it
is the case that the balls (BU (xi, δ−βε/2))Mi=1 are disjoint. Putting these
observations together with (5.15) and (5.16), we find that

NU (δ−βR, δ−βε) ≤ M

≤ η−1
M∑
i=1

δ3µU
(
BU (xi, δ−βε/2)

)
= η−1δ3µU

(
∪Mi=1BU (xi, δ−βε/2)

)
≤ η−1δ3µU

(
BU (0, δ−β(R+ ε/2))

)
≤ λ.
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From this, we conclude that

P
(
NU

(
δ−βR, δ−βε

)
> λ

)
≤ P

(
δ3µU

(
BU (0, δ−β(R+ ε/2))

)
> λη

)
+P

(
inf

x∈BU (0,δ−βR)
δ3µU

(
BU (x, δ−βε/2)

)
< η

)
,

and so (5.14) follows by letting δ → 0, λ → ∞ and then η → 0.
Second, we show that if Assumption 3 holds, then, for every ε,R ∈

(0,∞),

lim
η→0

lim sup
δ→0

P

 sup
x,y∈BU (0,δ−βR):
dU (x,y)<δ−βη

δdE(x, y) > ε

 = 0. (5.17)

Indeed, this follows from the elementary observation that

P

 sup
x,y∈BU (0,δ−βR):
dU (x,y)<δ−βη

δdE(x, y) > ε

 ≤ P

 inf
x,y∈BU (0,δ−βR):

δdE(x,y)>ε

δβdU (x, y) < η

 .

Given (5.14), Assumption 1, the fact that δϕU (ρU ) = 0, and (5.17), the
result is a straightforward application of Lemma 5.2.2.

5.2.1 Path ensembles

Finally, we also define the path ensemble topology used in Theorem 5.1.1.
This topology was introduced by Schramm [149] in the context of scaling
of two-dimensional uniform spanning trees, and a related topology (based
on quad-crossings) have been used in the context of scaling limits of crit-
ical percolation. Recall that γT (x, y) is the unique path from x to y in a
topological tree T .

We denote by H(X) the Hausdorff space of compact subsets of a metric
space X, endowed with the Hausdorff topology. This is generated by the
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Hausdorff distance, given by

dH(A,B) = inf {r ≥ 0 : A ⊂ Br, B ⊆ Ar} ,

where Br = {x ∈ X : d(x,B) ≤ r} is the r-expansion of B.
We shall consider the sphere S3 as the one-point compactification of R3,

on which also consider the one-point compactification of a uniform span-
ning tree of Z3. For concreteness, fix some homeomorphism from R3 to S3

and endow it with the Euclidean metric on the sphere. Given a compact
topological tree T ⊂ S3, we consider the set ΓT ⊂ S3 × S3 × H(S3)

ΓT = {(x, y, γT (x, y)) : x, y ∈ T }.

Thus ΓT consists of a pair of points and the path between them. We call
ΓT the path ensemble of the tree T . Clearly ΓT is a compact subset of
S3 × S3 × H(S3). Since each tree corresponds to a compact subset of S3 ×
S3 ×H(S3), the Hausdorff topology on this product space induces a topology
on trees. Theorem 5.1.1 states that the laws of the uniform spanning on δZ3

are tight and have a subsequential weak limit with respect to this topology
(in addition to the Gromov-Hausdorff-type topology described above).

5.3 Loop-erased random walks
As noted in the introduction, the fundamental connection between loop-
erased random walks (LERWs) and uniform spanning tree (USTs) will be
crucial to this study. In this section, we recall the definition of the LERW,
and collect together a number of properties of the three-dimensional LERW
that hold with high probability. These properties will be useful in our study
of the three-dimensional UST. We start by introducing some general nota-
tion and terminology.
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5.3.1 Notation for Euclidean subsets

The discrete ℓ2 Euclidean ball will be denoted by

B(x, r) :=
{
y ∈ Z3 : |x− y| < r

}
,

where we write |x − y| = dE(x, y) for the Euclidean distance between x

and y. (We will use the notation |x − y| and dE(x, y), interchangeably.) A
δ-scaled discrete ℓ2 ball, for δ > 0, will be denoted by

Bδ(x, r) :=
{
y ∈ δZ3 : |x− y| < r

}
,

and the Euclidean ℓ2 ball is

BE(x, r) :=
{
y ∈ R3 : |x− y| < r

}
.

We will also use the abbreviation B(r) = B(0, r), similarly for Bδ and BE .
We also write Bn(0, r) = B2−n(r). The discrete cube (or ℓ∞ ball of radius
r) with side-length 2r centred at x is defined to be the set

D(x, r) :=
{
y ∈ Z3 : ∥x− y∥∞ < r

}
.

Similarly to the definitions above, but with ℓ∞ balls, Dδ(x, r) denotes the
δ-scaled discrete cube and DE(x, r) the Euclidean cube. We further write
D(R) = D(0, R) and Dn(r) = D2−n(0, r). The Euclidean distance between
a point x and a set A is given by

dist(x,A) := inf {|x− y| : y ∈ A} .

For a subset A of Z3, the inner boundary ∂iA is defined by

∂iA :=
{
x ∈ A : ∃y ∈ Z3 \A such that |x− y| = 1

}
.
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5.3.2 Notation for paths and curves

We introduce definitions related to paths and curves. Some concepts were
also defined in Section 2.1.

A path in Z3 is a finite or infinite sequence of vertices [v0, v1, . . .] such that
vi−1 and vi are nearest neighbours, i.e. |vi−1 − vi| = 1, for all i ∈ {1, 2, . . . }.
The length of a finite path γ = [v0, v1, ..., vm] will be denoted len(γ) and is
defined to be the number of steps taken by the path, that is len(γ) = m.

A (parameterized) curve is a continuous function γ : [0, T ] → R3. For
a curve γ : [0, T ] → R3, we say that T is its duration, and will sometimes
use the notation T (γ) := T . When the specific parameterization of a curve
γ is not important, then we might consider only its trace, which is the closed
subset of R3 given by tr γ = {γ(t) : t ∈ [0, T ]}. To simplify notation, we
sometimes write γ for instead of tr γ where the meaning should be clear. A
curve is simple if γ is an injective function. All curves in this chapter are
assumed to be simple, often implicitly.

The space of parameterized curves of finite duration, Cf , will be endowed
with a metric ψ, as defined by

ψ(γ1, γ2) = |T1 − T2| + max
0≤s≤1

|γ1(sT1) − γ2(sT2)| ,

where γi : [0, Ti] → R3, i = 1, 2 are elements of Cf .
We say that a continuous function γ∞ : [0,∞) → R3 is a transient

(parameterized) curve if limt→∞ |γ∞(t)| = ∞. We let C be the set of
transient curves, and endow C with the metric χ given by

χ(γ∞
1 , γ∞

2 ) =
∞∑
k=1

2−k
(

1 ∧ max
t≤k

|γ∞
1 (t) − γ∞

2 (t)|
)
.

The concatenation of two curves γ1 : [0, T1] → R3 and γ2 : [0, T2] → R3

with γ1(T1) = γ2(0) is the curve γ1 ⊕ γ2 of length T1 + T2 given by

γ1 ⊕ γ2(t) :=

γ1(t) if 0 ≤ t ≤ T1

γ2(t− T1) if T1 < t ≤ T1 + T2.
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The time-reversal of γ : [0, T ] → R3 is the curve γ⃗ : [0, T ] → R3 defined by

γ⃗(t) := γ(T − t), t ∈ [0, T ].

We define several kinds of restrictions for a curve γ : [0, T ] → R3. Anal-
ogous restrictions are defined for transient curves. The restriction of γ to an
interval [a, b] ⊆ [0, T ] is the curve γ|[a,b] : [0, b− a] → R3 defined by setting

γ|[a,b](t) = γ(t+ a), 0 ≤ t ≤ b− a.

Similarly, if γ is a simple parametrized curve, and x, y ∈ tr γ and x appears
before y in γ, then we define the restriction of γ between x and y to be the
curve γ(x, y), where

γ(x, y)(t) = γ(t+ tx), 0 ≤ t ≤ ty − tx,

with tx ≤ ty satisfying γ(tx) = x and γ(ty) = y. (Note that the simplicity
of γ ensures that tx and ty are well-defined.) Finally, the restriction of γ to
the Euclidean ball of radius R, with R > 0, is the curve γ|R := γ|[0,ξR∧T ],
where ξR = inf{t ∈ [0, T ] : |γ(t)| ≥ R} is the time γ exits the ball of radius
R.

Proposition 5.3.1. Let (γn)n∈N ⊂ Cf be a sequence of curves. Assume that
γn → γ ∈ Cf . Then, the convergence is preserved in Cf under the following
operations.

(a) Time reversal: for the sequence of curves under time-reversal

γ⃗n → γ⃗ as n → ∞.

(b) Restriction: for 0 ≤ a < b < T (γ), the restrictions

γn|[a,b] → γ|[a,b] as n → ∞,

where the sequence above is defined for n large enough.
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(c) Concatenation: if γ̃n → γ̃ in Cf , then

γn ⊕ γ̃n → γ ⊕ γ̃ as n → ∞.

Proof. In this proof, we write Tn = T (γn) and T = T (γ). The convergence
after a time-reversal is immediate from the definition and we get (a). For
(b), we consider the case a = 0. Let rn, r ∈ [0, 1] be such that b = rnTn and
b = rT . Then

ψ(γn|[0,b], γ|[0,b]) = max
0≤s≤1

|γn(sb) − γ(sb)| = max
0≤s≤1

|γn(srnTn) − γ(srT )|

≤ max
0≤s≤1

|γn(srnTn) − γ(srnT )| + max
0≤s≤1

|γ(srnT ) − γ(srT )|.

The convergence of γn → γ implies that the first term above goes to 0 as
n → ∞. Note that |rn − r| = b|T−1

n − T−1| → 0, and hence the convergence
of the last term above follows from uniform continuity of γ. The convergence
of γn under time-reversal gives the general when a > 0.

Next we prove (c). We write T̃n = T (γ̃n), T̃ = T (γ̃) and δn = |Tn +
T̃n − (T̃ + T )|. Note that δn → 0 as n → ∞. For 0 ≤ s ≤ 1, when we
compare the times that we compare for ψ, |s(Tn + T̃n) − s(T + T̃ )| ≤ δ.
Then ψ(γn ⊕ γ̃n, γ ⊕ γ̃) is bounded above by

δn + max
|r−s|≤δn

r≤Tn∨T̃n, s≤T∨T̃

|γn ⊕ γ̃n(r) − γ ⊕ γ̃(s)|

≤ δn + max
|r−s|≤δn

r≤Tn, s≤T

|γn(r) − γ(s)| + max
|r−s|≤δn

r≤T̃n, s≤T̃

|γ̃n(r) − γ̃(s)| + δnMn,

where Mn is an upper bound for the norms of γn, γ̃n, γ, and γ̃. The last
term in the inequality above comes from comparisons between γn and γ̃ (or
between γ̃n and γ) close to the concatenation point. The convergence of
γn → γ and γ̃n → γ̃, and the uniform continuity of each curve give the
desired result.

Proposition 5.3.2. Let (γ∞
n )n∈N ⊂ C be a sequence of parameterized curves

with limit γ∞
n → γ∞ in (C, χ). The convergence is preserved under the
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operations below.

(a) Restriction: for any b > 0

γ∞
n |[0,b] → γ∞|[0,b] as n → ∞,

in the space Cf .

(b) Concatenation: if (γn)n∈N ⊂ Cf converges to a finite parameterized
curve γ as n → ∞, then

γn ⊕ γ∞
n → γ ⊕ γ∞ as n → ∞,

in C.

(c) Evaluation: if tn → t then

γ∞
n (tn) → γ∞(t) as n → ∞.

Proof. The convergence in (a) follows from the definition of the metric χ.
Similarly, (b) is a consequence of Proposition 5.3.1 (c) and the definition of
χ. Finally, (c) follows from the uniform continuity of γn|[0,k].

If γ is a parameterized (simple) curve and x, y ∈ tr γ, we define the
Schramm metric (cf. (5.2)) by setting

dSγ (x, y) := diam tr γ(x, y). (5.18)

The intrinsic distance between x and y is given by

dγ(x, y) := T (γ(x, y)) = ty − tx, (5.19)

where γ(tx) = x and γ(ty) = y, i.e. this is the time duration of the curve
segment between x and y. Formally, both (5.18) and (5.19) are only defined
when x comes before y in γ, but the definition is extended symmetrically in
the obvious way.
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5.3.3 Definition and parameterization of loop-erased
random walks

We will now define the loop-erased random walk. Let S = [v0, . . . , vm] be a
path in some graph (which we take to be Z3 or δZ3). By erasing the cycles
(or loops) in S in chronological order, we obtain a simple path from v0 to
vm. This operation is called loop-erasure, and is defined as follows. Set
T (0) = 0 and ṽ0 = v0. Inductively, we set T (j) according to the last visit
time to each vertex:

T (j) = 1 + sup {n : vn = ṽj} , ṽj = vT (j). (5.20)

We continue until ṽl = vm, at which time T (j) = m + 1 and there is no
additional vertex ṽj . The loop-erased random walk (LERW) is the
simple path LE(S) = [ṽ0, . . . , ṽl].

The exact same definition also applies to an infinite, transient path S.
Since the path S is transient, the times T (j) in (5.20) are finite, almost
surely, for every j ∈ N. In this case LE(S) is an infinite simple path.

The loop-erased random walk is just what the name implies: the loop
erasure of a random walk. In Z3 (or δZ3) we can take S∞ to be an infinite
random walk. S∞ is almost surely transient, so the path L(S∞), called the
infinite loop-erased random walk (ILERW), is a.s. well defined. We
will also need loop-erased random walks in a domain D ⊂ R3. We will
write D̂ = Z3 ∩ D for the subset of vertices of Z3 inside D. Moreover,
the (inner vertex) boundary of D̂ is the set ∂D̂ defined as the collection of
vertices v ∈ D for which v is connected to v1 ∈ Z3 \ D̂. In this case, for a
given starting vertex v0, we may take S to be a simple random walk up to
the stopping time m when it first hits ∂D̂. (We will apply this to bounded
domains, so that m is almost surely finite, though the definition is valid even
if m = ∞.) Examples of domains of a loop-erased random walk include the
family of L2 balls {B(R)}R>0 and of L∞ balls {D(R)}r>0.

A discrete simple path γ = (vi) may naturally be considered as a curve
by setting γ(i) = vi, for i ∈ N, and linearly interpolating between γ(i) and
γ(i+ 1). With this parameterization, the length of γ (as a path) is equal to
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its duration as a curve: len(γ) = T (γ). If γ is a loop-erased random walk
on δZ3, its length as δ → 0, and the curve needs to be reparameterized.
To obtain a macroscopic curve in the scaling limit, we reparameterize loop-
erased random walks by β-parameterization:

γ̄(t) := γ(δ−βt), ∀t ∈ [0, δ−β len(γ)],

where β is the LERW growth exponent. Similarly, for an infinite loop-
erased random walk γ∞ = [v0, v1, . . . ], we consider its associated curve γ∞

by linearly interpolating between integer times, and its β-parameterization
is given by

γ̄∞(t) = γ∞(δ−βt), ∀t ≥ 0.

In this article, we will sometimes consider the ILERW restricted to a
finite domain. Specifically, if γ∞ is an ILERW starting at the origin, we de-
note its restriction to a ball of radius r > 0 by γ∞|r = LE(S∞)|[0,ξr(LE(S∞))],
where ξr(LE(S∞)) is the first time LE(S∞) exits B(r). Note that this is a
different object to a LERW started at the origin and stopped at the first hit-
ting time of ∂B(r). However, the two are closely related, see [136, Corollary
4.5].

5.3.4 Path properties of the infinite loop-erased random
walk

In this section, we summarize some path properties of the ILERW that hold
with high probability. Typically the events will involve some property that
holds on the appropriate scale in a neighbourhood of radius Rδ−1 about the
starting point of the ILERW, for δ the scaling parameter, and for some fixed
R ≥ 1. Since the results hold uniformly in the scaling parameter δ ∈ (0, 1],
they will also be useful in the scaling limit. As for notation, for x ∈ Z3, we
let γx∞ be an ILERW on Z3 starting at x. If x = 0, then we simply write
γ∞. We highlight that in this section the space is not rescaled.
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Quasi-loops

A path γ is said to have an (r,R)–quasi-loop if it contains two vertices
v1, v2 ∈ γ such that |v1 − v2| < r, but γ(v1, v2) ̸⊆ B(v1, R). (Up to changing
the parameters slightly, this is almost the same as dSγ (x, y) ≥ R.) We denote
the set of (r,R)–quasi-loops of γ by QL(r,R; γ). Estimates on probabilities
of quasi-loops in LERWs were central to Kozma’s work [107]. The following
bound on the probability of quasi-loops for the ILERW was established in
[148] for loop-erased random walks. The extension to the infinite case follows
from [148, Theorem 6.1] in combination with [136, Corollary 4.5].

Proposition 5.3.3 (cf. [148, Theorem 6.1]). For every R ≥ 1, there exist
constants C,M < ∞, and η̃ > 0 such that for any δ, ε ∈ (0, 1),

P
(
QL(εMδ−1,

√
εδ−1; γ∞|Rδ−1) ̸= ∅

)
≤ Cεη̃.

Intrinsic length and diameter

Let ξn be the first time that the loop-erased walk γ∞ exits the ball B(n) (i.e.
the number of steps after the loop erasure). The next result is a quantitative
tightness result for n−βξn. It is a combination of the exponential tail bounds
of [155], together with the estimates on the expected value of ξn from [128].
We note that the result in [155] is for the LERW, but the proof is the same
for the ILERW.

Proposition 5.3.4 ([155, Theorems 1.4 and 8.12] and [128, Corollary 1.3]).
There exist constants C, c1, c2 ∈ (0,∞) such that: for all λ ≥ 1 and n ≥ 1,

P
(
ξn ≤ λnβ

)
≥ 1 − 2e−c1λ,

P
(
ξn ≥ λ−1nβ

)
≥ 1 − Ce−c2λ1/2

.

While any possible pattern appears in γ∞, the scaling relation (given by
β) between the intrinsic distance and the Euclidean distance holds uniformly
along the path of γ∞. We quantify this relation in terms of equicontinuity.

Let R ≥ 1, δ ∈ (0, 1) and λ ≥ 1. We say that γ∞ is λ-equicontinuous
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in the ball B(Rδ−1) (with exponents 0 < b1, b2 < ∞) if the following event
holds:

E∗
δ (λ,R) =

{
∀x, y ∈ γ∞|Rδ−1

,

if dγ∞(x, y) ≤ λ−b1δ−β, then |x− y| < λ−b2δ−1

}
.

The bound for the ILERW was proved in [127].

Proposition 5.3.5 (cf. [127, Proposition 7.1]). There exist constants 0 <
b1, b2 < ∞ such that the following is true. Given R ≥ 1, there exists a
constant C such that: for all δ ∈ (0, 1)and λ ≥ 1,

P(E∗
δ (λ,R)) ≥ 1 − Cλ−b2 .

A partial converse bounds the intrinsic distance in terms of the Schramm
distance, where we recall that the Schramm distance was defined at (5.18).
For δ, r ∈ (0, 1], λ ≥ 1, set

S∗
δ (λ, r) :=

{
∀x, y ∈ γ∞|λrδ−1

,

if dSγ∞(x, y) < rδ−1, then dγ∞(x, y) < λrβδ−β

}
.

The following result follows from [127, (7.51)].

Proposition 5.3.6. There exist constants 0 < c,C < ∞ such that: for any
δ, r ∈ (0, 1] and λ ≥ 1,

P(S∗
δ (λ, r)) ≥ 1 − Cλ3e−cλ.

Proof. For u ∈ Z3, let Bu be the box of side length 3rδ−1 centred at u, and
let Xu = |γ∞|λrδ−1 ∩Bu| be the number of points in Bu hit by γ∞|λrδ−1 . We
recall [127, equation (7.51)], which states that for some absolute c, C and
any u,

P
(
Xu ≥ λrβδ−β

)
≤ Ce−cλ.

Cover the ball B(0, λrδ−1) by boxes of side length rδ−1 centred at some
{u1, . . . , uN} with N ≍ λ3. If some pair x, y violates the event S∗

δ , and x

is in the box of side length rδ−1 around ui, then the segment γ∞(x, y) is in
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the thrice larger box around the same ui, and so Xui ≥ λrβδ−β. A union
bound gives the conclusion.

Capacity and hittability

As noted in the introduction, one of the key differences from the two-
dimensional case is that in three dimensions it is much easier for a random
walk to avoid a LERW. The electrical capacity of a connected path of di-
ameter r in Z3 can be as large as Cr, but can also be as low as O(r/ log r)
(see Proposition 2.2.8 for the lower bound). However, the latter occurs only
when the path is close to a smooth curve (see Subsection 2.2.2). The fractal
nature of the scaling limit of LERWs suggests that a segment of LERW has
capacity comparable to its diameter, and consequently, is likely to be hit by
a second random walk starting nearby.

Let R ≥ 1 and r ∈ (0, 1), and γx∞ a LERW started at x and stopped
when exiting B(0, δ−1R). In this subsection, we give bounds on the hitting
probability of γx∞ by a random walk started from a point y. The hitting
bounds are uniformly over the starting points y ∈ B := B(x,Rδ−1) with
dist(y, γx∞) < rδ−1. More precisely, denote by P yS the probability measure
of a random walk S starting at y, which is independent of γx∞. We say that
γx∞ is η-hittable in B if the following event holds:

Aδ(x,R, r; η) :=

 ∀y ∈ B(x,Rδ−1) with dist(y, γx∞) ≤ rδ−1,

P yS

(
S
[
0, ξS(B(y, r1/2δ−1))

]
∩ γx∞ = ∅

)
≤ rη

 ,
where ξS(B(y, r1/2δ−1)) is the first time that S exits from B(y, r1/2δ−1).
(Recall dist(·, ·) stands for the Euclidean distance between a point and a
set.) A local version of this event, restricted to starting points near x, is
given by

Gδ(x, r; η) =

 ∀y ∈ B(x, rδ−1),
P yS

(
S
[
0, ξS(B(y, r1/2δ−1))

]
∩ γx∞ = ∅

)
≤ rη

 .
The next result, which was established in [148], indicates that γx∞ is η-
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hittable with high probability.

Proposition 5.3.7 (cf. [148, Lemma 3.2 and Lemma 3.3]). There exists a
constant η̂ ∈ (0, 1) such that the following is true. Given R ≥ 1, there exists
a constant C such that: for all δ, r ∈ (0, 1),

P (Aδ(x,R, r; η̂)) ≥ 1 − Cr.

In particular, P(Gδ(x, r; η̂)) ≥ 1 − Cr.

In terms of capacity, Proposition 5.3.7 implies that, with high probabil-
ity, the capacity of a connected segment of γ∞ is comparable to its diameter.

We write Px,y
S for the joint probability law of γx∞ and an independent

simple random walk S starting at y. Working on the joint probability space,
together with a change of variable, Proposition 5.3.7 implies the following
result. This result is well-know and simply states that a simple random walk
hits a ILERW almost surely.

Proposition 5.3.8 (cf. [133][Theorem 1.1, Corollary 5.3]). For x, y ∈ Z3

we have that, for all R > 0,

inf
δ∈(0,1]

Px,y
S

(
S[0, ξS(B(y,Rδ−1))] ∩ γx∞ = ∅

)
= 0.

Hittability of sub-paths

The main result of this subsection, Proposition 5.3.9, is crucial for obtaining
exponential tail bounds on the volume of balls in the UST in Section 5.5.
It establishes that the path γ∞ = LE (S[0,∞)), i.e. the infinite LERW, has
hittable sections across a range of distances from its starting point.

For 1 ≤ λ < R, consider a sequence of boxesDi = D
(
iR
λ

)
, i = 1, 2, . . . , λ,

where D(r) was defined in Subsection 5.3.1. Let ti be the first time that γ∞

exits Di. We denote xi = γ∞(ti), and write

σi = inf
{
n ≥ ti | γ∞(n) /∈ B

(
xi,

R

2λ

)}
.
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For each i = 1, 2, . . . , λ, we define the event Ai by

Ai =

 P z
(
Rz[0, ξi] ∩ γ∞[ti, σi] ∩D R

2λ
(xi) ̸= ∅

)
≥ c0

for all z ∈ B
(
xi,

R
16λ

)  , (5.21)

where: Rz is a simple random walk started at z, independent of γ∞, with
law denoted P z; ξi is the first time that Rz exits B(xi, R2λ); and D R

2λ
(xi) is

the box centered on the infinite half line started at xi that does not intersect
Di and is orthogonal to the face of Di containing xi, with centre at distance
R/4λ from x and radius R

2,000λ , see Figure 5.3.

xi

γ∞

∂B(xi, R/16λ)

∂B(xi, R/2λ)

Rz(ξi)

z

Rz

γ∞(ti)

∂Di

D R
2λ

(xi)

Figure 5.3: On the event Ai, as defined at (5.21), the above config-
uration occurs with probability greater than c0 for any z ∈
B(xi, R/16λ).

Now, for fixed a ∈ (0, 1), we consider a sequence of subsets of the index
set {1, 2, . . . , λ} as follows. Let q = ⌊λ1−a/3⌋. For each j = 0, 1, . . . , q, define
the subset Ij of the set {1, 2, . . . , λ} by setting

Ij := {⌊2jλa + 1⌋, ⌊2jλa + 2⌋, . . . , ⌊(2j + 1)λa⌋} , (5.22)
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and the event Fj by
Fj = F aj =

∪
i∈Ij

Ai, (5.23)

i.e. Fj is the event that there exists at least one index i ∈ Ij such that
γ∞[ti, σi] is a hittable set in the sense that Ai holds. The next proposition
shows that with high probability the event Fj holds for all j = 1, 2, . . . , q.
We will prove it in the following subsection.

Proposition 5.3.9. Define the events Fj as in (5.23). There exists a uni-
versal constant c1 > 0 such that

P

 q∩
j=1

Fj

 ≥ 1 − λ1−ae−c1λa
. (5.24)

Remark. (i) The reason that we decompose the ILERW γ∞ using the se-
quence of random times ti as in the above definition is that we need to
control the future path γ∞[ti, σi] uniformly on the given past path γ∞[0, ti]
via [155, Proposition 6.1].
(ii) We expect that each γ∞[ti, σi] is a hittable set not only with positive
probability as in Proposition 5.3.16 below, but also with high probability in
the sense of [148, Theorem 3.1]. However, since Proposition 5.3.9 is enough
for us, we choose not to pursue this point further here.

5.3.5 Loop-erased random walks on polyhedrons

We defined that a loop-erased random walk on a domain D̂ ⊂ Z3 starts at
an interior vertex of D̂ and ends with its first hitting time to the boundary
∂D̂. As we have discussed above, the geometry of the domain D̂ affects the
path properties of loop-erased random walks on it. In this subsection we
will see that the results in [107, 127, 148] hold for a collection of scaled poly-
hedrons, which we define below. Similarly to Subsection 5.3.4, and under
the assumption that the polyhedrons are scaled with a large parameter, the
proofs in the aforementioned papers carry without major modifications to
our setting. For clarity, we comment on the differences between the work in
[127, 148] and this subsection.
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A dyadic polyhedron on R3 is a connected set P of the form

P =
m∪
j=1

Cj ,

where each Cj ⊂ R3 is a closed cube of the form [a1, b1]×[a2, b2]×[a3, b3] with
ai, bi ∈ Z3 (cf. (5.83), where we scale the lattice instead of the polyhedron).
We say that a polyhedron P is bounded by R if P ⊂ B(R). Let us assume
that 0 ∈ P and write

2nP := {z ∈ Z3 : 2−nz ∈ P},

for the 2n-expansion of the polyhedron P. In this subsection we restrict our
scaling to powers of 2, and note that 2nP is a dyadic polyhedron as well. If
P is bounded by R, then B(0, 1) ⊂ 2nP ⊂ B(0, 2nR), for all n ≥ 1.

Let S be a simple random walk starting at 0 and let ξ∂P be the exit time
of the random walk from the polyhedron. In this section we study the path
properties of the loop-erased random walk

γP
n = LE(S[0, ξ∂2nP ]). (5.25)

Note that the index n indicates a 2n-expansion of P (cf. (5.84)).
We say that γP

n is η-hittable if the following event holds:

AP
n (r; η) :=

 ∀y ∈ 2nP with dist(y, γP
n ) ≤ r2n,

P yS

(
S
[
0, ξS(B(y, r1/22n))

]
∩ γP

n = ∅
)

≤ rη

 ,
where ξS(B(y, r1/22n)) is the first time that S exits from B(y, r1/22n).

Proposition 5.3.10 (cf. Proposition 5.3.7). Fix R ≥ 1, let P be a dyadic
polyhedron containing 0 and bounded by R, and let γP

n be the loop-erased
random walk in (5.25). There exists a constant η̂ ∈ (0, 1) such that there
exists a constant C (depending on R) and N ≥ 1 for which the following is
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true: for all r ∈ (0, 1) and n ≥ N ,

P
(
AP
n (r; η̂)

)
≥ 1 − Cr.

Proposition 5.3.10 follows from [148, Lemma 3.2] and [148, Lemma 3.3],
using the argument for the proof of [148, Theorem 3.1]. The argument for
Proposition 5.3.10 considers two cases, depending on the starting point of
the simple random walk S(0) = y. For some ε > 0, either y ∈ B(0, εn) or
y ∈ P \B(0, εn). For the first case we apply [148, Lemma 3.2], and here we
use that γP

n is a “large” path when n is large enough. If y ∈ P \B(0, εn), we
then consider a covering of P with a collection of balls {B(vi, ε2n)}1≤i≤L,
with v1, . . . vL ∈ P \B(0, εn) and L ≤ 10R3⌊ε⌋−6. We then use [148, Lemma
3.3] on each one of these balls and a union bound gives the desired result.

Recall the definition of (r,R)–quasi-loop in Subsection 5.3.4 and that
QL(r,R; γ) denotes the set of (r,R)–quasi-loops of γ. Proposition 5.3.3
indicates the the ILERW does not have quasi-loops with high probability.
A similar statement holds for a polyhedral domain. The proof makes use
of Proposition 5.3.10 and we use modifications over the stopping times and
the covering of the domain (as in Proposition 5.3.10). Indeed, the proof of
[148, Theorem 6.1] is divided in three cases. If the LERW has a quasi-loop
at a vertex v, then either v is close to the starting point of the LERW, or v
is close to the boundary, or v is in an intermediate region. The probability
of the first two cases is bounded by escape probabilities for random walks.
We can use the same bounds in [148, Theorem 6.1] as long as the scale n is
large enough (as we assume in Proposition 5.3.11). The bound for the third
case follows from a union bound over a covering of the domains. We can use
this argument because P has a regular boundary.

Proposition 5.3.11 (cf. Proposition 5.3.3). Fix R ≥ 1 and let P be a
dyadic polyhedron containing 0 and bounded by R, and let γP

n be the loop-
erased random walk in (5.25). There exist constants C,M < ∞, N ≥ 1 and
η̃ > 0 such that for any ε ∈ (0, 1) and n ≥ N ,

P
(
QL(εM2n,

√
ε2n; γP

n ) ̸= ∅
)

≤ Cεη̃.
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Since Propositions 5.3.10 and 5.3.11 hold for scaled dyadic polyhedrons,
we can follow the argument in [127] leading to the proof of the the scaling
limit of the LERW. From this argument we obtain control of the paths and
the scaling limit for the LERW γP

n with β-parameterization. We finish this
sections stating these three results.

For a LERW γP
n , n ≥ 1 and λ ≥ 1, the path γP

n is λ-equicontinuous
(with exponents 0 < b1, b2 < ∞) if

EP
n (λ,R) :=

{
∀x, y ∈ γP

n , if dγ(x, y) ≤ λ−b12β, then |x− y| < λ−b22n
}
.

The partial converse is the event:

SP
n (λ, r) :=

{
∀x, y ∈ γP

n , if dSγ (x, y) < r2n, then dγ(x, y) < λrβ2β
}
.

Proposition 5.3.12 (cf. Proposition 5.3.5). There exist constants 0 <

b1, b2 < ∞ such that the following is true. Given R ≥ 1, there exist constants
0 < C < ∞ and N ≥ 1 such that: for all λ ≥ 1 and n ≥ N ,

P(EP
n (λ,R)) ≥ 1 − Cλ−b2 .

Proposition 5.3.13 (cf. Proposition 5.3.6). There exist constants 0 <

c,C < ∞ and N ≥ 1 such that: for any r ∈ (0, 1], λ ≥ 1 and n ≥ N ,

P(SP
n (λ, r)) ≥ 1 − Cλ3e−cλ.

Proposition 5.3.14 (cf. [127, Theorem 1.4]). Let P be a dyadic polyhedron
containing 0 and bounded by R and let γP

n be the loop-erased random walk in
(5.25). The β-parameterization of this loop-erased random walk is the curve
given by

γ̄P
n (t) = γP

n (2βnt), t ∈ [0, 2−βn len(γP
n )]

and let γ̄P
n be the β-parameterization of the loop-erased random walk in

(5.25). Then the law of γ̄P
n converges as n → ∞ with respect to the metric

space (Cf , ψ).
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5.3.6 Proof of Proposition 5.3.9

In this subsection we show that sub-paths of the ILERW are hittable in the
sense required for the event (5.21) to hold, see Proposition 5.3.16 below. The
latter result leads to the proof of Proposition 5.3.9. With this objective in
mind, we first study a conditioned LERW. We begin with a list of notation.

• Recall that D(R) is the cube of radius R centered at 0, as defined in
Subsection 5.3.1.

• Take positive numbersm,n. Let x ∈ ∂D(m) be a point lying in a “face"
of D(m) (we denote the face containing x by F ). Write ℓ for the infinite
half line started at x which lies in D(m)c and is orthogonal to F . We
let y be the unique point which lies in ℓ and satisfies |x−y| = n/2. We
set Dn(x) := D(y, n/1000) for the box centered at y with side length
n/500. (Cf. the definition of D R

2λ
(xi) above.)

• Suppose that m,n, x,Dn(x) are as above. Take K ⊆ D(m) ∪ ∂D(m).
Let X be a random walk started at x and conditioned that X[1,∞) ∩
K = ∅. We set η = LE (X[0,∞)) for the loop-erasure of X, and σ for
the first time that η exits B(x, n). Finally, we denote the number of
points lying in η[0, σ] ∩Dn(x) by JKm,n,x. This is an analogue of [155,
Definition 8.7].

• Suppose that X is the conditioned random walk as above. We write
GX(·, ·) for Green’s function of X.

This setup is illustrated in Figure 5.4 (cf. [155, Figure 3]).
We will give one- and two-point function estimates for η in the following

proposition.

Proposition 5.3.15. Suppose that m,n, x,K,X, η, σ are as above. There
exists a universal constant c such that for all z, w ∈ Dn(x) with z ̸= w,

P (z ∈ η[0, σ]) ≥ cn−3+β, (5.26)

P (z, w ∈ η[0, σ]) ≤ 1
c
n−3+β|z − w|−3+β. (5.27)
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Proof. The inequality (5.26) follows from [155, (8.29)] and [128, Corollary
1.3]. So, it remains to prove (5.27). We first recall [155, Proposition 8.1],
the setting of which is as follows. Take z1, z2 ∈ Dn(x) with z1 ̸= z2. We set
z0 = x, and write l = |z1 − z2|. Note that 1 ≤ l ≤ n/100. For i = 0, 1, 2, we
let Xi be independent versions of X with Xi(0) = zi. We write σiw for the
first time that Xi hits w. For i = 0, 1, let Zi be Xi conditioned on the event
{σizi+1 < ∞}, and also let Z2 = X2. Also for i = 0, 1, write u(i) for the last
time that Zi passes through zi+1, and set u(2) = ∞. Define the event F ηz1,z2

by

F ηz1,z2 =
{

There exist 0 < t1 < t2 < ∞
such that η(t1) = z1 and η(t2) = z2

}
,

D(m)

K

x
Dn(x) ℓ

∂B(x, n)

η
η(σ)

Figure 5.4: Notation used in the proof of Proposition 5.3.9.
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and non-intersection events F1 and F2 by

F1 =
{

LE
(
Z0[0, u(0)]

)
∩
(
Z1[1, u(1)] ∪ Z2[1,∞)

)
= ∅

}
,

F2 =
{

LE
(
Z1[0, u(1)]

)
∩ Z2[1,∞) = ∅

}
.

Then [155, Proposition 8.1] shows that

P
(
F ηz1,z2

)
= GX(z0, z1)GX(z1, z2)P (F1 ∩ F2) .

Now, in the proof of [155, Lemma 8.9], it is shown that

GX(z0, z1) ≤ C

n
, GX(z1, z2) ≤ C

l
,

and so it suffices to estimate P(F1 ∩ F2). To do this, we consider four balls

B1 = B(z1, l/8), B2 = B(z2, l/8), B′
1 = B(z1, 2l), B′′

1 = B(z1, n/16).

Note that B1 ∪ B2 ⊂ B′
1 ⊂ B′′

1 and B1 ∩ B2 = ∅. For i = 0, 1, let
Y i =

(
Zi[0, u(i)]

)R be the time reversal of Zi[0, u(i)] where for a path
λ = [λ(0), λ(1), . . . , λ(u)], we write (λ)R = [λ(u), λ(u − 1), . . . , λ(0)] for
its time reversal. By the time reversibility of LERW (see [113, Lemma 7.2.1]
for the time reversibility), we see that P(F1 ∩ F2) = P(F ′

1 ∩ F ′
2), where the

events F ′
1 and F ′

2 are defined by

F ′
1 =

{
LE

(
Y 0[0, σ(0)]

)
∩
(
Y 1[0, σ(1) − 1] ∪ Z2[1,∞)

)
= ∅

}
,

F ′
2 =

{
LE

(
Y 1[0, σ(1)]

)
∩ Z2[1,∞) = ∅

}
.

Here σ(i) is the first time that Y i hits zi. We define several random times
as follows:

• s0 is the first time that LE
(
Y 0[0, σ(0)]

)
exits B1;

• s2 is the first time that LE
(
Y 0[0, σ(0)]

)
exits B′′

1 ;

• s1 is the last time up to s2 that LE
(
Y 0[0, σ(0)]

)
exits B′

1;
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z0

γ0

γ0(s2)

γ0(s1)

γ0(s0)

∂B1

∂B′
1

∂B′′
1

∂B2

γ1

Z2(u1)

Z2(u0)γ1(t0)

Figure 5.5: The random times s0, s1, s2, t0, u0, u1.

• t0 is the first time that LE
(
Y 1[0, σ(1)]

)
exits B2;

• t1 is the last time up to σ(1) that Y 1[0, σ(1)] hits ∂B1;

• u0 is the first time that Z2 exits B2;

• u1 is the first time that Z2 exits B′′
1 .

See Figure 5.5 for an illustration showing these random times. If we write
γi = LE

(
Y i[0, σ(i)]

)
for i = 0, 1, we see that P(F ′

1 ∩F ′
2) ≤ P(H1 ∩H2 ∩H3),

where the events H1,H2,H3 are defined by

H1 =
{
γ0[0, s0] ∩ Y 1[t1, σ(1) − 1] = ∅

}
,

H2 =
{
γ1[0, t0] ∩ Z2[1, u0] = ∅

}
,

H3 =
{
γ0[s1, s2] ∩ Z2[u0, u1] = ∅

}
.

Since dist (D(m), B′′
1 ) ≥ n/4, it follows from the discrete Harnack princi-

ple (see [113, Theorem 1.7.6], for example) that the distribution of Z2[0, u1]
is comparable to that of R2[0, u′

1], assuming R2(0) = z2 where R2 is a simple
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random walk, and u′
1 is the first time that R2 exits B′′

1 . More precisely, there
exist universal constants c, C ∈ (0,∞) such that for any path λ

cP
(
R2[0, u′

1] = λ
)

≤ P
(
Z2[0, u1] = λ

)
≤ CP

(
R2[0, u′

1] = λ
)
.

Also, since γ0[s1, s2] ⊆ (B′
1)c, using the Harnack principle again, we see that

P(H1 ∩H2 ∩H3) ≍ EY 0,Y 1

{
1H1P

z2
R2

(γ1[0, t0] ∩R2[1, u′
0] = ∅)

·P z1
R2

(γ0[s1, s2] ∩R2[0, u′
1] = ∅)

}
, (5.28)

where u′
0 is the first time that R2 exits B2 and EY 0,Y 1 stands for the expec-

tation with respect to the probability law of (Y 0, Y 1).
Another application of the Harnack principle tells that γ1[0, t0] and

Y 1[t1, σ(1) − 1] are “independent up to constant” (see [127, Lemma 4.3]).
Namely, there exist universal constants c, C ∈ (0,∞) such that for any paths
λ1, λ2

cP (γ1[0, t0] = λ1) P
(
Y 1[t1, σ(1) − 1] = λ2

)
≤ P

(
γ1[0, t0] = λ1, Y

1[t1, σ(1) − 1] = λ2
)

≤ CP (γ1[0, t0] = λ1) P
(
Y 1[t1, σ(1) − 1] = λ2

)
.

This implies that given Y 0, 1H1 and P z2
R2

(γ1[0, t0] ∩R2[1, u′
0] = ∅) are in-

dependent up to constant. Also, it is proved in [136, Propositions 4.2 and
4.4] that the distribution of γ1[0, t0] is comparable with that of the ILERW
started at z2 until it exits B2. Using the discrete Harnack principle again, we
see that the distribution of the time reversal of Y 1[t1, σ(1)−1] coincides with
that of the SRW started at z1 until it exits B1. Therefore, if we write R1

and R3 for independent SRWs, the right hand side of (5.28) is comparable

117



to

EY 0

{
P z1
R2

(
γ0[s1, s2] ∩R2[0, u′

1] = ∅
)
P z1
R1

(
γ0[0, s0] ∩R1[1, σ′

1] = ∅
)}

× P z2,z2
R2,R3

(
R2[1, u′

0] ∩ LE (R3[0,∞)) [0, t′3] = ∅
)
,

(5.29)

where σ′
1 is the first time that R1 exits B1, and t′3 is the first time that

LE (R3[0,∞)) exits B2. Moreover, it follows from [155, Proposition 6.7] and
[128, Corollary 1.3] that

P z2,z2
R2,R3

(
R2[1, u′

0] ∩ LE (R3[0,∞)) [0, t′3] = ∅
)

≍ l−2+β.

Finally, let R0 be a SRW started at z1 and γ′
0 = LE (R0[0,∞)) be the

ILERW. Similarly to above, define:

• s′
0 to be the first time that γ′

0 exits B1;

• s′
2 to be the first time that γ′

0 exits B′′
1 ;

• s′
1 to be the last time up to s′

2 that γ′
0 exits B′

1.

We then have from [136, Propositions 4.2 and 4.4] that the distribution of
γ0[0, s2] is comparable with that of γ′

0[0, s′
2]. Moreover, [136, Proposition

4.6] ensures that γ′
0[0, s′

0] and γ′
0[s′

1, s
′
2] are independent up to a constant.

Therefore the expectation with respect to Y 0 in (5.29) is comparable to

P z1,z1
R0,R1

(
γ′

0[0, s′
0] ∩R1[1, σ′

1] = ∅
)
P z1,z1
R0,R2

(
γ′

0[s′
1, s

′
2] ∩R2[0, u′

1] = ∅
)

≍ Es(l)Es(l, n),
(5.30)

where we use the notation Es defined in [155]. Finally, by [128, Corollary
1.3], it holds that the right hand side of (5.30) is comparable to n−2+β. This
gives (5.27) and finishes the proof.

Definition 5.3.1. Suppose that m,n, x,K,X, η, σ are as above. For each
z ∈ B(x, n/8), let Rz be a SRW on Z3 started at z, independent of X. Write
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ξ for the first time that Rz exits B(x, n), and let

Nz = |Rz[0, ξ] ∩ η[0, σ] ∩Dn(x)|

be the number of points in Dn(x) hit by both Rz[0, ξ] and η[0, σ]. Further-
more, define the (random) function g(z) by setting

g(z) := P z (Nz > 0) = P z (Rz[0, ξ] ∩ (η[0, σ] ∩Dn(x)) ̸= ∅) ,

where P z stands for the probability law of Rz. Note that g(z) is a measurable
function of η[0, σ], and that, given η[0, σ], g(·) is a discrete harmonic function
in Dn(x)c.

The next proposition says that with positive probability (for η), g(z) is
bounded below by some universal positive constant for all z ∈ B(x, n/8).

Proposition 5.3.16. Suppose that the function g(z) is defined as in Defi-
nition 5.3.1. There exists a universal constant c0 > 0 such that

P (g(z) ≥ c0 for all z ∈ B(x, n/8)) ≥ c0. (5.31)

Proof. We claim that it suffices to show that

P (g(x) ≥ c0) ≥ c0 (5.32)

for some c0 > 0. The reason for this is as follows. Suppose that (5.32) is
true and the event {g(x) ≥ c0} occurs. Since dist (B(x, n/8), Dn(x)) ≥ n/4,
using the Harnack principle, there exists a universal constant c1 > 0 such
that g(z) ≥ c1g(x) ≥ c1c0 for all z ∈ B(x, n/8). Thus we have P(g(z)) ≥
c0c1 for all z ∈ B(x, n/8)) ≥ c0, which gives (5.31).

We will prove (5.32). Recall the definition of Nz from Definition 5.3.1.
By (5.26), we see that

E(Nx) =
∑

w∈Dn(x)
P (w ∈ η[0, σ])P x (w ∈ Rx[0, ξ]) ≥ cn−1+β
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for some c > 0. On the other hand, by (5.27), we have

E(N2
x) =

∑
w1,w2∈Dn(x)

P (w1, w2 ∈ η[0, σ])P x (w1, w2 ∈ Rx[0, ξ])

≤ Cn−4+β ∑
w1,w2∈Dn(x)

|w1 − w2|−4+β

≤ Cn−4+βn2+β

= Cn−2+2β.

This gives E(N2
x) ≤ C{E(Nx)}2. Therefore, the second moment method

tells us that E(g(x)) ≥ c2 for some universal constant c2 > 0. This implies
P (g(x) ≥ c2/2) ≥ c2/3, which gives (5.32).

Proof of Proposition 5.3.9. We will prove that for each j = 1, 2, . . . , q

P(F cj ) ≤ (1 − c0)λa
, (5.33)

where c0 is the constant of Proposition 5.3.16. Since q ≤ λ1−a, the inequality
(5.33) gives the desired inequality (5.24). Take j ∈ {1, 2, . . . , q}. Suppose
that F cj occurs. This implies that for every i ∈ Ij , the event Ai does not
occur. Setting l = 2jλa, we need to estimate

P

 l+λa∩
i=l+1

Aci

 = P

Acl+λa

l+λa−1∩
i=l+1

Aci

P

l+λa−1∩
i=l+1

Aci

 .
Note that the event

∩l+λa−1
i=l+1 Aci is measurable with respect to γ[0, tl+λa ]

while the event Acl+λa is measurable with respect to γ[tl+λa , σl+λa ]. There-
fore, using the domain Markov property of γ (see [113, Proposition 7.3.1]),
Proposition 5.3.16 tells us that

P

Acl+λa

l+λa−1∩
i=l+1

Aci

 ≤ 1 − c0,

where we apply Proposition 5.3.16 with m = (l+λa)R
λ , n = R

2λ , x = γ (tl+λa)
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and K = γ[0, tl+λa ]. Thus we have that

P

 l+λa∩
i=l+1

Aci

 ≤ (1 − c0)P

l+λa−1∩
i=l+1

Aci

 .
Repeating this procedure λa times, we obtain (5.33), and thereby finish the
proof.

5.4 Checking the assumptions sufficient for
tightness

The aim of this section is to check Assumptions 1, 2 and 3, as set out in
Section 5.2. In what follows, we let γU (x, y) be the unique injective path in
U between x and y. In particular, γU (x, y)(k) is the location at kth step of
the path. Note that γU (x, y)(0) = x and γU (x, y) (dU (x, y)) = y. Given a
subset A of Z3, we define a α-net of A as the minimal set of lattice points
such that A⊆

∪
z∈Dk

B (z, α).

5.4.1 Assumption 1

The first assumption follows from the following proposition.

Proposition 5.4.1. For every R ∈ (0,∞), there exist universal constants
λ0 > 1, and constants c1, c2 ∈ (0,∞) depending only on R such that: for all
λ ≥ λ0 and δ ∈ (0, 1) small enough,

P
(
BU

(
0, Rδ−β

)
⊆ B

(
λδ−1

))
≥ 1 − c1λ

−c2 .

Proof. Fix R ∈ (0,∞). We may assume that δ > 0 is sufficiently small so
that

δ−1

−2 log2 δ + 2
≥ 10, (5.34)

and also that λ ≥ 2. For each k ≥ 1, let εk = λ−12−k, ηk = (2k)−1 and

Ak = B(δ−1) \B((1 − ηk)δ−1).
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Write k0 for the smallest integer satisfying δ−1εk0 < 1. We remark that the
condition at (5.34) ensures that (1 − ηk0)δ−1 ≤ δ−1 − 10. Thus the inner
boundary ∂iB(0, δ−1) is contained in Ak0 . (We defined the inner boundary
in Subsection 5.3.1.)

Let Dk be a “δ−1εk-net” of Ak. The minimality assumption implies that
|Dk| ≤ Cε−3

k . Since δ−1εk0 < 1 and ∂iB(0, δ−1) ⊆ Ak0 , it follows that
∂iB(0, δ−1) ⊆ Dk0 .

Now, to construct U , we perform Wilson’s algorithm rooted at infinity
(see [29, 169]) as follows:

• Consider the infinite LERW γ∞ = LE(S[0,∞)), where S = (S(n))n≥0

is a SRW on Z3 started at the origin. We think of U0 = γ∞ as the
“root” in this algorithm.

• Consider a SRW started at a point in D1, and run until it hits U0;
we add its loop-erasure to U0, and denote the union of them by U1

1 .
We next consider a SRW from another point in D1 until it hits U1

1 ;
let U2

1 be the union of U1
1 and the loop-erasure of the second SRW.

We continue this procedure until all points in D1 are in the tree. We
consider each loop-erased random walk as branches of the tree. Write
U1 for the output random tree.

• We now repeat the above procedure for D2. Namely, we think of U1 as
a root and add a loop-erasure of SRWs from each point in D2. Let U2

be the output tree. We continue inductively to define U3,U4, . . . ,Uk0 .

• Finally, we perform Wilson’s algorithm for all points in Z3 \ Uk0 to
obtain U .

Note that, by construction, Uk ⊆ Uk+1, and also ∂iB(0, δ−1) ⊆ Uk0 .
We proceed with an estimate on the number of steps that γ∞ takes to

exit an extrinsic ball. Specifically, we define the event F := {ξ ≥ λ−9δ−β},
where ξ is the first time that γ∞ exits B(0, λ−4δ−1). From Proposition 5.3.4
we have that

P(F ) ≥ 1 − Ce−c
√
λ
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for some universal constants c, C ∈ (0,∞).
Next, for each x ∈ Z3, let tx = inf{k ≥ 0 : γU (x, 0)(k) ∈ U0} be the

first time that γU (x, 0) hits U0. We write γU (x,U0) = γU (x, 0)[0, tx] for the
path in U connecting x and U0. We remark that tx = 0 and γU (x,U0) = {x}
when x ∈ U0. We consider the event G defined by

G =
{
γU (x,U0) ∩B

(
0, λ−4δ−1

)
= ∅ for all x ∈ D1

}
.

Suppose that the event G does not occur, and that there exists an x ∈ D1

such that γU (x,U0) hits B
(
0, λ−4δ−1). This implies that in Wilson’s algo-

rithm, as described above, the SRW R started at x enters into B
(
0, λ−4δ−1)

before it hits γ∞. Since δ−1/2 ≤ |x| ≤ δ−1, it follows from [113, Proposition
1.5.10] that

P xR

(
R[0,∞) ∩B

(
0, λ−4δ−1

)
̸= ∅

)
≤ Cλ−4

for some universal constant C < ∞, where R is a SRW started at x, with P xR
denoting the law of the latter process. Taking the sum over x ∈ D1 (recall
that the number of points in D1 is comparable to λ3), we find that

P(G) ≥ 1 − Cλ−1.

To complete the proof, we will consider several “good” events that ensure
γ∞ ∪ γU (x,U0) with x ∈ Dk (k = 1, 2, . . . , k0) is a “hittable” set in the sense
that if we consider another independent SRW R whose starting point is close
to γ∞ ∪ γU (x,U0), then, with high probability for γ∞ ∪ γU (x,U0), it is likely
that R intersects γ∞ ∪ γU (x,U0) quickly. Such hittability of LERW paths
was studied in [148, Theorem 3.1]. With this in mind, for k ≥ 1 and ζ > 0,
we define the event H(k, ζ) by setting

H(k, ζ) =
{

∀x ∈ Dk, y ∈ B
(
x, εkδ

−1) :
P yR
(
R
[
0, TR

(
x,

√
εkδ

−1)] ∩ (γ∞ ∪ γU (x,U0)) = ∅
)

≤ εζk

}
,

(5.35)
where R is a SRW, independent of γ∞, P yR stands for its law assuming
that R(0) = y, and TR(x, r) is the first time that R exits B(x, r). (For
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convenience, we omit the dependence of H(k, ζ) on δ.) Note that the event
H(k, ζ) roughly says that when R(0) is close to γ∞ ∪γU (x,U0), it is likely for
R to intersect with γ∞ ∪ γU (x,U0) before it travels very far, see Figure 5.6.
From [148, Lemma 3.2], we see that the probability of the event H(k, ζ) is
greater than 1 −Cε2

k if we take ζ sufficiently small. The reason for this is as
follows. Suppose that the event H(k, ζ) does not occur, which means that
there exist x ∈ Dk and y ∈ B(x, εkδ−1) such that the probability considered
in (5.35) is greater than εζk. The existence of those two points x ∈ Dk and
y ∈ B(x, εkδ−1) implies the occurrence of the event I(x, k, ζ), as defined by

I(x, k, ζ) =
{

∃y ∈ B
(
x, εkδ

−1) such that
P yR
(
R
[
0, TR

(
x,

√
εkδ

−1)] ∩ γx∞ = ∅
)
> εζk

}
,

where we write γx∞ for the unique infinite path started at x in U (notice that
γ0

∞ = γ∞). Namely, we have

H(k, ζ)c ⊆
∪
x∈Dk

I(x, k, ζ).

We mention that the distribution of γx∞ coincides with that of the infinite
LERW started at x. With this in mind, applying [148, Lemma 3.2] with
s = εkδ

−1, t = √
εkδ

−1 and K = 10, it follows that there exist universal
constants ζ1 > 0 and C < ∞ such that for all k ≥ 1, λ ≥ 2, δ ∈ (0, 1) and
x ∈ Dk,

P (I(x, k, ζ1)) ≤ Cε5
k.

Since the number of points in Dk is comparable to ε−3
k , we see that

P (H(k, ζ1)) ≥ 1 − Cε2
k, (5.36)

as desired.
Set A′

1 := F ∩ G ∩ H(1, ζ1). For λ sufficiently large, the event A′
1 is

non-empty. We have already proved that P(A′
1) ≥ 1 − Cλ−1. Moreover,

we note that on the event A′
1, we have dU (0, y) ≥ λ−9δ−β for all y ∈ γ∞ ∩

B
(
0, δ−1/3

)c. We also have on A′
1 that the event G holds, and then the
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branch γU (x,U0) does not intersect with B
(
0, λ−4δ−1) for any x ∈ D1. Since

the event F ⊂ A′
1, we get that dU (0, y) ≥ λ−9δ−β for all y ∈ γU (x,U0) with

x ∈ D1. Recall that U1 is the union of γ∞ and all branches γU (x,U0) with
x ∈ D1. Conditioning U1 on the event A′

1, we perform Wilson’s algorithm
for points in D2. It is convenient to think of U1 as deterministic sets in
this algorithm. Adopting this perspective, we take y ∈ D2 and consider
the SRW R started at y until it hits U1. Suppose that R hits B(0, δ−1/2)
before it hits U1. Since the number of “√

ε1δ
−1-displacements” of R until it

hits B(0, δ−1/2) is bigger than 10−1ε
−1/2
1 , the hittability condition H(1, ζ1)

ensures that

P yR

(
R hits B

(
0, δ−1/2

)
before it hits U1

)
≤ ε

cζ1√
ε1

1 , (5.37)

0

y x

Ak

∂B(δ−1)∂B((1 − ηk)δ−1)

Figure 5.6: On the event H(k, ζ), as defined at (5.35), the above con-
figuration occurs with probability greater than 1 − εζk for any
x ∈ Dk, y ∈ B(x, εkδ−1). The circles shown are the boundaries
of B(x, εkδ−1) and B(x,√εkδ−1). The non-bold paths represent
γ∞ ∪ γU (x,U0), and the bold path R[0, TR(x,√εkδ−1)].
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for some universal constant c > 0. Define the event B2 by

B2 =
{

∀y ∈ D2, γU (y,U1) ∩B
(
0, δ−1/2

)
= ∅

}
,

where γU (y,U1) denotes the branch between y and U1 in U . Taking the sum
over y ∈ D2, the conditional probability (recall that we condition U1 on the
event A′

1) of the event B2 satisfies

P(B2) ≥ 1 − Cε−3
1 ε

cζ1√
ε1

1 .

Thus, letting A′
2 := A′

1 ∩B2 ∩H(2, ζ1), it follows that

P(A′
2) ≥ 1 − Cε2

1,

where we also use that ε1 is comparable to ε2, and that the number of points
in D2 is comparable to ε−3

2 . We also note that A′
2 is non-empty for λ large

enough.
Conditioning U2 on the event A′

2, we can do the same thing as above for
a SRW started at z ∈ D3. Hence if we define the event B3 by setting

B3 =
{

∀z ∈ D3, γU (z,U2) ∩B
(
0, δ−1/2

)
= ∅

}
,

then the conditional probability of the event B3 satisfies

P(B3) ≥ 1 − Cε−3
2 ε

cζ1√
ε2

2 .

So, letting A′
3 := A′

2 ∩B3 ∩H(3, ζ1), it follows that

P(A′
3) ≥ 1 − Cε2

2,

and we continue this until we reach the index k0. In particular, if we define
Bk and A′

k for each k = 2, 3, . . . , k0 by

Bk =
{

∀z ∈ Dk, γU (z,Uk−1) ∩B
(
0, δ−1/2

)
= ∅

}
,
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and A′
k := A′

k−1 ∩Bk ∩H(k, ζ1), we can conclude that

P
(
A′
k0

)
= P

(
A′

1
) k0∏
k=2

P
(
A′
k|A′

k−1
)

≥
(
1 − Cλ−1

) ∞∏
k=1

(
1 − Cε2

k

)
≥ 1 − Cλ−1.

(5.38)

We take a universal constant λ0 for which (5.38) is positive for all λ ≥ λ0.
On the event A′

k0
, it is easy to see that:

• dU (0, y) ≥ λ−9δ−β for all y ∈ γ∞ ∩B
(
0, δ−1/3

)c,
• dU (0, y) ≥ λ−9δ−β for all y ∈ γU (x,U0) and all x ∈ Dk with k =

1, 2, . . . , k0.

Since ∂iB(0, δ−1) ⊆ Uk0 , this implies that dU (0, y) ≥ λ−9δ−β for all y ∈
B(0, δ−1)c on the event A′

k0
. Therefore, it follows that

P
(
BU

(
0, λ−9δ−β

)
⊆ B(0, δ−1)

)
≥ 1 − Cλ−1.

Reparameterizing this, we have

P
(
BU

(
0, Rδ−β

)
⊆ B

(
0, λδ−1

))
≥ 1 − CR

1
9λ− β

9 ,

for some universal constant C < ∞. This finishes the proof.

5.4.2 Assumption 2

We will prove the following variation on Assumption 2. Given Proposition
5.4.1, it is easy to check that this implies Assumption 2. The restriction of
balls to the relevant Euclidean ball will be useful in the proof of the scaling
limit part of Theorem 5.1.1.

Assumption 4. For every ε,R ∈ (0,∞), it holds that

lim
η→0

lim sup
δ→0

P
(

inf
x∈B(δ−1R)

δ3µU
(
BU (x, δ−βε) ∩B(δ−1R)

)
< η

)
= 0.
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We begin with the following warm-up lemma, which gives a lower bound
on the volume of BU (0, θδ−β) for each fixed θ ∈ (0, 1].

Lemma 5.4.2. There exist constants λ0 > 1, c1, c2 and c3, such that: for
all λ ≥ λ0, δ ∈ (0, 1) and θ ∈ (0, 1]

P
(
µU
(
BU

(
0, θδ−β

))
< λ−1δ−3

)
≤ c1θ

−c2λ−c3 . (5.39)

Proof. We will first deal with the case that θ = 1, and then prove (5.39)
for general θ ∈ (0, 1] by reparameterizing. We may assume that λ ≥ 2 and
δ > 0 sufficiently small. Let σ be the first time that the infinite LERW γ∞

exits B(λ−1/3δ−1). Define the event F ∗ by setting

F ∗ =
{
γ∞[σ,∞) ∩B

(
0, λ−1/2δ−1

)
= ∅, σ ≤ λ−1/4δ−β

}
.

Suppose that γ∞ returns to the ball B(0, λ−1/2δ−1) after time σ. Then so
does the SRW that defines γ∞ after the first time that it exits B(0, λ−1/3δ−1.
The probability of such a return by the SRW is, by [113, Proposition 1.5.10],
smaller than Cλ−1/6 for some universal constant C < ∞. On the other
hand, combining [155, Theorem 1.4] with [128, Corollary 1.3], it follows
that the probability that σ is greater than λ−1/4δ−β is bounded above by
C exp

{
−cλ1/12

}
for some universal constants c, C ∈ (0,∞). Thus we have

P (F ∗) ≥ 1 − Cλ−1/6. (5.40)

Note that on the event F ∗, the number of steps (in γ∞) between the origin
and x ∈ γ∞ ∩B

(
0, λ−1/2δ−1

)
is smaller than λ−1/4δ−β.

Next we introduce an event G∗, which ensures hittability of γ, similarly
to the event H(k, ζ) defined at (5.35). Namely, for ζ > 0, we set

G∗(ζ) =

 ∀x ∈ B
(
0, 2λ−1δ−1) ,

P xR

(
R
[
0, TR

(
0, λ−1/2δ−1

)]
∩ γ∞ = ∅

)
≤ λ−ζ

 .
From [148, Lemma 3.2], we have that there exist universal constants C < ∞
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and ζ2 > 0 such that: for all λ ≥ 2 and δ > 0

P (G∗(ζ2)) ≥ 1 − Cλ−1.

Moreover, we consider the following net, which is again similar to the ver-
sion appearing in the proof of Proposition 5.4.1. Here is the list of notation
that we need.

• For each k ≥ 1, let ε∗
k = λ−

(
1+ ζ2

6

)
2−k and η∗

k = 1/(2k).

• Write k∗
0 for the smallest integer satisfying ε∗

k∗
0
δ−1 < 1.

• Set A∗
k = B(0, (1 + η∗

k)λ−1δ−1) \B(0, (1 − η∗
k)λ−1δ−1) and let D∗

k ⊆ Z3

be a ε∗
kδ

−1-net of A∗
k in the sense that the number of points in D∗

k is
smaller than Cλ−3(ε∗

k)−3 and A∗
k is contained in the union of all balls

B(z, ε∗
kδ

−1) with z ∈ D∗
k.

Note that since we take δ > 0 sufficiently small, it follows that both bound-
aries ∂iB(0, λ−1δ−1) and ∂B(0, λ−1δ−1) are contained in D∗

k∗
0
.

Now we perform Wilson’s algorithm as follows:

• The root of the algorithm is U∗
0 := γ∞, the infinite LERW started at

the origin.

• We run sequentially LERWs from each point in D∗
1 until they hit the

part of the tree already constructed, and let U∗
1 be the union of those

branches and U∗
0 .

• We define U∗
k inductively for k = 2, 3, . . . , k∗

0 by adding all branches
starting from every point in D∗

k to U∗
k−1.

• Finally, we consider LERW’s starting from Z3 \ U∗
k∗

0
to obtain U .

We condition the root γ∞ on the event F ∗ ∩ G∗(ζ2) and think of it as
a deterministic set. Since the number of points in D∗

1 is bounded above
by Cλζ2/2, it follows that with high (conditional) probability, every branch
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γU (x,U∗
0 ) with x ∈ D∗

1 is contained in B(0, λ−1/2δ−1). Namely, if we define
the event H∗ by

H∗ =
{

γU (x,U∗
0 ) ⊆ B(0, λ−1/2δ−1)

and dU (x,U∗
0 ) ≤ λ−1/4δ−β for all x ∈ D∗

1

}
,

where dU (x,U∗
0 ) stands for the number of steps of the branch γU (x,U∗

0 ), then
the condition of the event G∗(ζ2), [155, Theorem 1.4] and [128, Corollary
1.3] ensure that the conditional probability of the event H∗ satisfies

P (H∗) ≥ 1 − Cλ−ζ2/2.

If we define the event I∗(k, ζ) by

I∗(k, ζ) =
∀x ∈ D∗

k, y ∈ B(x, ε∗
kδ

−1),

P yR

(
R

[
0, TR

(
x, (ε∗

k)
1− ζ2

1000 δ−1
)]

∩ (γ∞ ∪ γU (x,U∗
0 )) = ∅

)
≤(ε∗

k)ζ

 ,
then a similar technique to used to deduce the inequality at (5.36) gives that
there exist universal constants ζ3 > 0 and C < ∞ such that: for all λ ≥ 2,
δ > 0 and k = 1, 2, . . . , k∗

0,

P (I∗(k, ζ3)) ≥ 1 − C(ε∗
k)2.

Now we define L∗
1 := F ∗ ∩G∗(ζ2)∩H∗ ∩I∗(1, ζ3). Note that on the event

L∗
1, it follows that for any y ∈

(
γ∞ ∩B(0, λ−1/2δ−1)

)
∪ (∪x∈D∗

1
γU (x,U∗

0 )),
we have

dU (0, y) ≤ 2λ−1/4δ−β.

We inductively define L∗
k for k ≥ 2 in the following way. Let

H∗(k) =

 γU
(
x,U∗

k−1

)
⊆ A∗

k−1

and dU (x,U∗
k−1) ≤ 2−k/8λ−1/4δ−β for all x ∈ D∗

k

 .
We define L∗

k := L∗
k−1∩I∗(2, ζ3)∩H∗(k) for k ≥ 2. Suppose that we condition
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U∗
k−1 on the event L∗

k−1. Since each branch γ∞ ∪ γU (x,U∗
0 ) with x ∈ D∗

k−1
is a hittable set, by using a similar iteration argument to that used for
(5.37), as well as [155, Theorem 1.4] and [128, Corollary 1.3], we see that the
conditional probability of H∗(k) is bounded above by C exp{−c2k/4λ1/2}.
With this in mind, we let

L∗ =
k∗

0∩
k=1

L∗
k.

As at (5.38), we have

P (L∗) = P (L∗
1)

k∗
0∏

k=2
P
(
L∗
k|L∗

k−1
)

≥
(
1 − Cλ−ζ2/2

) ∞∏
k=1

(
1 − C (ε∗

k)
2
)

≥ 1 − Cλ−ζ2/2.

The hard part of the proof is now complete. Indeed, on the event L∗, it is
easy to check that

dU (0, y) ≤ Cλ−1/4δ−β,

as long as y ∈ (γ∞ ∩ B(0, λ−1/2δ−1)) ∪ U∗
k∗

0
. Since the subtree U∗

k0
contains

∂iB(0, λ−1δ−1), using [155, Theorem 1.4] and [128, Corollary 1.3] again, we
see that

P
(
dU (0, y) ≤ Cλ−1/4δ−β for all y ∈ B(0, λ−1δ−1)

)
≥ 1 − Cλ−c. (5.41)

for some universal constants c, C ∈ (0, 1). This implies that

P
(
µU
(
BU

(
0, δ−β

))
< λ−1δ−3

)
≤ Cλ−c.

for some universal constants c, C ∈ (0,∞). Reparameterizing this, it follows
that for all λ ≥ 1, δ ∈ (0, 1) and θ ∈ (0, 1],

P
(
µU
(
BU

(
0, θδ−β

))
< λ−1δ−3

)
≤ Cθ

− 3c
β λ−c,

which finishes the proof.
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Let γv∞ be the infinite simple path in U started at v. When v = 0, we
write γ0

∞ = γ∞. Fix a point v. The next lemma gives a lower bound on
BU

(
x, θδ−β

)
∩B(0, δ−1) uniformly in x ∈ γv∞ ∩B(0, δ−1).

Lemma 5.4.3. There exist universal constants λ0 > 1 and b0, c6, c7, c8

in (0,∞) such that for all λ ≥ λ0, δ ∈ (0, 1), θ ∈ (0, 1] and all v ∈
B
(
0, λb0δ−1

)
,

P

 ∃x ∈ γv∞ ∩B(0, δ−1) such that
µU
(
BU

(
x, θδ−β

)
∩B(0, δ−1)

)
< λ−1δ−3

 ≤ c6θ
−c7λ−c8 . (5.42)

Proof. Again, by reparameterizing, it suffices to show the inequality (5.42)
the case that θ = 1. Also, we may assume that λ ≥ 2 is sufficiently large
and that δ > 0 is sufficiently small. We recall that we proved at (5.41) that
there exist universal constants a1, a2 ∈ (0,∞) such that

P(A1) := P
(
B(0, λ−1δ−1) ⊆ BU

(
0, a2λ

−1/4δ−β
))

≥ 1 − a2λ
−a1 . (5.43)

Similarly to previously, we need to deal with the hittability of γ∞. To this
end, define the event A(ζ) by

A(ζ) = sup
x∈B(0,λδ−1):

dist(x,γ∞)≤λ− a1
10 δ−1

P xR

(
R
[
0, TR

(
x, λ− a1

20 δ−1
)]

∩ γ∞ = ∅
)

≤ λ−ζa1

 .

From [148, Lemmas 3.2 and 3.3], it follows that there exist universal con-
stants ζ4 ∈ (0, 1) and C < ∞ such that

P (A(ζ4)) ≥ 1 − Cλ−a1 . (5.44)

Now we let b0 = a1ζ4/5000 and take v ∈ B
(
0, λb0δ−1

)
, henceforth in this

proof only, we write γv∞ = γ∞ to simplify notation. We also write ρ0 for
the first time that γ∞ exits B(0, δ−1) (we set ρ0 = 0 if v /∈ B(0, δ−1)), set
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R = λ
ζ4a1
100 δ−1, and define ρ to be the first time that γ∞ exits B(0, R). Then

a similar argument used to deduce (5.40) gives that

P(A2) := P
(
γ∞[ρ,∞) ∩B(0, δ−1) = ∅, ρ ≤ λ

a1
50 δ−β

)
≥ 1 − Cλ− ζ4a1

100 .

So, it suffices to deal with the event that there exists an x ∈ γ∞[0, ρ] ∩
B(0, δ−1) for which the volume ofBU

(
x, δ−β

)
∩B(0, δ−1) is less than λ−1δ−3.

Given these preparations, and moreover writing r = λ− ζ4a1
100 δ−1, we de-

compose the path γ∞[0, ρ] in the following way.

• Let τ0 = 0. For l ≥ 1, define τl by τl = inf{j ≥ τl−1 : |γ∞(j) −
γ∞(τl−1)| ≥ r}.

• Let N be the unique integer such that τN−1 < ρ0 ≤ τN .

• Set τ ′
1 = inf{j ≥ ρ0 : |γ∞(j) − γ∞(ρ0)| ≥ r}.

• For l ≥ 1, if ρl−1 < ρ, then we define τ ′
l = inf{j ≥ ρl−1 : |γ∞(j) −

γ∞(ρl−1)| ≥ r} and set ρl = inf{j ≥ τ ′
l : γ∞(j) ∈ B(0, δ−1)} ∧ ρ.

Otherwise, we let τ ′
l = ∞ and ρl = ρ.

• Let N ′ be the smallest integer l such that ρl = ρ.

• For 0 ≤ l ≤ N ′ − 1, we let τ ′′
l = max{j ≤ ρl : |γ∞(j) − γ∞(ρl)| ≥ r} if

it is the case that {j ≤ ρl : |γ∞(j) − γ∞(ρl)| ≥ r} ̸= ∅. Otherwise, we
set τ ′′

l = ρl.

Notice that we don’t consider the sequence {τl} if v /∈ B(0, δ−1) since τ0 =
ρ0 = 0 in that case. (Namely, if v /∈ B(0, δ−1), we only consider the sequence
{τ ′
l}.) We also note that for any x ∈ γ∞[ρ0, ρ] ∩ B(0, δ−1), there exists

0 ≤ l < N ′ such that x ∈ γ∞[ρl, τ ′
l+1].

Our first observation is that by considering the same decomposition for
the corresponding SRW, it follows that the probability that N + N ′ ≥
λζ4a1/10 is smaller than C exp{−cλc}. Furthermore, applying [155, Theo-
rem 1.4] together with [128, Corollary 1.3], with probability at least 1 −
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C exp{−cλc}, it holds that τl − τl−1 ≤ λ− ζ4a1
200 δ−β for all l = 1, 2, . . . , N , and

that τ ′
l − ρl−1 ≤ λ− ζ4a1

200 δ−β for all l = 1, 2, . . . , N ′. Consequently,

P(A3) ≥ 1 − C exp{−cλc},

where the event A3 is defined by setting

A3 =

 N +N ′ ≤ λ
ζ4a1

10 , τl − τl−1 ≤ λ− ζ4a1
200 δ−β for all l = 1, 2, . . . , N

and τ ′
l+1 − τ ′′

l ≤ λ− ζ4a1
200 δ−β for all l = 0, 1, . . . , N ′ − 1

 .
Replacing the constant ζ4 by a smaller constant if necessary, [148, The-

orem 6.1] (see Proposition 5.3.3) guarantees that γ∞ has no “quasi-loops”.
Namely, it follows that

P(A4) ≥ 1 − Cλ−ca1 ,

where the event A4 is defined by setting

A4 =



B
(
γ∞(τl), λ− a1

30 δ−1
)

∩ (γ∞[0, τl−1] ∪ γ∞[τl+1,∞)) = ∅
∀ l = 1, 2, . . . , N and

B
(
γ∞(ρl), λ− a1

30 δ−1
)

∩
(
γ∞[0, τ ′′

l ] ∪ γ∞[τ ′
l+1,∞)

)
= ∅

∀ l = 0, 2, . . . , N ′ − 1


.

We now consider a λ− a1
10 δ−1-net of B(R), which we denote by D. We may

assume that for each y ∈ D∩B(δ−1), it holds that B(y, 2λ−1δ−1) ⊆ B(δ−1).
Notice that the number of the points in D is bounded above by Cλa1/3.
For each 1 ≤ l ≤ N = 2, we can find a point xl ∈ D ∩ B(δ−1) satisfying
|xl − γ∞(τl)| ≤ λ− a1

10 δ−1. Also, for each 0 ≤ l ≤ N ′ − 1, there exists a point
x′
l ∈ D ∩ B(δ−1) satisfying |x′

l − γ∞(ρl)| ≤ λ− a1
10 δ−1. (Here, note that we

can find x′
l in B(δ−1) since γ∞(ρl) ∈ B(δ−1).)

We perform Wilson’s algorithm as follows.

• The root of the algorithm is γ∞.

• Consider the SRW R1 started from x1, and run until it hits γ∞. We
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let U1 be the union of γ∞ and LE(R1). Next, we consider the SRW
R2 started at x2 until it hits U1; the union of it and U1 is denoted by
U2. We define U l for l = 3, 4, . . . , N − 2 similarly.

• Consider the SRW Z0 starting from x′
0 until it hits UN−2. We let Ũ0

be the union of UN−2 and LE(Z0). Next, we consider the SRW Z1

started at x′
1 until it hits Ũ0; the union of LE(Z1) and Ũ0 is denoted

by Ũ1. We define Ũ l for l = 2, 3, . . . , N ′ − 1 similarly.

• Finally, run sequentially LERWs from every point in Z3 \ ŨN ′−1 to
obtain U .

Define F 0 := A1∩A2∩A3∩A4∩A(ζ4) as a “good” event for γ∞. Conditioning
γ∞ on the event F 0, we consider all simple random walks R1, R2, . . . , RN−2,
Z0, Z1, . . . , ZN

′−1 starting from x1, x2, . . . , xN−2, x
′
0, x

′
1, . . . , x

′
N ′−1 respec-

tively. The event A(ζ4) ensures that the probability that Rl (respectively
Z l) exits B(xl, λ− a1

20 δ−1) (resp. B(x′
l, λ

− a1
20 δ−1) before hitting γ∞ is smaller

than λ−ζ4a1 for each l. Moreover, the event A4 says that the endpoint of Rl

(resp. Z l) lies in γ∞[τl−1, τl+1] (resp. γ∞[τ ′′
l , τ

′
l+1]) for each l. On the other

hand, the number of SRW’s N +N ′ − 2 is less than λ
ζ4a1

10 by the event A3.
Also, we can again appeal to [155, Theorem 1.4] and [128, Corollary 1.3] to
see that with probability at least 1 −C exp{−cλc}, the length of the branch
LE(Rl) (resp. LE(Z l)) is less than λ− a1

40 δ−β for each l = 1, 2, . . . , N − 2
(respectively l = 0, 1, . . . , N ′ − 1). Thus, taking the sum over l, we see that

P(F 1) ≥ 1 − Cλ− ζ4a1
2 ,
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where the event F 1 is defined by setting

F 1 =


LE(Rl) ⊆ B

(
xl, λ

− a1
20 δ−1

)
,

the endpoint of Rl lies in γ∞[τl−1, τl+1],
and the length of LE(Rl) is smaller than λ− a1

40 δ−β

for all l = 1, 2, . . . , N − 2



∩


LE(Z l) ⊆ B

(
x′
l, λ

− a1
20 δ−1

)
,

the endpoint of Z l lies in γ∞[τ ′′
l , τ

′
l+1],

and the length of LE(Z l) is smaller than λ− a1
40 δ−β

for all l = 0, 1, . . . , N ′ − 1


.

Recall that for each y ∈ D ∩ B(δ−1), it holds that B(y, 2λ−1δ−1) ⊆
B(δ−1). Since the number of the points in D is bounded above by Cλa1/3,
the translation invariance of U and (5.43) tell that

P(F 2) ≥ 1 − a2λ
− 2a1

3 ,

where the event F 2 is defined by

F 2 =
{
B(xl, λ−1δ−1) ⊆ BU

(
xl, a2λ

−1/4δ−β
)

for all l = 1, 2, . . . , N − 2
}

∩
{
B(x′

l, λ
−1δ−1) ⊆ BU

(
x′
l, a2λ

−1/4δ−β
)

for all l = 0, 1, . . . , N ′ − 1
}
.

We set F 3 := F 0 ∩ F 1 ∩ F 2. Suppose that the event F 3 occurs. Take
a point x ∈ γ∞[0, ρ0]. We can then find l ∈ {0, 1, . . . , N − 2} such that
x ∈ γ∞[τl, τl+2]. Let yl be the endpoint of Rl. Since yl lies in γ∞[τl−1, τl+1],
and the event A3 holds, we see that dU (x, yl) ≤ τl+2 − τl−1 ≤ 3λ− ζ4a1

200 δ−β.
However, the event F 1 says that dU (yl, xl) ≤ λ− a1

40 δ−β. Finally, the event
F 2 ensures that for every point z ∈ B(xl, λ−1δ−1), we have dU (xl, z) ≤
a2λ

−1/4δ−β. So, the triangle inequality tells that dU (x, z) ≤ 5λ− ζ4a1
200 δ−β for

all z ∈ B(xl, λ−1δ−1) ⊆ B(δ−1).
We next consider a point x ∈ γ∞[ρ0, ρ] ∩ B(δ−1). There then exists

0 ≤ l < N ′ such that x ∈ γ∞[ρl, τ ′
l+1]. Let y′

l be the endpoint of Z l. Since y′
l

lies in γ∞[τ ′′
l , τ

′
l+1], and the event A3 holds, we see that dU (x, y′

l) ≤ τ ′
l+1 −
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τ ′′
l ≤ λ− ζ4a1

200 δ−β. However, the event F 1 says that dU (y′
l, x

′
l) ≤ λ− a1

40 δ−β.
Finally, the event F 2 ensures that for every point z ∈ B(x′

l, λ
−1δ−1), we

have dU (x′
l, z) ≤ a2λ

−1/4δ−β. So, the triangle inequality tells that dU (x, z) ≤
3λ− ζ4a1

200 δ−β for all z ∈ B(x′
l, λ

−1δ−1) ⊆ B(δ−1).
This implies that for all x ∈ γ∞[0, ρ] ∩B(δ−1),

µU

{
BU

(
x, 5λ− ζ4a1

200 δ−β
)

∩B(δ−1)
}

≥ cλ−3δ−3. (5.45)

Reparameterizing this, we finish the proof.

Assumption 4 immediately follows from the next lemma.

Lemma 5.4.4. There exist constants c1, c2, c3 such that: for all λ ≥ 1,
δ ∈ (0, 1) and θ ∈ (0, 1],

P
(

inf
x∈B(δ−1)

δ3µU
(
BU (x, θδ−β) ∩B(δ−1)

)
< λ−1

)
≤ c1θ

−c2λ−c3 .

Proof. We will only consider the case that θ = 1. We also assume that λ ≥ 2
is sufficiently large and that δ > 0 is sufficiently small, similarly to the proof
of the previous lemma. Moreover, we will use the same notation as in the
proof of Lemma 5.4.3. Recall that the constants a1 and ζ4 appeared at
(5.43) and (5.44), and that we defined b0 := a1ζ4/5000 and R := λ

ζ4a1
100 δ−1.

For v ∈ B(λb0δ−1), ρ was defined to be the first time that γv∞ exits B(R)
(ρ = 0 if v /∈ B(δ−1)). In the proof of Lemma 5.4.3, we proved that for each
v ∈ B(λb0δ−1),

P

 µU
{
BU

(
x, λ−b1δ−β

)
∩B(0, δ−1)

}
≥ cλ−3δ−3

for all x ∈ γv∞[0, ρ] ∩B(δ−1)

 ≥ 1 −Cλ−b1 , (5.46)

for some b1 > 0, see (5.45). Let b2 = ζ4a1
108 ∧ b1

108 . We consider a λ−b2δ−1-
net D′ = (xl)Ml=1 of B(0, 2δ−1). Note the number of points in D′, which is
denoted by M , can be assumed to be smaller than Cλ3b2 .

Now we perform Wilson’s algorithm as follows:

• The root of the algorithm is γ∞ = γ0
∞.
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• Consider the SRW R1 started at x1 ∈ D′, and run until it hits γ∞.
Let U1 be the union of LE(R1) and γ∞. We then consider the SRW Rl

started from xl ∈ D′, and run until it hits Ul−1; add LE(Rl) to Ul−1 –
this union is denoted by Ul. Since M ≤ Cλ3b2 , by applying (5.46) for
each xl, we have

P(V 1) ≥ 1 − Cλ−b1/2,

where the event V 1 is defined by setting

V 1 :=

 µU
{
BU

(
x, λ−b1δ−β

)
∩B(δ−1)

}
≥ cλ−3δ−3,

for all x ∈ UM ∩B(δ−1)

 .
• Taking a > 0 such that a

∑∞
j=1 j

−2 = 1/2, we let ak = a
∑k
j=1 j

−2,
and consider a 2−kλ−b2δ−1-net Dk = (xki )i of B((2 − ak)δ−1), where
the number of points in Dk is bounded above by C23kλ3b2 . Let k0 be
the smallest integer k such that 2−kλ−b2δ−1 ≤ 1.

• Perform Wilson’s algorithm for all points in D1 adding new branches
to UM ; the output tree is denoted by Û1. Then perform Wilson’s
algorithm for points Dk (k = 2, 3, . . . , k0) inductively; the output trees
are denoted by Û2, . . . , Ûk0 . Note that B(δ−1) ⊆ Ûk0 .

Since every branch generated in the procedure above is a hittable set,
we can prove that there exist universal 0 < b3 < b2 and C > 0 such that

P(V 2) ≥ 1 − Cλb3 , (5.47)

where the event V 2 is defined by

V 2 :=
{

∀x ∈ Ûk0 , dU (x, x(M)) ≤ λ−b3δ−β and x(M) ∈ B(δ−1)
}
.

Here, for each x, we write x(M) ∈ UM for the point such that dU (x, x(M)) =
dU (x,UM ). The inequality (5.47) can be proved in a similar way to the proof
of Proposition 5.4.1, so the details are left to the reader.

Suppose that the event V 1 ∩V 2 occurs. Since B(δ−1) ⊆ Ûk0 , this implies
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that for any x ∈ B(δ−1), we have

µU
{
BU

(
x, 2λ−b3δ−β

)
∩B(0, δ−1)

}
≥ cλ−3δ−3.

A simple reparameterization completes the proof.

Combining Proposition 5.4.1 and Lemma 5.4.4, we have the following.

Corollary 5.4.1. Assumptions 2 and 4 hold.

5.4.3 Assumption 3

In this subsection, we will prove the following proposition.

Proposition 5.4.5. Assumption 3 holds.

Proof. In [127], it is proved that there exist universal constants b3, b4 ∈
(0,∞) such that for all δ ∈ (0, 1) and λ ≥ 1,

P(J1) ≥ 1 − b4λ
−b3 , (5.48)

where the event J1 is defined by setting

J1 =

 ∀x, y ∈ γ∞ ∩B
(
λb3δ−1

)
with dU (x, y) ≤ λ−b4δ−β, |x− y| ≤ λ−b3δ−1

 ,
see [127, (7.19)] in particular. We also need the hittability of γ∞ as follows.
For ζ > 0, define the event J(ζ) by setting

J(ζ) =

 P xR

(
R
[
0, TR

(
x, λb3/2δ−1

)]
∩ γ∞ = ∅

)
≤ λ−ζb3

for all x ∈ B
(
λb3/4δ−1

)  .
It follows from [148, Lemma 3.2 and Lemma 3.3] that there exist universal
constants C < ∞ and ζ5 ∈ (0, 1) such that for all δ > 0 and λ ≥ 1,

P (J(ζ5)) ≥ 1 − Cλ−b3 .

With this in mind, we set b5 = ζ5b3
1000 and R1 = λb5δ−1. Let D′′ = (zl)l be
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a λ−b5δ−1-net of B(R1). The number of points M ′′ of D′′ can be assumed
to be smaller than Cλ6b5 . We perform Wilson’s algorithm as follows. The
root of the algorithm is γ∞ as usual. Then we consider the loop-erasure
of the SRWs R1, R2, . . . , RM

′′ started from z1, z2, . . . , zM ′′ respectively; we
denote the output tree by UM ′′ . Finally, we consider LERW’s starting from
all points in Z3 \ UM ′′ .

Conditioning γ∞ on the event J1 ∩ J(ζ5), for each l = 1, 2, . . . ,M ′′, the
probability that Rl exits B

(
zl, λ

b3/2δ−1
)

before hitting γ∞ is, on the event
J(ζ5), bounded above by λ−ζ5b3 . Taking the sum over l, we see that if

J2 :=
{
Rl
[
0, TRl

(
x, λb3/2δ−1

)]
∩ γ∞ ̸= ∅ for all l = 1, 2, . . . ,M ′′

}
,

then
P(J2) ≥ 1 − Cλ−b5 .

On the other hand, if we define

J l3 =

 ∀x, y ∈ γzl∞ ∩B
(
zl, λ

b3δ−1
)

with dU (x, y) ≤ λ−b4δ−β, |x− y| ≤ λ−b3δ−1

 ,
for each l = 1, 2, . . . ,M ′′, (recall that γx∞ stands for the unique infinite path
in U starting from x,) by the translation invariance of U and (5.48), it follows
that P(J l3) ≥ 1 − b4λ

−b3 for all l. Thus, letting

J3 =
M ′′∩
l=1

J l3,

we have P(J3) ≥ 1 − λ−b3 .
Now, suppose that the event J := J1 ∩ J(ζ5) ∩ J2 ∩ J3 occurs. The

triangle inequality tells that on the event J , for all x, y ∈ UM ′′ ∩B(λ
2b3

3 δ−1)
with dU (x, y) ≤ λ−b4δ−β, we have |x− y| ≤ 3λ−b3δ−1. Thus

P

 ∀x, y ∈ UM ′′ ∩B

(
λ

2b3
3 δ−1

)
with dU (x, y) ≤ λ−b4δ−β, |x− y| ≤ 3λ−b3δ−1

 ≥ 1 − Cλ−b5 .
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By the translation invariance of U again, we can prove that each branch γzl∞

is also a hittable set with high probability. Namely, if we let

J l(ζ) =

 P xR

(
R
[
0, TR

(
x, λ−b5/2δ−1

)]
∩ γzl∞ = ∅

)
≤ λ−ζb5

for all x ∈ B(zl, λ−b5δ−1)


for each l = 1, 2, . . . ,M ′′, then by using [148, Lemma 3.2], we see that there
exist universal constants ζ6 ∈ (0, 1) and C < ∞ such that for all δ ∈ (0, 1),
λ ≥ 1 and l = 1, 2, . . .M ′′,

P
(
J l(ζ6)

)
≥ 1 − Cλ−100b5 .

With this in mind, we let

J4 :=
M ′′∩
l=1

J l(ζ6),

so that P(J4) ≥ 1 − Cλ−b5 .
Conditioning UM ′′ on the event J ∩ J4, we perform Wilson’s algorithm

for all points in B(R1/2) \ UM ′′ , considering finer and finer nets there as
in the proof of Proposition 5.4.1. The event J4 ensures that every SRW
starting from a point w in B(R1/2) hits UM ′′ before it exits B(w, λ−b5/3δ−1)

with probability at least 1 − Cλ−ζ6b5λ
b5
6 . Thus we can conclude that with

probability at least 1 −Cλ−b5 , we have diam(γU (w,UM ′′)) ≤ λ−b5/3δ−1 and
dU (w,UM ′′) ≤ λ−b5/4δ−β for all w ∈ B (0, R1/2). Therefore, by the triangle
inequality again, it follows that

P
(

∀x, y ∈ U ∩B (R1/2)
with dU (x, y) ≤ λ−b4δ−β, |x− y| ≤ λ−b3/5δ−1

)
≥ 1 − Cλ−b5 . (5.49)

Finally, Proposition 5.4.1 shows that with probability 1 − Cλ−cb5 , the in-
trinsic ball BU (0, Lδ−β) ⊆ B(R1/2) for each fixed L. Combining this with
(5.49) completes the proof.
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5.5 Exponential lower tail bound on the volume
In Lemma 5.4.3, we established a polynomial (in λ) lower tail bound on the
volume of a ball. In this section, we will improve this bound to an expo-
nential one, see Theorem 5.5.2 below. We start by proving the following
analogue of [20, Theorem 3.4] in three dimensions. The proof strategy is
modelled on that of the latter result, though there is a key difference in that
the Beurling estimate used there (see [113, Theorem 2.5.2]) is not applica-
ble in three dimensions, and we replace it with the hittability estimate of
Proposition 5.3.9.

Theorem 5.5.1. There exist constants λ0 > 1 and c, C, b ∈ (0,∞) such
that: for all R ≥ 1 and λ ≥ λ0,

P
(
µU (BU (0, R)) ≤ λ−1R

3
β

)
≤ C exp

{
−cλb

}
. (5.50)

Proof. We begin by describing the setting of the proof. We assume that
λ ≥ 1 is sufficiently large, and let a = 99

100 . Let q = [λ(1−a)/3] be the number
of subsets I0, I1, . . . , Iq of the index set {1, 2, . . . , λ}, as defined in (5.22).
Note that for all 0 ≤ j1 < j2 ≤ q and all i1 ∈ Ij1 , i2 ∈ Ij2 we have

dist (∂Di1 , ∂Di2) ≥ λa−1R. (5.51)

For each j = 0, 1, . . . , q, recall that the event Fj stands for the event that
there exists a “good” index i ∈ Ij in the sense that γ[ti, σi] is a hittable
set. By Proposition 5.3.9, with probability at least 1 − λ1−a exp {−c1λ

a},
the ILERW γ has a good index in Ij for every j = 0, 1, . . . , q. Let

F =
q∩
j=1

Fj , (5.52)

and suppose that the event F occurs. It then holds that, for each j =
0, 1, . . . , q, we can find a good index ij ∈ Ij such that the event Aij occurs.
We will moreover fix deterministic nets W p = (wpk)k, p = 1, 2, 3, of B(2R)
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satisfying

B(2R) ⊆
∪
k

B

(
wpk,

R

102λ2p

)
and |wpk − wpk′ | ≥ R

104λ2p for all k ̸= k′.

Note that we may assume that |W p| ≍ λ6p.
From now on, we assume that the event F occurs whenever we consider

γ. We also highlight the correspondence between our setting and that of [20,
Theorem 3.4]. In the proof of [20, Theorem 3.4], k points z1, z2, . . . , zk were
chosen on the ILERW. Here the points xi0 = γ(ti0), xi1 = γ(ti1), . . . , xiq =
γ(tiq ) correspond to those points. Setting n = R

2λ , we write Bj = B(xij , n)
for j = 0, 1, . . . , q. Note that for each j1 ̸= j2

dist (Bj1 , Bj2) ≥ λa−1R

2
(5.53)

by (5.51).
As in [20, (3.18) and (3.19)], we define the events F 1, F 2 by setting

F 1 = {γ[T2R,∞) hits more than q/2 of B0, B1, . . . Bq} , (5.54)

F 2 =
{
T2R ≥ λa

′
Rβ
}
,

where Tr is the first time that γ exits B(r), and a′ = 1
1000 , see Figure 5.7.

Here we also need to introduce the event F 3, as given by

F 3 =
{

∃w1
k ∈ W 1 such that N1

k ≥ λ5
}
,

where N1
k is equal to∣∣∣∣∣∣

 w2
l ∈ W 2 :

B
(
w2
l ,

R
102λ4

)
⊆ B

(
w1
k,

R
102λ2

)
and B

(
w2
l ,

R
102λ4

)
∩ γ[0,∞) ̸= ∅


∣∣∣∣∣∣ ,

i.e., N1
k stands for the number of balls of the net W 2 contained in the ball

B(w1
k,

R
102λ2 ) and hit by ILERW γ.

We will first show that P(F 1) is exponentially small in λ. Let Γr be the
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set of paths ζ satisfying P(γ[0, Tr] = ζ) > 0. Namely, Γr stands for the set
of all possible candidates for γ[0, Tr]. Take ζ ∈ Γ2R, and let z = ζ (len(ζ)) be
the endpoint of ζ. Write Y for the random walk started at z and conditioned
on the event that Y [1,∞) ∩ ζ = ∅. The domain Markov property (see [113,
Proposition 7.3.1]) yields that the distribution of γ[T2R,∞) conditioned on
the event {γ[0, T2R] = ζ} coincides with that of LE(Y [0,∞)). Therefore, we
have

P(F 1) ≤
∑
ζ∈Γ2R

P(Hζ)P (γ[0, T2R] = ζ) ,

where the event Hζ is defined by

Hζ = {Y hits more than q/2 of B0, B1 . . . , Bq} .

Recall that Rz stands for the simple random walk started at z. We remark
that dist(z,Bj) ≥ R/4 for all j ∈ {0, 1, . . . , q}. Let τ be the first time that

0
B0

B1

Bq

∂B(2R)

Figure 5.7: A typical realisation of γ on the event F 1, as defined at
(5.54).
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Rz exits B(z,R/8), and observe that

P (Rz[1,∞) ∩ ζ = ∅) ≍ P (Rz[1, τ ] ∩ ζ = ∅) . (5.55)

Indeed, it is clear that the left-hand side is bounded above by the right-hand
side. To see the opposite inequality, we note that [155, Proposition 6.1] (see
also [148, Claim 3.4]) yields that

P (Rz[1,∞) ∩ ζ = ∅)

≥ P
(
Rz[1, τ ] ∩ ζ = ∅, dist (B(2R), Rz(τ)) ≥ R

16
, Rz[τ,∞) ∩B(2R) = ∅

)
≥ cP

(
Rz[1, τ ] ∩ ζ = ∅, dist (B(2R), Rz(τ)) ≥ R

16

)
≥ c′P (Rz[1, τ ] ∩ ζ = ∅) ,

which gives (5.55). Consequently, we obtain that

P(Hζ) ≤ CP (Rz[1, τ ] ∩ ζ = ∅, Rz hits more than q/2 of B0, B1 . . . , Bq)
P (Rz[1, τ ] ∩ ζ = ∅)

≤ C max
z′∈B(z,R/8)

P
(
Rz

′ hits more than q/2 of B0, B1 . . . , Bq
)
.

Take z′ ∈ B(z,R/8), and note that dist(z′, Bj) ≥ R/8 for all j = 0, 1, . . . , q.
We define a sequence of stopping times u1, u2, . . . as follows. Let

u1 = inf

t ≥ 0 : Rz′(t) ∈
q∪
j=0

Bj

 ,
and j1 be the unique index such that Rz′(u1) ∈ Bj1 . For l ≥ 2, we define ul
by setting

ul = inf

t ≥ ul−1 : Rz′(t) ∈

 q∪
j=0

Bj

 \Bjl−1

 ,
and write jl for the unique index such that Rz′(ul) ∈ Bjl . Since the distance
between two different balls is bigger than λa−1R/2 by (5.53), and each ball
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has radius n = R/2λ, it follows from [113, Proposition 1.5.10] that

P (ul < ∞ ul−1 < ∞) ≤ Cλ−aλ1−a = Cλ− 49
50 ,

for all l. Thus, taking λ sufficiently large so that Cλ− 49
50 < 1/2, it holds that

P(Hζ) ≤ C(1/2)q/2 ≤ C exp
{

−cλ
1

100
}
,

which gives
P(F 1) ≤ C exp

{
−cλ

1
100
}
. (5.56)

As for the event F 2, we have from Proposition 5.3.4 that

P(F 2) ≤ C exp
{

−cλa′}
. (5.57)

Finally, we will deal with the event F 3. Define

M1
k =

∣∣∣∣∣∣
w2

l ∈ W 2 :
B
(
w2
l ,

R
102λ4

)
⊆ B

(
w1
k,

R
102λ2

)
and B

(
w2
l ,

R
102λ4

)
∩ S[0,∞) ̸= ∅


∣∣∣∣∣∣ ,

in other words, M1
k stands for the number of balls of the net W 2 contained

in B
(
w1
k,

R
102λ2

)
and hit by SRW S[0,∞). It is clear that N1

k ≤ M1
k . Thus,

on the event F 3, there exists w1
k ∈ W 1 such that M1

k ≥ λ5. However, for each
k, it is easy to see that P(M1

k ≥ λ5) ≤ Ce−cλ. Therefore, since |W 1| ≍ λ6,
we see that

P(F 3) ≤ C exp
{

−cλ1/2
}
. (5.58)

We are now ready to follow the proof of [20, Theorem 3.4]. If the event
F c ∪ F 1 ∪ F 2 ∪ F 3 (recall that the event F is defined at (5.52)) occurs,
we terminate the algorithm with a ‘Type 1’ failure. Otherwise, for each
j = 0, 1, . . . , q, we can find zj ∈ W 3 ∩ B(xij , n/8) such that B(zj , λ−4) ∩
γ[0,∞) = ∅. Using this point zj , we write

B′
j = B

(
zj , λ

−4R
)
, B′′

j = B
(
zj , λ

−6R
)
.

Let U0 = γ[0,∞). Suppose that the event F ∩
∩3
k=1(F k)c occurs. We
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consider the SRW Rz0 until it hits U0. Let γ0 = LE(Rz0) be its loop-erasure
which is the branch on U between z0 and U0. Define the event G0

1 by
G0

1 = {Rz0 ̸⊆ B0}. Since γ satisfies the event F , we see that

P
(
(G0

1)c
)

≥ c0. (5.59)

Suppose that the event G0
1 occurs. We mark the ball Bj as ‘bad’ if Rz0 ∩Bj ̸=

∅. Otherwise, we define the event G0
2 := {len(γ0) ≥ λ−1/2Rβ}∩{Rz0 ⊆ B0}.

If the event G0
2 occurs, we also mark B0 as ‘bad’ (we only mark B0 in this

case). By Proposition 5.3.4, it holds that

P
(
G0

2

)
≤ C exp

{
−cλ1/2

}
. (5.60)

If the event (G0
1)c ∩ (G0

2)c occurs, we use Wilson’s algorithm to fill in the
reminder of B′′

0 . Define the event G0
3 by setting

G0
3 =

{
∃v ∈ B′′

0 such that γU (v, γ0 ∪ U0) ̸⊆ B′
0

or len (γU (v, γ0 ∪ U0)) ≥ λ−2Rβ

}
∩ (G0

1)c ∩ (G0
2)c,

where we recall that γU (v,A) stands for the branch on U between v and A.
Modifying the proof of Lemma 5.4.2, we see that

P
(
G0

3

)
≤ Cλ−c (5.61)

for some universal constants c, C ∈ (0,∞). Suppose that the event G0
3

occurs. We again mark the ball Bj as ‘bad’ if Sv hits Bj for some v ∈ B′′
0

in the algorithm above. If the event (G0
1)c ∩ (G0

2)c ∩ (G0
3)c occurs, we label

this first ‘ball step’ as successful and we terminate the whole algorithm. In
this case, for all v ∈ B′′

0

dU (0, v) ≤
(
λa

′ + λ−1/2 + λ−2
)
Rβ ≤ Cλa

′
Rβ,

and so
µU
(
BU

(
0, Cλa′

Rβ
))

≥ cλ−18R3. (5.62)
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If the event G0
1 ∪G0

2 ∪G0
3 occurs, we denote the number of bad balls by NB

0 .
Using a similar idea used to establish (5.56), we see that

P
(
NB

0 ≥ √
q/4

)
≤ C exp

{
−cλ1/200

}
. (5.63)

If NB
0 ≥ √

q/4, we terminate the whole algorithm as ‘Type 2’ failure. If
NB

0 <
√
q/4, we can choose Bj which is not bad and perform the second

‘ball step’, replacing B0 with Bj in the above. We terminate this ball step
algorithm whenever we get a successful ball step or we have Type 2 failure.
We write F 4 for the event that some ball step ends with a Type 2 failure.
Since we perform at most q1/2 ball steps, it follows from (5.63) that

P(F 4) ≤ C exp
{

−cλ1/400
}
. (5.64)

Finally, we let F 5 be the event that we can perform the jth ball step for all
j = 1, 2 . . . , q1/2 without Type 2 failure and success. By combining (5.59),
(5.60) and (5.61), taking λ sufficiently large, we see that each ball step has
a probability at least c0/2 of success. Therefore, we have

P(F 5) ≤ C exp
{

−cλ1/200
}
. (5.65)

Once we terminate the ball step algorithm with a success, we end up with a
good volume estimate as in (5.62). Combining (5.56), (5.57), (5.58), (5.64),
(5.65) with Proposition 5.3.9, we conclude that

P
(
µU
(
BU

(
0, Cλa′

Rβ
))

≥ cλ−18R3
)

≥ 1 − C exp
{

−cλa′}
.

Reparameterizing this gives the desired result.

We are now ready to derive the main result of this section, which gives
exponential control of the volume of balls, uniformly over spatial regions.

Theorem 5.5.2. There exist constants λ0 > 1 and c, C, b ∈ (0,∞) such
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that: for all R ≥ 1 and λ ≥ λ0,

P
(

inf
x∈B(R1/β)

µU
(
BU

(
x, λ−b′

R
))

≤ λ−1R
3
β

)
≤ C exp

{
−cλb

}
. (5.66)

Proof. We will follow the strategy used in the proofs of Lemmas 5.4.3 and
5.4.4. Theorem 5.5.1 tells us that if A1 := {|BU (0, λ−1R)| ≤ λ−4R

3
β }, then

P(A1) ≤ C exp
{

−cλb
}
, (5.67)

We may assume that b ∈ (0, 1). We also let b1 = b/1000. Applying Propo-
sition 5.3.7 with s = exp{−λb1}R1/β, r = exp{−λb1/2}R1/β and K = 100,
we find that there exists universal constants η ∈ (0, 1) and C > 0 such that

P(A2) ≤ C exp
{

−λb1
}
,

where A2 is defined to be the event{
∃v ∈ B(5R1/β) such that

dist(v, γ) ≤ e−λb1R1/β and P v (Rv[0, tv] ∩ γ = ∅) ≥ e−ηλb1

}
.

Here, γ represents the ILERW started at the origin, Rv stands for a SRW
started at v, the probability law of which is denoted by P v, and tv stands for
the first time thatRv exitsB(v, exp{−λb1/2}R1/β). We next use Proposition
5.3.3 to conclude that there exists universal constants C,M < ∞ such that

P(A3) ≤ C exp
{

−λb1/M
}
,

where the event A3 is defined by

A3 =


∃v ∈ B(5R1/β) and i < j such that

γ(i), γ(j) ∈ B
(
v, 10 exp{−λb1/2}R1/β

)
and γ[i, j] ̸⊆ B

(
v, 10−1 exp{−λb1/M}R1/β

)
 ,

Namely, the event A3 says that γ has a quasi-loop in B(5R1/β). We next
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let
δ = 10−3 min{η, 1/M}, (5.68)

and define a sequence of random times s1, s2, . . . by setting s0 = 0,

s1 = inf
{
t ≥ 0 : γ(t) /∈ B

(
exp{−δλb1}R1/β

)}
,

si = inf
{
t ≥ si−1 : γ(t) /∈ B

(
γ(si−1), exp{−δλb1}R1/β

)}
, ∀i ≥ 2.

Let xi = γ(si), write

I =
{
i ≥ 1 : (γ[si−1, si] ∪ γ[si, si+1] ∪ γ[si+1, si+2]) ∩B(4R1/β) ̸= ∅

}
,

and set N = |I|. By considering the number of balls of radius exp{−δλb1}R
1
β

crossed by a SRW before ultimately leaving B(4R1/β), we see that

P(A4) ≤ C exp
{

−ceδλb1
}
,

where A4 := {N ≥ exp{3δλb1}}. A similar argument to that used in [127,
(7.51)] yields that

P(A5) ≤ C exp
{

−ce
δλb1

2

}
,

where A5 is the event that there exists an i ∈ I such that si − si−1 ≥
exp{−δλb1/2}R. Thus, defining the event A by setting

A =
5∩
i=1

Aci ,

combining the above estimates gives us that

P(A) ≥ 1 − C exp
{

−λb1/M
}
. (5.69)

We now fix a net W = (wj)j of B(5R1/β) such that

B(5R1/β) ⊆
∪
j

B
(
wj , exp{−λb1}R1/β

)

150



and |W | ≍ exp{3λb1}. For i ∈ I, let wi ∈ W be such that |xi − wi| ≤
exp{−λb1}R1/β. We now use Wilson’s algorithm for all points wi. On Ac2,
it holds that, for each i ∈ I,

Pwi (Rwi [0, twi ] ∩ γ = ∅) ≤ exp{−ηλb1}.

Therefore we have

P(B1) ≤ C exp{−ηλb1} exp{3δλb1} ≤ C exp{−ηλb1/2}, (5.70)

where B1 is the event that there exists i ∈ I such that Rwi [0, twi ] ∩ γ = ∅.
Suppose that the event Bc

1 occurs. For i ∈ I, write ui for the first time that
Rwi hits γ, and let zi = Rwi(ui). On Ac3, we have that zi ∈ γ[si−1, si] ∪
γ[si, si+1], because otherwise γ has a quasi-loop. We define the events B2

and B3 by setting

B2 =
{

∃i ∈ I such that len (LE (Rwi [0, ui])) ≥ exp{−λb1/4}R
}
,

B3 =
{

∃i ∈ I such that
∣∣∣BU

(
wi, λ

−1R
)∣∣∣ ≤ λ−4R

3
β

}
.

Combining the translation invariance of U with Proposition 5.3.4 ensures
that

P(B2) ≤ C exp
{

−ceλb1/4
}
. (5.71)

Moreover, by (5.67) and the translation invariance of the UST again, we
have

P(B3) ≤ Ce−cλb × e3λb1 ≤ Ce−cλb/2,

where we use the fact that |W | ≍ e3λb1 and b1 = b/1000. Defining

B =
3∩
j=1

Bc
j ,

we have proved that

P(A ∩B) ≥ 1 − C exp
{

−δλb1
}
,
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where we recall that δ > 0 was defined as in (5.68).
Next, suppose that the event A∩B occurs. Take x ∈ γ ∩B(4R1/β). We

can then find some i ∈ I such that x ∈ γ[si, si+1]. On Ac5, we have

dU (xi−1, xi) ≤ exp{−δλb1/2}R and dU (xi, xi+1) ≤ exp{−δλb1/2}R.

Furthermore, on Bc
1 ∩Ac3 ∩Bc

2, it holds that

zi ∈ γ[si−1, si] ∪ γ[si, si+1] and dU (wi, zi) ≤ exp{−λb1/4}R.

This implies that dU (wi, x) ≤ exp{−δλb1/4}R. If Bc
3 also holds, it follows

that we have
µU
(
BU

(
x, 2λ−1R

))
≥ λ−4R

3
β .

Consequently, we have proved that there exist universal constants C, δ, b1 ∈
(0,∞) such that for all R and λ

P

 µU
(
BU

(
x, λ−1R

))
≥ λ−5R

3
β

for all x ∈ γ ∩B(4R1/β)

 ≥ 1 − C exp
{

−δλb1
}
. (5.72)

Finally, once we get (5.72), the proof of (5.66) can be completed by
following the strategy used to prove Lemma 5.4.4 given Lemma 5.4.3. In-
deed, thanks to (5.72), we can use a net whose mesh size is exponentially
small in λ, which guarantees the exponential bound as in (5.50). The simple
modification is left to the reader.

5.6 Exponential upper tail bound on the volume
Complementing the main result of the previous section, we next establish an
exponential tail upper bound on the volume, see Theorem 5.6.2, which im-
proves the polynomial tail upper bound on the volume proved in Proposition
5.4.1. We begin with the following proposition.

Proposition 5.6.1. There exist constants λ0 > 1 and c, C, a ∈ (0,∞) such
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that: for all R ≥ 1 and λ ≥ λ0,

P
(
BU

(
0, λ−1Rβ

)
̸⊆ B(R)

)
≤ C exp{−cλa}.

In particular, it holds that

P
(
µU
(
BU

(
0, λ−1Rβ

))
≥ R3

)
≤ C exp{−cλa}.

Proof. The second inequality immediately follows from the first one. Thus
it remains to prove the first inequality. We follow the strategy used in the
proof of [20, Theorem 3.1]. We may assume that λ is sufficiently large. It
follows from Proposition 5.3.4 that there exist constants C, c and a0 > 0
such that

P
(
TR/8 < λ−1Rβ

)
≤ C exp{−cλa0},

where again Tr stands for the first time that the ILERW γ exits B(r).
Setting a1 = a0/10, we define a sequence of nets Dk as follows. For k ≥ 1,
set δk = 2−k exp{−λa1}, ηk = (2k)−1, and k0 be the smallest integer such
that δk0R < 1. Defining

Ak := B(R) \B ((1 − ηk)R) ,

let Dk be a set of points in Ak satisfying |Dk| ≍ δ−3
k and also that

Ak ⊆
∪

w∈Dk

B (w, δkR) .

We then perform Wilson’s algorithm as follows.

• Let U0 = γ be the ILERW, which is the root of the algorithm.

• Take w ∈ D1, and consider the SRW Rw started at w, and run until
it hits U0. We add LE(Rw) to U0. We choose another point w′ ∈ D1

and add the loop-erasure of Rw′ , a SRW started at w′ and run until
it hits the part of the tree already constructed. We perform the same
procedure for every point in D1. Let U1 be the output tree.
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• We perform the same algorithm as above for all points in D2. Let U2

be the output tree. Similarly, we define Uk.

• We perform Wilson’s algorithm for all points in Uc
k0

.

Since δk0R < 1, we note that ∂iB(R) ⊆ Ak0 ⊆ Uk0 .
Now, take w ∈ D1, and let Nw be the first time that γU (0, w) exits

B(R/8). Using [136, Proposition 4.4], we see that

P
(
Nw < λ−1Rβ

)
≤ CP

(
TR/8 < λ−1Rβ

)
≤ C exp{−cλa0}

for each w ∈ D1. Thus if we define the event F1 by setting

F1 =
{
TR/8 < λ−1Rβ

}
∪
∪

w∈D1

{
Nw < λ−1Rβ

}
,

then it follows that

P(F1) ≤ Cδ−3
1 exp{−cλa0} ≤ C exp{−c′λa0},

where we have used the fact that |D1| ≍ δ−3
1 ≍ exp{3λa1} and that a1 =

a0/10.
Next, for b > 0, we define Gw1 (b) to be the event

{
∃v ∈ B(2R) with dist (v, γU (w,∞)) ≤ δ1R

such that P v (Rv[0, ξ] ∩ γU (w,∞) = ∅) ≥ δb1

}
,

where ξ is the first time that Rv exits B
(
v,

√
δ1R

)
. Applying Proposition

5.3.7 to the case that K = 100, it holds that there exists b0 > 0 such that

P(Gw1 ) := P (Gw1 (b0)) ≤ Cδ50
1 . (5.73)

So, if we define the event G1 := ∪w∈D1G
w
1 , then

P(G1) ≤ Cδ47
1 .

Suppose that the event F c1 ∩Gc1 occurs, and perform Wilson’s algorithm
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(see [169]) from all points in D2. For w ∈ D2, define

Hw
2 := {γU (w, 0) enters B(R/2) before it hits U1},

and let H2 = ∪w∈D2H
w
2 . The event Hw

2 implies that Rw enters B(R/2)
without hitting U1. Since the event Gc1 occurs, we see that

P(Hw
2 ) ≤

(
δb0

1

)cδ−1/2
1

,

and thus we have
P(H2) ≤ Cδ10

1 .

For w ∈ D2, we then define Gw2 = Gw2 (b0) to be the event

{
∃v ∈ B(2R) with dist (v, γU (w,∞)) ≤ δ2R

such that P v (Rv[0, ξ] ∩ γU (w,∞) = ∅) ≥ δb0
2

}
,

where ξ is the first time that Rv exits B(v,
√
δ2R), and b0 is the constant

defined as above (see (5.73) for b0). Using [148, Lemma 3.2 and Lemma 3.3]
once again (with r =

√
δ2R and s = δ2R), we have

P(Gw2 ) ≤ Cδ50
2 .

Importantly, we can take b0 depending only on K = 100. Define the event
G2 by setting G2 := ∪w∈D2G

w
2 , and then

P(G2) ≤ Cδ47
2 .

Defining Hk and Gk, k ≥ 3 similarly, it follows that

P(Hk ∪Gk) ≤ Cδ47
k .

Finally, we define

J = F c1 ∩Gc1 ∩
k0∩
k=2

(Hc
k ∩Gck).
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On the event J , we have the following.

• For all k = 1, 2, . . . k0 and every w ∈ Dk, the first time that γU (0, w)
exits B(R/8) is greater than λ−1Rβ.

• The set Dk0 disconnects 0 and B(R)c.

Thus, on the event J , it holds that BU
(
0, λ−1Rβ

)
⊆ B(R). Since

P(Jc) ≤ C exp{−c′λa0} + C
k0∑
k=1

δ47
k ≤ C exp{−λa1},

we have thus completed the proof.

We are now ready to establish the main result of the section.

Theorem 5.6.2. There exist constants λ0 > 1 and c′, C ′, a′ ∈ (0,∞) such
that: for all R ≥ 1 and λ ≥ λ0,

P
(

max
z∈B(R1/β)

µU
(
BU

(
z, λa

′
R
))

≥ λR3/β
)

≤ C ′ exp{−c′λa
′}. (5.74)

Proof. Since the proof is very similar to that of Theorem 5.5.2, we will only
explain how to modify it here. Also, we will use the same notation used in
the proof of Theorem 5.5.2. Proposition 5.6.1 tells that there exist constants
c, C, b ∈ (0,∞) such that

P(A′
1) ≤ C exp{−cλb}, (5.75)

where A′
1 := {µU (BU (0, λR)) ≤ λ10R

3
β }. In this proof, we choose the con-

stant b in this way, and let b1 = b/1000. Using this constant b1, we define the
events A2, . . . , A5 as in the proof of Theorem 5.5.2. Let A = (A′

1)c∩(∩5
i=2A

c
i )

so that
P(A) ≥ 1 − C exp

{
−λb1/M

}
,

see (5.69). We also recall the events B1 and B2 defined in the proof of

156



Theorem 5.5.2, for which

P(B1 ∪B2) ≤ C exp{−ηλb1/2},

see (5.70) and (5.71). Moreover, let

B′
3 =

{
∃i ∈ I such that µU (BU (wi, λR)) ≥ λ10R

3
β

}
.

Combining (5.75) with the translation invariance of the UST, we have

P(B′
3) ≤ Ce−cλb × e3λb1 ≤ Ce−cλb/2,

where we have also used the fact that |W | ≍ e3λb1 and b1 = b/1000. Setting
B = Bc

1 ∩Bc
2 ∩ (B′

3)c, we then have that

P(B) ≥ 1 − C exp{−ηλb1/4}.

Now, suppose that the event A ∩ B occurs, and let x ∈ γ ∩ B(4R1/β).
We can then find some i ∈ I such that x ∈ γ[si, si+1]. Since Ac5 holds, we
have

dU (xi−1, xi) ≤ exp{−δλb1/2}R and dU (xi, xi+1) ≤ exp{−δλb1/2}R.

Furthermore, since Bc
1 ∩Ac3 ∩Bc

2 holds, we have that

zi ∈ γ[si−1, si] ∪ γ[si, si+1] and dU (wi, zi) ≤ exp{−λb1/4}R.

This implies that dU (wi, x) ≤ exp{−δλb1/4}R. Given (B′
3)c also holds, we

therefore have
µU (BU (x, λR/2)) ≤ λ10R

3
β .

Consequently, we have proved that there exist universal constants C, δ, b1 ∈
(0,∞) such that: for all R and λ,

P

 µU (BU (x, λR/2)) ≤ λ10R
3
β

for all x ∈ γ ∩B(4R1/β)

 ≥ 1 − C exp
{

−δλb1
}
. (5.76)
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Similarly to the comment at the end of the proof of Theorem 5.5.2, given
(5.76), the proof of (5.74) follows by applying the same strategy as that
used to prove Lemma 5.4.4 given Lemma 5.4.3. Indeed, given (5.76), we can
use a net whose mesh size is exponentially small in λ, which guarantees the
exponential bound as in (5.74). The simple modification is again left to the
reader.

5.7 Convergence of finite-dimensional
distributions

As noted in the introduction, the existence of a scaling limit for the three-
dimensional LERW was first demonstrated in [107]. The work in [107] estab-
lished the result in the Hausdorff topology, and this was recently extended
in [127] to the uniform topology for parameterized curves. Whilst the lat-
ter seems a particularly appropriate topology for understanding the scaling
limit of the LERW, the results in [107, 127] are restrictive when it comes to
the domain upon which the LERW is defined. More specifically, we say that
a LERW is defined in a domain D if it starts in an interior point of D and
ends when it reaches the boundary of D. The assumptions in [107] cover
the case of LERWs defined in domains with a polyhedral boundary, while
[127] requires the domain to be a ball or the full space.

In this section, we extend the existence of the scaling limit to LERWs
defined in the domain R3\ ∪Kj=1 tr Kj , where each Kj is itself a path of
the scaling limit of a LERW. Once we gain this level of generality, we use
Wilson’s algorithm to obtain the convergence in distribution of rescaled
subtrees of the UST (see Figure 5.8 for an example realisation of the subtree
spanning a finite collection of points). This will be crucial for establishing the
convergence part of Theorem 5.1.1. We begin by introducing some notation
for subtrees.

5.7.1 Parameterized trees

A parameterized tree is an encoding for an infinite tree embedded in the
closure of R3. This encoding is specialized for infinite trees with a finite
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Figure 5.8: A realisation of a subtree of the UST of δZ3 spanned by
0 and the corners of the cube [−1, 1]3. The tree includes part of
its path towards infinity (in green). Colours indicate different
LERWs used in Wilson’s algorithm.

number of spanning points and one end. More precisely, a parameterized
tree T with K spanning points is defined as T = (X,Γ) where:

1. X = {x(1), . . . , x(K)} ⊂ R3 are the spanning (or distinguished) points;
and

2. γx(i) is a transient parameterized (simple) curve starting at x(i), and

Γ = {γx(i) : 0 ≤ i ≤ K}.

We require that for any pair i, j there exist merging times si,j , sj,i ≥
0 satisfying

(a) γx(i)|[si,j ,∞) = γx(j)|[sj,i,∞); and

(b) tr γx(i)|[0,si,j) ∩ tr γx(j)|[0,sj,i) = ∅.

Let FK be the space of parameterized trees with K distinguished points.
We endow FK with the distance

dF K

(
T , T̃

)
:= max

1≤i≤K

{
χ
(
γx(i), γ̃x̃(i)

)}
+ max

1≤i,j≤K
{|si,j − s̃i,j |},
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for T = (X,Γ), T̃ = (X̃, Γ̃) ∈ FK .
We write

tr T =
∪
γ∈Γ

tr γ

for the trace of a parameterized tree.

Proposition 5.7.1. Let T be a parameterized tree. Then tr T is a topo-
logical tree with one end. Additionally, for any z, w ∈ tr T there exists a
unique curve from z to infinity on T , denoted by γz and a unique curve
from z to w in T denoted by γz,w.

Proof. The set tr T is path-connected as a consequence of condition (2a) in
the definition of a parameterized tree. It is also one-ended, since ∩Ki=1γ

x(i)

is a single parameterized curve towards infinity.
The main task in this proof is to show that there cannot be cycles em-

bedded in tr T . We proceed by contradiction. Let S1 be the circle and
assume that φ : S1 → tr T is an injective embedding. Since every curve in
Γ is simple and φ is injective, then φ(S1) intersects at least two different
curves, say γx(i) and γx(j). From the definition of merging times, we see that
T 2 = tr γx(i) ∪tr γx(j) is homeomorphic to ([0,∞) × {0})∪({1} × [0, 1]), but
the latter space cannot contain a embedding of S1. It follows that φ(S1)
intersects at least a third curve γx(ℓ). We assume that φ(S1) is contained
in T 3 = tr(γx(i)) ∪ tr(γx(j)) ∪ tr(γx(ℓ)). Under the last assumption, it is
necessary that γx(ℓ) intersects γx(i) and γx(j) before these last two curves
merge (otherwise the case is similar to T 2). Denote the intersection times
by tℓ,i and ti,ℓ, so γx(ℓ)(tℓ,i) = γx(i)(ti,ℓ). We use the same notation for γx(j).
Then, we have that ti,ℓ < si,j and tj,ℓ < sj,i. Without loss of generality,
tℓ,i < tℓ,j . However, it is easy to verify that tℓ,i is not the merging time sℓ,i,
since γx(ℓ)|[tℓ,i,∞) does not merge with γx(i) at that point. Therefore sℓ,i does
not exist, and this conclusion contradicts the definition of Γ. It follows that
φ(S1) is not contained in T 3, but it intersects more curves, e.g. all of them
in tr T = ∪Ki=1 tr((γx(i))). However, the argument that we used for T 3 also
applies to tr T . We conclude that the embedding φ does not exist.

Finally, observe that tr T is one ended and all curves in Γ are parame-
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terized towards infinity. It is then straightforward to define γz and γz,w.

A corollary of Proposition 5.7.1 is that the intrinsic distance in tr T is
well-defined. It is given by

dT (z, w) := T (γz,w), z, w ∈ tr T

where T (·) is the duration of a curve.
We will consider restrictions of parameterized trees to balls centred at

the origin. For a parameterized tree T = (X,Γ), let R ≥ 1 be large enough
so that X ⊆ BE(R). We restrict each curve in Γ to γx(i)|R (where the
restriction to the ball of radius R > 0 is in the sense described in Subsection
5.3.2), and define the restriction of a parameterized tree to BE(R) as the
subset of R3

T |R :=
∪
γ∈Γ

tr γx(i)|R.

Note thatT |R may not be connected for some values of R > 0. But for R
large enough, T |R is a topological tree (Figure 5.9 gives an example of both
cases).

5.7.2 The scaling limit of subtrees of the UST

We introduce the main results of this section.
Let Un be the uniform spanning tree on 2−nZ3. We are interested in

subtrees of Un spanned by K distinguished points. Let x(1), . . . , x(K) be
different points in R3 and let Xn = {xn(1), . . . , xn(K)} be a subset of 2−nZ3

such that xn(i) → x(i) as n → ∞, for each i = 1, . . . , n. Denote by γ
xn(i)
n

the transient path in Un starting at xn(i) and parameterized by path length.
We set γ̄x(i)

n to be the β-parameterization of γxn(i)
n and Γn = {γxn(i)

n : 1 ≤
i ≤ K}. Then SK

n = (X,Γn) is the parameterized tree corresponding to
the subtree of Un spanned by xn(1), . . . , xn(K) and the point at infinity.

Theorem 5.7.2. The sequence of parameterized trees (SK
n )n∈N converges

weakly to ŜK in the space FK as n → ∞.
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Figure 5.9: S is a parameterized tree with spanning points x(1), x(2)
and x(3). The restriction S |s is the union of the paths between
x(i) and pi, with i = 1, 2, 3. In this example, S |r and S |s are
different inside the radius m. A crucial difference between these
two sets is that S |r is connected, but S |s is disconnected.

The proof of Theorem 5.7.2 relies on the convergence of the branches of
the uniform spanning tree as they appear in Wilson’s algorithm. In the next
section, we control the behaviour of a LERW before it hits an approximation
of a parameterized tree. These loop-erased random walks correspond to the
branches of the UST. Then Proposition 5.7.8 shows that convergence of such
branches implies convergence of parameterized trees. After these arguments,
we are prepared for the proof of Theorem 5.7.2. We present it in Subsection
5.7.5.

Conversely, Proposition 5.7.6 shows that convergence of parameterized
trees implies the convergence of the intrinsic distance. We thus get the
following corollary of Theorem 5.7.2.

Corollary 5.7.1. Let (xδ(i))Ki=1 be a collection of points in δZ3 such that
xδ(i) → x(i), for all i = 1, . . . ,K, for some collection of distinct points
(x(i))Ki=1 in R3. Along the subsequence δn = 2−n, it holds that

(
δβndU (xδn(i), xδn(j))

)K
i,j=1
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converges in distribution.

5.7.3 Parameterized trees and random walks

We begin with a property on the hittability of a parameterized tree. We say
that a parameterized tree Tδ is on the scaled lattice δZ3 if each one of its
curves defines a path on δZ3.

Definition 5.7.3. Let δ ∈ (0, 1), R ≥ 1 and ε ∈ (0, 1) and let Tδ be a
parameterized tree on δZ3. We say that Tδ is η-hittable in Bδ(0, R) if the
following event occurs:

H(Tδ, ε; η) :=

 ∀x ∈ Bδ(0, R) with dist(x,Tδ) ≤ ε2,

P x
(
Sx
[
0, ξS(Bδ(x, ε1/2))

]
∩ Tδ = ∅

)
≤ εη

 .
In the definition above, recall that ξS(Bδ(x, ε1/2)) stands for the first

exit time from the δ-scaled discrete ball Bδ(x, ε1/2).

Proposition 5.7.4. There exist constants η > 0 and C < ∞ such that: if
SK
δ is a parameterized subtree of the uniform spanning tree on δZ3 with K

spanning points for all δ ∈ (0, 1), R ≥ 1 and ε > 0,

P
(
H(SK

δ |R, ε; η)
)

≥ 1 − CKR3ε.

Proof. Recall that any path towards infinity in the uniform spanning tree is
equal, in distribution, to a ILERW. Then, the probability that x ∈ Bδ(0, R)
hits the tree SK

δ |R is at least the probability that x hits a restricted ILERW,
where such restriction is up to the first exit of the LERW from Bδ(0, R).
Then Proposition 5.7.1 is a consequence of Proposition 5.3.7.

Remark. The proof of Proposition 5.7.9 can be generalized to any subset
of R3 that is η-hittable with high probability. We restrict to the case of
parameterized subtrees for clarity, and because it is the most relevant for
our purposes. To further increase the clarity of the proof of Proposition 5.7.9,
the reader can think of the subtree SK

n as consisting of a single ILERW.
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5.7.4 Essential branches of parameterized trees

Let T = (X,Γ) be a parameterized tree. For a leaf x(i) ∈ X with i > 1, let

y(i) := tr γx(i) ∩
i−1∪
j=1

tr γx(j) (5.77)

be the intersection point of γx(i) with any of the curves with an smaller index.
We define y(1) to be the point at infinity and say y(i) is a branching point.
When we compare (5.77) with conditions (2a) and (2b) in the definition of
parameterized tree, we see that

y(i) = γx(i)(si,m(j)),

where si,m(j) = minj<i{si,j} is the first merging time.
The parameterized curves γx(i),y(i) are called essential branches for

i = 1, . . . ,K. Note that γx(1),y(1) is the transient curve γx(1) ∈ C, while
γx(i),y(i) ∈ Cf for i = 1, . . . ,K. We denote the set of essential branches by
Γe(T ) := {γx(i),y(i)}1≤i≤K .

Proposition 5.7.5. Assume that Tn → T in the space of parameterized
trees FK . Then

γxn(1),y(1)
n → γxn(1),y(1) as n → ∞

in the space C. For i = 2, . . . ,K, the essential branches and the curves
between branching points converge:

γxn(i),yn(i)
n → γx(i),y(i), γyn(i),yn(j)

n → γy(i),y(j) as n → ∞

in the space of finite parameterized curves Cf .

Proof. The convergence of the first essential branch is immediate from the
definition of the metric dF K , since γxn(1),y(1)

n = γ
xn(1)
n .

To prove the convergence of the other essential branches, and the curves
between branching points, we first need to show that spanning and branching
points converge.
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Each xn(i) ∈ X is the initial point of a curve in Γ and hence conver-
gence in the space of parameterized trees implies that xn → x as n → ∞.
Now we consider a branching point yn(i), with i = 2, . . . ,K. Recall that
yn(i) = γ

x(i)
n (si,m(j)

n ), where si,m(j)
n = minj<i{si,jn }. Since convergence of the

parameterized trees T imply convergence of the merging times si,jn → si,j

as n → ∞, then, for the sequence of minima, si,m(j)
n → si,m(j). With an

application of Proposition 5.3.2 (c), we get convergence of the branching
points yn(i) = γ

x(i)
n (si,m(j)

n ) → γx(i)(si,m(j)) = y(i).
With convergence of both the spanning and branching points, Proposi-

tion 5.3.1 and Proposition 5.3.2 imply that the corresponding restrictions of
γx(i) converge.

Proposition 5.7.6. Assume that Tn = (Xn,Γn) converges to T in the
space FK . If the corresponding collections of spanning points are Xn =
{xn(1), . . . , xn(K)} and X = {x(1), . . . , x(K)}, then

(dTn(xn(i), xn(j)))1≤i,j≤K → (dT (x(i), x(j)))1≤i,j≤K (5.78)

as n → ∞.

Proof. Proposition 5.7.1 shows that restriction, concatenation and time-
reversal of the curves in Γn define γxn(i),xn(j)

n . In fact,

γxn(i),xn(j)
n = γxn(i),yn(i)

n ⊕ γyn(ℓ1),yn(ℓ2)
n ⊕ . . .⊕ γyn(ℓm−1),yn(ℓm)

n ⊕ γyn(j)xn(j)
n ,

(5.79)
where ℓ1 = i and ℓm = j. Then Proposition 5.7.5 implies the convergence of
each essential branch, and Proposition 5.3.1 and Proposition 5.3.2 imply the
convergence of (γxn(i),xn(k)

n )n∈N. In particular, the duration of each curve in
(5.79) converges and we get (5.78).

Conversely, we can reconstruct a tree from a set of essential branches.

Proposition 5.7.7. Let X = {x(1), . . . , x(K)} ⊂ R3 and consider a collec-
tion of curves with the following conditions:

(a) Let γx(1),ỹ(1) be a transient parameterized curve starting at x(1); recall
that ỹ(1) denotes the point at infinity.

165



(b) For i = 2, . . . n, γx(i),ỹ(i) is a parameterized curve starting at x(i) and
ending at ỹ(i), where the endpoint ỹ(i) is the first hitting point to∪i−1
j=1 tr γx(i),ỹ(i).

Then {γx(i),ỹ(i)}1≤i≤K defines a set of transient curves Γ = {γx(i)}1≤i≤K

and a parameterized tree T = (X,Γ).

Proof. First we to construct Γ from the collection of curves {γx(i),ỹ(i)}1≤i≤K .
Note that γx(1),ỹ(1) is already a transient curve starting at x(1). We con-
struct the other elements in Γ recursively. Assume that γx(1), . . . γx(i−1)

have been defined and satisfy conditions (2a) and (2b) in the definition of
parameterized tree. Recall that the endpoint of γx(i),ỹ(i) is ỹ(i), and this
point intersects some γx(j) with j < i. Then

γx(i) = γx(i),ỹ(i) ⊕ γx(j)|[ỹ(j),∞).

Since the endpoint of γx(i),ỹ(i) is the first hitting point to
∪i−1
j=1 tr γx(i),ỹ(i), we

have that (tr γx(i)|[x(i),ỹi) ∩ tr γx(j)) = ∅ for j < i. This construction ensures
that γx(i) satisfies conditions (2a) and (2b), when we compare it against
curves with smaller indexes. We continue with this construction for i =
2, . . .K to define Γ. Therefore T = (X,Γ) is a parameterized tree. Finally,
note that ỹ(i) satisfies (5.77) and hence ỹ(i) = y(i), for i = 2, . . . ,K.

Proposition 5.7.8. Let (Tn)n∈N be a sequence of parameterized trees with
essential branches Γe(Tn) = {γxn(i),yn(i)

n }1≤i≤K . Assume that(
γxn(i),yn(i)
n

)
1≤i≤K

→
(
γx(i),y(i)

)
1≤i≤K

(5.80)

in the product topology as n → ∞ and {γx(i),y(i)} satisfy the conditions
in Proposition 5.7.7. Then (Tn)n∈N converges in the metric space FK to
a parameterized tree T for which Γe(T ) = {γx(i),y(i)}0≤i≤K is a set of
essential branches.

Proof. Convergence of (γxn(i),yn(i)
n )0≤i≤K in the product topology implies

that each element in Γen converges. Proposition 5.7.7 shows that every curve
γ
xn(i)
n is the concatenation of sub-curves of Γe. Moreover, {γx(i),y(i)}i=1...K
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satisfy the conditions in Proposition 5.7.7 and hence they define a param-
eterized tree T with Γ = (γx(i)). Finally, (5.80) implies the convergence
of the branching points yn(i), and from here we get convergence of the
merging times. Then, Proposition 5.3.1 and Proposition 5.3.2 imply that
χ(γxn(i)

n , γx(i)) → 0 as n → ∞. Therefore dF K (Tn,T ) → 0 as n → ∞.

5.7.5 Proof of Theorem 5.7.2

The proof of Theorem 5.7.2 is by mathematical induction. The convergence
in the scaling limit of the ILERW provides the base case. We state the
inductive step in Proposition 5.7.9.

Proposition 5.7.9. Let Un be the uniform spanning tree on 2−nZ3. Let
(xn(i))i=1,...,K+1 be a set of vertices in 2−nZ3 and assume that xn(i) con-
verges to x(i) ∈ R3 as n → ∞. Let γ̄xn(i)

n be the β-parameterization of
the transient path in Un starting at xn(i) and directed towards infinity. As-
sume that (γ̄xn(i)

n )i=1,...,K converges weakly as a parameterized tree to ŜK .
Then (γ̄xn(i)

n )i=1,...,K+1 converges weakly to a parameterized tree ŜK+1, with
respect to the metric FK+1 for parameterized trees.

We devote the rest of this section to the proof of Proposition 5.7.9. It
is based in Proposition 5.7.8. According to the latter proposition, it suffices
to prove convergence of the essential branches with respect to the product
topology. We then shift our attention to the essential branches of an infinite
subtree of the uniform spanning tree. Wilson’s algorithm provides a natural
construction of them; and we present it below. Subsection 5.7.6 develops
the arguments for the proof of Proposition 5.7.9.

Let Un be the uniform spanning tree on 2−nZ3. Let xn(i) ∈ Z3 and
x(i) ∈ R3 as in the statement of Proposition 5.7.9, so xn(i) → x(i) as
n → ∞ for i = 1, . . . ,K+1. Now we apply Wilson’s algorithm on the scaled
lattice 2−nZ3.

• Let γ1
n be an ILERW starting at xn(1), and

γ̄x(1),y(1)
n (t) = γ1

n(2βnt), ∀t ≥ 0.
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be its β-parameterization. Note that we omit the sub-index n on x(1)
and y(1) to ease the notation. This transient curve is the first branch
of the parameterized tree.

• Let γin be the loop-erased random walk started at xn(i), and stopped
when it hits any of the previous loop-erased random walks γ1

n, . . . , γ
i−1
n .

Let yn(i) ∈ 2−nZ3 be the hitting point, and set

γ̄x(i),y(i)
n = γin(2βnt), ∀t ∈ [0, 2−βn len(γin)].

The duration of the curve γ̄x(i),y(i)
n is 2−βn len(γin), i.e. the length of

the path γin with the appropriate scaling. We also omit the sub-index
n on x(i) and y(i) when they appear in the curve γ̄x(i),y(i)

n .

Set Xn = {xn(1), . . . , xn(K)} and Γen = {γ̄x(i),y(i)
n : i = 1, . . . ,K}.

By Proposition 5.7.7, Xn and Γen determine a parameterized tree SK
n , and

Wilson’s algorithm shows that tr SK
n is equal in distribution to the subtree

of Un spanned by Xn and the point at infinity.
As part of the proof of Theorem 5.7.2, we will show that the limit

of parameterized trees ŜK has the following (formal) representation (see
Lemma 5.7.19). The next construction is Wilson’s algorithm, but in this
case, the branches have the distribution of the scaling limit of the ILERW.

• Let γ̂x(1),y(1) ∈ C be the scaling limit of ILERW starting at x(1),
endowed with the natural parameterization, see [127].

• Let γ̂x(i),y(i) ∈ Cf be the scaling limit of LERW started at x(i), and
stopped when it hits any of γ̂x(1),y(1), . . . , γ̂x(i−1),y(i−1). (Our construc-
tion will give that this hitting time is finite, see Lemma 5.7.18.) Here
we denote the hitting point by y(i).

Set X = {x(1), . . . , x(K)} and Γ̂e = {γ̂x(i),y(i)}1≤i≤K . Proposition 5.7.7
defines the parameterized tree ŜK = (X, Γ̂) with set of essential branches
Γe(SK) = Γ̂e.
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5.7.6 Proof of Proposition 5.7.9

The next proposition allows us to work with restrictions of parameterized
trees, when we compare them within a smaller subset.

Proposition 5.7.10. Let SK
δ be a parameterized subtree of the uniform

spanning tree on δZ3 with K spanning points. Assume that |x| < m for each
x ∈ K. Then for r > s ≥ m2 > 0,

P
(
(SK

δ |r△SK
δ |s) ∩BE(m) ̸= ∅

)
≤ Kδm−1[1 +O(m−1)]. (5.81)

Proof. The restrictions SK
δ |r and SK

δ |s are different inside BE(m) when a
path returns to BE(m) after its first exit from BE(r); we refer to Figure 5.9
as an example of this situation. By virtue of Wilson’s algorithm and a
union bound, the probability on (5.81) is bounded above by the probability
of return to B(mδ−1) of K simple random walks on Z3:

K sup
x∈∂B(sδ−1)

P xS

(
τS(B(mδ−1)) < ∞

)
,

where P xS indicates the probability measure of a simple random walk on Z3

started at x, and τS(B(mδ−1)) is the first time that the random walk S

hits the ball B(mδ−1). Therefore, the upper bound in (5.81) follows from
well-known estimates on the return probability for the simple random walk,
see e.g. [117, Proposition 6.4.2].

The proof of Proposition 5.7.9 is divided into a sequence of lemmas, and
these are grouped into five steps. The final and sixth step finishes the proof.

Step 1: set-up.

We begin with the set-up of the proof. First note that the assumptions
of Proposition 5.7.9 indicate that (γ̄x(i)

n )1≤i≤K converges in distribution.
From now on, we work in the coupling given by Skorohod’s embedding
theorem where (γ̄x(i)

n )1≤i≤K converges to a collection of continuous curves
(γ̂x(i))1≤i≤K , almost surely.
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Let Sn = (Sn(t))t∈N be an independent random walk on δnZ3 starting
at xn(K + 1). Consider the hitting time of the parameterized tree SK

n , as
given by

ξS
n = inf

{
t ≥ 0 : Sn(t) ∩ tr SK

n ̸= ∅
}
.

We let γn = LE
(
Sn[0, ξS ]

)
be the corresponding LERW from xn(K + 1) to

SK
n , and set

γ̄n(t) = γn(2βnt), ∀t ∈ [0, 2−βn len(γn)].

We want to show that γ̄n converges to a scaling limit. Since the domain
Z3 \ ∪Ki=1 tr γ̄x(i) does not have a polyhedral boundary, we cannot use [127,
Theorem 1.3] directly. To get around this obstacle, we approximate with
a simpler domain. Furthermore, to gain some control over the paths of
the loop-erased random walks (γ̄x(i)

n )1≤i≤K , we also need to work within a
bounded domain.

We write Dn(R) = D2−n(R) to denote an scaled discrete box with side
length R ≥ 1 around the origin. Since the points x(1), . . . , x(K + 1) are
fixed, we can take R large enough so that x(1), . . . , x(K + 1) ∈ Dn(R).
For each curve γ̄x(i)

n ∈ Γ and for the parameterized tree SK
n , we denote its

restriction to the closed box D̄n(R) with a super-index, as γx(i),R
n and SK,R

n ,
respectively. We also consider the ILERW in the domain Dn(R) \ tr SK,R

n .
The exit time from such domain for the random walk Sn is

ξS ,R
n = inf

{
t ≥ 0 : Sn(t) ∩

(
∂Dn(R) ∪ tr SK,R

n

)
̸= ∅

}
.

The curve γRn = LE
(
Sn[0, ξS ,R]

)
is the LERW from xn(K + 1) to either

SK,R
n or the boundary of Dn(R); and we set

γ̄Rn (t) = γRn (2βnt), ∀t ∈ [0, 2−βn len(γRn )]. (5.82)

Note that we omit xn(K+1) as a super-index of γRn to simplify the notation.
We emphasize that γ̄Rn is not necessarily the same as γ̄n|R, where the latter
is the restriction of the ILERW to the box Dn(R),
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For each integer u, the cubes at scale u are closed cubes with vertices in
2−uZ3 and side length 2−u. For u ≤ n, let Au,Rn be the u-dyadic approxi-
mation to tr SK,R

n , defined by

Au,Rn :=
∪
j

{C(u) : dist(C(u), tr SK,R
n ) ≤ 2−2u}. (5.83)

Proposition 5.7.11. With fixed n ∈ N, the sequence of sets (Au,Rn )u∈N

converges to tr SK,R
n in the Hausdorff topology. If u ∈ N is fixed, then the

sequence (Au,Rn )n∈N is eventually constant, almost surely.

Proof. We begin with n ∈ N fixed. The construction of an u-dyadic approx-
imation provides that dH(Au,Rn , tr SK,R

n ) ≤ 2−(u−2). From here, it follows
the convergence of (Au,Rn )v∈N in the Hausdorff topology.

Next we consider (Au,Rn )n∈N with u fixed. In this case, note that the
a.s. convergence of SK,R

n implies the a.s. convergence of tr SK,R
n in the

Hausdorff topology. Then, for N large enough, dH(tr SK,R
n , tr SK,R

m ) <

2−4u, if n,m ≥ N , almost surely. It follows that (Au,Rn )n≥N is constant
almost surely.

We denote the constant limit of Au,Rn , as n → ∞, by Au,R.
For each n, u ∈ N with u ≤ n, consider the loop-erasure of the random

walk Sn started from xn(K+1), and stopped when it exits Dn(R)\tr SK,R
n .

We denote the latter hitting time by ξP,R
u , and the corresponding LERW by

γu,Rn = LE(Sn[0, ξP,R
u ]). (5.84)

This curve has the β-parameterization

γ̄u,Rn (t) := γu,Rn (2βnt), ∀t ∈ [0, 2−βn len(γu,Rn )]. (5.85)

The weak convergence of (5.85) is an immediate consequence of [127, Theo-
rem 1.4] and Proposition 5.7.11. We state this observation below as Lemma
5.7.15.
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Figure 5.10: The figure shows the decomposition of the curves γ̄u,Rn
and γ̄v,Rn used in the proof of Proposition 5.7.9. The curve γ̄u,Rn
is the concatenation of γ̄0 (in purple) and ζ̄u,vn (in red). The
curve γ̄v,Rn is the concatenation of γ̄0 and η̄u,vn (in blue). The
figure also shows a restriction of the random walk Sn from yn
to zn (in yellow). In this case, Sn avoids hitting Av,Rn when it
is close to yn.

Step 2: comparing γ̄u,Rn and γ̄v,Rn

Let γ̄u,Rn and γ̄v,Rn be the loop-erased random walks defined in (5.85). Our
aim is to bound the distance ψ(γ̄u,Rn , γ̄v,Rn ) for large values of n, u and v.
Let us consider the event where this distance is large. More precisely, for
ε > 0 and integers n, u and v, with u, v < n, we define

Eu,vn (ε) :=
{
ψ(γ̄u,Rn , γ̄v,Rn ) ≥ ε

}
.

Recall that we use the same random walk on 2−nZ3 to generate γ̄u,Rn and
γ̄v,Rn . Typically, these two curves have a segment in common, γ̄0 (see Fig-
ure 5.10). We claim that γ̄u,Rn \ γ̄0 and γ̄v,Rn \ γ̄0 have a small effect on
ψ(γ̄un, γ̄vn).

Towards proving the preceding claim, we start by introducing some fur-
ther notation for elements in the curves γ̄u,Rn and γ̄v,Rn ; Figure 5.10 serves
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as a reference. For clarity, and without loss of generality, we elaborate our
arguments on the event where the random walk Sn hits the boundary of
Pu,R first, that is

Fu :=
{
ξP,R
u ≤ ξP,R

v

}
,

and hence it generates γ̄u,Rn before γ̄v,Rn . The symmetric event is Fv :=
{ξP,R
v ≤ ξP,R

u }. We will consider the restriction of the random walk Sn:

Su,vn := Sn|[ξP,R
u ,ξP,R

v ].

Denote the endpoint of γ̄u,Rn by yn := Sn(ξP,R
u ). To simplify notation, we

denote the durations of γ̄u,Rn and γ̄v,Rn by

T u = T (γ̄u,Rn ), T v = T (γ̄v,Rn ),

respectively. The last time that Su,vn hits its past γ̄u,Rn determines the end-
point of γ̄0. Let

ξP,R
z := sup{t ≤ ξP,R

v : S(t) ∈ γ̄u,Rn }

and set zn := S(ξP,R
z ). Let Tz be such that γ̄v,Rn (Tz) = γ̄v,Rn (Tz) = zn.

We then have for the common curve γ̄0 = γ̄u,Rn [0, Tz] = γv,Rn [0, Tz]. The
difference between γ̄u,Rn and γ̄v,Rn are the curves

ζ̄u,vn := γ̄u,Rn [Tz, T
u], η̄u,vn = γ̄v,Rn [Tz, T

v].

Note that the range of η̄u,vn is a subset of Su,vn .
We now compare the shapes of γ̄v,Rn and γ̄u,Rn . In particular, we note

that the respective traces of these curves can be significantly different if one
of the next two bad events occur. The first event controls the diameter of
η̄u,vn , while the second event imposes a limit on the size of ζ̄u,vn .

• Since η̄u,vn is a subset of Su,vn , η̄u,vn has a diameter larger than ε0 only
if Su,vn , the segment of the random walk Sn between the hitting times
ξP,R
u and ξP,R

v , has a similarly large diameter. We denote this event
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Figure 5.11: A realization of the event Du,v
n (ε)c ∩ Q(εM , ε). In the

figure, γ̄u,Rn is the concatenation of the purple and blue curves,
while γ̄v,Rn is the concatenation of the purple and red curves.

by
Du,v
n (ε0) := {diam(Su,vn ) ≥ ε0} .

• On the complementary event Du,v
n (ε0)c, the curve ζ̄u,vn has diameter

larger than ε only if γ̄u,Rn has an (ε0, ε)–quasi-loop. Figure 5.11 shows
an example of this situation. Let

Q(ε0, ε; γ) := {γ has an (ε0, ε)-quasi-loop},

and Qn(ε0, ε) = Q(ε0, ε; γ̄un) ∪ Q(ε0, ε; γ̄vn).

Combining the definitions above, we introduce a bad event for the shape by
setting

Bu,vn (ε) := Du,v
n (εM ) ∪ Qn(εM , ε),
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noting that we have taken ε0 = εM , with M > 1 being the exponent of
Proposition 5.3.11. We highlight that, on the event (Bu,vn (ε))c, it holds that
dH(γ̄u,Rn , γ̄v,Rn ) ≤ ε.

The following result establishes that, on (Bu,vn (ε))c, γ̄u,Rn and γ̄v,Rn are
also close as parameterized curves. The issue here is that even if the traces
of two curves may be close in shape, they may take a large number of
steps in a small diameter. We will compare the Schramm and intrinsic
distances, as defined at (5.18) and (5.19), on the event (Bu,vn (ε))c where
the shapes are close to each other. The Schramm and intrinsic distances
of γ̄u,Rn are comparable on the events S†

2−n(R, ε) and E†
2−n(R, ε). These

events are introduced in Subsection 5.3.5. To simplify notation, we write
S†
n(R, ε) = S†

2−n(R, ε) and E†
n(R, ε) = E†

2−n(R, ε).

Lemma 5.7.12. Fix R ≥ 1 and let ε ∈ (0, 1). On the event (Bu,vn (ε))c ∩
S†
n(Rε−1, ε), we have that

T (η̄u,vn ) ≤ Rεβ−1, T (ζ̄u,vn ) ≤ Rεβ−1.

Proof. In this proof, we write G = (Bu,vn (ε))c ∩ S†(Rε−1, ε). We begin with
an upper bound for the duration of η̄u,vn . On G, the random walk Su,vn is
localized in a neighbourhood around yn. Indeed, on Du,v

n (εM )c we have that
diam(Su,vn ) ≤ εM . Since η̄u,vn is a subset of Su,vn , it follows that diam(η̄u,vn ) <
εM , and, in particular, for the endpoints of η̄u,vn , zn and wn say (as in
Figure 5.10), we have that dSγ̄v

n
(zn, wn) = dSη̄ (zn, wn) ≤ εM < ε. On G ⊆

S†
n(Rε−1, ε), this implies that

T (η̄u,vn ) = dγ̄v
n
(zn, wn) ≤ Rεβ−1.

Next we bound the duration of ζ̄u,vn on the event G. We have that the
endpoints of ζ̄u,vn are in Su,vn . Indeed, yn = Su,vn (0) and zn ∈ ζ̄u,vn ⊆ Su,vn .
Thus

|zn − yn| < εM . (5.86)

On the event G ⊆ Q(εM , ε)c, the loop-erased random walk γ̄u,Rn does not
have (εM , ε)–quasi-loops, and so (5.86) implies that dSγ̄u

n
(zn, yn) < ε. The
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argument used for η̄u,vn also gives T (ζ̄u,vn ) = dγ̄u
n
(zn, yn) < Rεβ−1.

We finish this step by showing that Eu,vn (ε) can be contained in the events
already described.

Lemma 5.7.13. Let R ≥ 1 and ε > 0. On the event Bu,vn (ε)c∩S†
n(Rε−1, ε)∩

E†
n(R, ε), we have that

ψ(γ̄u,Rn , γ̄v,Rn ) ≤ CRb3εβ
′
,

where 0 < b3, C < ∞ are universal constants, and β′ = b3(β − 1).

Proof. It suffices to show that on the event G2 = Bu,vn (ε)c ∩ S†(Rε−1, ε) ∩
E†(R, ε),

ψ(γ̄un, γ̄vn) = |T u − T v| + max
0≤s≤1

|γ̄un(sT u) − γ̄vn(sT v)| ≤ CRb3εβ
′
. (5.87)

Lemma 5.7.12 gives |T u−T v| < 2Rεβ−1. Next we bound the second term in
(5.87). Let a = γ̄u,Rn (sT u) and b = γ̄v,Rn (sT v) and assume that one of these
points belongs to the common path, say b ∈ γ̄0. In this case, sT v ≤ T u and
we can re-write b = γ̄u,Rn ((s(T v/T u))T u). Then, with respect to the intrinsic
metric of γ̄u,Rn , we compare points within distance

dγ̄u
n
(a, b) ≤ |sT u − (sT v/T u)T u| ≤ 2Rεβ−1.

We introduce

Nu = sup
{

|a− b| : a, b ∈ tr γ̄u,Rn , dγ̄u
n
(x, y) ≤ 2Rεβ−1

}
,

define Nv similarly from γ̄vn, and also introduce notation for the diameter of
the segments η̄u,vn and ζ̄u,vn by setting

Nη = sup
0≤t≤len(η̄u,v

n )
|η̄u,vn (t) − zn|, N ζ = sup

0≤t≤len(ζ̄u,v
n )

|ζ̄u,vn (t) − zn|.
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It readily holds that we have the following bound:

max
0≤s≤1

|γ̄un(sT u) − γ̄vn(sT v)| ≤ Nu +Nv +Nη +N ξ. (5.88)

Lemma 5.7.12 implies that dη(a, b) < Rεβ−1 for all a ∈ tr η. Let b3 =
b2
b1

, where b1 and b2 are the constants of Proposition 5.3.5. On the event
E†
n(R, ε), we thus have that Nη ≤ Rb3εb3(β−1), and similarly for N ξ. On

the event E†
n(R, ε), the loop-erased random walks γ̄un and γ̄vn are uniformly

equicontinuous, so that Nu ≤ CRb3εb3(β−1), and the same bound holds for
Nv. Adding the upper bounds for Nu, Nv Nη and N ξ in (5.88), we get
(5.87).

Step 3: bounding P(Eu,vn (ε))

In this step, we give an upper bound on the probability of the bad event
Eu,vn (ε). The key is that, given u, and v, this estimate is uniform over all n
for u and v large enough.

Lemma 5.7.14. Fix R ≥ 1. For each ε ∈ (0, 1), there exists U = U(ε) such
that for all n ≥ u, v ≥ U(ε)

P (Eu,vn (ε)) ≤ Cεθ,

for constants C = C(R) > 0 and θ = θ(R) > 0, depending only on R.

Proof. Lemma 5.7.13 gives that

P
(
Eu,vn (CRεβ′)

)
≤ P

(
Du,v
n (εM )

)
+ P

(
Q(εM , ε)

)
+ P

((
S†
n(Rε−1, ε)

)c)
+ P

((
E†
n(R, ε)

)c)
. (5.89)

Proposition 5.3.11 implies

P(Q(εM , ε)) ≤ P(Q(εM , ε2)) ≤ CR3εb̂2 ,

and Propositions 5.3.12 and 5.3.13 give upper bounds for the last two terms
of (5.89). Thus we are left to bound the probability of Du,v

n (εM ). For this,
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we need U(ε) large enough so that, by Proposition 5.7.11, we have that

dH(Au,Rn , Av,Rn ) < ε4M for all u, v ≥ U(ε). (5.90)

On Fu, γ̄u,Rn is the first walk LERW to stop, and we call its endpoint
yn ∈ ∂Pu,R. From (5.90), we have dist(yn, ∂Pv,R) < ε4M . But, along
Su,vn , the random walk Sn reaches distance εM before hitting ∂Pv,R. The
same argument on the complement of Fu, i.e. on Fv. Hence Proposition
5.7.4 implies that P(Du,v

n (εM )) ≤ CKR3ε2M + ε2Mη̂. In conjunction with
the aforementioned bounds,

sup
n,u,v:

n≥u,v≥U

P
(
Eu,vn (Rb3εβ

′)
)

≤ CKR3ε2M + ε2Mη̂ + Cεη̃

+ C

(
R

ε

)3
e−c( R

ε )a

+ Cεb2 .

The dominant term above is εθ(R), and a reparameterization completes the
proof.

Step 4: the scaling limit of a loop-erased random walk

Recall that γ̄Rn is the LERW on D̄n(R)\SK,R
n defined in (5.82). In (5.85), we

defined γ̄u,Rn , for u ≤ n, as the β-parameterization of the loop-erased random
walk LE

(
Sn[0, ξP,R

m ]
)
, where ξP,R

m is the first exit time from the dyadic
polyhedron Pm,R. In this step, we establish that γ̄Rn and γ̄u,Rn converge to
the same limit. We take limits on each variable in the following order. For
γ̄u,Rn , we first take n → ∞. The limit object is a curve on the bounded
and polyhedral domain DE(R) \ Au,R ⊂ R3, where Au,R is the polyhedral
domain of Proposition 5.7.11. Then we take u → ∞, and the limit is a curve
on the bounded set DE(R) \ tr SK,R. In Step 5, we take R → ∞, and we
thus define γ̂ as a limit curve on the full space R3 \ tr SK .

Lemma 5.7.15. Fix R ≥ 1. For each u ∈ N, the law of γ̄u,Rn converges with
respect to the metric ψ, as n → ∞.

Proof. Proposition 5.7.11 shows that the domain γ̄u,Rn is the polyhedron
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DE(R)\Au,R, for n large enough. Then, the weak convergence of {γ̄u,Rn }n∈N

is an immediate consequence of Proposition 5.3.14.

We denote by γ̂u,R a curve with the limit law of Lemma 5.7.15.

Lemma 5.7.16. Fix R ≥ 1. Let (γ̂u,R)u∈N be the sequence of limit ele-
ments from Lemma 5.7.15. It is then the case that (γ̂u,R)u∈N converges in
distribution in the metric ψ as u → ∞.

Proof. Denote the laws of γ̄u,Rn and γ̂u,R by L(γ̄u,Rn ) and L(γ̂u,R), respec-
tively. Since (Cf , ψ) is a complete and separable metric space (see [94, Sec-
tion 2.4]), to prove weak convergence it suffices to show that (L(γ̂u,R))u∈N is
a Cauchy sequence in the Prohorov metric dP. Let u, v ∈ N. By the triangle
inequality, for n ≥ u, v,

dP(L(γ̂u,R),L(γ̂v,R)) ≤ dP(L(γ̂u,R),L(γ̄u,Rn )) + dP(L(γ̂v,R),L(γ̄v,Rn ))

+ sup
n≥u,v

dP(L(γ̄u,Rn ),L(γ̄v,Rn )). (5.91)

Letting n → ∞, the first two terms on the right hand side of (5.91) converge
to 0 by Lemma 5.7.15. Moreover, Lemma 5.7.14 shows that the last term
of (5.91) converges to 0 as u, v → ∞. Therefore (L(γ̂u,R))u∈N is a Cauchy
sequence in the Prohorov metric. It follows that (γ̂u,R)u∈N converges weakly.

We denote by γ̂R a curve with the limit law of Lemma 5.7.16. The
random curve γ̂R is the limit of dyadic approximations. We see below that
it is also the limit of the LERWs stopped when they hit SK,R.

Lemma 5.7.17. Fix R ≥ 1. Then γ̄Rn → γ̂R in distribution as n → ∞,
with respect to the metric ψ.

Proof. Since γ̄u,Rn → γ̂u,R in distribution as n → ∞, and γ̄u,R → γ̂R in
distribution as u → ∞, to complete the proof it suffices to notice that, for
ε > 0,

lim
u→∞

lim sup
n→∞

P
(
ψ(γ̄u,Rn , γ̄Rn ) > ε

)
= 0,
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see [33, Theorem 3.2], for example. However, since γ̄Rn = γ̄n,Rn , the above
statement readily follows from Lemma 5.7.14.

Step 5: taking R → ∞

Until this point, we have only considered LERW inside a boxDE(R). Indeed,
γ̄Rn was defined as a LERW in Dn(R)\SK

n , and its scaling limit γ̂R is within
DE(R). In this final step, we will take R → ∞ to consider the tree ŜK and
the random walk Sn in the full space.

Lemma 5.7.18. Let
(
γ̂R
)
R≥1

be the sequence of limit elements from Lemma

5.7.16 and ŜK is the parameterized tree in Proposition 5.7.9. There exists
a random element γ̂ ∈ Cf such that γ̂R converges in distribution to γ̂ in the
metric ψ as R → ∞. Moreover, the intersection of tr γ̂ and tr ŜK is the
endpoint of γ̂.

Proof. Denote the laws of γ̄Rn and γ̂R by L(γ̄Rn ) and L(γ̂R), respectively.
This proof is similar to the one for Lemma 5.7.16 as we will show that(
L(γ̂R)

)
R≥1

is a Cauchy sequence in the Prohorov metric dP. For two
integers r > s > 0, the triangle inequality yields

dP (L(γ̂r, γ̂s)) ≤ dP (L(γ̂r, γ̄rn))+dP (L(γ̂s, γ̄sn))+sup
n
dP (L(γ̄rn, γ̄sn)) . (5.92)

Letting n → ∞, the first two terms on the right hand side of (5.92) converge
to 0 by Lemma 5.7.17. Then we are left to bound supn dP (L(γ̄rn, γ̄sn)).

dP (L(γ̂r, γ̂s)) ≤ sup
n
dP (L(γ̄rn, γ̄sn)) . (5.93)

Recall that we sample γ̄rn and γ̄rn as loop-erasures of the simple random walk
Sn. On the event that SK,r

n △SK,s
n ∩B(s1/2) = ∅, γ̄rn = γ̄rn (as parameterized

curves) whenever Sn hits tr SK,r
n before reaching the boundary of Bn(s1/2),

and so

P (γ̄rn ̸= γ̄sn) ≤P
(
(SK,r

n △SK,s
n ) ∩Bn(s1/2) ̸= ∅

)
+ P

(
Sn[0, ξS(Bn(s1/2))] ∩ tr SK,r

n ̸= ∅
)
.
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Proposition 5.7.10 gives P
(
(SK,r

n △SK,s
n ) ∩Bn(s1/2) ̸= ∅

)
→ 0 as s → ∞.

Recall that SK
n is a subtree of the uniform spanning tree, including a path

to infinity. Then, Proposition 5.7.4 implies that

P
(
S[0, ξS(Bn(s1/2))] ∩ tr SK,r

n ̸= ∅
)

→ 0 as r, s → ∞.

Therefore, (5.93) converges to 0 as r, s → ∞. It follows that
(
L(γ̂R)

)
R≥1

is
a Cauchy sequence in the Prohorov metric. Since dP is a complete metric,
we conclude that

(
L(γ̂R)

)
converges weakly. Such limit is a random element

γ̂ taking values in Cf , and in particular γ̂ has finite duration.
On the space of finite curves (Cf , ψ), the evaluation of the endpoint

defines a continuous function E : Cf → R3. Therefore, as we take n → ∞,
the endpoint of E(γ̄Rn ) ∈ tr SK

n converges to E(γ̂R) (see [33, Theorem 5.1],
for example). Proposition 5.3.8 implies that, with probability one, E(γ̄Rn ) ∈
tr SK

n for R large enough. Additionally, note that SK
n converges weakly to

SK as a parameterized tree, when n → ∞. It follows that the law of E(γ̂R)
is supported on SK .

Lemma 5.7.19. The collection of curves Γe(ŜK) ∪ {γ̂} define a parame-
terized tree ŜK+1. This tree coincides with the description in Section 5.7.5.

Proof. Lemma 5.7.18 shows that Γc(SK) ∪ {γ̂} satisfies the conditions of
Proposition 5.7.7. It follows that Γc(SK) ∪ {γ̂} is the set of essential
branches for a parameterized tree ŜK+1.

Finally, note that Lemma 5.7.17 shows that γ̂ is the limit of scaled loop-
erased random walks, stopped when they hit the previous limit element
tr SK , and such hitting time is finite. Therefore ŜK+1 is the tree of Section
5.7.5.

Step 6: the scaling limit of parameterized trees

Proof of Proposition 5.7.9. First let us describe the probability measure in-
duced by (SK

n , γ̄n). Let µn be the probability measure on FK induced by
SK
n . For each SK

n ∈ FK , let νγn
n be the probability measure on (Cf , ψ)
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induced by the loop-erased random walk γ̄n; recall that γ̄n is stopped when
it exits (R3 \ tr SK

n ) ∩ Z3. The measure νγn
n defines the stochastic kernel

Kn(SK
n , A) = νγn

n (A), ∀SK
n ∈ FK , A ∈ B(Cf ),

where B(Cf ) is the Borel σ-algebra corresponding to (Cf , ψ). That is, the
probability measure induced by (SK

n , γ̄n), µn ⊗Kn say, is the unique prob-
ability measure such that

µn ⊗Kn(A1 ×A2) =
∫
A1
Kn(SK

n , A2)µn(dSK
n ),

for Borel sets A1 ∈ B(FK) and A2 ∈ B(Cf ).
Now, recall we are supposing that we have a coupling so that SK

n →
ŜK , almost-surely. In what follows, we write P∗ for the corresponding
probability measure. From Lemma 5.7.18, we obtain that, P∗-a.s., νγn

n → ν γ̂

as n → ∞, where ν γ̂ is the law of γ̂. Hence ν γ̂ is P∗-measurable, and, in
particular, so is ν γ̂(A) for all A ∈ B(Cf ). As a consequence, the integral

µ⊗K (A1 ×A2) :=
∫

1A1(ŜK)ν γ̂(A2)dP∗

is well-defined for every A1 ∈ B(FK), A2 ∈ B(Cf ). Moreover, µ ⊗ K is
readily extended to give a measure on the product space FK × Cf . Finally,
let A1 ∈ B(FK), A2 ∈ B(Cf ) be continuity sets for µ ⊗ K, in the sense
that µ ⊗ K(∂A1 × Cf ) = 0 = µ ⊗ K(FK × ∂A2). We then have that, P∗-
a.s., 1A1(SK

n )ν γ̂n(A2) → 1A1(ŜK)ν γ̂(A2). An application of the dominated
convergence theorem thus yields

µn ⊗Kn(A1 ×A2) → µ⊗K (A1 ×A2) ,

which is enough to establish that µ⊗K is a measure on (FK , Cf ) (see [33,
Theorem 2.8]). Lemma 5.7.19 shows that µ ⊗ K defines a measure on the
spaces of parameterized trees FK+1.
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5.8 Proof of tightness and subsequential scaling
limit

Given the preparations in the previous sections, we are now in a position to
establish the first main result of this article, namely Theorem 5.1.1.

Proof of Theorem 5.1.1. We start by establishing the parts of the result con-
cerning the Gromov-Hausdorff-type topology. Applying Lemma 5.2.3, the
tightness claim follows from Proposition 5.4.1, Corollary 5.4.1 and Propo-
sition 5.4.5. It remains to check the distributional convergence of Un as
n → ∞, where we write Un for the random measured, rooted spatial tree
at (5.1), indexed by δn = 2−n. By the first part of the theorem and Pro-
horov’s theorem (see [93, Theorem 16.3], for example), we know that every
subsequence (Uni

)i≥1 admits a convergent subsubsequence (Unij
)j≥1. Thus

we only need to establish the uniqueness of the limit.
Now, suppose (Uni

)i≥1 is a convergent subsequence, and write T =
(T , dT , µT , ϕT , ρT ) for the limiting random element in T. To show that
the convergence specifies the law of T uniquely, we will start by considering
finite restrictions of Uni

, i ≥ 1. In particular, for R ∈ (0,∞), set U (R)
ni as(

B(δ−1
ni
R), δβni

dU |B(δ−1
ni
R)×B(δ−1

ni
R), δ

3
ni
µU
(
· ∩B(δ−1

ni
R)
)
, δniϕU |B(δ−1

ni
R), ρU

)
,

i.e. the part of Uni
contained inside B(δ−1

ni
R). (We acknowledge this notation

clashes with that used in Section 5.2 for restrictions to balls with respect to
the tree metric.) Note that, by (5.13), we have that

lim
R→∞

lim sup
i→∞

P
(
∆
(
U (R)
ni
,Uni

)
> ε

)
≤ lim

R→∞
lim sup
i→∞

(
1{e−λ−1Rβ

>ε} + P
(
BU (0, λ−1δ−β

ni
Rβ) ̸⊆ B(δ−1

ni
R)
))

≤ Ce−cλa

for any ε > 0 and λ ≥ 1, where we have applied Proposition 5.6.1 to deduce
the final bound. In particular, since λ can be taken arbitrarily large in the
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above estimate, we obtain that

lim
R→∞

lim sup
i→∞

P
(
∆
(
U (R)
ni
,Uni

)
> ε

)
= 0. (5.94)

As a consequence, to prove the uniqueness of the law of T , it will be enough
to show that, for each R ∈ (0,∞), (U (R)

ni )i≥1 converges in distribution to
a uniquely specified limit. Indeed, if T (R) is the limit of U (R)

ni , then, since
Uni

d→ T (as i → ∞) and (5.94) both hold, we have that T (R) d→ T as
R → ∞.

Next, for given ni and R, consider the measure π(R)
ni on B(δ−1

ni
R) × R3

given by

π(R)
ni

(dxdy) =
µU (dx)δδniϕU (x)(dy)

µU (B(δ−1
ni R))

,

where δz(·) is the probability measure on R3 placing all its mass at z. We
will check that the triple(

B(δ−1
ni
R), δβni

dU |B(δ−1
ni
R)×B(δ−1

ni
R), π

(R)
ni

)
(5.95)

converges in the marked Gromov-weak topology of [58, Definition 2.4]; a
characterisation of this convergence that will be relevant to us is given in
the following paragraph. Towards establishing tightness, we first note that
the projections of π(R)

ni onto the sets B(δ−1
ni
R) and R3 are simply the uni-

form probability measures on B(δ−1
ni
R) and δniB(δ−1

ni
R), respectively. Since

the latter measure clearly converges to the uniform probability measure on
BE(R), by [58, Theorem 4] (see also [74, Theorem 3]), the desired tightness
is implied by the following two conditions.

(a) The distributions of

δβni
dU
(
ξni,R

1 , ξni,R
2

)
, i ≥ 1,

are tight, where ξni,R
1 and ξni,R

2 are independent uniform random vari-
ables on B(δ−1

ni
R), independent of U .
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(b) For every ε > 0, there exists an η > 0 such that

E
(
δ3
ni
µU
({
x ∈ B(δ−1

ni
R) : µU

(
BU (x, δ−β

ni
ε) ∩B(δ−1

ni
R)
)

≤ η
}))

≤ ε.

The fact that (b) holds readily follows from the mass lower bound of Corol-
lary 5.4.1. As for (a), this is a simple consequence of Corollary 5.7.1. More-
over, if we write (ξni,R

j )j≥1 for a sequence of independent uniform random
variables on B(δ−1

ni
R), independent of U , then Corollary 5.7.1 further implies

that ((
δβni
dU
(
ξni,R
j , ξni,R

k

))
j,k≥1

,
(
ξni,R
j

)
j≥1

)
(5.96)

converges in distribution. This enables us to deduce, by applying [58, The-
orem 5, see also Remark 2.7], that the triple at (5.95) in fact converges
in distribution in the marked Gromov-weak topology. We denote the limit
by (T (R), dT (R) , πT (R)), where (T (R), dT (R)) is a complete, separable metric
space, and πT (R) is a probability measure on T (R)×R3 such that πT (R)(·×R3)
has full support on T (R). In addition, by combining (5.43) with Proposi-
tion 5.4.5, we have the following adaptation of Assumption 3: there exists
a continuous, increasing function h(η) with h(0) = 0 such that

lim
η→0

lim inf
δ→0

P

 sup
x,y∈B(δ−1R):
δβdU (x,y)<η

δ |ϕU (x) − ϕU (y)| ≤ h(η)

 = 1.

This allows us to apply [103, Theorem 3.7] to deduce that

πT (R)(dxdy) = µT (R)(dx)δϕT (R) (x)(dy),

where µT (R) is a probability measure on T (R) of full support, and ϕT (R) :
T (R) → R3 is a continuous function.

As a consequence of the convergence described in the previous paragraph
and the separability of the marked Gromov-weak topology (see [58, Theo-
rem 2]), we can assume that all the random objects are built on the same
probability space with probability space with probability measure P∗ such
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that, P∗-a.s.,(
B(δ−1

ni
R), δβni

dU |B(δ−1
ni
R)×B(δ−1

ni
R), π

(R)
ni

)
→
(
T (R), dT (R) , πT (R)

)
.

By [58, Lemma 3.4], this implies that, P∗-a.s., there exists a complete and
separable metric space (Z, dZ) and isometric embeddings

ψni : (B(δ−1
ni
R), δβni

dU ) → (Z, dZ), ψ : (T (R), dT (R)) → (Z, dZ)

such that
π(R)
ni

◦ (ψ̃ni)−1 → πT (R) ◦ ψ̃−1 (5.97)

weakly as probability measures on Z × R3, where ψ̃ni(x, y) = (ψni(x), y)
and ψ̃(x, y) = (ψ(x), y). From our initial assumption that (Uni

)i≥1 is dis-
tributionally convergent in T, Corollary 5.4.1 and (5.43), we further have
the existence of a deterministic subsequence (nij )j≥1 such that, P∗-a.s.,
Unij

→ T in T,

inf
j≥1

δ3
nij

inf
x∈B(δ−1

nij
R)
µU
(
BU (x, δ−β

nij
δ)
)
> 0, ∀δ > 0, (5.98)

and also
sup

x∈B(δ−1
nij

R)
δβnij

dU (0, x) → Λ ∈ (0,∞). (5.99)

Now, taking projections onto Z and rescaling, we readily obtain from (5.97)
that

δ3
ni
µU
(
(ψni)−1(·) ∩B(δniR)

)
→ cµT (R) ◦ ψ−1 (5.100)

weakly as probability measures on Z, where the constant c is the Lebesgue
measure of BE(R). Moreover, appealing again to the mass lower bound of
(5.98), we also obtain the subsequential convergence of measure supports,
i.e.

ψnij

(
B(δnij

R)
)

→ ψ
(
T (R)

)
with respect to the Hausdorff topology on compact subsets of Z (cf. the
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argument of [14, Theorem 6.1], for example). That T (R) is indeed compact
is established as in [14], and that it is a real tree follows from [67, Lemma
2.1]. In particular, if we define a sequence of correspondences by setting

Cnij
:=

 (x, x′) ∈ B(δnij
R) × T (R) :

dZ
(
ψnij

(x), ψ(x′)
)

≤ 2dZH
(
ψnij

(B(δnij
R)), ψ(T (R))

)  ,
where dZH is the Hausdorff distance on Z, then we have that

sup
(x,x′)∈Cnij

dZ
(
ψnij

(x), ψ(x′)
)

→ 0. (5.101)

Given that Unij
→ T in T and (5.99) holds, it is a straightforward applica-

tion of [24, Lemmas 3.5 and 5.1] to also check that, P∗-a.s.,

lim
η→0

lim sup
j→∞

sup
x,y∈B(δ−1

nij
R):

δβ
nij

dU (x,y)<η

δnij
|ϕU (x) − ϕU (y)| = 0,

and, applying this equicontinuity in conjunction with (5.97), this yields in
turn that

sup
(x,x′)∈Cnij

∣∣ϕU (x) − ϕT (R)(x′)
∣∣ → 0. (5.102)

Finally, although not included in the framework of [58, 74, 103], it is not
difficult to include the convergence of roots in the above arguments, i.e. we
may further suppose that

dZ
(
ψnij

(ρU ), ψ(ρT (R))
)

→ 0 (5.103)

for some ρT (R) ∈ T (R) with ϕT (R)(ρT (R)) = 0. Recalling the definition of ∆c

from (5.12), combining (5.100), (5.101), (5.102) and (5.103) yields that

∆c(U (R)
nij
, T (R)) → 0 P∗-a.s.,

where T (R) := (T (R), dT (R) , µT (R) , ϕT (R) , ρT (R)). Since the distribution of
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T (R) is uniquely specified by (5.96), and the same limit can be deduced for
some subsubsequence of any subsequence of (ni)i≥1, we obtain that U (R)

ni →
T (R) in distribution in T, and thus the part of the proof concerning the
Gromov-Hausdorff-type topology is complete.

As for the path ensemble topology, we know from [24, Lemma 3.9] that
convergence of compact measured, rooted spatial trees with respect to our
Gromov-Hausdorff-type implies the corresponding path ensemble statement.
To extend from this to the desired conclusion, we can proceed exactly as in
the proof of [24, Lemma 5.5], with the additional inputs required being
provided by (5.43) and the coupling lemma that is stated below at Lemma
5.9.3.

5.9 Properties of the limiting space
The aim of this section is to prove Theorem 5.1.2. To this end, we present
several preparatory lemmas. In the first of these, we check that for large
enough annuli there is only one disjoint crossing by a path in U . Precisely,
for r < R, we introduce the event CEU (r,R) by setting

CEU (r,R) = {∃x, y ∈ B(R)c such that γU (x, y) ∩B(r) ̸= ∅} ,

and show that the probability of this occurring decays as the ratio R/r

increases.

Lemma 5.9.1. There exist universal constants λ0 > 0 and a, b, C ∈ (0,∞)
such that for all δ ∈ (0, 1) and λ ≥ λ0,

P
(
CEU
(
λ−aδ−1, δ−1

))
≤ Cλ−b.

Proof. This is essentially established in the proof of Proposition 5.4.1. We
will use the same notation as in that proof here. First, suppose that the
event A′

k0
, as defined in the proof of Proposition 5.4.1, occurs. It then holds

that: for every point x ∈ ∂B(δ−1),

γU (x, γ∞) ∩B
(
λ−4δ−1

)
= ∅,
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where γ∞ is the unique infinite simple path in U started at the origin, and
γU (x, γ∞) is shortest path in U from x to a point of γ∞. Note that we have
already proved that P(A′

k0
) ≥ 1−Cλ−1. Second, let u be the first time that

γ∞ exits B(λ−4δ−1), and define

W =
{
γ∞[u,∞) ∩B(λ−5δ−1) = ∅

}
.

By Proposition 1.5.10 of [113], it holds that P(W ) ≥ 1 − Cλ−1. Finally,
suppose that the event A′

k0
∩W occurs. For x, y ∈ B(δ−1)c, let x′, y′ ∈ γ∞

be such that γU (x, γ∞) = γU (x, x′) and γU (y, γ∞) = γU (y, y′). We then have
that γU (x, x′)∩B(λ−4δ−1) = ∅ and γU (y, y′)∩B(λ−4δ−1) = ∅. Also, it holds
that x′, y′ ∈ γ∞[u,∞). In particular, it follows that γU (x, y)∩B(λ−5δ−1) = ∅
for all x, y ∈ B(δ−1)c. This completes the proof of the result with a = 5 and
b = 1.

We next establish a result which essentially gives the converse of As-
sumption 3. In particular, we define the event D(a, b, c) by

D(a, b, c) =
{

∃x, y ∈ B(a) such that dS
U (x, y) < b and dU (x, y) > c

}
,

where we define the Schramm metric dSU on U analogously to (5.2), and
check the following.

Lemma 5.9.2. There exist universal λ0 > 0 and a1, . . . , a4, C ∈ (0,∞) such
that for all δ ∈ (0, 1) and λ ≥ λ0,

P
(
D
(
λa1δ−1, λ−a2δ−1, λ−a3δ−β

))
≤ Cλ−a4 .

Proof. Consider the event D̂(a, b, c) given by

D̂(a, b, c) =
{

∃x, y ∈ B(a) ∩ γ∞ such that dS
U (x, y) < b and dU (x, y) > c

}
.

We first prove that there exist universal a1, . . . , a4, C ∈ (0,∞) such that for
all δ ∈ (0, 1) and λ ≥ 1,

P
(
D̂
(
λa1δ−1, λ−a2δ−1, λ−a3δ−β

))
≤ Cλ−a4 . (5.104)
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To do this, let a1 = 10−4, a2 = 1 and a3 = 1/2. Moreover, let D = (wk)Mk=1
be a λ−a2δ−1-net of B(λa1δ−1) such that B(λa1δ−1) ⊆

∪M
k=1B(wk, λ−a2δ−1)

and M ≍ λ3(a1+a2). Suppose that the event D̂
(
λa1δ−1, λ−a2δ−1, λ−a3δ−β

)
occurs. Then there exists wk ∈ D such that |γ∞ ∩ B(wk, λ−a2δ−1)| ≥
cλ−a3δ−β for some universal c > 0. Now, it follows from [127, (7.51)] that

P
(
∃wk ∈ D such that

∣∣∣γ∞ ∩B(wk, λ−a2δ−1)
∣∣∣ ≥ cλ−a3δ−β

)
≤ Ce−c′λ1/2

,

for some universal c′, C ∈ (0,∞). Thus, the inequality (5.104) holds when
we let a4 = 100.

We next consider a λ−4δ−1-net D′ = (xi)Ni=1 of the ball B(λa1δ−1) for
which B(λa1δ−1) is a subset of

∪N
i=1B(xi, λ−4δ−1) and N ≍ λ3(a1+4). We

perform Wilson’s algorithm as follows:

• Consider a subtree spanned by D′ = (xi)Ni=1. The output random tree
is denoted by U1.

• Perform Wilson’s algorithm for all remaining points Z3\D′ to generate
U .

We define the event L by

L =
N∩
i=1

D̂
(
λa1δ−1, λ−a2δ−1, λ−a3δ−β; i

)c
,

where the event D̂ (a, b, c; i) is defined by

D̂(a, b, c; i) =
{

∃x, y ∈ B(a) ∩ γxi∞

such that dS
U (x, y) < b and dU (x, y) > c

}
,

with γx∞ standing for the unique infinite simple path in U started at x. By
(5.104), we have P(L) ≥ 1 − Cλ−80. Furthermore, if we define

J =
{

∀x ∈ B(λa1δ−1),
diam (γU (x,U1)) < λ−2δ−1 and dU (x,U1) < λ−2δ−β

}
,

then applying the hittability of each branch of U as in the proof of Propo-
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sition 5.4.1 guarantees that P(J) ≥ 1 − Cλ−10. Finally, suppose that
the event L ∩ J occurs. The event L ensures that for all x, y ∈ U1 with
dS

U (x, y) < λ−a2δ−1, we have dU (x, y) < 2λ−a3δ−β. Also, the event J guar-
antees that for all x, y ∈ B(λa1δ−1) with dS

U (x, y) < 1
2λ

−a2δ−1, we have
dU (x, y) < 3λ−a3δ−β. Thus the proof is complete, establishing the result
with a1 = 10−4, a2 = 1, a3 = 1/2 and a4 = 10.

For the remainder of the section, including in the proof of Theorem
5.1.2, we fix a sequence δn → 0 such that (Pδn)n≥1 converges weakly (as
measures on (T,∆)), and write Uδn = (U , δκndU , δ

2
nµU , δnϕU , 0). Letting P̂

be the relevant limiting law, we denote by T = (T , dT , µT , ϕT , ρT ) a random
element of T with law P̂. A key ingredient to the proof of Theorem 5.1.2 is
the following coupling between the discrete and continuous models, which is
a ready consequence of this convergence assumption. Since the proof of the
corresponding result in [24] was not specific to the two-dimensional case, we
omit the proof here.

Lemma 5.9.3 (cf. [24, Lemma 5.1]). There exist realisations of (Uδn)n≥1

and T built on the same probability space, with probability measure P∗ say,
such that: for some subsequence (ni)i≥1 and divergent sequence (rj)j≥1 it
holds that, P∗-a.s.,

Di,j := ∆c

(
U (rj)
δni

, T (rj)
)

→ 0

as i → ∞, for every j ≥ 1.

Proof of Theorem 5.1.2. We start by checking the measure bounds of parts
(c) and (d), and we also remark that part (b) is an elementary consequence
of (c) (see [64, Proposition 1.5.15], for example). The uniform bound of (c)
will follow from the estimates: for R > 0, there exist constants ci ∈ (0,∞)
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such that, for every r ∈ (0, 1),

P̂
(

inf
x∈BT (ρT ,R)

µT (BT (x, r)) ≤ c1r
df (log r−1)−c2

)
≤ c3r

c4 , (5.105)

P̂
(

sup
x∈BT (ρT ,R)

µT (BT (x, r)) ≥ c5r
df (log r−1)c6

)
≤ c7r

c8 . (5.106)

Indeed, given these, applying Borel-Cantelli along the subsequence rn = 2−n,
n ∈ N, yields the result. By appealing to the coupling of Lemma 5.9.3, the
above inequalities readily follow from the following discrete analogues:

lim sup
δ→∞

P

 δ3 minx∈BU (ρU ,δ−βR) µT
(
BU (x, δ−βr)

)
≤ c1r

df (log r−1)−c2

 ≤ c3r
c4 , (5.107)

lim sup
δ→∞

P

 δ3 maxx∈BU (ρU ,δ−βR) µT
(
BU (x, δ−βr)

)
≥ c5r

df (log r−1)c6

 ≤ c7r
c8 . (5.108)

To establish these, we start by noting that Proposition 5.6.1 implies that
the probability in (5.107) is bounded above by

Ce−cza + P
(
δ3 min

x∈B(δ−1R1/βz)
µT
(
BU (x, δ−βr)

)
≤ c1r

df (log r−1)−c2

)

for any z ≥ 1. Moreover, applying a simple union bound and Theorem 5.5.2
(with R = δ−βr, λ = c−1

1 log(r−1)c2), we can bound this in turn by

Ce−cza + C ′Rdf z3

rdf
e−c′c−a′

1 log(r−1)a′c2
.

Choosing z = (c−1 log(r−1))1/a, c1 small enough so that c′c−a
1 > df , and

c2 = 1/a′, the above is bounded above by C ′′rc
′′ , as desired. The proof

of (5.108) is similar, with Theorem 5.6.2 replacing Theorem 5.5.2. As for
(d), this follows from a Borel-Cantelli argument and the following estimates:
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there exist constants ci ∈ (0,∞) such that

P̂
(
µT (BT (ρT , r)) ≥ λrdf

)
≤ c1e

−c2λc3
, (5.109)

P̂
(
µT (BT (ρT , r)) ≤ λ−1rdf

)
≤ c4e

−c5λc6
, (5.110)

for all r > 0, λ ≥ 1. Similarly to the proof of the uniform estimates (5.105)
and (5.106), applying the coupling of Lemma 5.9.3, these readily follow from
Theorem 5.5.1 and Proposition 5.6.1.

For part (a), since (U , dU ) has infinite diameter, we immediately find
that (T , dT ) has at least one end at infinity. Thus we need to show that
there can be no more than one end at infinity. Given Lemma 5.9.3 and the
inclusion results of (5.43) and Proposition 5.6.1, this can be proved exactly
as in the two-dimensional case. In particular, as in [24], it follows from the
following crossing estimate: for r > 0,

lim
R→∞

lim sup
δ→0

P
(
CEU (δ−1r, δ−1R)

)
= 0,

which is given by Lemma 5.9.1.
For part (e), we can proceed exactly as in the proof of [24, Lemma 5.4].

Given Lemma 5.9.3, the one additional ingredient we need to do this is the
estimate corresponding to [24, (5.12)]: for every r, η > 0,

lim
ε→0

lim sup
δ→0

P

 inf
x,y∈BU (0,δ−βr):
dU (x,y)≥δ−βη

dSU (x, y) < δ−1ε

 = 0,

and this was established in Lemma 5.9.2 (when viewed in conjunction with
Proposition 5.6.1).

Given Lemma 5.9.3 and (5.6.1), the proof of part (f) is identical to that
of [24, Lemma 5.2].
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5.10 Simple random walk and its diffusion limit
In this section, we complete the article with the proofs of Theorem 5.1.3,
Corollary 5.1.1 and Theorem 5.1.4.

Proof of Theorem 5.1.3. On the event{
inf

x∈BU (0,R)
µU (BU (x,R/8)) ≥ λ−1Rdf , µU (BU (0, 2R)) ≤ λRdf

}
, (5.111)

one can find a cover (BU (xi, R/4))Ni=1 of BU (0, R) of size N ≤ λ2 (cf. [49,
Lemma 9], for example). Following the argument of [22, Lemma 2.4] (see
alternatively [108, Lemma 4.1]), it holds that on the event at (5.111),

RU (0, BU (0, R)c) ≥ R

λ2 .

Hence the result is a consequence of Theorem 5.5.2 and Proposition 5.6.1.

Proof of Corollary 5.1.1. By Theorem 5.1.3, parts (1) and (4) of [109, As-
sumption 1.2] hold. Moreover, since RU (0, BU (0, R)c) ≤ R+ 1, we also have
that part (2) of [109, Assumption 1.2] holds. Hence (5.4), (5.6), (5.7), (5.9)
and (5.11) follow from [109, Proposition 1.4 and Theorem 1.5]. It remains
to prove the claims involving the Euclidean distance. To this end, note that
by (5.43) and Proposition 5.6.1,

P
(
BU (0, λ−1Rβ) ⊆ B(R) ⊆ BU (0, λRβ)

)
≥ 1 − c1λ

−c2 .

Hence, by Borel-Cantelli, if Rn := 2n and λn := n2/c2 , then

BU (0, λ−1
n Rβn) ⊆ B(Rn) ⊆ BU (0, λnRβn)

for all large n, P-a.s. Combining this with the results at (5.4) and (5.7), we
obtain (5.5) and (5.8). As for (5.10), the lower bound follows from Jensen’s
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inequality, Fatou’s lemma and (5.8). Indeed,

lim inf
R→∞

logEU
(
τE0,R

)
logR

≥ lim inf
R→∞

EU
(

log τE0,R
logR

)

≥ EU
(

lim inf
R→∞

log τE0,R
logR

)
= βdw.

As for the upper bound, a standard estimate for exit times (see [19, Corollary
2.66], for example) gives that

EU
0 τ

E
0,R ≤ R3RU (0, B(R)c) ≤ R3ξR,

where ξR is defined above Proposition 5.3.4. The latter result thus yields

EU
(
τE0,R

)
≤ R3E (ξR) ≤ cR3+β = cRβdw ,

which gives (a stronger statement than) the desired conclusion.

Proof of Theorem 5.1.4. The result can be proved by a line-by-line modifi-
cation of [24, Theorems 1.4 and 7.2], and so we omit the details. However,
as an aid to the reader, we summarise the key steps. As per the construction
of [98], P̂-a.s., there is a ‘resistance form’ (ET ,FT ) on (T , dT ), characterised
by

dT (x, y)−1 = inf {ET (f, f) : f ∈ FT , f(x) = 0, f(y) = 1} ,

for all x, y ∈ T , x ̸= y. Moreover, by taking

DT := FT ∩ C0(T ),

where C0(T ) are the compactly supported continuous functions on (T , dT ),
and the closure is taken with respect to ET (f, f) +

∫
T f

2dµT , we obtain a
regular Dirichlet form (ET ,DT ) on L2(T , µT ) (see [13, Remark 1.6] or [99,
Theorem 9.4]). Moreover, since (T , dT ) is complete and has one end at
infinity (by Theorem 5.1.2(a)), the naturally associated stochastic process
((XT

t )t≥0, (P T
x )x∈T ) is recurrent (see [13, Theorem 4]). And, from [99, The-
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orem 10.4], we have that the process admits a jointly continuous transition
density (pT

t (x, y))x,y∈T ,t>0.
Next, by appealing to the Skorohod representation theorem, it is possible

to construct realisations of (U , δβndU , δ
3
nµU , δnϕU , ρU ), n ≥ 1, and the limit

(T , dT , µT , ϕT , ρT ) on the same probability space with probability measure
P∗ such that

(U , δβndU , δ
3
nµU , δnϕU , ρU ) → (T , dT , µT , ϕT , ρT ) P∗-a.s.

Moreover, applying Theorem 5.1.3 in a simple Borel-Cantelli argument al-
lows one to deduce that, P∗-a.s.,

lim
R→∞

lim inf
n→∞

δβnRU
(
0, BU (0, Rδ−β

n )c
)

= ∞.

Hence we can apply [54, Theorem 7.1] to deduce that, P∗-a.s.,

PU
0

((
δnX

U
tδ

−(3+β)
n

)
t≥0

∈ ·
)

→ P T
ρT ◦ ϕ−1

T (5.112)

weakly as probability measures on C(R+,R3). Since the left-hand side above
is P∗-measurable, so is the right-hand side. Moreover, for any measurable
set B ⊆ C(R+,R3), we have that

P T
ρT ◦ ϕ−1

T (B) = E∗
(
P T
ρT ◦ ϕ−1

T (B) T
)
,

where E∗ is the expectation under P∗, and so P T
ρT ◦ ϕ−1

T is in fact P̂-
measurable, as is required to prove part (a). For part (b), we apply (5.112)
and integrate out with respect to P∗.

As for the heat kernel estimates, we note that the measure bounds of
Theorem 5.1.2(c) are enough to apply the arguments of [49] to deduce part
(c) (for further details, see the proof of [24, Theorem 1.4(c)]). As for the
on-diagonal estimates of part (d), similarly to the proof of [24, Theorem
7.2] (cf. [51, Theorems 1.6 and 1.7]), these follow from the distributional
estimates on the measures of balls at (5.109) and (5.110), together with the
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following resistance estimate

P
(
RT (ρT , BT (ρT , R)c) ≤ λ−1R

)
≤ Ce−cλa

, (5.113)

where RT is the resistance associated with (ET ,FT ). As in the proof of
Theorem 5.1.3, to check (5.113), it is enough to combine (5.109) with the
bound

P̂
(

inf
x∈BT (ρT ,R)

µT (BT (x,R/8)) ≤ λ−1Rdf

)
≤ Ce−cλa

,

which is again a ready consequence of the discrete analogue (see Theorem
5.5.2 and Proposition 5.6.1).
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Chapter 6

The Number of Spanning
Clusters of the Uniform
Spanning Tree in Three
Dimensions1

Summary of this chapter
Let Uδ be the uniform spanning tree on δZ3. A spanning cluster of Uδ is a
connected component of the restriction of Uδ to the unit cube [0, 1]3 that
connects the left face {0}× [0, 1]2 to the right face {1}× [0, 1]2. In this note,
we will prove that the number of the spanning clusters is tight as δ → 0,
which resolves an open question raised by Benjamini in [28].

1Joint work with Omer Angel, David Croydon, and Daisuke Shiraishi.
Acknowledgements. DC would like to acknowledge the support of a JSPS Grant-in-Aid
for Research Activity Start-up, 18H05832 and a JSPS Grant-in-Aid for Scientific Research
(C), 19K03540. DS is supported by a JSPS Grant-in-Aid for Early-Career Scientists,
18K13425 and JSPS KAKENHI Grant Number 17H02849 and 18H01123.
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6.1 Introduction
Given a finite connected graph G = (V,E), a spanning tree T of G is a
subgraph of G that is a tree (i.e. is connected and contains no cycles) with
vertex set V . A uniform spanning tree (UST) of G is obtained by choosing
a spanning tree of G uniformly at random. This is an important model
in probability and statistical physics, with beautiful connections to other
subjects, such as electrical potential theory, loop-erased random walk and
Schramm-Loewner evolution. See [29] for an introduction to various aspects
of USTs.

Fix δ ∈ (0, 1) and d ∈ N. In [143] it was shown that, by taking the
local limit of the uniform spanning trees on an exhaustive sequence of finite
subgraphs of δZd, it is possible to construct a random subgraph Uδ of δZd.
Whilst the resulting graph Uδ is almost-surely a forest consisting on an
infinite number of disjoint components that are trees when d ≥ 5, it is also
the case that Uδ is almost-surely a spanning tree of δZd with one topological
end for d ≤ 4, see [143]. In the latter low-dimensional case, Uδ is commonly
referred to as the UST on δZd.

In this note, we study a macroscopic scale property of Uδ, namely the
number of its spanning clusters, as previously studied by Benjamini in [28].
To be more precise, let us proceed to introduce some notation. Write

B = [0, 1]d =
{

(x1, x2, · · · , xd) ∈ Rd : 0 ≤ xi ≤ 1, i = 1, 2, · · · , d
}

(6.1)

for the unit hypercube in Rd. Also, set

F =
{

(x1, x2, · · · , xd) ∈ Rd : x1 = 0
}

(6.2)

and
G =

{
(x1, x2, · · · , xd) ∈ Rd : x1 = 1

}
(6.3)

for the hyperplanes intersecting the ‘left’ and ‘right’ sides of the hypercube
B. Given a subgraph U = (V,E) of δZd, we write U ′ = (V ′, E′) for the
restriction of U to the cube B, i.e. we set V ′ = V ∩B and E′ = {{x, y} ∈ E :
x, y ∈ V ′}. A connected component of U ′ is called a cluster of U . Moreover,
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following [28], a spanning cluster of U is a cluster of U containing vertices
x and y such that dist(x, F ) < δ and dist(y,G) < δ, where dist(z,A) :=
infw∈A |z −w| is the Euclidean distance between a point z ∈ Rd and subset
A ⊆ Rd. That is, a cluster of U is called spanning when it connects F to G
(at the level of discretization being considered).

Concerning the number of spanning clusters of Uδ, it was proved in [28]
that:

• for d ≥ 4, the expected number of spanning clusters of Uδ grows to
infinity as δ → 0;

• for d = 2, the number of spanning clusters of U+
δ is tight as δ → 0,

where U+
δ denotes the uniform spanning tree of the square B ∩ δZ2

when all the vertices on the right side of the square are identified to a
single point w (U+

δ is called the right wired uniform spanning tree in
[28]). We also consider two spanning clusters of U+

δ different if they
are disjoint on U+

δ \ w. Figure 6.1 shows the spanning cluster of a
realisation of (an approximation to) Uδ on δZ2.

The case d = 3 was left as an open question in [28]. The main purpose of
this note is to resolve it by showing the following theorem.

Theorem 6.1.1. Let d = 3. It holds that the number of spanning clusters
of Uδ is tight as δ → 0.

Remark. The proof for Theorem 6.1.1 can be adapted to show tightness of
the number of spanning clusters of Uδ on δZ2. This is an improvement over
the result in [28], which required right-wired boundary conditions.

Remark. Part of Benjamini’s motivation for studying the number of span-
ning clusters came from percolation. Indeed, for critical Bernoulli percola-
tion in Zd, it is conjectured that the number of spanning clusters is tight
when d ≤ 6, while the expected number of spanning clusters grows to infinity
as the mesh size goes to zero for d > 6, see for instance [3, 36, 43]. Putting
our main conclusion together with the results obtained by Benjamini in [28],
the corresponding qualitative picture is proved for the uniform spanning tree.
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Figure 6.1: Part of a UST in a two-dimensional box; the part shown
is the central 115×115 section of a UST on a 229×229 box. The
single cluster spanning the two sides of the box is highlighted.

Remark. In [11], we establish a scaling limit for the three-dimensional UST in
a version of the Gromov-Hausdorff topology, at least along the subsequence
δ̂n := 2−n. The corresponding two-dimensional result is also known (along
an arbitrary sequence δ → 0), see [24] and [86, Remark 1.2]. In both cases,
we expect that the techniques used to prove such a scaling limit can be used
to show that the number of spanning clusters of Uδ actually converges in
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distribution. We plan to pursue this in a subsequent work that focusses on
the topological properties of the three-dimensional UST.

The organization of the remainder of the paper is as follows. In Section
2, we introduce some notation that will be used in the paper. The proof of
Theorem 6.1.1 is then given in Section 3.

6.2 Notation
In this section, we introduce the main notation needed for the proof of
Theorem 6.1.1. We write | · | for the Euclidean norm on R3 and, as in
the introduction, dist(·, ·) for the Euclidean distance between a point and a
subset of R3. Given δ ∈ (0, 1), if x ∈ δZ3 and r > 0, then we write

Bδ(x, r) =
{
y ∈ δZ3 : |x− y| < r

}
for the lattice ball of centre x and radius r (we will commonly omit depen-
dence on δ for brevity). Let B, F and G be defined as at (6.1), (6.2) and
(6.3) in the case d = 3.

For δ ∈ (0, 1), a sequence λ = (λ(0), λ(1), · · · , λ(m)) is said to be a path
of length m if λ(i) ∈ δZ3 and |λ(i) − λ(i + 1)| = δ for every i. A path λ is
simple if λ(i) ̸= λ(j) for all i ̸= j. For a path λ = (λ(0), λ(1), · · · , λ(m)),
we define its loop-erasure LE(λ) as follows. Firstly, let

s0 = max {j ≤ m : λ(j) = λ(0)} ,

and for i ≥ 1, set

si = max {j ≤ m : λ(j) = λ(si−1 + 1)} .

Moreover, write n = min{i : si = m}. The loop-erasure of λ is then given
by

LE(λ) = (λ(s0), λ(s1), · · · , λ(sn)) .

We write LE(λ)(k) = λ(sk) for each 0 ≤ k ≤ n. Note that the vertices hit by
LE(λ) are a subset of those hit by λ, and that LE(λ) is a simple path such
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that LE(λ)(0) = λ(0) and LE(λ)(n) = λ(m). Although the loop-erasure
of λ has so far only been defined in the case that λ has a finite length, it
is clear that we can define LE(λ) similarly for an infinite path λ if the set
{k ≥ 0 : λ(j) = λ(k)} is finite for each j ≥ 0. Additionally, when the path
λ is given by a simple random walk, we call LE(λ) a loop-erased random
walk (see [114] for an introduction to loop-erased random walks).

Again given δ ∈ (0, 1), write Uδ for the uniform spanning tree on δZ3. As
noted in the introduction, this object was constructed in [143], and shown
to be a tree with a single end, almost-surely. The graph Uδ can be generated
from loop-erased random walks by a procedure now referred to as Wilson’s
algorithm rooted at infinity (the name is after [169], while the version for
infinite graphs was proved in [29]), which is described as follows.

• Let (xi)i≥1 be an arbitrary, but fixed, ordering of δZ3.

• Write Rx1 for a simple random walk on δZ3 started at x1. Let γx1 =
LE(Rx1) be the loop-erasure of Rx1 – this is well-defined since Rx1 is
transient. Set U1 = γx1 . We refer to γx1 as a branch of U1.

• Given U i for i ≥ 1, let Rxi+1 be a simple random walk (independent
of U i) started at xi+1 and stopped on hitting U i. Then LE(Rxi+1) is
a branch of the tree and we let U i+1 = U i ∪ LE(Rxi+1).

It is then the case that the output random tree ∪∞
i=1U i has the same dis-

tribution as Uδ. In particular, the distribution of the output tree does not
depend on the ordering of points (xi)i≥1.

Similarly to above, for z ∈ δZ3, we will write γz for the infinite simple
path in Uδ starting from z. Given a point z ∈ δZ3, it follows from the
construction of Uδ explained hitherto that the distribution of γz coincides
with that of LE(Rz), where Rz is a simple random walk on δZ3 started at
z.

Furthermore, as we explained in the introduction, we will write U ′
δ for

the restriction of Uδ to the cube B. A connected component of U ′
δ is called

a cluster. Also, as we defined previously, a spanning cluster is a cluster
connecting F to G. We let Nδ be the number of spanning clusters of Uδ.
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Finally, we will use c, C, c0, etc. to denote universal positive constants
which may change from line to line.

6.3 Proof of the main result
In this section, we will prove the following theorem, which incorporates
Theorem 6.1.1.

Theorem 6.3.1. There exists a universal constant C such that: for all
M < ∞ and δ > 0,

P (Nδ ≥ M) ≤ CM−1. (6.4)

In particular, the laws of (Nδ)δ∈(0,1) form a tight sequence of probability
measures on Z+.

Remark. In [3], Aizenman proved that for critical percolation in two di-
mensions, the probability of seeing M distinct spanning clusters is bounded
above by Ce−cM2 . We do not expect that the polynomial bound in (6.4)
is sharp, but leave it as an open problem to determine the correct tail be-
haviour for number of spanning clusters of the UST in three dimensions,
and, in particular, ascertain whether it also exhibits Gaussian decay.

Proof. Let δ ∈ (0, 1), and suppose M ≥ 1 is such that δ ≤ M−1. For
r ∈ [0, 1], we let

A(r) = {(x1, x2, x3) ∈ B : x1 = r}.

We also define

A = [−1, 2]3, B′ = {(x1, x2, x3) ∈ B : x1 ≤ 2/3}.

Moreover, let (zi)Li=1 be a sequence of points in A ∩ δZ3 such that A ⊆
∪Li=1B(zi, 1/M) and L ≤ 105M3.

To construct Uδ, we first perform Wilson’s algorithm rooted at infinity
for (zi)Li=1 (see Section 6.2). Namely, we consider

U1 :=
L∪
i=1

γzi ,
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which is the subtree of Uδ spanned by (zi)Li=1. (Recall that for z ∈ δZ3 we
denote the infinite simple path in Uδ starting from z by γz.) The idea of the
proof is then as follows. Crucially, each branch of U1 is a ‘hittable’ set, in
the sense that for a simple random walk R whose starting point is close to
U1, it is likely that R hits U1 before moving far away. As a result, Wilson’s
algorithm guarantees that, with high probability, the spanning clusters of
Uδ correspond to those of U1 when M is sufficiently large. So, the problem
boils down to the tightness of the number of spanning clusters of U1, which
is not difficult to prove.

To make the above argument rigorous, we introduce the following two
“good" events for U1:

Hi = Hi(ξ) :=
{

For any x ∈ B(0, 4) ∩ δZ3 with dist(x, γzi) ≤ 1/M,

P xR (R[0, T ] ∩ γzi = ∅) ≤ M−ξ

}
,

Ii :=
{

The number of crossings of γzi between A(0) and A(2/3)
in B′ is smaller than M

}
,

for 1 ≤ i ≤ L, where

• R is a simple random walk which is independent of γzi , the law of
which is denoted by P xR when we assume R(0) = x;

• T is the first time that R exits B(x, 1/
√
M);

• a crossing of γzi between A(0) and A(2/3) in B′ is a connected com-
ponent of the restriction of γzi to B′ that connects A(0) to A(2/3).

Namely, the event Hi guarantees that the branch γzi is a hittable set (see
Figure 6.2), and the event Ii controls the number of crossings of γzi .

Now, [148, Theorem 3.1] ensures that there exist universal constants
ξ0, C > 0 such that

P
(

L∩
i=1

Hi(ξ0)
)

≥ 1 − CM−10.

Thus, with high probability (for U1), each branch of U1 is a hittable set.
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Figure 6.2: Conditional on the event Hi, for any x ∈ B(0, 4) ∩ δZ3

with dist(x, γzi) ≤ 1/M , the above configuration occurs with
probability at least 1 −M−ξ.

The probability of the event Ii is easy to estimate. Indeed, suppose that
the event Ii does not occur. This implies that the number of “traversals”
of Szi from A(0) to A(2/3) or vice versa must be bigger than M , where Szi

stands for a simple random walk starting from zi. Notice that there exists
a universal constant c0 > 0 such that for any point w ∈ A(0) (respectively
w ∈ A(2/3)), the probability that Sw hits A(2/3) (respectively A(0)) is
smaller than 1 − c0 (see [113, Proposition 1.5.10], for example). Thus, the
probability of the event Ii is bounded below by 1 − (1 − c0)M =: 1 − e−aM ,
where a > 0. Taking sum over 1 ≤ i ≤ L, we find that

P
(

L∩
i=1

Ii

)
≥ 1 − Le−aM .

To put the above together, let

J =
L∩
i=1

Hi(ξ0) ∩ Ii.

For 1 ≤ i ≤ L, set U1
i = ∪ij=1γzj so that U1 = U1

L. As above, by a spanning
cluster of U1

i between A(0) and A(2/3) in B′ we mean a connected component
of the restriction of U1

i to B′ which connects A(0) to A(2/3). We write ni
for the number of spanning clusters of U1

i between A(0) and A(2/3) in B′.
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On the event J , we have that

ni ≤ iM + i− 1,

for all 1 ≤ i ≤ L, since ni+1 − ni is at most M + 1 for each i ≥ 1. In
particular, we see that the number of spanning clusters of U1 between A(0)
and A(2/3) in B′ is bounded above by L(M + 1), which is comparable to
M4.

We next consider a sequence of subsets of A as follows. Let a∗ > 0 be
the positive constant such that

a∗
∞∑
k=1

k−2 = 10−1. (6.5)

Set η1 = 0, and ηk = a∗∑k−1
j=1 j

−2 for k ≥ 2. Finally, for k ≥ 1, let

Ak = [−1 + ηk, 2 − ηk]3.

Notice that Ak+1 ⊆ Ak and [−1/2, 3/2]3 ⊆ Ak for all k ≥ 1, and moreover
dist(∂Ak, ∂Ak+1) = a∗k−2. We further introduce sequences (zki )Lk

i=1 consist-
ing of points in Ak ∩ δZ3 such that

Ak ⊆
Lk∪
i=1

B
(
zki , δk

)
,

and
Lk ≤ 105δ−3

k , where δk := M−12−(k−1). (6.6)

Note that we may assume that L1 = L and (z1
i )L1
i=1 = (zi)Li=1.

For ξ > 0, we set

Hk
i = Hk

i (ξ) :=

For any x ∈ B(0, 4) ∩ δZ3 with dist
(
x, γzk

i

)
≤ δk,

P xR

(
R[0, T k] ∩ γzk

i
= ∅

)
≤ δξk

 ,
where R is a simple random walk that is independent of γzk

i
, with law

denoted by P xR when we assume R(0) = x, and T k is the first time that R
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exits B(x,
√
δk). By [148, Theorem 3.1] again, there exist universal constants

ξ1, C > 0 (which do not depend on k) such that

P

Lk∩
i=1

Hk
i (ξ1)

 ≥ 1 − Cδ10
k ,

for all k = 1, 2, · · · , k0, where k0 is the smallest integer k such that δk < δ.
Thus if we write

Hk =
Lk∩
i=1

Hk
i (ξ1)

and

J ′ = J ∩
k0∩
k=1

Hk,

we have
P(J ′) ≥ 1 − CM−10.

Given the above setup, we perform Wilson’s algorithm rooted at infinity
as follows:

• recall that U1 is the tree spanned by (z1
i )L1
i=1 = (zi)Li=1;

• next perform Wilson’s algorithm for (z2
i )L2
i=1 – for each z2

i , run a simple
random walk Rz

2
i from z2

i until it hits the part of the tree that has
already been constructed, and adding its loop-erasure as a new branch
– the output tree is denoted by U2;

• repeat the previous step for (zki )Lk
i=1 to construct Uk for k = 1, 2, · · · , k0.

Now, condition U1 on the event J above. We will show that, with high
(conditional) probability, every new branch in U2 \ U1 has diameter smaller
than M−1/4. To this end, for 1 ≤ i ≤ L2, we write d2

i for the Euclidean
diameter of the path from z2

i to U1 in U2, and define the event W 2
i by setting

W 2
i =

{
d2
i ≥ M−1/4

}
.

Suppose that the event W 2
i occurs. By Wilson’s algorithm, the simple

random walk Rz
2
i must not hit the tree U1 until it exits B(z2

i ,M
−1/4).

208



Since dist(z2
i , ∂A) ≥ a∗ (for the constant a∗ defined at (6.5)), it holds that

B(z2
i ,M

−1/4) ⊆ A. With this in mind, we set u0 = 0, and

um = inf
{
j ≥ um−1 :

∣∣∣Rz2
i (j) −Rz

2
i (um−1)

∣∣∣ ≥ M−1/2
}

for m ≥ 1. We then have that

Rz
2
i [um−1, um] ∩ U1 = ∅

for all 1 ≤ m ≤ M1/4. Since A ⊆ ∪Li=1B(zi, 1/M), it follows that for each
1 ≤ m ≤ M1/4, there exists a zi such that Rz2

i (um−1) ∈ B(zi, 1/M). Thus
the event Hi(ξ0) guarantees that

P
(
Rz

2
i [um−1, um] ∩ U1 = ∅ for all 1 ≤ m ≤ M1/4

)
≤ M−ξ0M1/4

.

Consequently, the conditional probability of ∪L2
i=1W

2
i is bounded above by

L2M
−ξ0M1/4 , which is smaller than CM−ξ0M1/4+3 for some universal con-

stant C ∈ (0,∞) (see (6.6), for the definition of L2). Replacing constants
if necessary, this implies that, with probability at least 1 −Ce−cM1/4 , every
new branch in U2 \ U1 has diameter smaller than M−1/4. Notice that once
each new branch has such a small diameter, the event J guarantees that the
number of spanning clusters of U2 between A(0) and A

(
2/3 +M−1/4) in B

is bounded above by L(M + 1) ≤ 106M4.
Essentially the same argument is valid for Uk. Indeed, conditioning Uk

on the good event J ∩ ∩kl=1H
l as above, it holds that, with probability at

least 1−Ce−cδ−1/4
k every new branch in Uk+1 \Uk has diameter smaller than

δ
1/4
k . Notice that

∑
k δ

1/4
k ≤ 10M−1/4 < 10−2 when M is large. Therefore,

with probability at least 1−CM−10, the number of spanning clusters of Uk0

between A(0) and A(3/4) in B is bounded above by L(M + 1) ≤ CM4 for
some universal constant C.

Finally, we perform Wilson’s algorithm for all of the remaining points
in δZ3 to construct Uδ. Since k0 is the smallest integer k such that δk < δ,
it follows that the restriction of Uδ to B coincides with that of Uk0 . Note
that k0 = 1 when δ = M−1. Thus we conclude that there exists a universal
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constant C such that: for all M < ∞ and δ ∈ (0,M−1],

P (Nδ ≥ M) ≤ CM−2. (6.7)

For the case that δ ∈ (M−1,M−1/2], we apply (6.7) to M1/2 and monotonic-
ity implies P (Nδ ≥ M) ≤ P

(
Nδ ≥ M1/2

)
< CM−1. Finally, if δ > M−1/2,

we use that Nδ ≤ δ−2 < M . Combining these three bounds, we readily
obtain the bound at (6.4).
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Part III

Competitive Growth
Processes

211



Chapter 7

Chase-Escape with Death on
Trees1

Summary of this chapter
Chase-escape is a competitive growth process in which red particles spread
to adjacent uncoloured sites, while blue particles overtake adjacent red par-
ticles. We introduce the variant in which red particles die and describe the
phase diagram for the resulting process on infinite d-ary trees. A novel con-
nection to weighted Catalan numbers makes it possible to characterize the
critical behaviour.

7.1 Introduction
Chase-escape (CE) is a model for predator-prey interactions in which expan-
sion of predators relies on but also hinders the spread of prey. The spreading
dynamics come from the Richardson growth model [147]. Formally, the pro-

1Joint work with Erin Beckman, Keisha Cook, Nicole Eikmeier, and Matthew Junge.
Acknowledgements. Thanks to David Sivakoff and Joshua Cruz for helpful advice and
feedback. We are also grateful to Sam Francis Hopkins for pointing us to a reference
about weighted Catalan numbers. Feedback during the review process greatly improved
the final version. This work was partially supported by NSF DMS Grant #1641020 and
was initiated during the 2019 AMS Mathematical Research Community in Stochastic
Spatial Systems.
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cess takes place on a graph in which vertices are in one of the three states
{w, r, b}. Adjacent vertices in states (r, w) transition to (r, r) according to
a Poisson process with rate λ. Adjacent (b, r) vertices transition to (b, b)
at rate 1. The standard initial configuration has a single vertex in state r
with a vertex in state b attached to it. All other sites are in state w. These
dynamics can be thought of as prey r-particles “escaping" to empty w-sites
while being “chased" and consumed by predator b-particles. We will refer to
vertices in states r, b, and w as being red, blue, and white, respectively.

We introduce the possibility that prey dies for reasons other than pre-
dation in a variant which we call chase-escape with death (CED) . This is
CE with four states {w, r, b, †} and the additional rule that vertices in state
r transition to state † at rate ρ > 0. We call such vertices dead. Dead sites
cannot be reoccupied.

7.1.1 Results

We study CED on the infinite rooted d-ary tree Td—the tree in which each
vertex has d ≥ 2 children—with an initial configuration that has the root
red, one extra blue vertex b attached to it, and the rest of the vertices white.
Let R be the set of sites that are ever coloured red. Similarly, let B be the
set of sites that are ever coloured blue. Denote the events that red and blue
occupy infinitely many sites by A = {|R| = ∞} and B = {|B| = ∞}. Since
B − {b} ⊆ R deterministically, we also have B ⊆ A. We will typically write
P and E in place of Pλ,ρ and Eλ,ρ for probability and expectation when the
rates are understood to be fixed. There are three possible phases for CED:

• Coexistence P (B) > 0.

• Escape P (A) > 0 and P (B) = 0.

• Extinction P (A) = 0.

For each fixed d and λ, we are interested in whether or not these phases
occur and how the process transitions between them as ρ is varied. Accord-
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ingly, we define the critical values

ρc = ρc(d, λ) = inf{ρ : Pλ,ρ(B) = 0}, (7.1)

ρe = ρe(d, λ) = inf{ρ : Pλ,ρ(A) = 0}. (7.2)

One feature of CE, and likewise CED, that makes it difficult to study
on graphs with cycles is that there is no known coupling that proves P (B)
increases with λ. On trees the coupling is clear, which makes analysis more
tractable. It follows from [35] that P (B) > 0 in CE on a d-ary tree if and
only if λ > λ−

c with

λ−
c = 2d− 1 − 2

√
d2 − d ∼ (4d)−1. (7.3)

For CED on Td, P (B) is no longer monotonic with λ. As λ increases, blue
falls further behind and so the intermediate red particles must live longer
for coexistence to occur. This lack of monotonicity makes

λ+
c = 2d− 1 + 2

√
d2 − d ∼ 4d

also relevant, because we will see that when λ ≥ λ+
c , the gap between red

and blue is so large that coexistence is impossible for any ρ > 0.
Suppressing the dependence on d, let Λ = (λ−

c , λ
+
c ). Unless stated other-

wise, we will assume that d ≥ 2 is fixed. Our first result describes the phase
structure of CED (see Figure 7.1).

Theorem 7.1.1. Fix λ > 0.

(i) If λ ∈ Λ, then 0 < ρc < ρe = λ(d− 1) with escape occurring at ρ = ρc,
and extinction at ρ = ρe.

(ii) If λ /∈ Λ, then 0 = ρc < ρe = λ(d − 1) with extinction occurring at
ρ = ρe.

Our next result concerns the behaviour of E|B| at and above criticality.

Theorem 7.1.2. Fix λ ∈ Λ.
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Figure 7.1: (Left) The phase diagram for fixed d. The dashed line is
ρc and the solid line ρe. (Right) A rigorous approximation of
ρc when d = 2. The approximations for larger d have a similar
shape.

(i) If ρ > ρc, then E|B| < ∞.

(ii) If ρ = ρc, then E|B| = ∞.

Theorem 7.1.2 (ii) is particularly striking because it is known that E|B| <
∞ in CE with λ = λ−

c (see [35, Theorem 1.4]). Hence the introduction
of death changes the critical behaviour. The reason for this comes down
to singularity analysis of a generating function associated to CED and is
discussed in more detail in Remark 7.3.2.

We prove three further results about ρc concerning: the asymptotic
growth in d, smoothness in λ, and the approximate value for a given d

and λ (see Figure 7.1).

Theorem 7.1.3. Fix λ > 0, c <
√
λ/2, and C >

√
2λ. For all d large

enough
c
√
d ≤ ρc ≤ C

√
d.

Theorem 7.1.4. The function ρc is infinitely differentiable in λ ∈ Λ.

Theorem 7.1.5. Fix λ ∈ Λ. For every ρ ̸= ρc, there is a finite runtime
algorithm to determine if ρ < ρc or if ρ > ρc.
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7.1.2 Proof methods

Theorems 7.1.1 and 7.1.3 are proven by relating coexistence in CED to the
survival of an embedded branching process that renews each time blue is
within distance one of the farthest red. Describing the branching process
comes down to understanding how CED behaves on the nonnegative integers
with 0 initially blue and 1 initially red. In particular, we are interested in
the event Rk that at some time k is blue, k + 1 is red, and all further sites
are white.

The probability of Rk can be expressed as a weighted Catalan number.
These are specified by non-negative weights u(j) and v(j) for j ≥ 0. Given
a lattice path γ consisting of unit rise and fall steps, each rise step from
(x, j) to (x + 1, j + 1) has weight u(j), while fall steps from (x, j + 1) to
(x + 1, j) has weight v(j). The weight ω(γ) of a Dyck path γ is defined to
be the product of the rise and fall step weights along γ.

The corresponding weighted Catalan number is Cu,vk =
∑
ω(γ) where

the sum is over all Dyck paths γ of length 2k (nonnegative paths starting
at (0, 0) consisting of k rise and k fall steps). See Figure 7.2 for an example.
For CED, we define Cλ,ρk as the weighted Catalan number with weights

u(j) = λ

1 + λ+ (j + 1)ρ
and v(j) = 1

1 + λ+ (j + 2)ρ
. (7.4)

At (7.8) we explain why P (Rk) = Cλ,ρk .
Returning to CED on Td, self-similarity ensures that the expected num-

ber of renewals in the embedded branching process is equal to the generating
function g(z) =

∑∞
k=0C

λ,ρ
k zk evaluated at z = d. We prove in Proposi-

tion 7.4.1 that ρc is the value at which the radius of convergence of g is
equal to d. We characterize the radius of convergence using a continued
fraction representation of g, which leads to the proofs of Theorems 7.1.2,
7.1.4, and 7.1.5.
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u(0) v(0) u(0)

u(1)

u(2) v(2) u(2) v(2)

v(1)

v(0)

Figure 7.2: A Dyck path of length 10. The weight of this path is
u(0)2v(0)2u(1)v(1)u(2)2v(2)2.

7.1.3 History and context

The forebearer of CE is the Richardson growth model for the spread of a
single species [147]. In our notation, this process corresponds to the setting
with λ = 1, ρ = 0, and no blue particles. Many basic questions remain
unanswered for the Richardson growth model on the integer lattice [17], as
well as for the competitive version [56].

James Martin conjectured that coexistence occurs in CE on lattices when
red spreads at a slower rate than blue. Simulation evidence from Tang,
Kordzakhia, Lalley in [164] suggested that, on the two-dimensional lattice,
red and blue coexist with positive probability so long as λ ≥ 1/2. Durrett,
Junge, and Tang proved in [62] that red and blue can coexist with red
stochastically slower than blue on high-dimensional oriented lattices with
spreading times that resemble Bernoulli bond percolation.

The first rigorous result we know of for CE is Kordzakhia’s proof that
the phase transition occurs at λ−

c for CE on regular trees [104]. Later,
Kortchemski considered the process on the complete graph as well as trees
with arbitrary branching number [105, 106]. An alternative perspective of
CE as scotching a rumor was studied by Bordenave in [34]. The continuous
limit of rumor scotching was studied many years earlier by Aldous and Krebs
[8]. Looking to model malware spread and suppression through a device
network, Hinsen, Jahnel, Cali, and Wary studied CE on Gilbert graphs [82].

To the best of our knowledge, CED has not been studied before. From
the perspective of modelling species competition, it seems natural for prey
to die from causes other than being consumed, and, in rumor scotching, for
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holders to cease spread because of fading interest. Furthermore, CED has
new mathematical features. The existence of an escape phase, the fact that
E|B| = ∞ at criticality, and the lack of monotonicity of P (B) in λ are all
different than what occurs in CE.

The perspective we take on weighted Catalan numbers also appears to be
novel. Typically they are studied with integer weights [9, 146, 152]. We are
interested in the fractional weights at (7.4). Flajolet and Guilleman observed
that fractionally weighted lattice paths describe birth and death chains for
which the rates depend on the population size [68]. The distance between
the rightmost red and rightmost blue for CED on the nonnegative integers
is a birth and death chain in which mass extinction may occur. Since we
are interested in CED on trees, we analyse the radius of convergence of the
generating function of weighted Catalan numbers, which we believe has not
been studied before.

7.2 CED on the line
Let CED+ denote the process with CED dynamics on the nonnegative in-
tegers for which the vertices 0 and 1 are initially blue and red, respectively.
All other vertices are initially white. Let st(n) ∈ {w, r, b, †} indicate the
state of vertex n at time t. Define the processes Bt = max{n : st(n) = b},
Rt = max{n : st(n) = r}, and the random variable

Y = sup{Bt : t ≥ 0}. (7.5)

If st(n) ̸= r for all n, then define Rt = −∞. Let ∂t = (st(n))Rt
n=Bt

be the
state of the interval [Bt, Rt]. One can think of this as the boundary of the
process. Note that this interval only makes sense when Rt > −∞. Renewal
times are times t ≥ 0 such that ∂t = (b, r). For k ≥ 0 let

Rk = {Bt = k for some renewal time t} (7.6)

be the event that there is a renewal when blue occupies site k. Also define
the event At = {st(n) ̸= † for all n} that none of the red sites have died up
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to time t.
Let St = Rt − Bt be the distance between the rightmost blue and red

particles at time t. Define the collection of jump times as τ(0) = 0 and for
i ≥ 1

τ(i) = inf{t ≥ τ(i− 1) : St ̸= Sτ(i−1) or 1(At) = 0}.

The jump chain J = (Ji) of St is given by

Ji =

Sτ(i), 1(Aτ(i)) = 1

0, otherwise
.

This is a Markov chain with an absorbing state 0 corresponding to blue no
longer having the potential to reach infinity. The transition probabilities for
j > 0 are:

pj,j+1 = λ

1 + λ+ jρ
, pj,j−1 = 1

1 + λ+ jρ
, pj,0 = jρ

1 + λ+ jρ
. (7.7)

Call a jump chain (J0, . . . , Jn) living if Ji > 0 for all 0 ≤ i ≤ n. Trans-
lating the set of Dyck paths of length 2k up by one vertical unit gives
the jump chains corresponding to Rk. Notice that pj,j+1 = u(j − 1) and
pj,j−1 = v(j− 2) with u and v as in (7.4). Thus, it is easy to see that for all
k ≥ 0 we have

Pλ,ρ(Rk) = Cλ,ρk , (7.8)

with Cλ,ρk the weighted Catalan number defined in Section 7.1.2.

Lemma 7.2.1. For any ϵ > 0 there exists ρ′ > 0 such that for all ρ ∈ [0, ρ′)
and sufficiently large k

Cλ,ρk ≥
( (4 − ϵ)λ

(1 + λ)2

)k
.

Proof. Let Ck,m be number of Dyck paths of length 2k that never exceed
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height m. We first claim that for any δ > 0, there exists mδ such that

Ck,mδ
≥ (4 − δ)k (7.9)

for sufficiently large k.
The mth Catalan number Cm := Cm,∞ counts the number of Dyck paths

of length 2m. Consider any sequence of ⌊k/m⌋ Dyck paths of length 2m. If
we concatenate these paths, we have a path of length 2m⌊k/m⌋ ≥ 2k − 2m
which stays below height m. We extend this path into a Dyck path of length
2k by concatenating the necessary number of up and down steps to the end
in any manner. Since each of the ⌊k/m⌋ Dyck paths of length 2m can be
chosen independently of one another, we have Ck,m ≥ (Cm)⌊k/m⌋.

Using the standard asymptotic relation Cm ∼ (1/
√
π)m−3/24m (see

[161]), we have for large enough m, k

Ck,m ≥
( 4m

2
√
πm3/2

)⌊k/m⌋
≥
( 4m

2
√
πm3/2

)−1 ( 4
(2

√
πm3/2)1/m

)k
.

It is easy to verify that (2
√
πm3/2)1/m → 1 as m → ∞. Thus, we can

choose m large enough so that

4
(2

√
πm3/2)1/m > 4 − δ

2
.

We then have
Ck,m ≥ C

( 4m

2
√
πm3/2

)−1
(4 − (δ/2))k.

This is true for all m, k sufficiently large, and we can see that if we fix an
mδ big enough so that this inequality holds, then we can increase k enough
such that we have the claimed inequality at (7.9).

Using the weights at (7.4), each path γ counted by Ck,m satisfies

ω(γ) ≥
(

λ

(1 + λ+mρ)2

)k
,

because γ has length 2k but never exceeds height m. Summing over just the
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Dyck paths counted by Ck,m gives

Cλ,ρk ≥ Ck,m
λk

(1 + λ+mρ)2k . (7.10)

Fix an ϵ > 0. We can choose δ > 0 small enough so that (4 − δ)(1 − δ) >
4 − ϵ. By (7.9), pick mδ large enough to have Ck,mδ

> (4 − δ)k for all
sufficiently large k. Finally, choose ρ′ > 0 small enough so that

λ

(1 + λ+mδρ′)2 >
λ

(1 + λ)2 (1 − δ).

Since the Cλ,ρk are decreasing in ρ, applying these choices to (7.10) gives the
desired inequality for all ρ ∈ [0, ρ′):

Cλ,ρk ≥
(

(4 − δ)(1 − δ) λ

(1 + λ)2

)k
≥
( (4 − ϵ)λ

(1 + λ)2

)k
.

Recall the definition of Y at (7.5). We conclude this section by proving
that P (Y ≥ k) can be bounded in terms of P (Rk). The difficulty is that
the event {Y ≥ k} includes all realizations for which blue reaches k, while
Rk only includes realizations which have a renewal at k.

Lemma 7.2.2. For ρ > 0, there exists C > 0, which is a function of λ, ρ,
such that P (Y ≥ k) ≤ Ck1+λ/ρP (Rk) for all k ≥ 1.

Proof. Given a living jump chain J = (J0, J1, . . . , Jm), define the height
profile of J to be h(J) = (h1(J), . . . , hm+1(J)), where hi(J) are the number
of entries Jℓ in J with ℓ < m for which Jℓ = i. These values correspond to
the total number of times that blue is at distance i from red. Suppose that
red takes r(J) many steps in a jump chain J . It is straightforward to show
that

p(J) = λr(J)
m+1∏
j=1

( 1
1 + λ+ jρ

)hj(J)
(7.11)
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is the probability that the process follows the living jump chain J .
We view realizations leading to outcomes in {Y ≥ k} as having two

distinct stages. In the first stage, the rightmost red particle reaches k. In
the second stage, we ignore red and only require that blue advances until
it reaches k. The advantage of this perspective is that we can partition
outcomes in {Y ≥ k} by their behaviour in the first stage and then restrict
our focus to the behaviour of the process in the interval [0, k] for the second
stage.

For 2 ≤ ℓ ≤ k, define Γℓ to be the set of all living jump chains of length
2k − ℓ− 1 which go from (0, 1) to (2k − ℓ− 1, ℓ) with the last step being a
rise step (see Figure 7.3). These are the jump chains from the first stage.
Now we describe the second stage. Assume that blue is at k − ℓ when red
reaches k. For blue to reach k, the red sites in [k − ℓ + 1, k] must stay
alive long enough for blue to advance another ℓ steps. This has probability
σ(ℓ) :=

∏ℓ
i=1(1+ iρ)−1. Given γ ∈ Γℓ, the formula at (7.11) implies that the

probability Y ≥ k and the first 2k − ℓ − 1 steps of the process jump chain
follow γ is

q(γ) := p(γ)σ(ℓ) = λk−1σ(ℓ)
k+1∏
j=1

(1 + λ+ jρ)−hj(γ). (7.12)

Let qℓ =
∑
γ∈Γℓ

q(γ). Notice that

q2
λ

(1 + λ+ ρ)(1 + λ+ 2ρ)2 ≤ P (Rk). (7.13)

This is because a subset of Rk is the collection of processes which follow
jump chains in Γ2 and for which the next three steps have blue advance
by one, then red advance by one, followed by blue advancing one. We will
further prove that there exists C0 (independent of ℓ) such that

qℓ ≤ C0ℓ
λ/ρq2. (7.14)

The claimed inequality then follows from (7.13), (7.14), and the partitioning
P (Y ≥ k) =

∑k
ℓ=2 qℓ.
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To prove (7.14), notice that by inserting ℓ− 2 fall steps right before the
final upward step of each path in γ ∈ Γℓ, we obtain a path γ̃ ∈ Γ2 (see
Figure 7.3). Since the paths γ and γ̃ agree for the first 2k − ℓ− 2 steps, we
have from (7.12)

q(γ) = σ(ℓ)
σ(2)

∏ℓ−2
i=1(1 + λ+ iρ)−1

q(γ̃) (7.15)

= (1 + λ+ ρ)(1 + λ+ 2ρ)
(1 + ℓρ)(1 + (ℓ− 1)ρ)

q(γ̃)
ℓ−2∏
i=3

(
1 + λ

1 + iρ

)
. (7.16)

Rewriting as a sum and using integral bounds, one can verify that

ℓ−2∏
i=3

(
1 + λ

1 + iρ

)
≤ C1ℓ

λ/ρ,

for some C1 that depends on λ and ρ. This gives q(γ) ≤ C0ℓ
λ/ρq(γ̃). Thus,

qℓ ≤
∑
γ∈Γℓ

C0ℓ
λ/ρq(γ̃). If we restrict to paths γ ∈ Γℓ, the map γ 7→ γ̃ is

injective and hence

qℓ ≤
∑
γ∈Γℓ

C0ℓ
λ/ρq(γ̃) ≤ C0ℓ

λ/ρ
∑
γ∈Γ2

q(γ) = C0ℓ
λ/ρq2.

This yields (7.14) and completes the lemma.

7.3 Properties of weighted Catalan numbers

7.3.1 Preliminaries

Given a sequence (cn)n≥0, define the formal continued fraction

K[c0, c1, . . .] :=
c0

1 −
c1

1 − . . .

. (7.17)
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Figure 7.3: Let k = 7. The black line with dots is a path γ ∈ Γ5. The
blue line with stars is the modified path γ̃ ∈ Γ2. The red line
with pluses is the extension of γ̃ to a jump chain in R7.

The ci may be fixed numbers, or possibly functions. Also, whenever we
write x we mean a nonnegative real number, and z represents an arbitrary
complex number.

The discussion in [73, Chapter 5] tells us that, for general weighted
Catalan numbers, g(z) :=

∑∞
k=0C

u,v
k zk is equal to the function

f(z) := K[1, a0z, a1z, . . .] (7.18)

for all |z| < M , where M is the radius of convergence of g centred at the
origin, and aj = u(j)v(j). M is the modulus of the nearest singularity of g
to the origin, or by the Hadamard-Cauchy theorem

M = 1
lim supk→∞(Cu,vk )1/k . (7.19)

Let u(j) and v(j) be as in (7.4) so that, unless stated otherwise, we have

aj = λ

(1 + λ+ (j + 1)ρ)(1 + λ+ (j + 2)ρ)
. (7.20)

When necessary, we denote the dependence on λ and ρ by fλ,ρ.
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7.3.2 Properties of f and M

Our proof that f is meromorphic relies on a classical convergence criteria
for continued fractions [165, Theorem 10.1].

Theorem 7.3.1 (Worpitzky Circle Theorem). Let cj : D → {|w| < 1/4} be
a family of analytic functions over a domain D ⊆ C. Then

K[1, c0(z), c1(z), . . .]

converges uniformly for z in any compact subset of D and the limit function
takes values in {|z − 4/3| ≤ 2/3}.

Corollary 7.3.1. If ρ > 0, then f is a meromorphic function on C.

Proof. We will prove that f is meromorphic for all z ∈ ∆ = {|z| < r0}
with r0 > 0 arbitrary. Let hj(z) := K[ajz, aj+1z, . . .] be the tail of the
continued fraction so that f(z) = K[1, a0z, . . . , aj−1z, hj(z)]. Since ρ > 0
we have |aj | ↓ 0 as j → ∞. It follows that for some j = j(r0) large
enough, |akz| ≤ 1/4 for all k ≥ j and z ∈ ∆. Theorem 7.3.1 ensures that
|hj(z)| < ∞ and the partial continued fractions K[ajz, . . . , anz] are analytic
(again by Theorem 7.3.1) and converge uniformly to hj for z ∈ ∆. Thus, hj
is a uniform limit of analytic functions and is therefore analytic on ∆. We
can then write f(z) = K[1, a0z, . . . , aj−1z, hj(z)]. Since each aiz is a linear
function in z, f is a quotient of two analytic functions.

Next we show that the exponential growth rate of the Cλ,ρk responds
continuously to changes in ρ.

Lemma 7.3.2. Fix λ > 0.

(i) Fix ρ > 0. Given 0 ≤ ρ′ < ρ, there exists ϵ > 0 such that

Cλ,ρk (1 + ϵ)k ≤ Cλ,ρ
′

k . (7.21)
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(ii) Fix ρ > 0. Given ϵ′ > 0, there exists a δ > 0 such that for ρ′ ∈
(ρ− δ, ρ+ δ)

(1 − ϵ′)k ≤
Cλ,ρk

Cλ,ρ
′

k

≤ (1 + ϵ′)k. (7.22)

(iii) If ρ = 0, then given ϵ′ > 0, there exists a δ > 0 such that for ρ′ ∈ [0, δ)
it holds that

1 ≤
Cλ,ρk

Cλ,ρ
′

k

≤ (1 + ϵ′)k. (7.23)

Proof. Let γ be a Dyck path of length 2k. From the definition of Cλ,ρk , we
have w(γ) is a product of some combination of exactly k of the aj terms.
Let a′

j be the weights corresponding to ρ′. It is a basic calculus exercise to
show that, when ρ′ < ρ we have the ratio a′

j/aj > 1 is an increasing function
in j. Let a′

0/a0 = 1 + ϵ. Using the fact that w(γ) and w′(γ) have the same
number of each weight, we can directly compare their ratio using the worst
case lower bound

(1 + ϵ)k = (a′
0/a0)k ≤ w′(γ)

w(γ)
. (7.24)

Cross-multiplying then summing over all paths γ gives (i).
Towards (ii), suppose 0 < ρ′ < ρ. Then we have 1 ≤ a′

j/aj ≤ (ρ/ρ′)2.
Choose δ1 such that (ρ − δ1)/ρ =

√
1 − ϵ′. Using the same logic as above,

we have for ρ′ > ρ− δ1 that

(1 − ϵ′)k ≤
(
ρ′

ρ

)2k
≤ w(γ)
w′(γ)

≤ 1k ≤ (1 + ϵ)k.

Now suppose 0 < ρ < ρ′. Choose δ2 such that (ρ+ δ2)/ρ =
√

1 + ϵ′. Then,
following the same steps as above, we see that for ρ′ < ρ+ δ2
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(1 − ϵ′)k ≤ (1)k ≤ w(γ)
w′(γ)

≤
(
ρ′

ρ

)2k
≤ (1 + ϵ′)k.

The same reasoning as with (7.24) and choosing δ = min(δ1, δ2) gives (ii).
We now prove (iii). Notice that Cλ,0k = Ck(λ/(1 +λ)2)k with Ck the kth

Catalan number, since the transition probabilities at (7.7) for the associated
jump chain are homogeneous when ρ = 0. By Lemma 7.2.1, we have for a
fixed ϵ̃ > 0 and the bound Ck ≤ 4k, there exists a ρ′ > 0 such that

1 ≤
Cλ,0k

Cλ,ρ
′

k

≤ Ck(λ/(1 + λ)2)k

(4 − ϵ̃)k (λ/(1 + λ)2)k
= Ck

(4 − ϵ̃)k
≤
( 4

4 − ϵ̃

)k
. (7.25)

Choosing ϵ̃ such that 4/(4 − ϵ̃) = 1 + ϵ′ and letting δ be small enough so
that (7.25) holds for all ρ′ < δ, we obtain an identical bound to the one in
Lemma 7.3.2 (ii) but for ρ′ ∈ [0, δ).

Lemma 7.3.3. M is a continuous strictly increasing function for ρ ∈ [0,∞)
satisfying M(0) = (1 + λ)2/(4λ).

Proof. First note that for any ρ, M(ρ) ≤ (a0)−1 < ∞. This is because
Cλ,ρk ≥ ω(γk) = (a0)k where γk is the Dyck path consisting of k alternating
rise and fall steps.

That M is increasing follows immediately from the fact that the Cλ,ρk
are decreasing in ρ. To see that M is strictly increasing we use Lemma 7.3.2
(i) in combination with the definition of M at (7.19). Indeed, the lemma
implies that for any 0 ≤ ρ′ < ρ there exists a δ > 0 such that

M(ρ′) = 1
lim supk→∞(Cλ,ρ

′

k )1/k
≤ 1

(1 + δ) lim supk→∞(Cλ,ρk )1/k
= M(ρ)

1 + δ
.

So M is strictly increasing.
To show continuity for ρ > 0, we use (7.19). Fix ρ > 0 and ϵ > 0. Let

ϵ′ = ϵ/M(ρ) and let δ > 0 be as in Lemma 7.3.2 (ii). For ρ′ ∈ (ρ− δ, ρ+ δ)
we have
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lim inf
k→∞

(
Cλ,ρk

Cλ,ρ
′

k

)1/k

≤ M(ρ′)
M(ρ)

≤ lim sup
k→∞

(
Cλ,ρk

Cλ,ρ
′

k

)1/k

.

Using the bound in Lemma 7.3.2 (ii) results in

1 − ϵ′ ≤ M(ρ′)
M(ρ)

≤ 1 + ϵ′.

Simplifying, then replacing out ϵ′ gives |M(ρ′) − M(ρ)| < ϵ. Thus, M is
continuous at ρ > 0. Continuity for ρ = 0 uses a similar argument along
with Lemma 7.3.2 (iii). The explicit formula for M(0) comes from the
formula Cλ,ρk = Ck(λ/(1 + λ)2)k and the fact that the generating function
for the Catalan numbers has radius of convergence 1/4.

Lemma 7.3.4. If λ ∈ Λ then there exists a unique value ρd > 0 such that
M(ρd) = d; Moreover, if λ /∈ Λ, then M > d for all ρ ≥ 0.

Proof. Fix λ. To signify the dependence on ρ, let gρ(z) be the generating
function of the Cλ,ρk . Using the continuity and strict monotonicity of M in
Lemma 7.3.3, to show the first statement, it suffices to prove that gρ(d) < ∞
for ρ large enough, and that g0(d) = ∞. It is easy to see that if ρ > λ(d−1)
then the branching process of red spreading with no blue particles has finite
expected size, and thus gρ(d) < ∞ for such ρ.

Using the formula for M(0) from Lemma 7.3.3 and rearranging, we can
see that when ρ = 0, M < d whenever λd/(1 + λ2) > 1/4. The set of λ for
which this occurs is by definition Λ. Therefore, g0(d) = ∞, proving the first
claim. The claim that M > d for λ /∈ Λ, follows from Lemma 7.3.3. The
explicit formula for M(0) is easily shown to satisfy M(0) > d, and since M
is increasing, this inequality holds for all ρ ≥ 0.

Our next lemma requires a old theorem from complex variable theory
(see [69, Theorem IV.6] for example).

Theorem 7.3.5 (Pringsheim’s Theorem). If f(z) is representable at the
origin by a series expansion that has non-negative coefficients and radius of
convergence M , then the point z = M is a singularity of f(z).
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Lemma 7.3.6. Let ρ > 0. Then, M ≤ d if and only if g(d) = ∞.

Proof. We first note that the implication “M < d implies g(d) = ∞" as well
as the reverse direction “g(d) = ∞ implies M ≤ d" both follow immediately
from the definition of the radius of convergence. It remains to show that
M = d implies g(d) = ∞. Corollary 7.3.1 proves that f is a meromorphic
function. Since g = f for |z| < M , f(x) > 0 for x ∈ (0, d), and Theorem 7.3.5
gives z = d is a pole, we have for x ∈ R that

g(d) = lim
x↑d

g(x) = lim
x↑d

f(x) = ∞.

Remark. CE and CED differ in their behaviour at λ = λ−
c (see Theo-

rem 7.1.2). In particular, the argument that g(d) = ∞ when M = d does
not apply to CE. Why is this the case? The difference is that when ρ = 0,
we cannot use Corollary 7.3.1. Instead, we can write a closed expression for
the function:

g(z) =
∞∑
k=0

Cλ,0k =
∞∑
k=0

Ck

(
λ

(1 + λ)2

)k
zk = 1 −

√
1 − 4zλ/(1 + λ)2

2z
,

we find that g has a branch cut rather than isolated poles. [69, Theorem
IV.10] ensures that the growth of the Cλ,ρc

k is determined by the orders of
the singularities of f at distance M = d. Formally,

Cλ,ρc

k =
∑

|αj |=d
α−k
j πj(k) + o(d−k) (7.26)

where the αj are the poles of f at distance d and the πj are polynomials with
degree equal to the order of the pole of f at αj minus one. When evaluating
at the radius of convergence M = λ−

c , this gives a summable pre-factor of
k−3/2 in (7.26).
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7.4 M and CED
The main results from this section are that for λ ∈ Λ we have ρc = ρd and
that P (B) is continuous at ρd. The lemmas in this section will also be useful
for characterizing the phase behaviour of CED.

Proposition 7.4.1. For λ ∈ Λ it holds that ρd = ρc.

Proof. Lemmas 7.4.5 and 7.4.6 give that whenever λ ∈ Λ we have ρd =
inf{ρ : Pλ,ρ(B) = 0}, which is the definition of ρc.

Lemma 7.4.2. M > d if and only if E|B| < ∞.

Proof. Letting Y be as at (7.5), we first observe that

E|B| =
∞∑
k=0

P (Y = k)dk ≥
∞∑
k=1

P (Rk)dk = g(d).

Hence E|B| < ∞ implies g(d) < ∞, which gives M > d by Lemma 7.3.6.
For the other direction, using the comparison in Lemma 7.2.2 gives

E|B| =
∞∑
k=0

P (Y = k)dk ≤ 1 +
∞∑
k=1

Ck1+λ/ρP (Rk)dk. (7.27)

Lemma 7.3.3 tells us that M is continuous and since M > d, the sum on
the right still converges with the polynomial prefactor.

Call a vertex v ∈ Td a tree renewal vertex if at some time it is red, the
parent vertex is blue, and all vertices one level or more down from v are
white. Note that this definition of renewal is a translation one unit left of
the definition of renewals in the CED+. This makes it so each vertex at
distance k from the root is a tree renewal vertex with probability P (Rk).
We call a tree renewal vertex v a first tree renewal vertex if none of the non-
root vertices in the shortest path from v to the root are renewal vertices.
Let Z be the number of first tree renewal vertices in CED.

Lemma 7.4.3. EZ ≥ 1 if and only if g(d) = ∞.
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Proof. Using self-similarity of Td, the number of renewal vertices is a Galton-
Watson process with offspring distribution Z. Since each of the dk vertices
at distance k have probability P (Rk) of being a tree renewal vertex, the
expected size of the Galton-Watson process is g(d). Standard facts about
branching processes imply the claimed equivalence.

Lemma 7.4.4. If λ ∈ Λ and ρ = ρd, then EZ ≤ 1.

Proof. Since M is strictly increasing in ρ (Lemma 7.3.3) we have M > d for
ρ > ρd and, so, Lemma 7.4.3 implies that EZ < 1. Let R′

k be the event
that a fixed, but arbitrary vertex at distance k is a first tree renewal vertex.
Fatou’s lemma gives

Eλ,ρd
Z =

∞∑
k=1

dkPλ,ρd
(R′

k) =
∞∑
k=1

dk lim inf
ρ↓ρd

P(R′
k) (7.28)

≤ lim inf
ρ↓ρd

∞∑
k=1

dkP(R′
k) = lim inf

ρ↓ρd

Eλ,ρZ ≤ 1.

(7.29)

To see the second equality, notice that P(R′
k) is continuous in ρ at ρd, as R′

k

consists of finitely many jump chains.

Lemma 7.4.5. If λ ∈ Λ and ρ < ρd, then P (B) > 0.

Proof. It follows from Lemmas 7.3.3 and 7.4.3, along with the easily observed
fact that EZ is strictly decreasing in ρ that EZ > 1 for ρ < ρd. Thus,
the embedded branching process of renewal vertices is infinite with positive
probability. As |B| is at least as large as the number of renewal vertices, this
gives P (B) > 0.

Lemma 7.4.6. If λ ∈ Λ and ρ = ρd, then P (B) = 0.

Proof. The probability blue survives along a path while remaining at least
distance L > 0 from the most distant red site from the root for k consecutive
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steps is bounded by the probability none of the intermediate red particles
die, a quantity which is in turn bounded by:

( 1 + λ

1 + λ+ Lρ

)k
. (7.30)

Choose L0 large enough so that (7.30) is smaller than (2d)−k. Let Dk(v)
be the event that, in the subtree rooted at v, the front blue particle moves
from vertex v to a vertex at level k without ever coming closer than L0 to
the front red particle. Applying a union bound over all vertices at distance
k from v and the estimate (7.30) we have P (∪|v|=kDk(v)) ≤ 2−k. As these
probabilities are summable, the Borel-Cantelli lemma implies that almost
surely only finitely many Dk occur.

On a given vertex self-avoiding path from the root to ∞, let Bt (re-
spectively, Rt) be the distance between the furthest blue (respectively, the
furthest red) and the root. In order for B to occur there must exist a path
such that Bt − Rt = m infinitely often for some fixed m < L0. Suppose
Bt − Rt ≥ m for all times and Bt − Rt = m infinitely often. Self-similarity
ensures that the vertices at which Bt − Rt = m form a branching process.
Using monotonicity of the jump chain probabilities at (7.7), this branching
process is dominated by the embedded branching process of renewal vertices
(i.e., when m = 1). Lemma 7.4.4 ensures that the embedded branching pro-
cess of renewal vertices is almost surely finite (since it is critical), and thus
for each fixed m < L0 the associated branching process is also almost surely
finite. As blue can only reach infinitely many sites if either infinitely many
Dk occur, or one of the m-renewing branching processes survives, we have
P (B) = 0.

7.5 Proofs of Theorems 7.1.1, 7.1.2 , and 7.1.3
Lemma 7.5.1. If λ ∈ Λ then ρc < ρe.

Proof. Consider the function

fU (λ) = 1
4

(√
(32d+ 2)λ+ λ2 + 1 − 3λ− 3

)
.
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In the proof of Theorem 7.1.3, we verify that ρc < fU (λ). One can further
check that fU (λ−

c ) = 0 = fU (λ+
c ) are the only zeros of fU , so that fU (λ) > 0

for λ ∈ Λ. Moreover, we have

ρe − fU (λ) = λ(d− 1) − 1
4

(√
(32d+ 2)λ+ λ2 + 1 − 3λ− 3

)
.

Some algebra gives ρe − fU (λ) = 0 is equivalent to solving −8 + λ(8d+ 8) +
λ2(8λ − 16λ2) = 0, which has no real solutions for d ≥ 2. As ρe − fU (λ) is
continuous in λ and positive at any choice of d ≥ 2 and λ, we must have
ρe− fU (λ) > 0. We thus arrive at the claimed relation ρc < fU (λ) < ρe.

Proof of Theorem 7.1.1. First we prove that ρe = λ(d − 1). In CED on Td
with no blue particles present, red spreads as a branching process with mean
offspring dλ/(λ+ ρ). This is supercritical whenever ρ < λ(d− 1). It is easy
to see that P (R) > 0 for such ρ, since with positive probability a child of
the root becomes red, then the red particle at the root dies. At this point,
blue cannot spread, and red spreads like an unchased branching process.
Since the red branching process is not supercritical for ρ ≥ λ(d − 1), we
have P (R) = 0 for such ρ, which proves that ρe is as claimed.

Now we prove (i). Suppose that λ ∈ Λ. Lemma 7.3.4 and Proposi-
tion 7.4.1 ensure that ρc > 0, and Lemma 7.5.1 implies ρc < λ(d− 1) = ρe.
For 0 ≤ ρ < ρc, Lemma 7.4.5 implies that coexistence occurs with positive
probability. For ρc ≤ ρ < ρe, Lemma 7.4.6 and Lemma 7.4.5 imply that
P (B) = 0, but the red branching process survives so P (R) > 0. Thus,
escape occurs. For ρ ≥ ρe, red cannot survive in CED with no blue, so
extinction occurs.

We end by proving (ii). Suppose that λ /∈ Λ. By Lemma 7.3.4 we have
M > d for all ρ ≥ 0. It then follows from Lemma 7.4.2 that E|B| < ∞ and
so P (B) = 0 for all such ρ. Similar arguments as in (i) that only consider
the behaviour of red after it separates from blue can show that the escape
and extinction phases occur for 0 ≤ ρ < ρe and ρ ≥ ρe, respectively.

Proof of Theorem 7.1.2. Lemma 7.3.3 and Proposition 7.4.1 give that ρ > ρc

implies M > d, which, by Lemma 7.4.2, implies that E|B| < ∞. This gives
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(i). The claim at (ii) holds because Lemma 7.3.4 and Proposition 7.4.1 imply
that M = d when ρ = ρc. Lemma 7.3.6 gives that M = d implies g(d) = ∞.
Since E|B| ≥ g(d), we obtain the claimed behaviour.

Proof of Theorem 7.1.3. Define the functions

fL(λ) = 1
4

(√
(8d+ 2)λ+ λ2 + 1 − 3λ− 3

)
,

fU (λ) = 1
4

(√
(32d+ 2)λ+ λ2 + 1 − 3λ− 3

)
.

We will prove that

fL(λ) ≤ ρc(λ) < fU (λ). (7.31)

Upon establishing this, it follows immediately that for large enough d we
have c

√
d ≤ ρc ≤ C

√
d for any c <

√
λ/2 and C >

√
2λ.

On a given path from the root, the probability that red advances one
vertex and then blue advances is given by

p = λ

(1 + λ+ ρ)(1 + λ+ 2ρ)
. (7.32)

For each vertex v at distance k from the root, let Gv be the event that
red and blue alternate advancing on the path from the root to the parent
vertex of v, after which red advances to v, and then does not spread to any
children of v before the parent of v is coloured blue. Letting

c = λ

1 + λ+ ρ

1
1 + dλ+ 2ρ

, (7.33)

it is easy to see that P (Gv) = cpk−1. A renewal occurs at each v for which
Gv occurs. It is straightforward to verify that pd > 1 whenever ρ < fL(λ).
Accordingly, we can choose K large enough so that cpK−1dK > 1, and thus
the branching process of these renewals is infinite with positive probability,
which implies that P (B) > 0.

To prove the upper bound we observe that monotonicity of the transition
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probabilities at (7.7) in j ensures that the maximal probability jump chain
of length 2k is the sawtooth path that alternates between height 1 and
height 2. This path occurs as a living jump chain with probability pk with
p as in (7.32). As this is the maximal probability jump chain of the Ck

many Dyck paths counted by Rk, we have g(d) ≤
∑∞
k=1Ckp

kdk. The radius
of convergence for the generating function of the Catalan numbers is 1/4
with convergence also holding at 1/4. Thus, when ρ is large enough that
pd ≤ 1/4, we have g(d) < ∞. Lemma 7.3.6 and Lemma 7.4.2 then imply
that E|B| < ∞ and so ρ > ρc. It is easily checked that the above inequality
holds whenever ρ ≥ fU (λ). Thus, ρc < fU (λ).

7.6 Proof of Theorem 7.1.4
Recall our notation for continued fractions at (7.17). In this section we use
the definition of aj at (7.20) and also define bj := ajd. The following lemma
shows that the nested continued fractions in the definition of f at (7.18) are
decreasing when z = M .

Lemma 7.6.1. K[aiM,ai+1M, . . .] ≤ K[ai−1M,aiM, . . .] for all i ≥ 1.

Proof. Let fi(x) = K[aix, ai+1x, . . .]. Since the fi are analytic for x < M ,
we must have fi(x) < 1 for all x < M (otherwise f would have a singularity
with modulus smaller than M). For any fixed n we can the use monotonicity
of K when we change the entries of K one by one and use the fact that
aj < aj−1 for all j ≥ 1 to conclude that

K[aix, ai+1x, . . . , anx] ≤ K[ai−1x, aix, ai+2x, . . . , an−1x]. (7.34)

Taking the limit as n → ∞ gives fi(x) ≤ fi−1(x) for all x < M . Letting
x ↑ M , these inequalities continue to hold.

Note that since f(x) has a pole at M and fi(M) ≤ fi−1(M), we must
have that f0(M) = 1 and fi(M) < 1 for all i ≥ 0.
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Proof of Theorem 7.1.4. When ρ = ρc, it follows from Proposition 7.4.1 and
Theorem 7.3.5 that a pole of f occurs at z = d. Let K(λ, ρ) = K[b0, b1, . . .].
Due to Lemma 7.6.1 and the equality f(z) = (1 − K[a0z, a1z, . . .])−1, the
singularity at z = d occurs as a result of K(λ, ρc(λ)) = 1.

We can use a similar argument as in Corollary 7.3.1 to view f as a
meromorphic function in the complex variables λ, ρ and z. Thus, when
fixing z = d and considering λ and ρ as nonnegative real numbers, the
function K(λ, ρ) = fλ,ρ(d) is real analytic. Moreover, since K is easily
seen to be strictly decreasing in ρ, we have ∂K/∂ρ ̸= 0 at (λ, ρc(λ)). As
K(λ, ρc(λ)) ≡ 1, and K is infinitely differentiable, it follows from the implicit
function theorem that ρc(λ) is smooth.

7.7 Proof of Theorem 7.1.5
We begin this section by describing lower and upper bounds on Cλ,ρk . These
are easier to analyze than Cλ,ρk and lend insight into the local behaviour
of ρc. In particular, we obtain if and only if conditions to have ρ < ρc

(Lemma 7.7.1) and ρ > ρc (Lemma 7.7.3). We use these bounds to prove
Theorem 7.1.5.

7.7.1 A lower bound on Cλ,ρ
k

The idea is to assign weight 0 to rise and fall steps above a fixed height
m ≥ 1. Accordingly, we introduce the weights

û(j) =

u(j), j ≤ m

0, j > m
, v̂(j) =

v(j), j ≤ m

0, j > m
. (7.35)

Here u(j) and v(j) are as in (7.4). Let Ĉλ,ρk be the corresponding weighted
Catalan numbers. Since û(j) ≤ u(j) and v̂(j) ≤ v(j) for all j, we have
Ĉλ,ρk ≤ Cλ,ρk .

Let ĝm(z) =
∑∞
k=0 Ĉ

λ,ρ
k zk. The truncation ensures that

ĝm(z) = K[1, a0z, . . . , amz]
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is a rational function with radius of convergence M̂ ≥ M. Note that M̂
depends on λ, ρ and m. For nonnegative real values x we have ĝm(x) <
ĝm+1(x). It follows from the monotone convergence theorem that ĝm(x) →
g(x) as m → ∞ and thus

lim
m→∞

M̂ = M. (7.36)

Lemma 7.7.1. ρ < ρc if and only if K[bi, . . . , bm] > 1 for some m ≥ 1 and
0 ≤ i ≤ m.

Proof. Suppose that ρ < ρc. Lemma 7.3.3 and Proposition 7.4.1 imply
that M < d. By (7.36), we have M̂ < d for a large enough choice of m.
Since ĝm(x) is a rational function, its singularities occur wherever one of the
partial denominators 1 − K[aix, . . . , amx] = 0. Let i∗ be the largest index
such that there is x0 < d with

1 −K[ai∗x0, . . . , amx0] = 0.

Since i∗ is the maximum index for which the equation above holds, we
have K[ajx, . . . , amx] < 1 for all j > i∗ and x ∈ (x0, d). This ensures
that K[ai∗x, . . . , amx] does not have a singularity and hence it is a strictly
increasing function for x ∈ (x0, d). Thus, K[bi∗ , . . . , bm] > 1.

Suppose that K[bi, . . . , bm] > 1 for some m ≥ 1 and 0 ≤ i ≤ m. This
implies that ĝm has a singularity of modulus strictly less than d. Thus,
M̂ < d. Since M ≤ M̂ , Lemma 7.4.5 implies that ρ < ρc.

7.7.2 An upper bound on Cλ,ρ
k

Since u(j) and v(j) are decreasing in j, we obtain an upper bound by assign-
ing weight u(m) and v(m) to all rise and fall steps above height m. More
precisely, set

ũ(j) =

u(j), j < m

u(m), j ≥ m
, ṽ(j) =

v(j), j < m

v(m), j ≥ m
. (7.37)
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Let C̃λ,ρk be the weighted Catalan number using the weights ũ and ṽ.
Also, let g̃ and M̃ be the corresponding generating function and radius of
convergence. Since u(j) ≤ ũ(j) and v(j) ≤ ṽ(j) for all j ≥ 0, we have
Cλ,ρk ≤ C̃λ,ρk for all k ≥ 0. It follows that the corresponding generating
functions and radii of convergence satisfy g(x) ≤ g̃(x), and M ≥ M̃ .

There is a finite procedure for bounding M̃ . We say that the function
K[1, c0, c1, . . . , ck] is good if all of the partial continued fractions are smaller
than 1:

ck < 1, K[ck−1, ck] < 1, · · · , K[c0, . . . , ck] < 1. (7.38)

Define the continued fraction

Km(x) := K[1, a0x, . . . , am−2x, am−1xψ(amx)] (7.39)

where ψ(x) = K[1, x, x, . . .] is the generating function of the usual Catalan
numbers. By (7.18), so long as x < M̃ we have

g̃(x) = Km(x).

We now prove that when a partial continued fraction is good, it is good
in a neighbourhood.

Lemma 7.7.2. If K[c] := K[c0, c1, . . . , ck] is good, then there exists an
ϵ > 0 such that K[c̃] := K[c̃0, c̃1, . . . , c̃k] is good when c̃j ≤ cj(1 + ε) for all
j = 0, . . . , k.

Proof. If K[c] is good, then each partial fraction in (7.38) is < 1. Note that
each of those partial fractions is a decreasing function of the cj which appear
in the fraction. Therefore, if c̃j ≤ cj , K[c̃] is good. Since the inequalities are
strict and K[c] is continuous in each cj , we can extend to have K[c̃] good
for all c̃j ≤ (1 + ϵ)cj where ϵ is chosen small enough so that none of the
partial fractions in (7.38) equal 1.

Lemma 7.7.3. ρ > ρc if and only if bm < 1/4 and Km(d) is good for some
m ≥ 1.
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Proof. Suppose that ρ > ρc. Then Lemma 7.3.3 and Proposition 7.4.1 say
that g has radius of convergence M > d. For |z| < M , we write

g(z) = K[1, a0z, . . . , am−2z, am−1zgm(z)] (7.40)

with gm(z) := K[1, amz, am+1z, . . .] the tail of the continued fraction.
Because M > d, gm(d) < ∞, we can see, using a quick argument by

contradiction, that g(d) is good. Suppose that one of the partial fractions in
(7.38) is strictly larger than 1. But because these finite continued fractions
are continuous in the inputs, this would imply that there is a singularity at
some |z| < d, contradicting the fact that M > d.

As the continued fraction representation of g(d) is good, we then apply
Lemma 7.7.2 to say that there exists an ϵ > 0 such that

K[1, b0, . . . , bm−2, bm−1gm(d)(1 + ϵ)] (7.41)

is also good. Notice that ψ(amx) ≥ gm(x) ≥ 1 by definition. Since |amz| → 0
as m → ∞, we can use the explicit formula for ψ to directly verify that
ψ(amx) → 1 as m → ∞. Choose m large enough so that bm < 1/4 and
ψ(bm) < 1 + ϵ. Then ψ(bm) < (1 + ϵ)gm(d) and it follows from (7.41) that
Km(d) is good.

Now, suppose that bm < 1/4 and Km(d) is good for some m ≥ 1. Our
definitions of ũ and ṽ ensure that we can write

K[1, ãmx, ãm+1x, . . .] = K[1, amx, amx, . . .] = ψ(amx)

for all x with amx < 1/4. Since bm = amd < 1/4, this ensures that this is true
for all x < d(1 + ϵ′) for some ϵ′ > 0. Similar reasoning as Corollary 7.3.1
then gives Kz is a meromorphic function for |z| ≤ d(1 + ϵ′). Moreover,
Theorem 7.3.5 ensures that the first pole occurs at the smallest x for which
some partial continued fraction of Km is equal to 1. By Lemma 7.7.2, Km(d)
being good implies that there exists 0 < ϵ ≤ ϵ′ such that Km is good for all
x ≤ d(1 + ϵ). Hence, there are no poles of Km within distance d(1 + ϵ) of
the origin. It follows that g̃ = Km for all such x, and thus M̃ ≥ d(1 + ϵ).
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Since M ≥ M̃ , we have M > d. This gives ρ > ρc by Lemma 7.4.2 and
Proposition 7.4.1.

7.7.3 A finite runtime algorithm

Proof of Theorem 7.1.5. Suppose we are given ρ ̸= ρc. Lemmas 7.7.1 and
7.7.3 give a finite set of conditions to check whether ρ < ρc or ρ > ρc,
respectively. To decide which is true, we increase m and the algorithm
terminates once the conditions holds.
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Chapter 8

Conclusions

We finish with a summary of the contributions in this work and further
research directions.

8.1 Contributions
We divide this discussion between the two main topics in this dissertation.

8.1.1 Uniform spanning trees

In Chapter 5, we show that the scaling limit of the UST on Z3 exists in the
space of measured and rooted spatial trees. Let U be the uniform spanning
tree on Z3, let dU denote the intrinsic metric on U , let µU be the counting
measure on U and let ϕU : U → R3 be a continuous map defined as the
identity on the vertices of U and a linear interpolation between its edges.
Recall that we write β for the growth exponent of the loop-erased random
walk. Theorem 5.1.1 shows that, if Pδ is the law of

(U , δβdU , δ
3µU , δϕU ). (8.1)

then the collection (Pδ)(0,1] is tight. Moreover,

(U , 2−βndU , 2−β3nµU , 2−nϕU )
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converges to (T , dT , µT , ϕT ) as n → ∞, with respect to a type of Gromov-
Hausdorff topology, as defined in Section 5.2. To our knowledge, this is the
first result on scaling limits for three-dimensional uniform spanning trees.

The techniques used to prove Theorem 5.1.1 are also useful to study
geometric properties of the limit space. If (T , dT ) is the scaling limit of
uniform spanning trees on Z3, in Theorem 5.1.2 we prove that

(i) the tree (T , dT ) is one-ended;

(ii) the Hausdorff dimension of (T , dT ) is df = 3/β;

(iii) the Schramm distance is a well defined metric on T and it is topolog-
ically equivalent to the intrinsic metric dT .

Theorem 5.1.2 also states upper and lower matching bounds for the measure
of the intrinsic balls of (T , dT ). Theorem 5.1.1 has consequences on the
simple random walk defined over the uniform spanning tree. In particular,

(i) we find exponents of the simple random walk in terms of β (see The-
orem 5.1.3 and Corollary 5.1.1);

(ii) the annealed law of the simple random walk on U is tight under rescal-
ing (see Theorem 5.1.4); and

(iii) we obtain kernel estimates for any diffusion that arises as a scaling
limit (see Theorem 5.1.4).

The general technique Chapter 5 also serves to study macroscopic proper-
ties of the uniform spanning tree. Let us denote by Uδ the uniform spanning
tree on δZ3. By a spanning cluster, we refer to a connected component of
the uniform spanning tree intersecting two opposite faces of the unit cube
[0, 1]3. Theorem 6.1.1 states that the number of spanning clusters of Uδ is
tight as δ → 0.

Theorem 6.1.1 verifies a conjecture by Benjamini [28]. For models below
its critical dimension, we expect to have tightness on the number of generat-
ing clusters, whereas it grows to infinity on high dimensions. This behaviour
has been verified, in all dimensions, only for uniform spanning trees. The
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affirmative answer that we find for USTs supports the corresponding con-
jecture for percolation on Zd with d < 6 (see [3]).

8.1.2 Competitive growth process

Chapter 7 introduces a novel competitive growth process, chase-escape with
death (CED). It is a natural generalization for predator-prey competition
models.

Chase-escape with death is a competitive growth process on a graph G.
It resembles the behaviour of predators and prey, including the possibility
of prey dying for reasons unrelated to the predators. We define chase-escape
with death as an interacting particle system with local state space {w, r, b, †}.
We call these states white, red, blue, and dead, respectively. We also refer to
red and blue as particles. White states indicate vacant sites. Predators, prey,
and dead prey may occupy these sites as time advances. A red site indicates
the presence of prey, blue is the colour for predators, and † corresponds to a
dead site. In the initial configuration, a red particle occupies one vertex, a
blue particle occupies a neighbour vertex, and the rest of the graph is white.
Red particles spread to adjacent white sites according to a Poisson process
with rate λ. Meanwhile, blue particles overtake adjacent red particles at
rate 1. Red particles die, and turn to a death state, at an independent rate
ρ. Once a site reached a dead state, it stays dead for the rest of the process.

Depending on the parameters λ and ρ, the process reaches either a finite
or an infinite number of vertices.

(i) Coexistence phase: both particle types occupy infinitely many sites
with positive probability.

(ii) Extinction phase: both types occupy only finitely many sites almost
surely.

(iii) Escape phase: red particles occupy infinitely many sites with positive
probability, but blue particles reach a finite number of vertices almost
surely.
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λ

ρ

λ−c λ+c

extinction

escape

coexistence

Figure 8.1: The two-dimensional phase diagram with d fixed. The
horizontal axis is for values of λ and the vertical axis is for
values of ρ. The dashed black line depicts ρc and the solid black
line ρe.

In Chapter 7, we analyse CED when the underlying graph G is a d-ary
tree Td. The main result was Theorem 7.1.1. It states that, for fixed λ within
an explicit interval Λ, there exists an interval of death rates [ρc, ρe) where
the escape phase occurs. Coexistence occurs for ρ ∈ [0, ρc) and extinction for
ρ ≥ ρe. If λ ̸∈ Λ, then the process transitions between escape and extinction
phases. We obtain a characterization of the phase diagram for the spreading
parameter λ and the death rate ρ (see Figure 8.1).

In Theorem 7.1.2, we analyse the behaviour at criticality of the average
growth of blue particles. If ρ > ρc, then the expected number of sites that
are ever coloured blue is finite. If ρ = ρc, this expected value is infinite.

A closed formula is not available for ρc, but Theorems 7.1.3, 7.1.4 de-
scribe the behaviour of this critical parameter. For large d, ρc ≍λ

√
d.

Moreover, as as function of λ ∈ Λ, ρc is a smooth function. We can approx-
imate the graph of ρc with an algorithm proposed in Theorem 7.1.5.

8.2 Future directions
The common obstacle for addressing open problems on three-dimensional
uniform spanning trees and chase-escape models is a lack of tools. Three-
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dimensional models in statistical mechanics lack properties available in two
dimensions, such as conformal invariance and planarity. The results in two-
dimensions guide conjectures, but the proofs will require new methods. The
situation is similar for chase-escape. We have results for chase-escape and
chase-escape with death on N and trees Td, and N× {0, 1}. However, chase-
escape on Z2 seems out of reach.

In general, obstacles for solving a mathematical problem maintain the
vitality of our science. At first, one may regret the failure of a known
technique. But this momentarily defeat demands creativity for a deeper
understanding of the problem in hand. Following this spirit, we conclude
this thesis with a collection of problems that are not resolved in this work
but stimulate further research.

8.2.1 Uniform spanning trees

One the main tools to analyse uniform spanning trees and forests is Wilson’s
algorithm. As we have seen in this work, questions on uniform spanning
trees get an answer after their analogue finds a solution for loop-erased
random walks. The problems that we present here follow this direction and
correspond to properties of the loop-erased random walk.

Characterization of the scaling limit of the LERW on Z3

Let K be the scaling limit of the loop-erased random walk on Z3 started at
the origin and stopped at its first exit from the unit ball. Kozma proved the
existence of K in [107], but a construction of K without passing through the
limit is missing. In [148], Sapozhnikov and Shiraishi compared the traces
of K, Brownian motion, and a Brownian loop-soup. Denote by B the trace
of Brownian motion from the origin to the boundary of the unit ball. Let
BS be the Brownian loop soup [120], and let L be the set of loops of BS
intersecting K. If we set

K̂ = K ∪ L,

then B is equal in law to K̂ [148].

Question 8.2.1. Does the law of K̂ determine the law of K?
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Universality of the scaling limit of the LERW

We have a good understanding of the scaling limit of the loop-erased random
walk in the planar case. For any planar graph where the simple random walk
converges to Brownian motion, the LERW converges in the scaling limit to
SLE(2) [171]. In contrast, we know little on the three-dimensional scaling
limit.

Question 8.2.2. Let G be a periodic three-dimensional graph different to
Z3. Prove the existence of the scaling limit of the LERW on G.

8.2.2 Competitive growth models

We already presented an intriguing open question for chase-escape on Z2

in Conjecture 4.5.6. The simpler version of the conjecture of Kordzakhia
Martin is also open.

Question 8.2.3. Does there exist a graph non-oriented G for which the
critical parameter on chase-escape is λc(G) < 1?

Natural starting points for Question 8.2.3 is a binary tree with one edge
added. Such an edge creates a cycles. On a different direction, we can
consider Question 8.2.3 on Cayley graphs, such like Z∗Z∗Z/3 or Z∗Z∗Z2.

The Birth-and-Assassination (BA) process is the scaling limit of chase-
escape on a d-ary tree. Aldous and Krebs defined the BA process process
in [8]. Bordenave proved this convergence, in the scaling limits, for the
rumor-scotching process on trees [34]. The equivalence between the rumor-
scotching process chase-escape, on d-ary trees, extends the result to the
latter. A natural question is the nature of the scaling limit on other graphs
at criticality. Simulations in [164] indicate that such limit exists for Z2 at
λ = 1

2 .

Question 8.2.4. Does the chase-escape process at criticality on a graph G
converge to a scaling limit? Does there exist a scaling limit for chase-escape
with death?
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