UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Chromium isotopes, iron speciation, and the evolution of Earth's surface chemistry through time Bauer, Kohen Witt


The oxygen concentration of the ocean atmosphere system regulates the nature, activity and diversity of life on Earth. Atmospheric and ocean oxygenation is tightly coupled to the global biogeochemical cycles of C, N, P, S and Fe, as well as climate. Reconstructing the history of oxygen on planet Earth, therefore, is a key component to understanding the evolution of life. Our emergent picture of the evolution of Earth’s surface redox state with its links to the evolution of life and climate relies heavily on interpretations of geochemical information preserved in the rock record. The Cr isotope and Fe-speciation proxies are two widely applied tools used to diagnose redox conditions in both modern and ancient depositional environments. Many aspects of the precise mechanisms that lend the use of these two transition metals as paleoredox proxies, however, remain unclear, confounding accurate reconstructions of paleo-oxygen concentrations that rely on Cr isotope and Fe-speciation data. In this work I studied Cr isotope and Fe speciation proxy systematics to develop more nuanced frameworks for how these two paleoredox proxies may be employed to reconstruct depositional redox states in both modern and past environments. I determined the Cr isotope and Fe mineral composition of modern marine hydrothermal sediments, revealing Cr isotope fractionations that imply deposition from an oxygenated deep ocean. I determined Cr isotope fractionations associated with the reduction of Cr(VI) in modern ferruginous sediments, revealing that the magnitude of Cr isotope fractionation in such environments is linked to the speciation of Fe and the oxygen penetration depth of the sediments. I determined Fe-speciation and trace metal abundances of sediments deposited during oceanic anoxic event 1a (OAE1a), revealing that during this interval the oceans were anoxic and Fe-rich (ferruginous) for more than 1 million years. Lastly, I determined the Fe-speciation of suspended and sedimented material from two modern ferruginous lakes, revealing that the mineral magnetite forms authigenically in the ferruginous water columns. This new knowledge of Cr and Fe proxy systematics will allow for more refined interpretations of paleo oxygen concentrations based on Cr isotope and Fe-speciation signals captured in the rock record through time.

Item Media

Item Citations and Data


Attribution-NonCommercial-NoDerivatives 4.0 International