UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Birational models of geometric invariant theory quotients Cheung, Elliot


In this thesis, we study the problem of finding birational models of projective G-varieties with tame stabilizers. This is done with linearizations, so that each birational model may be considered as a (modular) compactification of an orbit space (of properly stable points). The main portion of the thesis is a re-working of a result in Kirwan's paper "Partial Desingularisations of Quotients of Nonsingular Varieties and their Betti Numbers", written in a purely algebro-geometric language. As such, the proofs are novel and require the Luna Slice Theorem as their primary tool. Chapter 1 is devoted to preliminary material on Geometric Invariant Theory and the Luna Slice Theorem. In Chapter 2, we present and prove a version of "Kirwan's procedure". This chapter concludes with an outline of some differences between the current thesis and Kirwan's original paper. In Chapter 3, we combine the results from Chapter 2 and a result from a paper by Reichstein and Youssin to provide another type of birational model with tame stabilizers (again, with respect to an original linearization).

Item Media

Item Citations and Data


Attribution-NonCommercial-NoDerivatives 4.0 International