UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Crystallization and thermo-viscoelastic modelling of polymer composites Gordnian, Kamyar


Process models of composite materials are useful tools for understanding the effect of process parameters and variables and reducing manufacturing risks and costs. The sub-model approach for process modelling has been applied to thermoset composites since the early 1980s. In this approach, analysis is performed with different sub-models such as thermochemical, flow, void and stress, and the analysis results are sequentially transferred from one sub-model to the next, until the analysis is complete. In recent years there has been growing use of high performance thermoplastics such as PEEK and PEKK in aircraft structures, and hence process models for thermoplastics are increasingly of interest. During processing of thermoplastic materials, the material undergoes both melting and crystallization. Therefore a major component of the thermochemical/thermophysical sub-model for process modelling of thermoplastics is the crystallization/melt kinetics model. Most of the crystallization kinetics models in the literature are only valid for either constant temperatures or cooling at constant cooling rates. Furthermore, the number of melt kinetics models is very limited and their application restricted to small heating rates. As a material point in the part may undergo complex temperature cycles, a rate-type crystallization/melt kinetics model which is independent of the temperature cycle is desired. Another problem in processing is development of residual stresses and distortions, which are analyzed in the stress sub-model using mechanical response constitutive models such as thermo-elastic, CHILE and viscoelastic. Most thermoplastic materials such as PEEK are indeed viscoelastic, however their unrelaxed values of moduli are temperature dependent, ie their behaviour is ‘thermo-rheologically complex’. In this thesis the crystallization and melt behaviour of PEEK carbon fibre composites is investigated using DSC experiments. A rate type crystallization kinetics model is developed for prediction of degree of crystallinity during crystallization process. A concept of ‘master melt curve’ is introduced and is used along with the crystallization kinetics model for prediction of crystallinity change during an arbitrary process. Thermo-viscoelastic behaviour of the material is studied using DMA experiments. A thermo-viscoelastic (TVE) constitutive model is developed and is generalized to three dimensional cases. Some case studies are analyzed and validity of models are investigated.

Item Citations and Data


Attribution-NonCommercial-NoDerivatives 4.0 International