UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Realizing high-energy physics in topological semimetals Chen, Anffany

Abstract

The discovery of topological phases of matter has brought high-energy and condensed matter communities together by giving us shared interests and challenges. One fruitful outcome is the broadened range of possibilities to study high-energy physics in cost-effective table-top experiments. I have investigated scenarios in which influential high-energy ideas emerge in solid-state systems built from topological semimetals – gapless topological phases which have drawn intense research efforts in recent years. My Thesis details three proposals for realizing Majorana fermions, Adler-Bell-Jackiw anomaly, and holographic black holes in superconductor-Weyl-semimetal heterostructures, mechanically strained Weyl semimetal nanowires/films, and graphene flakes subject to strong magnetic fields, respectively. By analyzing the effects of realistic experimental conditions, I wish to demonstrate that these proposals are experimentally tangible with existing technologies.

Item Citations and Data

License

Attribution-NonCommercial-NoDerivatives 4.0 International

Usage Statistics