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Abstract

With the recent slowdowns in traditional technology scaling, hardware accelera-

tors, such as Field Programmable Gate Arrays (FPGAs), offer the potential for im-

proved performance and energy efficiency compared to general purpose processing

systems. While FPGAs were traditionally used for applications such as signal pro-

cessing, they have recently gained popularity in new, larger scale domains, such as

cloud computing. However, despite their performance and power efficiency, pro-

gramming FPGAs remains a hard task due to the difficulties involved with the low-

level design flow for FPGAs. High-Level Synthesis (HLS) tools aim to assist with

this time-consuming task by supporting higher level programming models which

significantly increases design productivity. This also makes the use of FPGAs for

large scale design development for evolving applications more feasible.

In this thesis we explore the potential of modifying the current FPGA architec-

ture to better support the designs generated by HLS tools. We propose a specialized

mix-grained architecture for Finite State Machine (FSM) implementation that can

be integrated into existing FPGA architectures. The proposed mix-grained archi-

tecture exploits the characteristics of the controller units generated by HLS tools to

reduce the control-path area of the design. We show that our proposed architecture

reduces the area of the next state calculation in FSMs by more than 3X without

impacting the performance and often reducing the critical path delay of the next

state calculation in FSMs.
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Lay Summary

Programming low-level, dedicated hardware computing systems, such as Field-

Programmable Gate Arrays (FPGAs), is more challenging and time consuming

compared to programming higher-level software for general-purpose processors.

Despite the difficulties associated with programming hardware, FPGAs still remain

an appealing solution over general-purpose processors for many applications due

to their higher efficiency. High-Level Synthesis (HLS) aims to ease the hardware

programming by enabling the use of higher-level software languages to program

FPGAs. However, there is generally a trade-off between programmability and ef-

ficiency when using HLS tools, which can often result in a less efficient hardware

design than programming FPGAs using low-level programming languages. In this

dissertation, we aim to narrow the gap between programmability and efficiency

when programming FPGAs using HLS tools. We propose a novel modification to

current FPGA architectures that exploits common properties of HLS-generated de-

signs to improve the FPGAs efficiency by reducing the total area of the hardware

design.
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Chapter 1

Introduction

Since their emergence, computing systems have undergone a series of revolution-

ary improvements in their performance, energy efficiency and cost-effectiveness.

These improvements were achieved by architectural innovations and advancements

in the semiconductor industry. Advancements in semiconductor technologies pro-

vide large improvements to computing systems by drastically increasing the amount

of processing capability per unit of area and power. Historically, these advance-

ments have followed Moore’s law [22], which states that the number of transis-

tors on a chip will double approximately every two years and Dennard Scaling

[8], which states that the power density of transistors remains constant as their size

scales down which enables smaller and faster transistors. However, in recent years,

Moore’s law and Dennard scaling have slowed, resulting in diminishing returns

from semiconductor improvements.

Additionally, to broaden the scope of applications able to benefit from such

computing systems, architectures were designed with generality in mind, such as

the CPU. However, due to the slowdowns in the rate of improvements for comput-

ing systems, there has been a shift towards using alternative architectural designs

and specialized hardware accelerators to keep up with the growing computational

demands of today’s applications.

Hardware accelerators are customized circuits that are designed for performing

a particular set of tasks [28]. They have shown great potential to improve the per-

formance and energy efficiency of applications by eliminating the overheads that
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come with having a more general purpose architecture. Graphic Processing Units

(GPUs), Application-Specific Integrated Circuits (ASICs), Digital Signal Proces-

sors (DSPs), and Field Programmable Gate Arrays (FPGAs) are examples of the

most common hardware accelerators [28].

These accelerators range in their level of specialization and programmability.

Similar to CPUs, GPUs offer a high degree of programmability, however, are de-

signed to accelerate a class of applications with large amounts of data-level paral-

lelism. In contrast, ASICs are designed to perform a specific set of tasks with ded-

icated hardware at the cost of little to no programmability. FPGAs bridge the gap

between programmable processors and dedicated hardware accelerators by provid-

ing a reconfigurable and programmable hardware platform. FPGAs improve the

flexibility over ASICs, while maintaining a portion of the improvements in perfor-

mance and energy efficiency of a hardware design compared to a general purpose

architecture.

More recently, FPGAs have been gaining popularity in domains they have not

typically been used for, such as cloud computing [[39], [38]]. Some of of the

world’s biggest datacenters, such as Microsoft and Baidu, are now deploying FP-

GAs in their servers [[44], [23], [6]], and Amazon is now offering FPGA cloud

instances in the amazon web services[3]. Additionally, with the acquisition of Al-

tera by Intel in 2015 [13], FPGAs may become more closely tied to general purpose

architectures, making them more accessible and increasing the use in new markets,

such as Cloud computing.

FPGAs are traditionally programmed using hardware design languages (HDLs),

such as Verilog or VHDL. Hardware design is notoriously more difficult compared

to software development. This is one of the main issues with using FPGAs for

accelerating large scale applications. However, recent advances in high-level syn-

thesis (HLS) significantly increase the productivity of hardware design by enabling

the designers to use higher level software programming languages, such as C/C++

and OpenCL, which makes FPGAs easier to use for accelerating larger scale ap-

plications. Therefore, HLS is now becoming a part of the main hardware design

flow [[7], [42]]. This raises the question - can we modify the FPGA architecture

and CAD flow such that they can be more efficiently used by HLS tools? In this

dissertation we aim to answer this question by exploring the potential of improving
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the architecture of FPGAs to better tune them for HLS design flow by analyzing

the characteristics and requirements of designs generated by HLS tools.

1.1 Motivation

FPGA architecture consists of an array of generic programmable logic blocks and

programmable routing switches that enables them to implement any logic func-

tion. This flexibility comes with the cost of area, performance, and power over-

head that causes the FPGAs implementation of a given design to be at least an

order of magnitude larger than the ASIC implementation, with a critical path de-

lay ratio of about 3 to 4 [14]. To bridge this gap, FPGA designers have intro-

duced hard blocks such as mutiplier/accumulator, block memories, and floating

point units to modern FPGA architecture to mimic efficiency of ASICs for a com-

mon set of operations[17]. Hard blocks are ASIC-like hardware units that are less

programmable, but more efficient than programmable logic blocks. Despite their

efficiency improvements, the area of underutilized hard blocks is wasted, therefore,

the hard block architecture must consist of function units and logic operations that

are commonly used among a representative set of important FPGA applications.

The existing hard blocks on FPGA architectures have been designed to accel-

erate the operations that are common among the original application domains that

were using FPGAs. However, the recent shift to use FPGAs in new domains with

varying processing requirements raises the question - are there other common op-

erations among these new application domains that can benefit from being mapped

to hard blocks? The same question can be asked regarding the recent increased

popularity in the use of HLS tools - Due to their automated nature to generate

hardware designs, as opposed to a human hardware designer approach, is it pos-

sible that they generate any special structure in hardware that can be exploited by

new hard blocks?

In this work, we aim to answer this question by studying the controller unit

hardware generated by HLS tools. HLS tools often generate large explicit con-

troller units that are modelled by finite state machines. These control units can

have a big influence on the total area of the design in cases where the realiza-

tion of the data path requires a large number of states and control signals [20].
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In this dissertation we analyze the characteristics of the finite state machines that

are generated by HLS tools and argue that these state machines all share common

behaviours that can be exploited to design an alternative hardware implementation

for such FSMs. We evaluate our proposed architecture by detecting and extracting

the FSM as a standalone circuit from the application and compare it against the

baseline FSM implemented purely in FPGA soft logic. We show that our proposed

architecture has a great potential to reduce the area implementation of the next state

generation logic in FSMs as well as reducing its critical path delay.

1.2 Contributions

This thesis makes the following contributions:

• Identifying common characteristics among state machines generated by HLS-

tools.

• Proposing a novel architecture to improve area efficiency of next state calcu-

lation logic in FSM implementation without affecting performance.

• Proposing a novel state encoding technique which exploits certain properties

of HLS-generated FSM described in Section 3.1.2.

• Evaluating the the area and delay improvement of the proposed architecture

compare to a baseline FPGA architecture which shows an average area re-

duction of 70% as well as critical path delay reduction of 45%.

1.3 Organization

The rest of this dissertation is organized as follows:

• Chapter 2 first details the background FPGA architecture used in this dis-

sertation. It then provides the necessary background on finite state machines

as an important part of digital systems.

4



• Chapter 3 performs analysis on FSM characteristics and presents a novel

configurable architecture to improve the area efficiency of FSM implemen-

tation on FPGAs.

• Chapter 4 presents the methodology used to implement and evaluate the

designs introduced in Chapter 3.

• Chapter 5 evaluates the area/delay improvements of the proposed special-

ized FSM architecture.

• Chapter 6 discusses related work.

• Chapter 7 discusses directions for potential future work.

• Chapter 8 concludes the dissertation.

Next section describes the necessary background for this work.
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Chapter 2

Background

This chapter presents the necessary background information to understand the con-

tributions of this Thesis. First, this chapter describes the architecture of contem-

porary FPGAs. It then discusses the required background to understand the finite

state machines and their traditional implementation methods on FPGAs. Finally,

this chapter provides a brief summary of the standard hardware design flow and the

addition of High-Level Synthesis (HLS) tools to this flow.

2.1 FPGA Architecture

A traditional FPGA architecture consists of an array of generic logic blocks that

are connected via configurable routing channels. The main components of these

logic blocks are n-input (normally 6-input) Look-Up Tables (LUTs), small one-bit

hard adders, and optional flip-flops that enable registering the output of the block.

A n-input LUT can be configured to implement any logic function that maps the

n-bit input to a 1-bit output. Therefore, using LUTs in logic blocks turns them into

generic flexible blocks that are capable of implementing any logic function [15].

As discussed in the Chapter 1, in modern FPGA architectures some of these

generic blocks are replaced by hard blocks such as multiply-add, floating point

operations, and memory blocks to improve the efficiency of these specific set of

operations [14]. This is shown in Figure 2.1.
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Figure 2.1: Basic FPGA architecture [15]

2.2 Finite State Machines

In this section we present background information for Finite State Machines (FSMs)

as an important part of digital circuit design and review the alternative methods of

implementing FSMs on FPGAs.

2.2.1 Finite State Machine Definition and Representation Models

Logic circuits consist of two main parts: data-path and control-path. The control-

path is also known as the control unit.The general block diagram of digital circuits

is shown in Figure 2.2. The data-path can be described as functional units that

perform the computational tasks (data operations) in an application [21]. The con-

trol unit, on the other hand, generates the control signals required to direct the

operation of data-path according to the timing constraints, data, and control de-

pendencies in an application. Finite state machines are a common way to describe

the control path in logic circuits. As the name suggests, an FSM is composed of a

limited set of states and the corresponding transitions between these states. Each

7



Figure 2.2: Digital systems structure

state corresponds to a specific state in the real design. The transition between these

states happens based on the current state of the system and the set of inputs to the

FSM. Each states has a set of associated control signals that are dependant on the

current state of the system and, potentially, the input signals. In a Moore FSM the

output signals are defined only based on the current state of the system, where as

in a Mealy model both inputs and current state are used to determine the value of

output signals.

State Transition Table

A state transition table is one of the common ways of representing an FSM. The

state transition table is a truth table, where the inputs and current state form the

input column of the table, while the output column contains the next state value

and outputs of the FSM. It is a simple method to define the state transitions and the

values of output signals based on the current state and inputs.

State Transition Diagram

The state transition diagram is the equivalent graph-based representation of the

state transition table [21]. A state transition diagram is a directed cyclic graph

(DCG) G = (V,E) where each vertex vi ∈V represent a unique state and each edge

ei j ∈ E shows a transition from the corresponding state vi to the v j. The edge labels

indicates the input sequence that causes the corresponding transition. Depending

on the FSM model, Mealy or Moore, the output of each states will be either part of
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Figure 2.3: The state transition graph of a Mealy FSM.

the edge or vertex label respectively. This is shown in Figure 2.3

2.2.2 Finite State Machine Implementations

There are two main approaches to implement FSMs on FPGAs, which are dis-

cussed below.

LUT-Based Implementation

A LUT-based implementation is the common conventional way to implement FSMs

on FPGAs. Figure 2.4 shows the block diagram of an FSM. It consists of state reg-

isters to hold the current state value, and combinational logic to calculate the next

state value and output signals. The combinational logic is implemented using FP-

GAs’ LUT-based logic blocks. However, the flexibility of LUTs to implement any

logic function comes at cost of increased area, power, and performance. Logic min-

imization algorithms and state assignment techniques are used to find the optimal

combination circuits, which realize the state transfer function and output function

[21].

RAM-Based Implementation

After embedded block RAMs were introduced to FPGA architectures, a large body

of research investigated the benefits of using block RAMs as an efficient method
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Figure 2.4: General structure of finite state machines

for implementing FSMs [[26], [34], [30], [31]]. RAM-based FSM implementa-

tions have a great potential to reduce the area usage by utilizing less of the FPGA’s

routing and logic resources, which consequently improves the area and power con-

sumption of the design. Figure 2.5 shows an example of a RAM-Based FSM

implementation. In this example, the FSM has q inputs, r outputs, p states, which

requires a n-bit encoding. The state value will be stored in a n-bit register and to-

gether with the input, form the address to the memory unit to look up the value of

the next state and output signals. Such a memory unit will have 2(n+q) entries of

size (n+ r) to accommodate the next sate and output values for all the combina-

tions of current state and input values. However, one potential problem with such

implementation is the exponential growth in memory size with an increase in num-

ber of states and inputs. For the scenario where there are several inactive inputs at

each states that do not contribute to the next state calculation, a potential solution

has been proposed that utilizes a selecting mechanism to choose the active inputs

at each state to address the memory locations in order to avoid the unnecessary

increase in the memory size [10].

2.3 Hardware Design Flow

Programming hardware tend to be more difficult compared to software develop-

ment. The traditional hardware design flow requires designers to use low-level

hardware description languages such as Verilog and VHDL, to directly describe a

given high-level algorithm. This description is typically at register transfer level

(RTL) where a circuit is described by its logic operation, registers, and their cor-

responding data flow. The RTL design will then be mapped to an FPGA using the

Electronic Design Automation (EDA) tools , which after synthesizing the RTL de-
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Figure 2.5: Memory-based implementation of FSMs

sign into a gate-level netlist and applying the logic optimization techniques, try to

map the design onto an FPGA architecture in an iterative manner.

The very low-level nature of RTL design, various design constraints and re-

quirements, and long EDA process makes the hardware design a very challenging

and time-consuming task compared to the typical sequential programming in soft-

ware. On the other hand, the large scale and evolving nature of applications in new

domains, such as cloud computing, makes the hardware design for applications in

such domains even more challenging. Therefore, to make FPGAs a more feasible

solution, there needs to be a mechanism to ease the hardware programming, such

as high-level synthesis (HLS), which is described below.

2.4 High-Level Synthesis

High-level synthesis (HLS) tools try to assist with this issue by raising the level

of abstraction and letting the designer use a high-level language such as C/C++ or

OpenCL for describing the desired algorithm to generate an RTL design.

HLS tools are becoming increasingly popular due to the recent improvements

in their underlying algorithms, which has enabled them to generate RTL designs

that have comparable quality with a hand-coded RTL design by an expert hardware

designer [7]. High-level synthesis tools use the control/data flow graph (CDFG) of

a given program as the main starting point to generate the corresponding RTL de-
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sign. Similar to the logic circuit describe in Section 2.2.1, the generated hardware

is composed of two main parts: (1) datapath and (2) control path.

The datapath corresponds to the operations and data flow in the the given high-

level program while also taking the resource constraints of the target FPGA archi-

tecture, such as number of available specific hardware units, into account [7]. The

control path is described using an FSM which is constructed after performing two

main tasks: (1) scheduling and (2) binding. Scheduling is the process of identify-

ing the cycle in which each operation can be performed given the timing/resource

constraints of the target architecture and control and data dependencies in the in-

put application [7]. Binding is the process of mapping the given operations and

variables to hardware units that are capable of implementing them while also tak-

ing the resource constraints into account [7]. For example, an addition operation

is mapped to an adder on the FPGA. If the schedule allows for 20 additions to

be performed on the same cycle given the data dependencies, but there are only

10 hardware addition units, the binding task will modify the schedule to perform

these operations over two cycles. In a scenario where same hardware unit is shared

between multiple operations, the input sources to each operation and the output

connections will be defined based on the output of the FSM.
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Chapter 3

Control-Path Optimization

This chapter studies the potentials of using specialized hardware blocks for im-

plementing Finite State Machines (FSMs) to improve the area efficiency and per-

formance of the control unit portion of the RTL designs generated by high-level

synthesis tools. We propose a novel configurable mixed-grained architecture, that

makes use of unique characteristics of the FSMs generated by HLS tools to reduce

the silicon area that is required for FSM implementation. This is achieved with-

out affecting the control unit performance and, in most of the cases, improves the

critical path delay as well.

The rest of the chapter is organized as follows: First we perform analysis on

selected characteristics of finite state machines. We show that these characteris-

tics can be used to design an architecture that more efficiently uses the silicon area

compared to conventional LUT-based implementation of state machines. We then

describe our proposed architecture in detail and a proposed state encoding tech-

nique that has been developed in order to better exploit these specialized FSM

blocks. Finally we describe the technology mapping algorithm that we have devel-

oped to map a given finite state machine to specialized FSM blocks.

3.1 Finite State Machine Analysis

In this section we define and analyze specific characteristics of Finite State Ma-

chines that can be exploited to design a custom FSM block. We then present the
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required state encoding technique to be able to efficiently utilize the custom FSM

blocks. Finally, we show that Finite State Machines generated using High-Level

Synthesis tools always demonstrate such characteristics, hence they are great can-

didates to benefit from our proposed customized blocks.

3.1.1 Preliminaries

This section presents the preliminaries for our Finite State Machine analysis.

Definition 1. State Transition Diagram: Finite state machines can be represented

by their state transition diagram. State transition diagram is a directed cyclic graph

(DCG) G = (V,E) where each vertex vi ∈V represent a unique state and each edge

ei ∈ E shows a transition between two corresponding states (vertecis). In the rest

of this chapter, we refer to vertices and states interchangeably.

Definition 2. Directed Path: Directed path is a finite sequence of edges following

the same direction which connect a sequence of vertices.

Definition 3. Vertex degree: The degree of a vertex of a graph is defined as the

number of edge incidents to the vertex. In DCGs, the vertex degree can be grouped

into fan-in degree and fan-out degree which represent the number of incoming

edges and outgoing edges of a vertex respectively.

Definition 4. Branch-Free Path: Given a DCG, we define a branch-free path

to be a directed path where each vertex has at most one fan-out edge but can have

more than one fan-in edge. An example of a graph with branch-free paths is shown

in Figure 3.1.

3.1.2 FSM Characteristic

Using the definitions in the previous section, we now can describe two specific

properties of FSMs that can be exploited to reduce the area usage and improve

critical path delay of FSM implementations.
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Figure 3.1: Branch-free path (shown in green). Each path starts and ends
with a vertex with fan-out degree of greater than 1 (shown in red). Note
that vertices that belong to a branch-free path can have more than one
fan-in edge.

Abundance of Branch-Free Paths

If the state transition graph of a finite-state machine has long branch-free paths,

then consecutive states in each path can be assigned consecutive state values (state

encoding) such that next state value can be calculated with a simple increment

operation. This leads to a new state encoding where branch-free paths have simple

increasing state encoding. This is shown with an example in Figure 3.2. The

graph represents part of the state transition diagram of an FSM which contains two

branch-free paths labelled with the proposed encoding. Note that the blank states

are not part of any branch-free path since they have fan-out degree of 2. Consider

the top path with the length equal to n, if the first state in this path is assigned the

state encoding X , then following states in the path will be assigned X + 1, X + 2,

... , X + n− 2, and X + n− 1 until a non branch-free state is reached. The same

rule applies to the second path with the length equal to m where the first state of

the path is assigned the state encoding Y and the following states in the path will

be assigned Y +1, Y +2, ... , Y +n−2, and Y +n−1. Hardware implementation

for such state machine has an opportunity to reduce the silicon area, since the next

state calculation logic for states that belong to branch-free paths can be realized

with a simple adder along with small control logic in hardware. Section 3.2.4

provides more detail on how this adder unit is utilized in our proposed architecture

for implementing FSMs.
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Figure 3.2: An example of the state encoding for the states that belong to
branch-free paths.

Low Fan-Out Degree

For a given FSM, the maximum number of possible next states for any given state

can be calculated using the following equation:

min(2q, p)

Where q is equal to the total number of inputs to the state machine and p repre-

sent the total number of states. However, not all of the input signals are active in

different states, therefore the number of reachable states from a given state can be,

and often is, far less than the maximum. For each given state, the fan-out degree

represent the number of reachable states from that given state.

For the state machines with abundance of branch-free paths, the remaining

states which are not part of any branch-free path form a smaller subset of the state

machine. If the states that belong this subset have low fan-out degree, there is po-

tential for a hybrid memory-based FSM implementation that is independent of the

input size. Section 3.2.4 provides more detail on how a small memory unit is in-

corporated to our proposed architecture for implementing the next state calculation

of the states the do not belong to a branch free path.

3.1.3 HLS-Generated Finite State Machines

The results of the analysis on the finite state machines extracted from two sets of

HLS benchmarks used in this thesis are presented in Figure 3.6 and Figure 3.7.

The details of these benchmark sets are described in Chapter 4. The RTL code for

these benchmarks is generated using Vivado HLS, an HLS tool by Xilinx [42].

For the MachSuite benchmarks, we used the default set of HLS optimization

directives that were shipped with the benchmarks such as loop unrolling, loop
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pipelining, and memory partitioning. In Section 5.6, we specifically analyze the

impact of applying HLS optimization directives on generated FSMs by looking

at three benchmarks from MachSuite. The HLS directives are obtained using the

methodology and results described in [18] which aim to minimize the area-delay

product of the generated RTL design. As the results suggest, the size of FSMs

and fraction of branch-free paths are not negatively impacted (i.e. the branch-free

paths still exist and are a large fraction of total states). In fact, for these three

benchmarks, the fraction of branch-free paths actually increases.

For the datacenter benchmarks, BZIP, Lucy, and SQLite (getToken function),

HLS optimization directives were applied while generating the RTL design. For

the the remaining benchmarks/functions in this benchmark set, no optimization

were applied. However, based on our analysis in Section 5.6, we expect a similar

behaviour to the result shown for optimizing Machsuite. Applying and evaluating

full optimizations on all benchmarks is left to future work.

Figure 3.6 shows that more than 80% of the states in each FSM do not re-

quire any input and only have one possible next state, which means they belong

to a branch-free path. Figure 3.7, which shows the fan-out-degree (transitions

per state) statistics also indicates that there is at most 4 reachable next states for

any given state. Therefore, finite state machines coming from HLS-generated RTL

codes have a great potential to benefit from our proposed architecture.

3.1.4 Data Flow Height Experiment

The FSM analysis on the HLS benchmark sets exposed two common patterns: low

fan-out degree and long branch-free paths. This raises the question: what is the

cause of the low fan-out degree and long branch-free paths in FSMs among all

of the HLS generated RTL codes? Our hypothesis is that these common patterns

are caused by data dependent instructions and the latency of instructions within a

basic block. To evaluate our hypothesis of data-dependence leading to branch-free

paths, we look at the mechanisms used by HLS tools to generate the RTL code for

a given application. As discussed in the background section, HLS tools rely on the

control/data flow graph (CDFG) of an application and consider the resource and
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timing constraints of the target hardware to perform scheduling. The outcome of

scheduling is used to generate the control unit and, consequently, the FSM that will

direct the operations of the data path.

To understand the impact of data-dependence on scheduling, we mimic the

behaviour of an HLS scheduler by constructing a simplified equivalent FSM of a

given program from the control flow and data flow graph. Our simplified equivalent

FSM assumes that there are infinite resources on the FPGA, the latency of any

instruction is one cycle, and that data-dependent instructions cannot take place on

the same cycle. These simplifications aim to limit the scheduling to data dependent

instructions.

The following steps describe how the simplified equivalent FSM is constructed.

Figure 3.3 visualizes this process for the program shown in Figure 3.3a.

• Step 1: Construct the control flow graph (CFG) of the program (Figure

3.3a).

• Step 2: Construct the data flow graph (DFG) for each of the basic blocks in

the CFG. Each node of a DFG shows an operation and edges are representa-

tive of data dependencies among these operations (Figure 3.3b).

• Step 3: Apply unconstrained list scheduling [21] separately on each of the

data flow graphs, with the simplifications described above (Figure 3.3c).

• Step 4: Given that each of these data dependent operations may be per-

formed by functional units that require appropriate control signals, each of

these operations needs to be a separate state in the equivalent FSM. Replace

every cycle of each scheduled DFG with a corresponding state in the equiv-

alent FSM (Figure 3.3d).

• Step 5: Finally, connect the states to construct the equivalent FSM. For the

states belonging to the same scheduled DFG (within a basic block), apply an

edge directly between the states. To construct the transitions between states

in different DFGs, replace each control edge between two basic blocks in

the CFG with an equivalent edge between states in the FSM. The equivalent

edge connects the last state of the predecessor basic block (i.e., cycle N of
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the DFG for the predecessor basic block) with the first state in the successor

basic block (i.e., cycle 0 of the DFG for the successor basic block)(Figure

3.3d).

The equivalent FSM constructed by this approach is a naive representation of

the FSM that is generated by HLS tools for a given program. For example, multiple

operations may be able to be performed on a single cycle, long latency instructions

may result in multiple states, or there may be resources limitations in the number

of operations that can occur per cycle. However, the simplified FSM maintains the

impact of data dependence. We use our simple approach to perform analysis on the

equivalent FSMs of SPEC2006 INT benchmarks[32]. Along with the Machsuite

HLS benchmarks, we chose the SPEC2006 INT benchmark suite to compare the

behaviour of the benchmarks that are and are not necessarily written for HLS.

Figure 3.4a presents the fan-out degree of the equivalent FSM for both the

Machsuite and SPEC CPU2006 INT benchmark suites. As can be seen, both

benchmarks demonstrate very similar behaviour in the fan-out degree, with over

85% of the states having a single next state. Based on our construction of the equiv-

alent FSM, these single fan-out edges are caused by data dependencies. However,

they are independent of input as the timing schedule is predetermined in advance.

Although the simplifications in the equivalent FSM may affect the result of

the fan-out degree experiment, the impact will mostly affect the number of states

with fan-out degree equal to 1. The result of this experiment (Figure 3.4) shows a

very large ratio between single and multi fan-out degrees. Hence, we believe that

even with the assumptions discussed above, the equivalent FSM provides a good

approximation of the actual FSM to highlight the existence of a large fraction of

nodes with a single fan-out edge.

3.2 Specialized FSM Block

In this section, we first discuss the potential approaches to optimize the implemen-

tation of HLS-generated FSMs. We then describe our proposed specialized config-

urable architecture that takes advantage of the HLS-generated FSM characteristics

to implement the FSMs in a more area/delay efficient manner. We also provide
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(a) C code (b) CFG

(c) DFG scheduling (d) Equivalent
FSM

Figure 3.3: Equivalent FSM construction
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(a) MachSuite

(b) Spec CPU2006 INT

Figure 3.4: Fan-out degree frequency in the equivalent FSMs of MachSuite
benchmarks and Spec CPU2006 INT

data that justifies the main design decisions that lead to the final architecture of this

hybrid architecture.

3.2.1 Design Space Exploration

There are different approaches to exploit the properties of HLS-generated FSMs to

optimize the FSM implementation on FPGAs. These approaches along with their

benefits and drawbacks are described below:
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Specialized Hard Blocks

One potential solution is to introduce a specialized hard block to FPGA Architec-

ture that is designed to only implement the HLS-generated FSMs. Such specialized

hard block is extremely efficient compared to the FPGA LUT-based logic blocks

due to the reduced overhead that comes with the flexibility of LUT-based logic

blocks. In this thesis, we propose and evaluate a novel mix-grained architecture

that makes use of such hard blocks to improve the efficiency of FSM implementa-

tion on FPGAs.

Soft-Logic and Block RAMs

Another potential approach is to use FPGA soft-logic to implement an adder unit

that interacts with the existing embedded memories on FPGAs to implement the

FSM in a more efficient manner. In this approach, the synthesis tool is responsible

to transform the FSM description to a logic circuit that implements the FSM using

an adder, control logic, and memory.

This approach does not require any modification to the existing FPGA archi-

tecture. However, due to the overhead of the soft-logic implementation of the adder

and control logic along with using programmable routing between the adder, con-

trol logic, and memory unit, this solution is not as efficient as having specialized

hard blocks. Evaluation of this approach is left to future work.

Modified Block RAMs

Another solutions is to modify the existing block RAMs on FPGAs by adding a

hard adder and control logic to these blocks such that they can support our proposed

FSM implementation. This is a promising approach, however, the existing block

RAMs on FPGAs are typically synchronous memories. Therefore, digital designs

that are not latency tolerant are not able to be mapped to such block RAMs, since

a synchronous memory read adds one cycle delay to the state calculation process.

Evaluation of this approach is left to future work.
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Figure 3.5: High-level view of the specialized FSM architecture

3.2.2 Mix-Grained Architecture

Our proposed architecture consists of both fine-grained (soft) and coarse-grained

(hard) logic that are connected via hard (or flexible FPGA) routing, which together

form the mix-grained architecture. The high-level architecture is illustrated in Fig-

ure 3.5. The coarse-grained part of this architecture implements the next state

calculation and consists of two main units, the accumulator unit and memory unit.

The accumulator unit takes care of state calculation for the states that belong to the

branch-free paths, while the memory unit stores the next states for the remaining

states, along with some metadata that will be described later. As previously men-

tioned, these remaining states tend to have a low fan-out degree, which makes them

well suited to be stored in memory, since fan-out degree directly corresponds to the

number of entries per-state in memory. The fine-grained part of this architecture

takes the current state and input signals and tries to minimize the address space of

the memory unit, and hence, the memory size. As mentioned in Section 3.1.3,

the reduction of the state address space is possible since the number of reachable

states from a given state is often much less than the maximum possible number of

reachable states.

The following sections describe the the coarse-grained and fine-grained parts

of the proposed architecture in more detail.
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3.2.3 Input Sequence Encoder Unit

The input sequence encoder unit implements a configurable encoder using the

FPGA soft logic. Figure 3.6 and Figure 3.7 explain the intuition behind hav-

ing such unit. At each state of the state machine only a subset of input signals

impact the state transition. This subset of inputs are called active inputs. FSMs

extracted from our benchmarks sets have variable number of inputs ranging from

3 to 56, however, the number of active inputs at each state is much less for these

benchmarks (characteristics of FSMs are listed in detail in Chapter 4). As shown

in Figure 3.6, the number of state machine active inputs per state varies from 0 to 5,

however, the number of next reachable states from a given state (i.e number of fan-

outs per node in the state transition graph) does not exceed 4. This means that the

choice of next state, which corresponds to the memory address, can be represented

by only 2 bits instead of 56. Therefore, we use a simple encoder that maps the

possible large input sequence for the state machine to a smaller sequence of length

log2 (maximum number of reachable states per state). This significantly reduces

the size of the memory unit that is used for next state calculation as it enables us to

avoid storing don’t care data for unreachable states. The input sequence encoder

unit can be easily implemented on a LUT-based cluster as part of the conventional

FPGA architecture.

3.2.4 Coarse-Grained Fabric

The coarse-grained fabric corresponds to the “Next State Generation” block in Fig-

ure 3.5. By analyzing the edge distribution of the state transition graphs among

our benchmark suite (discussed more in Chapter 4), we observed abundance of

branch-free paths, states with only one next state where the transition between

states is input-independent. In Section 3.4 we describe a simple encoding that en-

ables using a single accumulator in order to calculate the next state value for such

states.

Figure 3.8 presents a detailed breakdown of the next state generation block

shown in Figure 3.5. The following subsections describe each of the components

in more detail.

There are timing requirements for the FSM block that require delay of certain
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Figure 3.6: Number of active inputs per state calculated as average over 46
FSMs extracted from 21 benchmarks generated by HLS. Details of the
benchmarks are described in Chapter 4.

Figure 3.7: Edge distribution: number of transitions per state calculated as
an average over 46 FSMs extracted from 21 benchmarks generated by
HLS. Details of the benchmarks are described in Chapter 4.

data. For example, metadata read from an entry in memory corresponds to the next

state and in case of the branch-free paths, metadata is used for the entire path as
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such we require a mechanism to save the metadata. That is why we use the registers

to delay the metadata by one cycle such that they apply to the next state and in the

case of the branch-free path to the l next following state where l is the length of the

path. ”Path Final State Register”, ”Branch Address Register”, and ”State Control

Register” are the registers that we have used for this purpose which are explained

in detail below.

Figure 3.8: Next state generation block

Accumulator Unit

This unit is responsible for calculating the next state values for the trailing input-

independent states on a branch-free path. After applying the proposed state en-

coding, the next state value for states that belong to a given branch-free path in

a state transition graph can be calculated using a simple accumulator along with

some extra information, which are described below:

• Adder: The adder is the main part of the accumulator unit. It takes in the cur-

rent state and increments the value to calculate the next state in the branch-

free path. It has two inputs: a single 1-bit value set to one, and the current

state value coming from the output of the state register.
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• Control logic: While an adder is enough to calculate the next state value for

the branch-free states, it is not sufficient to determine when we have reached

the end of the branch-free path. Additionally, once we have reached the end

of the branch-free path, we need to read the next state value from memory.

However, the address to this state is not just the current state encoding, since

the memory address space is separate from the state encoding for branch-free

paths. Therefore, we use two metadata registers to store this information for

each path.

– The Path Final State Register is set to the state value of the last state

on the path. This is used to mark the ending state of the path.

– The Branch Address Register is set to the address we should read

from the memory once we have reached the end of the branch-free

path.

– The comparator is used to compare the values of the path final state

register with the output of the accumulator, and then generates the con-

trol signal which decides if the next state value should come from the

accumulator or the Branch Address Register.

Memory Unit

The memory unit is responsible for storing the next state value for the sates that

do not belong to a branch-free path along with some metadata to assist with the

transition from the accumulator unit to memory unit. To avoid adding an extra

cycle delay to the next state calculation, an asynchronous memory block must be

used for this unit. Figure 3.9 shows the content of a row in memory. It consist of

four main fields: (1) Next State Value (2), Path Final State, (3) Branch Address,

and (4) State Control bit. The first and fourth fields always have a valid value,

however the second and third fields will only be valid in the case where next state

belong to a branch-free path. In this case, the contents of these two fields will be

registered into the registers described in the accumulator unit, as described above.

The last field, state control bit, is used to determine if the source of the next state

value should be the accumulator unit or memory unit. This field will be registered

into the control unit register that will be described below.
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The depth of the memory is dependent on the non-branch-free states and edge

distribution and the width is based on the next state plus metadata. In Chapter 5

we describe how we size the memory unit in detail.

Figure 3.9: Memory content

Control Unit

The control unit is responsible for selecting the source of the next state value be-

tween the accumulator unit and memory unit using a multiplexer which is con-

trolled by the “State Control Register”. The State Control Register can be set in

two different ways: (1) The State Control Field of the memory unit for the given

state Figure 3.9, or (2) the result of the comparator in the accumulator unit which

marks the termination of the branch-free path, Figure 3.8). At any given time,

either the memory unit or the accumulator unit is active and responsible for calcu-

lating the next state value. The active unit is responsible for selecting whether the

same unit is active on the next cycle or the other unit is active on the next cycle.

This is implemented as a feedback loop from the State Control Register to the se-

lect signal of the multiplexer feeding the State Control Register. This continues to

select the same unit until that unit signals a transition by toggling zero to one or

vice versa.

State Decoder

We provide an optional binary to one-hot decoder at the output of this block to

enable more efficient binary to one-hot conversion if required by the rest of the

circuit.
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3.3 Fracturable FSM Hard Blocks

The size of finite state machines can vary significantly among different applica-

tions. As mentioned in Chapter 2, any hard block on FPGAs will be wasted if

not fully utilized by the applications, leading to fragmentation in the hard blocks.

Therefore, to be able to efficiently accommodate state machines with various num-

ber of states, we propose fracturable FSM hard blocks. The main idea behind hav-

ing fracturable FSM blocks is to tailor the block size such that it accommodate the

state machines with an average size while supporting combination of two blocks

such that they can accommodate large FSMs that do not fit into just one block.To

map a large state machine to multiple smaller combined blocks, the state machine

needs to be partitioned to multiple sub state machines, and the architecture should

enable fast transition between these blocks. In this work we only look at parti-

tioning state machines to two sub-machine which enables us to accommodate all

the FSM benchmarks that we use, however, our approach can be easily applied to

more partitions. We first describe our partitioning method and then propose minor

modifications to the FSM hard block to support FSM block combination.

3.3.1 FSM Partitioning

Given an input graph G = (V,E), the objective of bi-partitioning problem is to par-

tition the vertex set V into two disjoint subsets with the main goal of minimizing

the number of edges between two subsets. The FSM partitioning (decomposi-

tion) problem is a famous problem [21] with plenty of possible solutions which

are mainly proposed to target complex state machines. For the purpose of parti-

tioning HLS-generated FSMs, which are less complex in terms of the number of

transition between different states, we chose a classic algorithm known as Fiduccia-

Matheyses partitioning algorithm [9] and, with an example in Chapter 5, show that

it works very well for the state machines that are generated by HLS tools. Fiduccia-

Matheyses partitioning algorithm is an iterative mincut heuristic algorithm with a

linear computation time with respect to the size of the input graph.
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3.3.2 Fracturable FSM Block Architecture

When splitting an FSM over multiple fracturable blocks, every state transition

across two different blocks requires control signals that enable switching between

these blocks. For example, if the current state X is mapped to the fracturable block

A and the next state Y is mapped to the fracturable block B, then when the transi-

tion occurs, the state register of block A must enter the idle state (described later),

and the state register of block B must be updated to Y. To enable this switching

between the blocks, state X must carry the metadata that controls this transition. A

potential candidate to store this metadata is the memory unit. If the states that mark

the transition across fracturable blocks are stored in memory, an extra field on each

memory row can be used to store the required metadata for transitioning across the

blocks. In this example, state X must be stored in memory. For this work, we only

allow splitting the FSM over two fracturable blocks, thus a single bit in memory

is sufficient to indicate whether the next state should be calculated in this block or

the other fracturable block that implements the same FSM

By transitioning to another fracturable block, we enter a new state which can

either be mapped to the memory unit or accumulator unit. As described in Sec-

tion 3.2.4, if this state is mapped to the accumulator unit the control registers,

specifically, Path Final State Register, Branch Address Register, and State control

Register must be updated as well.This requires extra multiplexer logic that allows

setting the value of these registers from multiple sources which are the memory

unit on the same block as well as the memory unit on the other fracturable block.

To simplify this scenario and reduce the overhead logic, we decide to only map

this state to the memory unit to avoid the need for updating the control registers

described above.

To summarize, for any transition across two fracturable blocks, both current

state and next state must be stored in memory. Although this increases the required

memory size to accommodate the FSM, a proper partitioning algorithm that aims

to reduce the number of transitions between blocks can limit this memory overhead

to only a few extra entries.

Additionally, we must add a multiplexer before the state register in each frac-

turable block to allow updating the state value using the data stored in the other
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fracturable block, for the scenario where there is a transition between two blocks.

We dedicate the state value zero as the idle state. Once the state calculation tasks

gets transferred over to the other fracturable block, the inactive block will enter the

idle state by updating its state register to zero.

The overheads and issues of splitting the FSM over more than two fracturable

blocks are discussed in Chapter 5.

3.4 State Assignment Algorithm

The state assignment (encoding) problem is defined as determining the binary rep-

resentation of the states in a finite-state machine such that each state has a unique

value to separate it from the other states [21]. The state encoding directly af-

fects the circuit area and performance as different encoding results in different

circuit complexity. The choice of circuit implementation, such as two-level logic,

multiple-level logic, or in our case a mix-grained architecture that contains a spe-

cialized ASIC-like FSM block, also plays an important role in finding the state

encoding that optimizes the circuit area and/or performance. For the purpose of

mapping to our specialized FSM architecture, the circuit area is measured by the

number of bits required for state encoding, number of states that have to be mapped

to the memory unit, and the logic complexity of the input sequence encoder. We

propose a novel state assignment technique for the FSM targeting our FSM block.

This technique aims to minimizes the FSM area by mapping as many states to the

accumulator logic as possible and minimizing the number of states that reside in

memory, hence reducing the input encoder logic complexity.

Our state assignment algorithm consists of two main parts: (1) identifying the

state categories and (2) performing state encoding separately on each state cate-

gory. Before describing how we categorize the states, we first explain why we

need different categories. Our proposed FSM block contains two main parts that

perform the next state calculation: the memory unit and accumulator unit. Each

units is responsible for determining the next state value for a subset of states. A

proper state encoding for each subset must consider the limitations and require-

ments of the unit that is in charge of the next state calculation for this subset. This

lead us to group the states into two categories based on whether their next state
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is calculated by the memory unit or accumulator unit. Below, we discuss the re-

quirements of each unit in detail and explain the actions required to meet these

requirements. Then we explain how to categorizes the states.

Memory Unit Requirements

The main requirements are the memory size and address signal generation. The

read address signal of the memory unit is formed by concatenating the value of

the current state and encoded input signals that comes from the input sequence

encoder. However, only a subset of states of the FSM reside on the memory, hence

not all the bits of the current state signal are necessary for addressing the memory.

For example, if the number of the states that are stored on memory is equal to

n, then only log2 n bits of the current state signal are required for addressing the

memory. Therefore, the state encoding for these states must be between zero and n

to minimize the size of memory.

Accumulator Unit Requirements

As described in the Section 3.2.4, the accumulator unit performs the state calcu-

lation for the states that belong to branch-free paths, hence it is necessary for the

consecutive states of each path to have consecutive state values. However, there

must be one and only one state encoding for each individual state, therefore in a

scenario where two branch free paths overlap, such as path A and path C shown in

Figure 3.10b and Figure 3.10c, we must first refine the paths such that they do not

overlap to avoid two encoding values for the same state.

Path Refinement

As we discussed in the previous section, on any transition from a memory state to

a counter state, there is metadata for the corresponding branch-free path that must

be provided to the accumulator unit. To store this metadata, we use the memory

location for a state that transitions to a branch-free state. For any given path, the

previous state that branches to this path must reside in memory so it can store this

metadata. As such, there must be a gap of at least one memory state between the
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vertices of any two branch-free paths. Note that due to the definition of a branch-

free path, any two non-overlapping branch-free paths satisfy this requirement, since

a branch-free path begins right after, and terminates where, there is a state with a

fan-out degree greater than 1 (divergent vertex), which corresponds to a state stored

in memory. Thus, any two non-overlapping paths will be at least one memory state

away from each other.

Two branch-free paths can never overlap at the starting vertex since they will

be equivalent. However, they can overlap on any other vertex, in which case the

remaining vertices will also overlap. Therefore, if two branch-free paths overlap

on any of their vertices, they will definitely overlap on the ending vertex as well.

The ending vertex is always a predecessor to a divergent vertex. This means that

branch-free paths that have different starting vertices but share a common termina-

tion divergent vertex, might partially overlap with each other. We use this condition

to find the potentially overlapping paths by grouping the paths that share a common

termination divergent vertex. In a scenario where the branch-free paths overlap, we

must refine the paths such that the refined paths are at least one memory state away

from each other as described above.

The pseudo code of our proposed path refinement algorithm is shown in Al-

gorithm 1. The input to the algorithm is a set of branch-free paths which share

a common termination vertex. This means that the ending node of all paths in

this set is a predecessor to a common divergent vertex (a vertex with fan-out de-

gree greater than one). Note that due to the definition of a branch-free path, paths

that do not share a common termination node will never overlap, hence this is a

required condition that indicates the potential of overlapping. After applying the

path refinement algorithm, the output is (1) a set of refined branch-free paths and

(2) a set of independent vertices which, contains the states that initially belong to

overlapping branch-free paths, but are no longer part of the refined paths after ap-

plying refinement. The path refinement algorithm will be used as an intermediate

step by our state assignment algorithm, Algorithm 2, which will be described af-

ter the path refinement algorithm. We start by describing the details of the path

refinement algorithm and then use an example to better illustrate these steps.

• Step 1: At the initial step, set S, which will eventually contain all vertices
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that belong to the refined branch-free paths is empty. This set is used to

keep track of the vertices that belong to the refined branch-free paths over

different iterations of this algorithm to help detect the overlaps. Second, we

sort the paths that belong to the input set G based on their path length and

then add them to SPL, a sorted list of all paths from G (lines 3-4).

• Step 2: At this step, as long as SPL is not empty, we select the longest path

LP from SPL to apply the path refinement process on it (lines 5-6).

• Step 3: Next we traverse LP and compare each of its vertices with every

vertex of S, until we find a common vertex between LP and S or we reach

the end of path LP (lines 7-13). Note that when we first start the algorithm,

set S is empty, thus none of the vertices of LP will overlap with the vertices

of set S for the first path.

• Step 4: After we detect two overlapping vertices at vi, we must terminate LP

at vi−1. This requires cutting LP such that the predecessor of vi−1, vi−2, is the

ending vertex of the refined path. By doing so, LPre f ined no longer overlaps

with any of the paths that have already been refined. Vertex vi−1 will now

become an independent state and be added to the set of independent states

IG which will be stored in memory. This independent state, vi−1, separates

LPre f ined from all others refined paths (lines 9-10).

• Step 5: Next, we add the refined path, LPre f ined , to the set of refined paths

Gre f ined and add all of its vertices to the set of refined path vertices S (lines

15-16) to be used for the next iterations of the while loop (line 5).

• Step 6: Once the while loop is completed, Gre f ined will contain the set of

refined branch-free paths and IG will include the independent states.

An example of a scenario when two branch-free paths of a state transition graph

overlap is illustrated in Figure 3.10. Figure 3.10a shows part of the state transition

graph of an FSM (labels are omitted for simplicity), which contains 3 branch-

free paths. Figure 3.10b, Figure 3.10c, and Figure 3.10d highlight these paths

individually. These three paths all share a common termination node (show in red

in Figure 3.10a), thus they might overlap. In this case, the last two states of path
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(a) state diagram (b) path A (c) path B

(d) path C

indep.

(e) refined paths

Figure 3.10: Path refinement
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Algorithm 1 Path Refinement
Input: G→ Set of branch-free paths grouped by common termination node
Output: Gre f ined → Set of refined branch-free paths from G
Output: IG → Set of independent vertices from G

1: S→ Set of refined path vertices
2: SPL→ sorted list of branch-free paths

3: S = ∅
4: SPL = sort(G);
5: while SPL! =∅ do
6: LP = select the path with the longest length from SPL;
7: for all vi ∈ LP do
8: if vi ∈ S then
9: LPre f ined = terminate(LP, i−1);

10: add vi−1 to IG;
11: break;
12: end if
13: end for
14: if LPre f ined! =∅ then
15: add LPre f ined to Gre f ined
16: add all the vertices of LPre f ined to S
17: end if
18: end while

A and C overlap, therefore the path refinement algorithm must be applied on these

paths. An example used to illustrate this algorithm is described below:

In this example, the input to the algorithm is a set of branch-free paths that

contains path A, path B, and path C which all share a common termination node

(show in red in Figure 3.10a). At step 1, these paths are sorted based on their

path length in the following order, path A (5 vertices), path C (4 vertices), and

path B (3 vertices). At the first iteration of the algorithm, path A will be selected.

However, as the set of refined path vertices S is empty, path A do not require

refinement and will be added to the set of refined paths Gre f ined as is. All of its

vertices will then be added to the set of refined path vertices S (step 2 through 5).

At the second iteration, path C will be selected. By comparing each of its vertices
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with the vertices of set S, which now contains all the vertices of path A, we find

that the third vertex of path C already exist in set S. Therefore, we terminate

path C at its second vertex by cutting it after its first vertex. This means that

one independent memory state, the second vertex of path C, will be used before

overlapping with path A to store the necessary metadata to join path A. Figure

3.10e illustrates the effect of the terminate subroutine applied to path C from Figure

3.10d. After applying terminate to the middle path, the refined path C now only

has one state. The one state gap that separates path A from the refined path C is

labelled “indep.” (independent) state. At the third iteration of the algorithm path

B, the only remaining path, will be selected. Since non of the vertices of path B

overlap with any of the refined paths, it will be added to the set of reined paths

Gre f ined as is. At this point the algorithm is completed and the output is (1) the set

of refined paths A, B, and C (shown in Figure 3.10e), and (2) a set of independent

states which contains the vertex labelled “indep.”.

State Assignment

Next, we will describe the full state assignment algorithm, which is presented in

Algorithm 2. As mentioned in the beginning of this section, the state assignment

algorithm consists of two main parts: (1) identifying the state categories and (2)

performing state encoding separately on each state category. These state categories

are described below:

• branch-free states: States that belong to non-overlapping branch-free paths.

• independent states: All remaining states that either have a fan-out degree

greater than one (divergent states), or states that are initially part of the over-

lapping branch-free paths but do not qualify to remain part of the path after

applying path refinement.

Below we describe the details of the state assignment algorithm (Algorithm 2):

• Step 1 (Identify divergent vertices): Identify and add vertices with a fan-

out degree greater than one (two or more successors) to the set of divergent

vertices D (lines 9-10).
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Algorithm 2 State Assignment

Input: G f sm = (V,E)→ FSM state transition graph
Output: Gencoded− f sm = (V,E)→ Encoded FSM state transition graph where each

vertex is labelled by its state encoding value
1: Pnon−re f ined → Set of non-refined branch-free paths
2: Pre f ined → Set of refined branch-free paths
3: Pk−non−re f ined → Set of non-refined branch-free paths that share common ter-

minating divergent vertex dk (Pk−non−re f ined ⊂ Pnon−re f ined)
4: Pk−re f ined → Set of refined branch-free paths after applying refinement algo-

rithm on Pk−non−re f ined (Pk−re f ined ⊂ Pre f ined)
5: I→ Set of independent vertices
6: Ik → Set of independent vertices found after applying path refinement algo-

rithm on Pk−non−re f ined
7: D→ Set of divergent vertices
8: Si→ Set of successors of divergent vertex di

9: /*find all divergent vertices in the state transition graph*/
10: traverse G f sm and populate D with the vertices that have fan-out greater than 1
11: /*find all branch free paths in the state transition graph*/
12: for all di ∈ D do
13: for all s j ∈ Si do
14: add the branch-free path p j that starts from s j to Pnon−re f ined
15: end for
16: end for
17: /*group together the branch-free paths that share common terminating diver-

gent vertex*/
18: for all dk ∈ D do
19: add every branch-free path from Pnon−re f ined that share common terminating

vertex dk to Pk−non−re f ined
20: end for
21: /*Apply the path refinement algorithm (Algorithm 1)*/
22: for all dk ∈ D do
23: (Pk−re f ined , Ik) = path refinement (Pk−non−re f ined) /* Algorithm 1*/
24: Pre f ined = Pre f ined ∪Pk−re f ined
25: I = I∪ Ik
26: end for
27: I = I∪D
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28: /*state assignment*/
29: for all vi ∈ I do
30: assign a state encoding in an incrementing manner starting from zero
31: end for
32: for all Pi ∈ Pre f ined do
33: for all v j ∈ Pi do
34: assign a state encoding in an incrementing manner starting from the last

value that was used for the previous path +1
35: end for
36: end for

• Step 2 (Identify branch-free paths): Find all of the branch-free paths be-

tween every two divergent vertices that have been marked in the first step and

add them to the set of non-refined branch-free paths Pnon−re f ined (lines 11-

16). To identify a branch-free path, we start from a successor of a divergent

vertex and add its consecutive vertices to the path by traversing the graph

before arriving at another divergent vertex. By doing so, all the vertices on

this path will only have a fan-out degree of one, hence the corresponding

path meets the requirements of a branch-free path.

• Step 3 (Group the paths based on their termination vertex): At this step,

the branch-free paths that share a common termination divergent vertex dk

will be grouped together and added to Pk−non−re f ined , since this is a precon-

dition for potential overlapping paths (lines 17-20).

• Step 4 (Apply path refinement): Apply the path refinement algorithm (Al-

gorithm 1) on each group of branch-free paths with a common termination

vertex that were obtained in step 3, Pk−non−re f ined (line 23). The output of

this step is the subset of refined branch-free paths, Pk−re f ined , and the subset

of independent states, Ik, that are no longer part of the refined paths (de-

scribed in detail in Algorithm 1).

• Step 5 (Update state categories-1): Add the subset of paths that were re-

fined in step 4, Pk−re f ined , to the final set of refined branch-free paths, Pre f ined

(line 24). Update the set of independent vertices I by adding the vertices that

were obtained in step 4, Ik, to this set (line 25).
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• Step 6 (Update state categories-2): Add the divergent vertices, D, to the

list of independent vertices I. Set I indicates all of the vertices(states) that

will be mapped to the memory unit (line 27).

• Step 7 (State assignment-1): Finally, for the independent vertices, I, that

were identified in step 1 through step 6, assign incremental values to the

vertices(states) starting from zero (lines 29-31).

• Step 8 (State assignment-2): For each branch-free path in the refined path

set Pre f ined , assign incremental values to the consecutive vertices (states).

For the first path, the starting state value will be the value assigned to the

last independent state (step 7) plus one. For all remaining paths, the starting

state value is one greater than the last state value of the previous path (lines

32-36).

3.5 Mapping to the Specialized FSM Architecture

In this section we describe the steps required to map a given state machine to our

specialized FSM architecture. The mapping process consists of 3 main steps which

are listed below:

• Applying the size checking pass

• Fine-grained mapping

• Coarse-grained mapping

3.5.1 Applying the Size Checking Pass

At this step we check two required conditions to verify whether the input FSM,

described by its state transition table, is suitable to be mapped to the next state

generation block: (1) Whether the number of bits required for the encoding of

the state machine is smaller than the maximum bit-width of the adder unit, (2) if

the total number of states that reside in memory are smaller than the size of the

memory unit. This step is performed after applying the state assignment algorithm
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described in Algorithm 2. A more detailed description of this step is described in

the Chapter 5.

3.5.2 Fine-Grained Mapping

This part corresponds to mapping the corresponding part of the FSM to the input

sequence encoder. To do so, we must form the logic function that implements the

input sequence encoder.

This is achieved by performing a transformation on the state transition table.

The goal of this transformation is to reduce the number of inputs to what we call

the encoded input sequence. This is shown with an example in Table 3.1. Table

3.1a shows the original state transition table of an example FSM. This table shows

the choice of next state value for a given state based on the current state and input

value. This FSM has 10 inputs, however, each state has no more than 3 next states.

Therefor, an encoded input sequence with only 2 bits is sufficient to distinguish

among the next states of any given current state. To obtain such encoded input

sequence, we first transform the original state transitions table to a reduced table

which only contains the states that have more than one next state. The reduce table

is shown in Table 3.1b. We then use the reduced table as a truth table to imple-

ment a logic function that takes the state machine inputs as input and generates an

encoded input sequence as output.

3.5.3 Coarse-Grained Mapping

The next step, coarse-grained mapping, generates the memory contents for the

FSM. At this point, the state assignment algorithm (Algorithm 2) has been applied

to the state machine. Hence the states that reside in memory, and their correspond-

ing metadata have been determined. Using this information, the memory contents

are generated in the format shown in Figure 3.9.

3.6 Putting it All Together

In this section, we present a complete example from C code to implementation

and operation of the corresponding FSM on our proposed specialized FSM block.
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Input Current state (cs) Next state (ns)
10’bx s0 s1
10’bx s1 s2
10’bx s2 s3

10’bxxx11xxx0x s17
10’bxxx11xxx1x

s3
s4

10’bx s4 s5
10’bx s5 s6
10’bx s6 s7
10’bx s7 s8
10’bx s8 s9
10’bx s9 s10

10’bx11xxx1xxx s11
10’b101xxx11xx s3
10’bx11xxx1xx0

s10
s17

10’bx s11 s12
10’bx s12 s13
10’bx s13 s14
10’bx s14 s15
10’bx s15 s16
10’bx s16 s17
10’bx s17 s0

(a) Original state transition table

Original input Current state (cs) Encoded input
10’bxxx11xxx0x

s3
2b00

10’bxxx11xxx1x 2b01
10’bx11xxx1xxx

s10
2b00

10’b101xxx11xx 2b01
10’bx11xxx1xx0 2b10

(b) Truth table for the Input Sequence Encoder

Table 3.1: Input sequence encoder generation: the original transition table is
given in (a), the reduced table is given in (b). {cs, active input(2bits)}
will be used to address the memory instead of {cs, inputs(10 bits)}.

Additionally, this example highlights different sources of branch-free paths in HLS

generated benchmarks.
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1. int foo(int A, int B, int C, int N)
2. {
3. int x, y, z, result;
4.
5. x = y = z = result = 0;
6. if (B > A){
7. int tmp = B;
8. B = A;
9. A = tmp;
10. }
11. while( (N-- > 0) && (0 < A) ) {
12. x = A / B;
13. A = x;
14. y = x << C;
15. z = y + x;
16. result += z;
17. }
18.
19. return result;
20. }

Figure 3.11: An example C code: the example shows a while loop with four
consecutive instructions each with a data dependency on the previous
instruction. Additionally each instruction performs an operation that
has a different latency in hardware such as division, multiply, shift,
and add.

3.6.1 Generating the FSM

Figure 3.11 presents a simple microbenchmark with a function, foo, that contains

conditional code (line 6), a loop (line 11), data-dependent instructions (lines 7-9

and 12-16), and instructions with different latencies (e.g., divide on line 12 and

shift on line 14).

Figure 3.12a presents the FSM generated by Vivado HLS as part of the gener-

ated RTL design for the C function shown in Figure 3.11.

In this example, state S0 is the initial state, which waits for a start signal before

transitioning to S1. State S0 and S1 correspond to the initialization code (line 5)

and swap code (lines 6-10). While there is a conditional branch at line 6, the code

is easily mapped to a multiplexer in hardware, so there is no corresponding branch
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s0

s1

s2

s3

s4

s39

s40

(a) Original state diagram

s0

s1

s2

s3

s4

s39

s40

(b) Branch-free path 1

s0

s1

s2

s3

s4

s39

s40

(c) Branch-free path 2

S0: 6’d0

s1: 6’d2

s2: 6’d40

S3: 6’d1

s4: 6’d3

s39: 6’d38

s40: 6’d39

(d) New Encoding

Figure 3.12: State assignment example
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node in the state graph. States S2 - S40 correspond to the while loop (lines 11-17) 1.

State S3 evaluates the loop condition and returns to S0 if the loop is complete,

or transitions to S4 if not. The long branch-free path from S4 - S2 (37 states)

corresponds to the loop body (lines 12-16) and is a result of the data dependence

between instructions (e.g., lines 14 and 15) and the latency of the instructions. For

example, if the divide operation at line 12 is replaced with a multiply operation,

the length of the path changes relative to the difference in latency between the two

operations.

3.6.2 State Assignment

The state transition graph of the example is shown in Figure 3.12a. We first cate-

gorize the states, then perform the state encoding on each category separately.

Categorizing states: In step 1 of Algorithm 2, we add S0 and S3, the states with

more than one next state, to the set of divergent states. These states are shown in

red in Figure 3.12a. In step 2 of Algorithm 2, we find all the branch-free paths that

start from successors of S0 and S3. This step results in finding path1 =< S1,S2 >

(Figure 3.12b) and path2 =< S4,S5,S6, ...,S39,S40,S2 > (Figure 3.12c).

In steps 3 and 4, overlapping paths are identified and path refinement (Algo-

rithm 1) is applied. In this example, the two branch-free paths overlap at S2, which

requires path refinement. After applying the path refinement algorithm, the longer

path, path1, remains the same while path2 will no longer exist since S1 becomes

the independent state that separate these two paths. S1 stores metadata to support

the case that the FSM transitions to path2 via S1 to S2.

After the above steps, the only branch-free states are the states of path2. The

remaining states, along with the divergent states, are marked as independent states

(blue states in Figure 3.12d). This corresponds to steps 5 and 6 of Algorithm 2.

Now that we have categorized the states, we can perform state assignment on

each category according to steps 7 and 8 of Algorithm 2. The result of state assign-

1The loop condition, (0 < A), was added so the loop would not be simplified by Vivado. Oth-
erwise, we found Vivado would replace the while loop with the expression “N*result” making the
example less interesting for demonstrating our state assignment algorithm.
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ment is shown in Figure 3.12d.

Memory Unit Content

To simplify this example, we assume that the memory unit is sized exactly to fit

this FSM, which has a depth of 6 entries and a width of 15-bits. Note that Next

State and Path Final State fields (Figure 3.9) are 6 bits since we require 6 bits to

encode all of the states ( f loor(log2(40states)) = 6), however, the Branch Address

field is only 2 bits since there are only 3 states that reside in memory, hence we

only require 2 bits to distinguish among these 3 states.

The memory contents for this example is shown in Table 3.2. The first two

columns, state label and address, are not part of the memory but have been added

to the table to help with understanding which entry corresponds to which address

and state. Note that the state encoding shown corresponds to that generated by

Algorithm 2 and corresponds to the state values shown in Figure 3.12d. As such,

the state encodings may be different from the state label (e.g., S0 = 6’d0, S1 = 6’d2,

and S3 = 6’d1). Since the fan-out degree of the states in this example is at most 2,

each state will have two corresponding rows in memory, which only requires 1 bit

for the Encoded input to select the next state. Each memory location containing

an x indicates that the content of the corresponding field is unused for this state

(memory row). This occurs for the state transitions where both current state and

next state reside in memory, since the Path Final State and Branch Address entries

are only used for the states that belong to branch-free paths. As mentioned earlier,

independent states (including divergent states) reside in memory, so any transition

between two independent states contains unused memory fields.

Specialized FSM Block Operation

Next, we describe the operation of our proposed Specialized FSM Block using

the example FSM in Figure 3.11. There are four possible operating conditions:

transitioning from a memory state to a memory state, from a memory state to a

branch-free state, from a branch-free state to a branch-free state on the same path,

and from a branch-free state to a memory state. Each of these cases is described

below and Figure 3.13 to Figure 3.16 highlight the relevant active portions of the
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specialized FSM block.

• Memory state to memory state transition (e.g., S0 to S1 in Figure 3.12d):
In this case, illustrated in Figure 3.13 , the FSM block behaves simply like

a memory-only FSM implementation. In Figure 3.13, the current state (S0)

and encoded input are used to address the memory unit, and the next state

(S1) is read from memory. Using the State Control bit from memory, the

control unit selects the next state output from the memory to write to the

state register. Aside from the State Control bit, the corresponding metadata

in the memory is unused.

• Memory state to branch-free path state (e.g. S3 to S4 in Figure 3.12d):
In this case, illustrated in Figure 3.14, the control registers, specifically,

the Path Final State Register and Branch Address Register, must be updated

to control the branch-free path state generation for subsequent cycles. The

next-state (i.e., the start of the branch-free path, S4) is loaded into the state

registers and the metadata, as described in Section 3.2.4, is loaded into the

Path Final State (S2) and Branch Address (S3) registers.

• Branch-free path state to Branch-free path state on the same path (e.g.,
S39 to S40 in Figure 3.12d): In this case, illustrated in Figure 3.15, the

adder in the accumulator unit is used to increment the current state (S39 with

encoding 6’d38) to the next state (S40 with encoding 6’d39). The comparator

compares the next state with the final state of the path in the Path Final

Register (S2 with encoding 6’d40). Since the value of the adder 6’d39 (S40)

is not greater than 6’d40 (S2), the accumulator unit and control unit pass the

next state (S40) to the state registers.

• Branch-free path state to Memory state (e.g., S2 to S3 in Figure 3.12d):
Finally in this case, illustrated in Figure 3.16, the adder unit increments

the current state (S2 with encoding 6’d40) and the comparator compares the

value of the next state from the adder (6’d41) with the value in the Path

Final State Register (S2 with encoding 6’d40). Since the value of the adder

is greater than the Path Final State Register, the comparator sets the control

signal to select the value in the Branch Address Register (S3 with encoding
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6’d1) to send to the state registers. This transitions out of the branch-free

path as the next state is used to address the memory unit.

While not a separate case, the transition from S1 to S2 transitions from a

memory state to branch-free path state that is not the initial state on the path.

This behaves identically to the memory state to branch-free path state tran-

sition described above, with the only difference being the initial state that is

loaded into the state registers.

Figure 3.13: Next state generation block - transition from a memory state to
a memory state

State Address [3bits] Memory Content
{CS, Encoded input} Next State Final state Target Mem/add

S0
{00,0} 6’d0 x x 1
{00,1} 6’d2 x x 1

S1
{10,0} 6’d40 6’d40 2’d1 0
{10,1} x x x x

S3
{01,0} 6’d3 6’d40 2’d1 0
{01,1} 6’d0 x x 1

Table 3.2: Memory content
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Figure 3.14: Next state generation block - transition from a memory state to
a branch-free path state

Figure 3.15: Next state generation block - transition from a state of a branch-
free path to another state on the same path
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Figure 3.16: Next state generation block - transition from the last state of a
branch-free path to a memory state
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Chapter 4

Experimental Methodology

4.1 Benchmarks

In this work we use two sets of C/C++ benchmarks to assist with the design and

evaluation of our proposed architecture. Both benchmark sets have been developed

to be used by HLS tools. The first benchmark set, MachSuite [25], is a collection

of benchmarks for evaluating accelerator design and customized architectures. The

second benchmark sets, HLS datacenter benchmark, is developed in our computer

architecture group as a joint effort among a group of three students [24]. The

HLS datacenter benchmark set consists of high impact functions, in terms of run

time, extracted from Lucy [4], SQLite [12], and BZIP [32] benchmarks, and aims

to represent benchmarks that may be commonly run in a datacenter. Some parts

of these benchmarks have been re-written to replace C/C++ features that are not

supported by Vivado HLS.

Table 4.1 shows the number of lines of C/C++ code for the benchmarks in each

benchmark set. This is used to highlight the size and complexity of the benchmarks

to better understand the resulting FSMs from HLS.

We convert the benchmarks from C/C++ to Verilog HDL using Vivado HLS.

For the main part of our evaluation we use the default HLS directives provided in

Machsuite to improve the quality of the generated Verilog code, however, the de-

fault HLS directives might not necessarily lead to the most optimized design. In

order to directly evaluate the impact of HLS optimization for certain optimization
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Benchmark LOC
backprop 159

aes 167
viterbi 44

spmv crs 34
spmv ellpack 34

nw 98
bfs bulk 64

bfs queue 71
fft transpose 363

fftstrided 43
sort merge 57
sort radix 116

kmp 52
stencil3d 46
stencil2d 39
md knn 71
md grid 78

gemm ncubed 41
gemm blocked 43
(a) Machsuite Bench-

marks

Benchmark LOC
bzip 747

lucy sn 78
lucy sv 82
lucy sa 66
sqlite ln 561
sqlite gt 410

(b) HLS Datacenter
Benchmarks

Table 4.1: Number of lines of actual C code, excluding comments, for the
evaluated benchmarks

goals (such as area, delay, and area-delay product) on the generated FSMs, we use

the model described in Lo et al. [18]. This work uses sequential model-based op-

timization methods to automatically select the set of HLS directives that optimize

the design for different optimization goals. We use the data provided by Lo et al.

to obtain the HLS directive settings that minimize the area-delay product of the

generated RTL design for the aes, backprop and sort radix benchmarks. The result

of this analysis is provided in Section 5.6
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Benchmark States Inputs Max fanout
aes fsm1 47 6 2
aes fsm2 76 14 2

bckp fsm1 11 11 2
bckp fsm2 158 10 2
bckp fsm3 69 6 2
bfs b fsm 8 7 3
bfs q fsm 8 6 2
fft st fsm 24 5 2
fft tr fsm1 17 8 2
fft tr fsm2 24 6 2
fft tr fsm3 219 14 2
fft tr fsm4 10 6 2
fft tr fsm5 66 5 2

gemm fsm1 10 8 2
kmp fsm1 7 4 2
kmp fsm2 10 6 2
md gr fsm 15 10 2

md knn fsm 98 5 2
sort m fsm1 4 5 2
sort m fsm2 7 5 2
sort r fsm1 15 11 2
sort r fsm2 6 4 2
sort r fsm3 6 4 2

spmv crs fsm 10 6 2
smpv elpk fsm 9 6 2

stencil fsm 4 4 2
viterbi fsm 8 6 2

Table 4.2: Characteristics of the FSMs extracted from MachSuite

4.2 FSM Extraction

To evaluate our proposed mix-grained architecture, we must extract the finite state

machines from each benchmark. This is achieved as follows: We use Yosys syn-

thesis tool [37] to synthesize each benchmark to an RTL netlist. We then use the

FSM detection and FSM extraction passes provided in Yosys to detect and extract
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Benchmark States Inputs Max fanout
lucy sh fsm 71 3 2
sql ln fsm1 508 56 4
sql ln fsm2 7 6 3
sql ln fsm3 5 6 3
sql ln fsm4 10 10 3
sql ln fsm5 4 4 2
sql ln fsm6 4 4 2
lucy sn fsm 25 5 2
lucy sv fsm 12 10 4
bzip fsm1 72 19 3
bzip fsm2 41 11 2
bzip fsm3 67 28 4
bzip fsm4 17 9 3
bzip fsm5 43 4 2
bzip fsm6 61 19 3
bzip fsm7 36 13 2
bzip fsm8 117 34 3

sql gt fsm1 61 48 4
sql gt fsm2 12 9 2

Table 4.3: Characteristics of the FSMs extracted from HLS datacenter bench-
marks

the state machines from the rest of the design. These passes implement an algo-

rithm similar to the algorithm proposed in [29] to extract the FSM from a flatten

netlist. The extracted FSM is in KISS [27] format, a simple format to store the

FSM transition table. We have developed an FSM generator in C++ which, given

a finite-state machine described in KISS format, generates the Verilog HDL code

that describes this FSM. For the purpose of this work, we were only interested in

the RTL code of the next state calculation logic, hence our FSM generator only

generates the RTL design for the next state calculation logic and does not include

the output calculation logic in the generated design. Using this flow we are able to

extract the FSM from any given benchmark and generate a stand-alone RTL design

that describes this state machine.

The statistics of the FSM that we have extracted from the MachSuite and data
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center benchmarks are shown in Table 4.2 and Table 4.3.

4.3 Area and Delay Model

Next State Generation Block Area Model

To model the next state generation block, which correspond to the coarse-grained

part of the FSM architecture of Figure 3.5, we have described the architecture of

this block in Verilog HDL. This excludes the area model used for Input Sequence

Encoder which is described in next section. The memory unit is modelled using

the Artisan synchronous SRAM compiler [5]. As described in Section 3.2.4, the

Memory Unit in Figure 3.8 is an asynchronous memory. However, since we did not

have access to an asynchronous SRAM memory compiler, we used a synchronous

memory unit to model the area. We believe that the area of the asynchronous mem-

ory will be comparable to the synchronous memory unit. However, a small error

in the area estimation will have a minimal affect on the total area of the proposed

specialized FSM architecture, since the Next state generation block counts for less

than half of the block area for small FSMs, and is much less than half for the larger

FSMs.

The RTL design has been synthesized using the Synopsis Design Compiler vH-

2013.03-SP5-2 [33] with the TSMC 65nm library. The area estimations presented

in this dissertation are pre place-and-route. We estimate the routing area of the next

state generation block, which is not calculated by the Synopsys design compiler as

follows: We exclude the area of the RAM (since the internal routing has already

been modelled by the SRAM compiler), then we multiply the area of the remaining

units, which is reported by design compiler, by a factor of 2X. Note that by using

this approach, we are overestimating the area of the block, since the routing inside

the next state generation unit is very limited. Thus, the presented area estimations

are conservative.

Input Sequence Encoder Area Model

We have developed an input sequence encoder generator in C++. It takes the FSM

described in KISS format and generates the Verilog HDL that implements this
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encoder, as described in Section 3.5.2.

The RTL design for the input sequence encoder is then implemented onto the

FPGA soft logic. We use the FPGA architecture k6 frac N10 40nm provided in

VTR [19] to model the area of the input sequence encoder, and map the input

sequence encoder described in verilog to the FPGA soft logic. We then use the

following formula, which is also used by VTR, to convert the logic and routing

area reported by VTR in Minimum Width Transistor Area (MWTA) to um2:

1∗MWTA = 70∗ (λ )2

Where λ is equal to 65nm.

Specialized FSM Architecture Delay Model

Next we describe the delay model used for the proposed specialized FSM archi-

tecture which consists the delay of both input sequence encoder and next state

generation block. Looking at Figure 3.8, the critical path delay reported by design

compiler for the next state generation block starts from the output of the state reg-

ister through the adder and two multiplexers back to the input of the state register.

Note that, for the scenario when the next state calculation is solely calculated using

the accumulator unit, the total critical path delay of the FSM architecture is equal

to the critical path delay of the next state generation block. However, for the case

where the next state calculation is performed through input sequence encoder and

memory unit, the output of the state register is fed back to the input of the input

sequence encoder. Therefore the critical path delay of the input sequence encoder

along with the critical path delay of the next state generation block form the total

delay of the architecture.

The delay of the input sequence encoder is obtained from VTR by mapping the

encoder onto the baseline architecture. The delay values for the next state genera-

tion block are obtained from the design compiler. To account for the effect of the

place and route on the delay values, we use the same experience-based estimation

approach stated in [45], which suggests on average paths degrade by a factor of

1.6X after layout.

Note that we provide an optional binary-to-onehot decoder at the output of the
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FSM block (Figure 3.8). This decoder is located after the state registers, hence

after obtaining the total critical path of design as mentioned above, we also add the

latency of this decoder to the total critical path of the specialized FSM architecture.

Baseline FPGA architecture

The baseline FPGA architecture is also k6 frac N10 40nm. We selected the simple

architecture without any hard block as the baseline to minimize the area overhead

of unused hard blocks that the FSM will not benefit from.

4.4 CAD Flow

To synthesize our benchmarks onto the FPGA baseline and our proposed architec-

ture, we use VTR 7.0 [19]. VTR provides the full synthesis, technology mapping,

placement, and routing steps required to compile the proposed next state gener-

ation hard block and input sequence encoder soft block onto the baseline FPGA

architecture.

4.5 Mapping to the Next State Generation Block

As described in Section 3.5.3, for a given state machine to fit into the next state

generation block, there are two required conditions that must be met: (1) the num-

ber of bits required for the state encoding should not exceed the maximum bit-

width of the adder, 2) the number of states that reside in memory must be less than

the memory size.

To evaluate these two conditions, we first apply the state assignment algorithm,

Algorithm 2, on the given FSM. After performing the state encoding, we will have

the number of state bits required to encode the state values and the total number of

states that will be assigned to the memory unit. In case any of these two require-

ments are not met, we can use the FSM partitioning technique described in Section

3.3 to map the FSM to two or more combined fracturable blocks.
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Chapter 5

Experimental Results

This chapter presents and discusses our experimental results. We first use the result

of applying our state assignment technique on the finite state machines extracted

from MachSuite and the datacenter benchmarks to explain the sizing of the FSM

block. We then evaluate the overall area and delay improvement of our proposed

architecture over these benchmarks. We also provide the detail characteristics of

each FSM to fully explain the variation in the result of area/delay improvement

over these benchmarks. We then demonstrate the outcome of applying HLS op-

timization to three MachSuite benchmarks on the characteristics of the generated

state machines. We finally assess the functionality of the FM partitioning algorithm

on an FSM that does not fit into one FSM block and measure the overhead of our

proposed modifications to support fracturable FSM blocks.

5.1 Next State Generation Block Size

In this section we explain the reason behind the size decisions for elements of the

next state generation block. The best sizing for the FSM block will accommo-

date the common FSM size, while reducing the amount of wasted resources if the

common FSMs are smaller than the selected FSM block area.

Figure 5.1 shows the area breakdown of each unit of the next state generation

block as a fraction of the total area for the block configuration given in Table 5.1.

As can be seen in this figure, the memory block is the main contributor to the next
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Figure 5.1: Area breakdown of the coarse-grained fabric

Figure 5.2: FSM coverage vs. memory depth in number of entries. Approx-
imately 98% of the evaluated FSMs fit into a memory with a depth of
128 entries.

state generation block area. We have measured the area breakdown of the block for

various block configurations by sweeping the memory size, however, the memory

unit always remains the main contributor to the block area since the area of the

remaining units also scale accordingly as the memory size varies. Therefore, it is

59



important to select a memory unit with the proper size to minimize the total area

of our proposed FSM block.

We have collected the required memory depth, in terms of number of entries

(independent states), for our evaluated benchmarks. Figure 5.2 presents the frac-

tion of the FSMs that will fit in a certain memory depth of 32, 64, 128, and 256

entries. For our workloads, 98% of the FSMs fit into a depth of 128. Thus, for the

remainder of our evaluation, we selected a memory size with a depth of 128 entries

to accommodate the common FSM sizes.

The second design decision is the bit-width of the adder, control registers, and

encoding bits. To choose these values, we need to answer the following question:

What are the total number of states for a state machine that uses all the 128 memory

entries? To answer this question we require two data points: (1) what percentage of

the states are typically allocated in memory, and (2) what is the maximum fan-out

degree over our evaluated FSM. The second question helps determine how many

memory rows are needed for each state.

The answer to the first question is shown in Figure 3.6. On average approxi-

mately 18% of the states reside in memory. The second question can be answered

by looking at Figure 3.7 which shows the maximum number of fan-out per state

is equal to 4. Therefore, given a memory unit that has 4 memory rows associated

with each state, and where the number of memory states is 20% of the total number

of states, the total number of states in an FSM that can map to this memory unit is

equal to ( 128 states
4 rows per state×

1
20% of total states = 160 states). Hence we use 8 bits

to represent the states in such a state machine. For any state machines that require

more bits for the state encoding, there is a high chance that the memory size will

not be able to accommodate all the states.

Using the format of memory content presented in Figure 3.9, the memory

width should be equal to (size of Next State value+size of Path Final State value+

size of State Control value) which is 8+8+5+1 = 22 bits. Putting it all together,

the size of the units in the next state generation block can be seen in Table 5.1

60



Total Memory size 128x22 bits
Adder size 8 bits

State Register size 8 bits
Encoded Input Sequence size 2 bits

Table 5.1: The sizing configuration of the elements of the next state genera-
tion block

5.2 Area Improvement

This section presents the improvement in FSM area using our proposed specialized

FSM block compared to the baseline LUT-based FSM implementation. The area of

the next state generation block for the configuration given in Section 5.1 is equal to

15662 um2 which is calculated as described in Chapter 4. The area improvement

for the MachSuite and HLS datacenter benchmarks is presented in Figure 5.3. The

subsequent figure, Figure 5.4, presents a breakdown of state categories to assist

with analyzing the variation in area savings. The breakdown of state categories is

collected after performing state assignment on each FSM.

In Figure 5.3, the x-axis shows the FSMs extracted from the benchmark sets

and the y-axis shows the relative area of our proposed architecture compared to

the baseline LUT-based implementation. The gap between the bars on the x-axis

separates the FSMs that have less than 10 states (on the left) from the FSMs with

more than 10 states (on the right). In the extreme cases where the FSM only has

a few states, less than 10, the number of states on the branch-free paths and the

number of states to be stored in memory are so limited that it does not justify the

area overhead of using the FSM hard block with a memory depth of 128. This issue

can be addressed with two different approaches. First, a simple predictor based on

the FSM size could be used during the synthesis to decide whether the FSM should

be mapped to the proposed FSM hard block or should be implemented using the

soft logic on FPGAs. Second, the FSM block can be sized down to accommodate

smaller FSMs. However, this also results in a lower percentage of FSMs fitting

into a single block. The FSMs that do not fit into a single block will be split

over multiple fracturable blocks. The overheads of having fracturable blocks are

discussed in Section 5.7.
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As shown in Figure 5.3, in average the area of our proposed architecture is

approximately 36% of the baseline FPGA architecture for the MachSuite bench-

marks, and is approximately 30% of the baseline area for the HLS datacenter

benchmarks. These averages are not including the benchmarks that have FSMs

with fewer than 10 states.

The main trend that can be seen is that the area improvement increases as the

FSM size increases. This is due to the increase in the amount of soft logic that

is required to implement the baseline FSM, which is replaced by our fixed-size

specialized FSM block.

Figure 5.4 can be used to help explain the area improvements for different

FSMs. The x-axis shows the FSMs from our evaluated benchmarks and the y-axis

shows the total number of states as a breakdown of branch-free and memory states.

The main trend that we see is that as the number of states that can be mapped

to the branch-free paths increases, the area savings also increase. For the state

machines that have the same number of states but a different area improvement, the

complexity of the input sequence encoder is the main reason for the area difference.

As the number of states that need to be stored in memory increases, the logic to

implement the input sequence encoder will be more complex, resulting in having

a larger area. This can be seen for bzip fsm6 and sql gt fsm1. These benchmarks

have the same number of states (61 states), however, the total number of states that

reside in memory for sql gt fsm1 is equal to 30 while it is only 10 for bzip fsm6.

Consequently, as shown in Figure 5.3, bzip fsm 6 has a smaller area (14% of the

baseline) compared to sql gt fsm1 (27% of the baseline). However, one exception

is with benchmarks lucy sv fsm and sql gt fsm2 where benchmark lucy sv fsm has

more memory states and better area improvement than sql gt fsm2. We expect that

this is due to the higher complexity of the next state calculation logic for benchmark

lucy sv fsm than benchmark sql gt fsm2, which results in a greater area reduction

when mapping to a simple memory lookup. Further analysis to this scenario is left

to future work.
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(a) MachSuite

(b) HLS datacenter

Figure 5.3: Area improvement of the specialized FSM architecture, which in-
cludes the area of the input sequence encoder and next state generation block
relative to the baseline

5.3 Delay Improvement

The input to output delay of the next state generation block for the configuration

given in Section 5.1 is equal to 0.5 ns, which is calculated as described in Chapter

4. The delay improvement achieved by our specialized FSM block is shown in
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(a) MachSuite

(b) HLS datacenter

Figure 5.4: FSM size along with the breakdown of the states that are part of
branch-free paths and states that reside in memory

Figure 5.5 for the evaluated benchmarks. The x-axis shows the FSMs from the

different benchmarks and the y-axis shows the critical path, relative to the baseline.
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As above, the FSMs with less than 10 states are separated from the FSMs with more

than 10 states by a gap. As with area savings, the FSMs with at least 10 states will

benefit from our specialized hard block, and the critical path delay improves as the

size and complexity of the FSM increases. This is due to the fact that, for smaller

FSMs, the overhead of the extra control logic in the FSM blocks is not negligible

compared to the critical path delay of the LUT-based portion of the FSM.

Similar to the area results, the complexity of the input sequence encoder is a

large contributor to the critical path of the total design, which is indicated by the

number of states that are mapped to memory, as shown in Figure 5.4.

5.4 Resource Usage of the Mix-Grained Architecture

Figure 5.6 illustrates the area of each unit as a fraction of the total area of the

mix-grained architecture for the same workloads presented in Figure 5.3. As this

result shows, about 50% of the area is consumed by the input sequence encoder.

This amount varies among the benchmarks as size of the FSM and more specifi-

cally, number of states that reside in memory varies. However, in addition to the

number of memory states, the complexity of the boolean function that defines the

transition between states also affects the complexity and size of the input sequence

encoder. As can be seen in Figure 5.4a, number of memory states among Mach-

Suite benchmarks is mainly less than 10, independent of the FSM size. This results

in small variation in size of the input sequence encoder among MachSuite bench-

marks. However, for the Datacenter benchmarks (Figure 5.4b), there is a higher

variation in number of memory states among different benchmarks, hence there is

more variation in size of the input sequence encoder for these benchmarks as well.

The area of the hard block, consisting of the memory, adder unit, and output

decoder is always fixed. This explain the increase in area savings for the larger

FSMs, since the overhead of the control logic in the hard block will be negligible

compared to the input encoder implemented using the FPGA soft logic.
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(a) MachSuite

(b) HLS datacenter

Figure 5.5: Critical path delay improvement of the specialized FSM architecture
which includes the critical path of the input sequence encoder and next state
generation block relative to the baseline
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(a) MachSuite

(b) HLS datacenter

Figure 5.6: Area breakdown of the mix-grained FSM architecture for the FSMs
extracted from the evaluated benchmarks

5.5 FSM Area

Along with the area improvement of the FSMs, we are also interested in the fraction

of the FSM next state calculation area to the total application design area (control

plus data-path). However, for most of the evaluated benchmarks, the generation

of IP (Intellectual Property) cores as part of the design by Vivado HLS limits the
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benchmark
area percentage of the

FSM next state
calculation logic

total number of
the states

sqlite ln 11.27% 508
sqlite gt 9.12% 73

Table 5.2: Fraction of next state calculation logic area to total design area for
sqlite lookupName and sqlite getToken functions from the HLS datacen-
ter benchmark set

ability to implement the whole design onto the baseline FPGA using VTR. There-

fore, we were unable to measure the total area of the designs for these benchmarks,

since Vivado synthesis tool only provides the resource utilization of the final syn-

thesized design, not the total area. We were able to measure this fraction for the

SQLite benchmark (from the datacenter benchmark set) which does not contain

any IP cores. The percentage of the area for the next state calculation logic for two

functions of SQLite benchmark is shown in Table 5.2. On average for these two

functions, the next state calculation logic area is approximately 10.19% of the total

design area. We leave evaluating the total area for all benchmarks, including IP

cores, to future work.

5.6 Impact of HLS Directives on the Generated FSMs

To evaluate the impact of HLS optimization on FSM characteristics, we have ap-

plied a set of HLS directives that minimize the area-delay product of the aes, back-

prop, and sort radix benchmarks. In Chapter 4, we have described how these HLS

settings have been obtained.

The impact of applying HLS directives on the three mentioned MachSuite

benchmarks is shown in Figure 5.7, and is averaged across these benchmarks.

These benchmarks were arbitrarily chosen to show the impact of HLS directives.

The x-axis is labelled by the number of fan-outs per state, and the y-axis indicates

the fraction of total states that have the corresponding fan-out degree. As can be

seen, on average, the optimized designs (opt) have a higher number of branch-

free paths than the non-optimized designs (no-opt), e.g., fan-out 1 is higher for the
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Figure 5.7: Impact of applying HLS optimization directives on backprop,
aes, and radix sort benchmarks from MachSuite. The x-axis shows the
number of reachable next states per state. For example, fan-out 1 is an
indicator for states that only have one next state. This figure shows that
the optimization increases the percentage of branch-free path.

pragma optimized (opt) versus non-optimized (non-opt) versions. The affect of

applying the HLS directive on each individual benchmarks as an average over all

the FSMs extracted from each benchmark is shown in Figure 5.8. The x-axis and

y-axis are the same as described for Figure 5.7. By looking at the impact of HLS

directives on each individual benchmark, we observed that the HLS directives do

not necessarily change the ratio of fan-out degrees 1 and 2, however, they result in

generating more FSMs for different parts of the same design which, in the case of

these three benchmarks, contain a higher ratio of branch-free paths.

Many of the HLS directives attempt to exploit more parallelism, for example,

by loop unrolling and loop pipelining. In these cases, it results in an increase in

the number of states to generate the control signals for the unrolled and pipeline

loops, adding more branch-free states in between divergent states used to control

the loops.
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(a) backprop

(b) aes

(c) sort radix

Figure 5.8: Impact of applying HLS optimization directives on aes, backprop, and
radix sort benchmarks from MachSuite
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Benchmark States
Required
state bits

Memory
states

Required
mem. depth

Max
fan-out

sql ln fsm1 508 9 40 160 4

Table 5.3: Block size checking for the sql ln fsm1 indicating that it does not
fit to one FSM block, since it requires larger memory unit and more state
bits than what is provided by the FSM block.

5.7 Efficiency of the Fracturable FSM Block

In this section we evaluate the efficiency of our proposed solution for the scenario

where a large FSM does not map to one FSM block. We perform analysis on

an FSM with 508 states, which is extracted from the sqlite lookupName function.

The corresponding FSM is named sql ln fsm1. Below we describe the the required

steps for mapping this FSM to two fracturable FSM blocks.

Block size: Table 5.3 shows the block size information for the sql ln fsm1

FSM. The FSM has 508 states, which requires 9 state bits, thus it is too large to

map to our FSM block with only 8 state bits and an 8 bit-wide adder. Additionally,

the result of the state encoding shows that 40 states must be mapped to the memory

unit. The maximum number of fan-out per state for this FSM is equal to 4, thus we

need 2 bits to represent the encoded input, which allows each memory states to have

a maximum of four corresponding memory rows to store the data for potential state

transitions. Therefore, a memory unit with 160 entries is required to accommodate

this FSM, which will not fit into our proposed FSM block with 128 entries.

Partitioning: Table 5.4 describes the result of applying the Fiduccia-Matheyses

partitioning algorithm on sql ln fsm1, as described in Section 3.3.1, and then re-

performing the state assignment on each of these partitions. The first row indicates

the number of states that are required to be mapped to the memory unit in each

FSM partition. The second row presents the overhead of partitioning in terms of

the number of states that are required to be mapped to the memory to store the

information corresponding to the transitions across the the fracturable blocks. The

third and fourth row show the total number of memory states for each FSM parti-

tion and the required memory size to accommodate them.

The values for the refined required memory sizes indicate that the partitioning
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can result in an unbalanced division of the required memory size between parti-

tions. The partitioning algorithm aims to minimize the cut set value between two

partitions, however, it is possible to have different number of branches within each

partition. A more sophisticated partitioning algorithm can aim to also balance this

number in addition to minimizing the cut set value to better utilize each fracturable

block. Evaluating the impact of different partitioning algorithms is left to future

work.

Area saving:Figure 5.9 shows the area overhead of using a fracturable FSM

block to map a large FSM as opposed to having one large specialized FSM block

to fit the FSM. LUT-based implementation of the FSM in FPGA soft logic is used

as the baseline. The area overhead due to making the FSM block fracturable is

negligible compared to the area improvement gained by mapping the FSM to the

FSM hard block.

The results of splitting a large FSM over two fracturable blocks, Figure 5.9,

show the efficiency of this approach for a medium size FSM block (a memory unit

with 256 entries). As shown in Table 5.4, partitioning an FSM results in storing

additional states in memory. For the smaller FSM blocks, e.g. a memory unit

with 128 entries, there are only 32 states that can be stored in memory (assuming

each state has 4 memory locations for 4 potential next states). This memory size

offers a very limited space for storing states. By adding the overhead of additional

states that are caused by partitioning, this memory unit can easily become full

which leads to requiring more than two fracturable blocks to accommodate a given

medium size FSM. This might result in extra overhead that is more than the amount

shown in Figure 5.9. In this work we only look at splitting the FSM across two

fsm blocks. Evaluating the efficiency of mapping an FSM over multiple blocks is

left to future work.
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Partition A Partition B
Initial number of memory states 24 16

Number of overhead memory states 6 6
Refined number of memory states 30 22

Refined required memory size 120 88

Table 5.4: Memory unit size requirement for each partition after partitioning
the FSM. Row 4 indicates that FSM partition A requires a memory unit
of size 120 and FSM partition B requires a memory unit of size 88, thus
they both can be mapped to a fracturable FSM block.

Figure 5.9: Area overhead of using a fracturable FSM block to map a large
FSM as opposed to having one large specialized FSM block to fit the
FSM. The overhead due to making the FSM block fracturable is negli-
gible compared to the area improvement gained by mapping the FSM to
the hard FSM block.
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Chapter 6

Related Work

This chapter summarizes and contrasts the work done in this dissertation against

related work on FPGA hard blocks and configurable FSM architectures.

There is a large body of work looking at using specialized hard blocks as part

of the FPGA’s architecture. Wilton et al. [36] examines the architecture of FP-

GAs containing coarse-grained memory blocks, Langhammer et al. [16] proposes

DSP blocks that support floating point operation, and all modern FPGAs now con-

tain specialized hard blocks as part of their architecture [[43], [2], [41], [40], [1]].

Similar to our work, these works share a common goal of introducing specialized

blocks to the FPGA’s architecture that perform a set of specific tasks in a more

efficient manner in terms of area, performance, and power. However, they mainly

look at improving the complex operations and functional units that are common in

the data-path part of hardware designs, whereas we propose a hard block that is

designed to better implement the control-path portion of digital systems.

Garcia-Vargas et al. [10] proposes to use block RAMs provided in modern

FPGA architecture to implement FSMs. This work looks at implementing the next

state/output calculation for every state using memory. They reduce the size of

the memory by multiplexing the FSM inputs to choose the set of active inputs at

each state. Additionally, along with the next state and output values, they store

extra control signals at each memory location that helps reduce the complexity of

controlling the multiplexer. Similar to Garcia-Vargas et al., we also try to reduce

the memory size by exploiting the fact that only a subset of inputs are active at
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each state. However, we further optimize the memory size by introducing an input

encoder which exploits the fact that not all the combinations of the active inputs

contribute to different choices of next state selection. For example, in a scenario

where the maximum number of active inputs at one state is 3, previous works looks

at having 8(23) memory locations for choosing the potential next state for a given

state. However, we show that the number of memory locations can be further re-

duced to the maximum number of reachable next states per state which is normally

less than 2(number of active inputs). Moreover, our work further reduces the num-

ber of states that must be implemented in memory by looking at the characteristics

of HLS-generated benchmarks. We show that a hybrid FSM implementation can

be used to divide the task of next state calculation between the memory unit and an

accumulator unit, resulting in significant reduction in number of states that must

be mapped to the memory and consequently reducing the memory size.

Glaser et al. [11] presents a reconfigurable FSM architecture, TR-FSM, to be

implemented as part of the ASICs or System On a Chip (SOC) designs. The pro-

posed architecture offers reduced area, delay, and power consumption compared

to an FPGA baseline. However, their architecture must be sized according to the

specifications of the FSMs that are going to be implemented onto this architecture,

otherwise the extra resources will be wasted. TR-FSM is possible in case of ASIC

and SOC design for a certain class of applications where they can profile FSMs

prior to generating the TR-FSM block. However, their work cannot be utilized as a

general architecture where the size of FSMs is not known in advance, limiting the

feasibility for integrating their proposed architecture into the FPGA architecture.

However, in our work, we are able to design specialized FSM blocks that can ben-

efit the common FSM sizes, while still allowing the mapping of larger FSMs using

the proposed fracturable architecture.

Wilson et al. [35] propose a low overhead FSM overlay based on a multi-

RAM architecture. They aim to improve the area usage of the previously proposed

memory-based overlays by grouping the state machines to different subsets based

on the number of active inputs at each state. The states at each subset are then

mapped to separate memory units such that each memory address space can be

tailored to the number of active inputs in each subset. Their solution, however, still

has a larger area compared to the LUT implementation, since the main goal of their
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work is to reduce the FPGA compilation time.
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Chapter 7

Future Work

In this dissertation, we explore the potential of adding a specialized hard block

for FSM implementation to existing FPGA architectures to reduce the area of the

next state calculation logic in FSMs that are generated by HLS tools. In the future,

we plan to explore the possibility of extending the proposed architecture to also

improve the area efficiency of the output calculation part of FSMs.

Additionally, we plan to fully integrate our specialized block to a baseline

FPGA architecture. To realize this goal, we also need to extend our mapping

flow to support the full CAD flow that can compile the FSM onto the modelled

FPGA architecture. The full CAD flow requires support for technology mapping,

placement, and routing of the applications onto the modified FPGA architecture.

Another future direction to further optimize our proposed architecture is to

explore the potentials of adding hard routing between the fracturable FSM blocks

to improve the area and delay for the large FSMs that need to be mapped to a

combination of fracturable FSM blocks. In order to support the modified routing

structure, the placement and routing algorithms need to be modified accordingly to

maximize the efficiency of hard routing between the fracturable blocks.

Our work shows that there are potentials for introducing new hard blocks to the

existing FPGA architectures due to the adoption of HLS tools among hardware de-

signers. The recent adoption of FPGAs in new domains, such as cloud computing,

also suggests a future direction to explore the potentials of adding new hard blocks

to the current FPGA architecture that are well suited for accelerating the common
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operations in these new domains. One potential solution to approach this problem

is by using graph isomorphism algorithms to find the common structure and logic

operations in this new domains which can be used as a starting point to design new

hard blocks to be integrated to FPGAs.
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Chapter 8

Conclusion

In this dissertation, we analyzed the control-unit portion of RTL designs that are

generated by HLS tools. HLS-generated control units, modelled by finite-state

machines, often have a large influence on the total area of the design in applications

where data-path realization requires a large number of states and control signals.

We show that these FSMs demonstrate common properties that can be exploited to

improve the area of FSM implementations.

We propose a novel mix-grained architecture that takes advantage of these char-

acteristics to improve the total area for implementing the next state calculation

logic in FSMs. The proposed architecture can be integrated to modern FPGA ar-

chitectures. We introduce a new state assignment technique that enables FSMs to

better map to our proposed architecture. We evaluate our proposed architecture on

a group of RTL designs generated by a commercial HLS tool. Finally, we show that

the proposed architecture is on average 3X smaller than LUT-based FSM imple-

mentations on a baseline FPGA. The reduction in area is achieved without affecting

the performance of the design.
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