UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

A mix-grained architecture for improving HLS-generated controllers on FPGAs Assadikhomami, Shadi

Abstract

With the recent slowdowns in traditional technology scaling, hardware accelerators, such as Field Programmable Gate Arrays (FPGAs), offer the potential for improved performance and energy efficiency compared to general purpose processing systems. While FPGAs were traditionally used for applications such as signal processing, they have recently gained popularity in new, larger scale domains, such as cloud computing. However, despite their performance and power efficiency, programming FPGAs remains a hard task due to the difficulties involved with the low-level design flow for FPGAs. High-Level Synthesis (HLS) tools aim to assist with this time-consuming task by supporting higher level programming models which significantly increases design productivity. This also makes the use of FPGAs for large scale design development for evolving applications more feasible. In this thesis we explore the potential of modifying the current FPGA architecture to better support the designs generated by HLS tools. We propose a specialized mix-grained architecture for Finite State Machine (FSM) implementation that can be integrated into existing FPGA architectures. The proposed mix-grained architecture exploits the characteristics of the controller units generated by HLS tools to reduce the control-path area of the design. We show that our proposed architecture reduces the area of the next state calculation in FSMs by more than 3X without impacting the performance and often reducing the critical path delay of the next state calculation in FSMs.

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International