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Abstract

In this thesis, we study the problem of finding birational models of pro-
jective G-varieties with tame stabilizers. This is done with linearizations,
so that each birational model may be considered as a (modular) compacti-
fication of an orbit space (of properly stable points). The main portion of
the thesis is a re-working of a result in Kirwan’s paper ”Partial Desingu-
larisations of Quotients of Nonsingular Varieties and their Betti Numbers”
[3], written in a purely algebro-geometric language. As such, the proofs are
novel and require the Luna Slice Theorem as their primary tool.

Chapter 1 is devoted to preliminary material on Geometric Invariant
Theory and the Luna Slice Theorem.

In Chapter 2, we present and prove a version of ”Kirwan’s procedure”.
This chapter concludes with an outline of some differences between the cur-
rent thesis and Kirwan’s original paper.

In Chapter 3, we combine the results from Chapter 2 and a result from a
paper by Reichstein and Youssin to provide another type of birational model
with tame stabilizers (again, with respect to an original linearization).
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Preface

The topic of this thesis is based on the work of Kirwan (in [3]) and Reich-
stein (in [6]).

The content of Chapter 2 is based on [3]. However, the author does not di-
rectly use any results from [3], and provides a novel variation of the original
ideas. Therefore, the content of Chapter 2 is ultimately independent of [3],
and is original work by the author.

Chapter 3 is based on the work of Reichstein and Youssin (in [7]). The main
technical results required for this chapter are directly borrowed from [7].
However, it is an original observation that one may combine the work of [3]
(or Chapter 2 of this thesis), and [7] to provide a new result. This was an
original unpublished idea by the author’s supervisor, Zinovy Reichstein.
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Chapter 1

Introduction

1.1 The purpose of this thesis is to investigate birational equivariant mod-
els X̃ of smooth projective G-varieties X, such that there exists a lineariza-
tion of X̃ with the property that all stabilizers of semi-stable points are finite
(i.e. there are no strictly semi-stable points). If a linearization is provided
for X, the linearization of X̃ may be arranged so that X̃ → X is an iso-
morphism along the properly stable locus of X. This work is heavily based
on Kirwan’s paper [3], where the author investigates such models. In the
second chapter, we provide an alternative exposition of this work, includ-
ing proofs entirely written in the algebro-geometric language instead of the
language of symplectic geometry. These new proofs make heavy use of the
Luna Slice theorem and its various corollaries. In particular, the technical
details involved in Kirwan’s procedure may be interpreted and expressed in
terms of Luna’s stratification. In the case where X is generically free, we
may find a birational model X̃ab → X of X so that X̃ab has the property
that all stabilizers of semi-stable points are finite, but in addition they are
also abelian. If G acts freely on Xps (given a linearization for X), then

X̃ab → X is an isomorphism along the properly stable locus of X.

We assume that our base field κ is algebraically closed, and char(κ) = 0.

1.2 We will prove the following theorem:

Theorem (A). Let X be a G-linearized smooth projective variety. If Xps 6=
∅, then there exists a sequence of blow ups:

σ : XN := X̃ → XN−1 → · · · → X0 := X

such that XN satisfies:

1. X̃ps = X̃ss. That is, X̃ contains only unstable and properly stable
points.

2. σ : X̃ → X is an isomorphism along Xps.
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Chapter 1. Introduction

The above theorem describes a sequence of blow ups performed on X so
that X̃ss consists only of points with finite stabilizers. We will call such a
variety X̃ with a birational morphism σ : X̃ → X satisfying the conclusions
of the above theorem, a stable resolution of X. In fact, by [6] this may
indeed be alternatively achieved by performing a resolution of singularities
on the strictly semistable locus Xs.ss of X.

1.3 If the action of G on X is generically free, then [7] constructs a se-
quence of blow-ups peformed on X so that every reductive stabilizer sub-
group of G is diagonalizable. We may combine this result with Theorem
(A):

Theorem (B). Suppose that X is a generically free G-linearized smooth
projective variety, and that σ : X̃ → X is a smooth stable resolution of X.
Then, there exists a sequence of blow-ups:

ρ : X̃M = X̃ab → X̃M−1 · · · → X̃

such that

1. X̃ps
ab = X̃ss

ab. That is, X̃ab contains only unstable and properly points.

Furthermore, any point x ∈ X̃ps
ab has a finite and abelian stabilizer

subgroup.

Furthermore, if we have that G acts on Xps freely, then we may find a
sequence of blow-ups such that X̃M satisfies:

2. ρ : X̃ab := X̃M → X̃ is an isomorphism along X̃ps. In particular, ρ◦σ
is an isomorphism along Xps.

In particular, if X is a smooth G-linearized projective variety such that Xps

= Xss, we may take X̃ = X in the above statement.

1.4 Note that although X̃ps ∼= Xps, we do not necessarily have that
X̃ps

ab
∼= X̃ps ∼= Xps. In fact, this will only be true if we can choose the

blow up centers containing only unstable points. This is possible if G acts
freely on Xps.

However, the above theorem says that if X̃ has the property that X̃ contains
only properly stable and unstable points, then the same is true for X̃ab. We
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Chapter 1. Introduction

will say that σ : Y 99K X is a stable model (of X) if: σ : Y → X is
a birational morphism, and Y consists only properly stable and unstable
points. In this case, we have that y ∈ σ−1(x) is properly stable if x ∈ X is
properly stable (see Proposition 3.4.1). In particular, a stable resolution of
X is a stable model of X with restricts to an isomorphism along the properly
stable loci. Thus, Theorem (B) claims that if X̃ is a stable model of X,
then X̃ab is one as well. If X̃ is a stable resolution of X, then X̃ab is one as
well, if G acts freely on Xps.

1.5 Note that a stable resolution X̃ → X is not guaranteed to be smooth
if the centers of blow-up are singular. However, one may show that when
choosing the centers of blow up in the above theorem, the centers choosen
are possibly singular only at unstable points. By performing equivariant
resolution of singularities, one may always find a smooth stable resolution
X̃ → X. If this is done, then X̃ will be smooth. However, X̃ss will be
smooth, provided that Xss is smooth. Then, X̃ � G may be viewed as a
partial desingularization of the GIT quotient X �G in that the only singu-
larities are finite quotient singularities. After applying the blow up sequence
ρ, X̃ab �G has at worse finite abelian quotient singularities.
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Chapter 2

Preliminaries

Geometric Invariant Theory

We begin this chapter with a brief summary of GIT. We assume that the
reader has had a previous encounter with the relevant definitions.

2.1 Suppose that X is a projective G-variety, and that there exists an
ample line bundle L on X with a G-action on the total space compatible
with the G-action on X. Then, there is a power L⊗n such that the lin-
ear system X ↪→ H0(X,L⊗n) defines an equivariant embedding of G into
P(H0(X,L⊗n)). In this context, G-action on P(H0(X,L⊗n)) is induced by a
linear action on the vector space H0(X,L⊗n). We call a G-linearizable pro-
jective variety X along with such an equivariant embedding, a linearized
projective G-variety X (or G-linearized projective variety X).

2.2 The linear equivariant embedding ofX into the projective space P(H0(X,L⊗n))
allows one to define various notions of stability for points of X (i.e. prop-
erly stable, unstable, semi-stable). This provides a decomposition of X into
the disjoint union of three G-invariant sets Xps(L), Xs.ss(L) and Xunst(L)
(properly stable, strictly semi-stable and unstable). Recall that Xunst(L) is
a closed subset of X. The significance of this decomposition is the follow-
ing. One can show that a categorical quotient always exists for the open
G-variety Xps(L) tXs.ss(L) = X \Xunst(L) := Xss. This is of course the
GIT quotient X �LG of X. On the locus of properly stable points Xps, the
restriction of π defines a geometric quotient (thus, an orbit space). That
is, there is a categorical quotient π : Xps(L) → Xps(L) �L G whose fibers
parametrize precisely the orbits of G in Xps(L). One can show that the
GIT quotient X �L G is a projective variety, if X is projective. Further-
more, Xps�LG ⊆ X�LG is an open subvariety, and hence is not necessarily
projective. Hence, one may consider the GIT quotient X �L G as a com-
pactification of the orbit space Xps �L G where the orbits of G in Xs.ss are
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Luna Slice Theorem

the orbits which lie on the boundary

2.3 The boundary of the geometric quotient Xps � G in X � G has the
deficiency that its points only have ”weak modular meaning”. What this
amounts to is that that the fibers above the points on the boundary are not
in bijection with the orbits of G in Xs.ss. Instead, an orbit closure relation
hold among the fibers: x and y in Xss lie on the same fiber of the quotient
map π if and only if Gx ∩ Gy 6= ∅, where the closure is being taken in
Xss. Note that this relation is necessary for the map Xss → Xss � G to
be continuous. However, one may prove that a fiber π−1(x) for x ∈ Xss

contains a unique closed orbit. Therefore, one may say that the fibers of the
GIT quotient map π are in bijection with closed orbits of Xss. Recall that
any orbit Gx in X has the property that Gx contains a closed orbit. We
call a point semi-stable point x stable if Gv is closed in H0(X,L⊗n) for an
affine representation v of x. In the sequel, Xs will denote the set of stable
points of X.

Luna Slice Theorem

In this section, we introduce the Luna Slice theorem and its various corol-
laries. These are some of the main technical tools required to formulate and
prove the results presented in this thesis.

2.4 The Luna slice theorem provides a local description of an orbit Gx
of a point x in a G-variety X. In differential geometry, there is an analo-
gous ”slice theorem”. It states that given a manifold X and a Lie group G
acting on X diffeomorphically, then for any point x ∈ M , one may find a
G-invariant open neighbourhood U containing Gx, such that U is equivari-
antly diffeomorphic to the homogeneous fiber space G ×Gx Nx. Here, Nx
is a Gx-invariant direct sum complement to Tx(Gx) in Tx(X). In short,
there is a tubular neighbourhood around Gx so that the action of G in this
neighbourhood has a simple description as a homogeneous fiber space.

2.5 As one may expect, this theorem does not hold in the algebraic setting.
Firstly, if Gx is not reductive, then a Gx-invariant complement of Tx(Gx) in
Tx(X) may not exist. Furthermore, Zariski open sets are too large to expect
to find a Zariski open set U which is equivariantly isomorphic to G×Gx Nx.
This is illustrated by the following example:
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Luna Slice Theorem

Example. Suppose that X = H0(P1,OP1(3)), and G = SL2, whose action
on X is induced by the standard representation on P1. Then, there is an
x ∈ X such that there is no open U such that U is equivariantly isomorphic
to G×Gx Nx.

Indeed, consider x = u2v. Note that any point in U ∼= G ×Gx Nx has a
stabilizer which is conjugate to a subgroup of Gx (see Lemma 2.6.1). One
may check that the stabilizer of x is trivial. However, one may also check
that the action of G on X has a stabilizer in general position of order 3.
This is because if κ is algebraically closed, any binary cubic with distinct
roots may be transformed (under the action of SL2, by 3-transitivity of the
action of SL2 on P1) to a multiple of the form h = u3 +v3. Clearly, for such

a form, we have that Gh =

(
µ 0
0 µ−1

)
, where µ3 = 1. Thus, as any two

non-empty Zariski open sets intersect, we see that such an open set U is not
possible (i.e. an open set U such that every point has trivial stabilizer).

As we will see, this is resolved by the fact that G×Gx Nx is an étale neigh-
bourhood of x containing Gx, as opposed to a Zariski neighbourhood. That
is, there is an étale morphism from G ×Gx Nx → X with image containing
Gx. For details, see paragraph 2.9.

Homogeneous Fiber Spaces

2.6 Suppose that G is a reductive group, and that H is a closed reductive
subgroup of G. Then H acts on G by the formula h.g = gh−1. Under this
action, G is a principal H-bundle over the homogeneous space G/H.

If S is an affine H-variety, we can define a G variety by ”twisting” S by G
(as a H-variety as above). H acts naturally on G × S component-wise by
the formula h.(g, s) = (gh−1, hs).

Definition 2.6.1. A homogeneous fiber space is the quotient (G× S) �H,
where H acts on each factor as described above. A homogeneous fiber space
is denoted G ×H S, and an element will be denoted by [g, s]. G acts on
G×H S on the left factor in the obvious way.

The affine GIT quotient (G× S) �H above is in fact a geometric quotient.
Note that G × S is an affine free H-variety, so that G × S is a principal
H-bundle over (G× S) �H.

6



Luna Slice Theorem

Lemma 2.6.1. The stabilizer of a point [g, x] in a homogeneous fiber space
G×H S, under the action of G, is conjugate to a subgroup of the stabilizer
Hx ⊂ H of x.

Proof. Since g.[e, x] = [e, x], we have that [e, x] and [g, x] are in the same
orbit. Hence, the stabilizers of [g, x] and [e, x] are conjugate. Therefore, to
show this result, we may simply consider stabilizers for points of the form
[e, x]. If g.[e, x] = [g, x] = [e, x], we then have that (gh−1, hx) = (e, x) for
some h ∈ H. From this, we see that h ∈ Hx and g = h. Thus, g ∈ Hx.
Conversely, it is clear that ghg−1 fixes [g, x] for any h ∈ Hx.

It is clear that S embeds into G×HS by sending x ∈ S to [e, x]. Furthermore,
as G × S is a free H-variety, we have that for a fixed x = (g, x) ∈ G × S,
H×x→ G×S defned by (h, x)→ (gh−1, hx) ∈ G×S defines an embedding
of H into G×S. For a point x = (e, x), this embedding induces an inclusion
of tangent spaces µx : Te(H) ↪→ T(e,x)(G× S) ∼= Te(G)⊕ Tx(S).

Lemma 2.6.2. We have:

1. Tx(G×H S) = (Te(G)⊕ Tx(S))/Te(H).

2. Tx(G×HS) ∼= Tx(Gx)⊕Tx(S) as abstract vector spaces. If S is smooth
at x, then G×H S is smooth at [e, x].

3. If x is an H-fixed point, then we have that the embedding Te(H)
µx
↪−→

T(e,x)(G×S) induces an identification Tx(G×H S) ∼= Tx(Gx)⊕Tx(S).

Proof. As G×S is a principal H-bundle over (G×S)�H, we have an exact
sequence of tangent spaces:

0→ Te(H)
µx−→ T(e,x)(G× S)→ T[e,x]((G× S) �H)→ 0.

From this, 1. immediately follows.

So we have, dimκ(Tx(Gx) ⊕ Tx(S)) = dimκ(Te(G)/Te(H) ⊕ Tx(S)) =
dimκ(Te(G)) − dimκ(Te(H)) + dimκ(S) = dimκ((Te(G) ⊕ Tx(S))/Te(H)),
and Tx(G×H S) ∼= Tx(Gx)⊕ Tx(S) as abstract vector spaces.

Note that if x is an H-fixed point, then the induced tangent map µx :
Te(H) ↪→ T(e,x)(G×S) ∼= Te(G)⊕Tx(S) maps Te(H) into Te(H)⊕{0Tx(S)}.
Then, (Te(G)⊕ Tx(S))/Te(H) = Te(G)/Te(H)⊕ Tx(S) ∼= Tx(Gx)⊕ Tx(S).

7



Luna Slice Theorem

Remark 2.6.1. In fact, since G× S is a principal H-bundle over G×H S,
G×S is smooth at (e, x) if and only if G×HS is smooth at [e, x]. Therefore,
G×H S is smooth at [e, x] if and only if S is smooth at x ∈ S.

Existence of Étale Slices

2.7 We discuss the existence of étale slices in the smooth setting. In this
section, X is a smooth affine G-variety, where G is a reductive group.

For a point x ∈ X, and a Gx-invariant affine subvariety S of X containing
x, we may consider the homogeneous fiber space G×GxS. There is a natural
map ψS : G×Gx S → X defined by ψS([g, s]) = gs. If π1 : X → X �G and
π2 : G×Gx S → G×Gx S �G are GIT quotient maps, then the composition
π1 ◦ψS : G×Gx S → X�G is G-invariant. Therefore, there is a factorization
π1 ◦ ψS = (ψS/G) ◦ π2 for a unique map ψS/G : G ×Gx S � G → X � G.
Thus, we have the following commutative diagram:

G×Gx S X

(G×Gx S) �G X �G

ψS

π2 π1

ψS/G

(2.1)

We say that a Gx-invariant affine subvariety S of X is an étale slice at x
if in the above diagram, the following hold:

1. x ∈ S, and ψS is étale (in particular, the image of this map contains
x).

2. ψS/G is étale.

3. The above diagram is cartestian. Thus, we have that the induced map
G×Gx S → X ×X�G ((G×Gx S) �G) is an isomorphism.

8



Luna Slice Theorem

2.8 If an étale slice S exists, then the image of ψS is an open set U
containing Gx. By Lemma 2.6.2, Tx(U) = Tx(Gx) ⊕ Tx(S). Thus, S is
transverse to the orbit Gx at x. Conversely, we will see that if X is smooth
at x, then there is an étale Gx-equivariant map φ : X → Tx(X); under
suitable hypotheses, if Tx(Gx) has a Gx-invariant complement Nx, one may
take an appropriate open set of φ−1(Nx) to be an étale slice at x.

Lemma 2.8.1. Suppose that X is an affine variety of dimension n, which
is smooth at a point x ∈ X. Then, there is an étale (at x) morphism
φ : X → An ∼= Tx(X) such that φ(x) = 0 ∈ An.

Proof. Since x ∈ X is smooth, we may find regular functions f1, . . . , fn in
mx ⊂ OX(X), such that their images df1, . . . , dfn in mx/m

2
x = (Tx(X))∨

form a basis. Therefore, the map (f1, . . . , fn) : X → An is étale at x.
Indeed, the induced map T0(An)∨ → Tx(X)∨ is given by the map dxi 7→ dfi
and is an isomorphism.

Lemma 2.8.2 (Luna). Suppose that X is an affine G-variety of dimension
n, which is smooth at a point x ∈ X. Suppose that Gx is linearly reductive.
Then, there exists a morphism φ : X → An ∼= Tx(X) such that:

1. φ is Gx-equivariant.

2. φ is étale at x.

3. φ(x) = 0.

Proof. One only needs to see that the map φ in Lemma 2.8.1 can be made
Gx-equivariant. This will depend on choosing appropriate elements f1, . . . , fn
in mx which generate mx/m

2
x. Both mx and mx/m

2
x are Gx-modules, where

Gx is linearly reductive. Furthermore, we clearly have that the natural map
τ : mx → mx/m

2
x is Gx-equivariant and surjective. By linear reductivity, we

may define a Gx-equivariant section s : mx/m
2
x → mx. Indeed, the ker(τ)

has a Gx-invariant complement V in mx, which is equivariantly isomorphic
to mx/m

2
x. Therefore, we may find f1, . . . , fn in V so that their images in

mx/m
2
x form a basis (as a Gx-module).

2.9 We note that a Gx-invariant subvariety S ⊂ X being an étale slice at
x, is much stronger than only satisfying condition 1. (i.e. ψS is étale). For
example, ψS/G being étale implies that the image of ψS is not only open

9
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(recall that étale maps have open image), but a saturated open set. Indeed,
this follows from ψS/G being an open map, and that the square (1) com-
mutes. Some authors may call such a subvariety S satisfying only condition
1. as a weak étale slice, and a subvariety S satisfying all three conditions
an étale slice or a strong étale slice. This is a significant distinction, as
one needs a strong étale slice to assert (for example), the existence of a Luna
stratification (see Theorem 2.10.1). Furthermore, the example presented in
paragraph 2.5 illustrates a situation where one only has a weak étale slice
at x, and not an étale slice. The reason for this is that the orbit of x in that
example is not closed.

In characteristic 0, the only condition required for the existence of an étale
slice at x (which may be taken to be an appropriate open subset of φ−1(Nx))
is that the orbit Gx is closed in X.

Theorem 2.9.1 (Matsushima). Suppose that X is an affine G-variety.
Suppose that x ∈ X has a closed orbit Gx. Then, Gx is a reductive subgroup
of G.

Theorem 2.9.2 (Luna’s Slice Theorem). Suppose that X is an affine
G-variety over a field κ which is algebraically closed and of characteristic 0.
Suppose that x ∈ X is so that Gx is closed. Then, there exists an étale slice
at x of X. Furthermore, the image of the map ψS is a saturated open set of
X.

Proof sketch of Luna’s Slice Theorem. One may consider φ−1(Nx) for some
Gx-invariant complement to Tx(Gx) ⊂ Tx(X) so that the natural map φ :
G∗StabG(x)φ

−1(Nx)→ X is étale whose image contains x (note that Tx(X) =

Tx(Gx)⊕Nx ∼= Tx(G×Gx φ−1(Nx)), by Lemma 2.6.2.). Therefore, we may
find a weak étale slice at x. To find a strong étale slice, we may restrict φ
to an appropriate open subset of G ∗StabG(x) φ

−1(Nx). This is provided by
the lemma below (Luna’s fundamental lemma).

Lemma 2.9.1 (Luna’s fundamental lemma). Suppose that φ : Y → X
is a G-equivariant étale (at y) morphism of affine G-varieties, where Y is
normal at a y ∈ Y . Suppose that φ(Gy) is closed in X, and that φ|Gy is
injective. Then there exists an open V ⊂ Y containing y, such that

1. φ/G is étale at πY (y).

2. The following square is cartesian:

10



Luna Slice Theorem

V φ(V )

V �G φ(V ) �G

φ

πY πX

φ/G

(2.2)

3. V is saturated. That is, V = π−1
Y (V ′) for some V ′ open in Y �G.

4. The image φ(V ) = U is a saturated open set of X.

Luna Stratification

2.10 Recall that the affine GIT quotient map (i.e. the categorical quo-
tient) π : X → Z := X � G maps saturated open sets of X to open sets
of X � G. Recall that for any z ∈ Z, there exists a unique closed orbit
contained in the fiber π−1(z). Let us write xz for a choice of an element
in π−1(z) with closed orbit. By Luna’s slice theorem, we have a map ψS ,
obtained from an étale slice, whose image is a saturated open set Uxz . Thus,
π(Uxz) is an open set in Z, containing z. Therefore, we may cover Z with
open sets of the form π(Uxz). By quasi-compactness of Z, we may also find
a finite cover {π(Uxzi ) := Vi} covering Z. Note further that π(Uxz) is a
constructible set (i.e. a finite union of locally closed subsets of Z). Thus,
we have the theorem:

Theorem 2.10.1 (Luna Stratification). There is finite collection of lo-
cally closed subsets Vi of Z := X �G such that ∪Vi = Z , with the following
properties:

1. Corresponding to the collection V1, . . . Vm, there is a finite list of re-
ductive subgroups R1, . . . , Rm so that any stable point in π−1(Vi) has
a stabilizer conjugate to Ri.

2. If x ∈ π−1(Vi), then Gx is conjugate to a subgroup of Ri

Now, Luna’s stratification provides a stratification of the quotient with
finitely many strata of the form Z〈H〉 := {z ∈ Z | Stab(xz) ∈ 〈H〉}. Fur-
thermore, let us define X〈H〉 := {x ∈ X | G.x is closed and Stab(x) ∈ 〈H〉}.
Thus, semi-stable points in X with closed orbit are stratified as above (i.e.

11



Luna Slice Theorem

stratification induced by the stratification of the quotient), with strata la-
belled by reductive subgroups H of G. Let us call the strata X〈H〉, isotropy
strata of X. For an affine G-variety as above, let us denote the set of Vi by
L(X), and the set of corresponding subgroups Ri by R(X). Note that for
a fixed L(X), the subgroups Ri in R(X) are well-defined up to conjugacy.
In many cases, the strata Z〈H〉 are intrinsic in that they are fixed by any
automorphisms of Z. For details, see [4].
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Chapter 3

Kirwan’s Procedure and
Stable Resolutions

In this chapter, we assume that X is a G-linearized projective variety, such
that Xss is smooth.

3.1 Under the assumption that X contains at least one properly stable
point, Kirwan defines a sequence of blow-ups σi : Xi → Xi−1 starting with
a linearization of X = X0, which produces a G-linearized variety X̃ = XN

such that every semi-stable point is properly stable [3]. Furthermore, the
composition σ of the blow-ups σi is an isomorphism along the properly stable
locus Xps of X. Such a birational model X̃ is known as a stable resolution
of X.

Thus, the stable resolution X has the property that X̃ �G is projective
with an inclusion Xps � G ↪→ X̃ � G. Hence, X̃ � G may be considered
as a compactification of Xps � G with the property that the fibers of the
boundary of Xps�G in X̃ �G are in bijection with orbits of G in X̃ss \Xps.

3.2 The construction of a stable resolution is based on an analysis of sta-
bility of points in a G-linearized Y , in terms of X, where Y and X are
related by an equivariant morphism f : Y → X. Particularly, Kirwan in
[3] works with the scenario when f is a blow-up map. In the case where f
is a blowing up along a smooth center, a complete characterization of the
properly stable, semi-stable and unstable points of Y can be provided in
terms of the corresponding stability loci of X (see [6]).

3.3 Suppose that σ : X̂ → X is a blowing-up of X along a closed G-
invariant center C. Then X̂ is naturally G-linearized via the line bundle

13



Chapter 3. Kirwan’s Procedure and Stable Resolutions

Ld := σ∗(Ld) ⊗ O(−E) for sufficiently large d. In the sequel, we will as-
sume that all blow-ups of linearized varieties X are linearized in this way.
Furthermore, we let Xaff denote the affine cone of the projective variety
X ⊆ P(H0(X,L)). That is, Xaff is a G-invariant subvariety of the vector
space H0(X,L). For x ∈ X, we define xaff ∈ Xaff to be a lift of x in the
affine cone Xaff of X.

3.4 In birationally modifying X (e.g. by a sequence of blow-ups) to arrive
at a stable resolution X̃, one only has to modify the strictly semi-stable locus
of X. That is, for any equivariant map Y → X, there is a linearization of
Y ensuring that the properly stable and unstable loci of Y do not get any
smaller than those of X. In particular, the fibers in Y above such points do
not introduce new strictly semi-stable points.

Proposition 3.4.1. Suppose that X is a G-linearized projective variety.
Suppose that f : Y → X is a G-equivariant map. Then for a suitable
linearization of Y ,

1. If x ∈ X is unstable, then so is y ∈ f−1(x).

2. If If x ∈ X is properly stable, then so is y ∈ f−1(x).

Proof. See Mumford’s Geometric Invariant Theory [5]

Thus, to define a stable resolution of X by a sequence of blow-ups, one
chooses the respective centers according to this observation by choosing
centers intersecting strictly semi-stable points of X. In fact, we have the
following lemma:

Lemma 3.4.1. If Xps 6= ∅, the following are equivalent:

1. Xss = Xps.

2. For every stable point x, StabG(xaff) is finite.

Proof. ( 1 =⇒ 2): This is obvious.
(2 =⇒ 1): Suppose that y ∈ Xss. Gyaff contains a closed orbit Gxaff . If
Gxaff 6= Gyaff , then Gxaff ⊂ Gyaff\Gyaff . Then, Gxaff is strictly smaller than
Gyaff in dimension. However, as StabG(xaff) is finite, Gxaff is of maximal
dimension. Therefore, Gxaff = Gyaff = Gyaff and yaff is properly stable.

14



Chapter 3. Kirwan’s Procedure and Stable Resolutions

Hence, it suffices to successively blow up X at stable (but not properly
stable) points x in a way so that StabG(xaff) strictly decreases in size with
each blow up. This is the approach of Kirwan’s resolution.

3.5 The following two paragraphs (3.5 and 3.6) will provide an overview
of the general argument presented in this section. The required proofs will
follow in paragraphs 3.7 and 3.8.

Note that 2. in Lemma 3.4.1 is equivalent to StabG(xaff)0 = {1G}, or
dim(StabG(xaff)0) = 0 for any stable point x. In fact, we have the following
lemma.

Lemma 3.5.1. Suppose that x is a semi-stable point. Then, any con-
nected subgroup R ⊆ Gx is contained in StabG(xaff)0. In particular, G0

x =
StabG(xaff)0.

Proof. If R is a connected subgroup of Gx, then R acts on the line generated
by xaff . Suppose that φ : R→ Gm is the corresponding linear representation
of R. Since x is semi-stable, the image of φ cannot be dense. Otherwise,
0 ∈ Gxaff , and hence x would be unstable. Thus, by the connectedness of
R, the image of φ is precisely the identity subgroup {1} ⊂ Gm. Therefore,
R acts trivially on the line Gm.xaff . Thus, R ⊆ StabG(xaff)0.

Thus, 1. in Lemma 3.4.1 occurs when no connected positive dimensional
subgroup R of G fixes a stable point x.

Recall that for a stable point x, we have that Gxaff is closed Xaff . Fur-
ther, StabG(xaff) is a reductive subgroup of G, and xaff will be contained in
(Xss

aff)〈H〉 for some reductive subgroup H in G. Luna’s stratification tells us
that there are finitely many possible connected components H0 of reductive
stabilizers, such that (Xss

aff)〈H〉 is not empty.

Suppose that R is a connected reductive subgroup of G. Let 〈R〉 denote the
conjugacy class formed by the subgroup R. We define:

ZR(Xss
aff) :=

⋃
H0∈(R)(X

ss
aff)H

0

This is the union of all Vi ∈ L(Xss
aff) such that the corresponding stabi-

lizer Ri has an identity component conjugate to a fixed connected reductive
subgroup R of G.

15



Chapter 3. Kirwan’s Procedure and Stable Resolutions

Corollary 3.5.1. x ∈ Xss is a stable point if and only if xaff ∈ ZR(Xss
aff)

for some connected reductive group R.

Therefore, X is a linearized projective G-variety with no strictly semi-stable
points if and only if P(ZR(Xss

aff)) is empty for any connected reductive sub-
group R of positive dimension. Furthermore, X contains only properly
stable and unstable points if and only if we also have that P(ZR(Xss

aff)) is
non-empty for R = {1G}. In this case, we have that P(ZR(Xss

aff)) = Xps.

3.6 In essence, Kirwan’s procedure works by blowing up X at P(ZR(Xss
aff)),

for connected reductive subgroups R of positive dimension. This is done so
that in the resulting blow-up space X

′
the projectivized isotropy strata in-

tersecting the exceptional divisor are labelled by reductive subgroups H
′

whose identity components have dimension strictly smaller than the dimen-
sion of R. As there are only finitely many isotropy strata, one may perform
finitely many blow-ups (starting with X) and arrive at a X̃ with no strictly
semi-stable points. The blow-ups are defined iteratively: one begins with
reductive subgroups of maximal dimension (:= dX), labelling the isotropy
strata (there are finitely many). After finitely many blow-ups, one arrives
at a blow up space X

′
such that the maximal dimension among reductive

subgroups labelling the isotropy strata of (X
′
aff)ss is strictly less than dX .

This is repeated until there are no positive dimensional connected subgroups
R such that Stab(x)0 = R for any x ∈ X̃.

3.7 In the following paragraphs, we provide the details and proofs required
to carry out the construction outlined in paragraphs 3.5 and 3.6. Suppose
that R is a connected reductive subgroup of G, maximal in dimension with
the property that R = Stab(x)0 for some x ∈ X.

Lemma 3.7.1. ZR(Xss
aff) = GXR

aff ∩Xss
aff .

Proof. Suppose that x ∈ Xss〈H〉
aff , where H0 ∈ 〈R〉. Then, for some g ∈ G,

Stab(x) = gHg−1. Therefore, ghg−1x = x, for any h ∈ H. In other
words, g−1x ∈ XH

aff . Thus, x ∈ GXR
aff ∩ Xss

aff . Conversely, suppose that
x ∈ GXR

aff∩Xss
aff . By definition, Stab(x) ∈ 〈H〉, for some H where H0 ∈ 〈R〉.

It remains to show that Gx is closed. Since Stab(x) ∈ 〈H〉, it is of maximal
dimension among stabilizer subgroups of G acting on Xaff . Thus, Gx is an
orbit of minimal dimension and is hence closed in Xaff .

Now, we prove that G(XR
aff)ss = GXR

aff ∩Xss
aff is smooth in Caff := G(XR

aff)ss

(where the closure is taken in Xaff).
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Proposition 3.7.1. Suppose that y ∈ (Caff)ss. Then,

1. y ∈ G(XR
aff)ss. Hence, Cssaff = G(XR

aff)ss. That is, taking the closure of
G(XR

aff)ss in Xaff does not introduce any more semistable points.

2. G(XR
aff)ss is smooth.

Proof. 1. As in the proof of Lemma 3.7.1, we see that y is contained in
an orbit of minimal dimension. Therefore, Gy is closed. Now by the
Luna Slice Theorem, there is an (Zariski) open U containing y, such
that for any z ∈ U , Stab(z) is conjugate to a subgroup of Stab(y). As

y ∈ Cssaff = G(XR
aff)ss, one may choose such a z ∈ U to be contained

in G(XR
aff)ss. Then, gRg−1 ⊂ Stab(z) for a suitable g ∈ G. In turn,

we thus have that tRt−1 ⊂ Stab(y) for suitable t ∈ G. Therefore,
y ∈ t.XR and y ∈ G(XR

aff)ss as required. Since y is an arbitrary

semi-stable point of GXR
aff , we have that (GXR

aff)ss = G(XR
aff)ss.

2. It suffices to prove thatG(XR
aff)ss is smooth for x ∈ (XR

aff)ss ⊂ G(XR
aff)ss.

We have seen that such an x has a closed orbit, and so we apply the
Luna Slice Theorem to both the G action on Xaff and the N := NG(R)
action on XR

aff . This provides us with étale slices S and S′ respectively.
Then since both Xaff and XR

aff are smooth at x, we have the tangent
space decompositions,

Tx(Xaff) = Tx(Gx)⊕ Tx(S)

Tx(XR
aff) = Tx(Nx)⊕ Tx(S′)

We have étale maps (defined at x), ΨS : Xss
aff → G ×Gx S and ΨS′ :

(XR
aff)ss → N ×Gx S′, respectively. Furthermore, by smoothness at x,

we have étale maps φS : S → Tx(S) and φS′ : S′ → Tx(S′). Thus, Xss
aff

and (XR)ss are étale equivalent (at x) to G×Gx Tx(S) and
N ×Gx Tx(S′), respectively.

Now, we have that Tx(XR
aff) = Tx(Xaff)R = Tx(Gx)R ⊕ Tx(S)R =

Tx(Nx)⊕Tx(S′). On the other hand, Tx(Gx)R = Tx(GxR). p ∈ (Gx)R

iff p = gx for some g ∈ G and r.p = p for all r ∈ R. Therefore,
(Gx)R = Nx. So, Tx(S)R ∼= Tx(S′) as Gx-modules.

Consider now the following diagram:

17



Chapter 3. Kirwan’s Procedure and Stable Resolutions

N ×Gx S′ (XR)ss

N ×Gx Tx(S′)

G×Gx Tx(S) G×Gx S Xss

ΨS′

φS′

i

φS ΨS

where ΨS′ , ΨS are étale at x, and φS , φS′ are étale. ΨS′ , φS′ are
N -equivariant, and ΨS , φS are G-equivariant. The inclusion i is in-
duced by the inclusion of N -representations Tx(S′) ↪→ Tx(S), and the
inclusion N ↪→ G. Hence, i is R-equivariant.

We would like to conclude that G(XR
aff)ss is smooth at x. We have

i : N ×Gx Tx(S′) ↪→ G ×Gx Tx(S). G acts naturally on the image
i(N ×Gx Tx(S′)), so that G.i(N ×Gx Tx(S′)) = G×Gx Tx(S′). Also, R
acts trivially on i(N ×Gx Tx(S′)). As R is connected and φS is étale,
we have φ−1

S (i(N ×Gx Tx(S′))) = (G×Gx S)R. Indeed, recall that the
fiber of an étale map over a point is set-theoretically finite. Thus by
the connectedness of R, the preimages of R-fixed points are also R-
fixed points. Also, the image of (G×Gx S)R under the étale map ΨS is
(Xss

aff)R. Finally, as the maps on the bottom row in the diagram are G-
equivariant, we have φ−1

S (G×Gx Tx(S′)) = φ−1
S (G.i(N ×Gx Tx(S′))) =

G.(G×Gx S)R, and that ΨS(G.(G×Gx S)R) = G.(XR
aff)ss.

Since x is contained in the image of ΨS , we have that G×Gx Tx(S′) is
étale equivalent to G.(XR

aff)ss at x. Finally, as G×Gx Tx(S′) is smooth,
we have that G.(XR

aff)ss is smooth at x.

The above proof shows the following:

Corollary 3.7.1. G×N (XR
aff)ss → G(XR

aff)ss is étale. In particular, Tx(G(XR
aff)ss) =

Tx(Gx)⊕ Tx(XR)

Proof. For x ∈ (XR
aff)ss, we have seen in the proof of 2. in Proposition 3.7.1,

that there is an étale map G.((G×Gx S)R)→ G(XR
aff)ss with x contained in

the image.

Then, we have an étale map G.(G ×Gx S)R) → G ×Gx T (S′). We have
étale maps G ×N (XR

aff)ss ← G ×N (N ×Gx S′) → G ×N (N ×Gx T (S′)) ∼=

18
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G×Gx T (S′). It is easy to check that the above étale maps factors the nau-
tral map G×N (XR

aff)ss → G(XR
aff)ss.

Thus, G×N (XR
aff)ss → G(XR

aff)ss is étale.

Therefore, see that ZR(Xss
aff) is smooth, and thus so is P(ZR(Xss

aff)) = G(XR)ss.
We have the following:

Lemma 3.7.2. We have:

1. (G(XR)ss)aff = Caff

2. P(Caff) = P(ZR(Xss
aff)) = G(XR)ss, which we will denote as C ⊂ X.

Proof. Note that G(XR
aff)ss is Gm-invariant, hence so is Caff . Therefore,

Caff is defined by a homogeneous ideal in Xaff and corresponds to a closed
projective subvariety in X. Therefore, the result follows from the projective
Nullstellensatz.

By this lemma, along with Proposition 3.7.1, we see that G(XR)ss\G(XR)ss

consists of only unstable points.

3.8 In this paragraph, we complete the construction of Kirwan’s stable
resolution.

Theorem 3.8.1. In the notation above, Suppose that σ : X ′ → X is the
blow-up of X along the center P(ZR(Xss

aff)) = G(XR)ss in X. Then, no
subgroup of G conjugate to R stabilizes any semi-stable point of X ′.

Proof. Suppose that y is a semi-stable point of X ′, which is fixed by a sub-
group of the form g−1Rg. Then, for all r ∈ R, (g−1rg)y = y, which implies
that r(gy) = gy. Hence, gy is a semi-stable point of X ′ fixed by R. Then,
σ(gy) = gσ(y) = gx is also fixed by R. Hence, gx := x′ ∈ XR and is
semi-stable in X. Thus, there exists a homogeneous G-invariant polynomial
f ∈ A(Xaff)G such that f(x′) 6= 0. That is, Xf is an affine open subvariety
of X which contains x′. We have that Tx′(X) = Tx′(G(XR)ss) ⊕ Nx′ =
Tx′(Xf ) = Tx′(G(XR

f )ss)⊕Nx′ . Where Nx′ is a G-invariant complement to

Tx′(G(XR)ss). We have seen that Tx′(G(XR
f )ss) = Tx′(Gx

′) ⊕ Tx′((Xss
f )R)

(corollary 3.7.1), where Tx′((X
ss
f )R) = Tx′((X

ss
f ))R = Tx′(X

′)R. Therefore,
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the action of R on Nx′ contains no fixed points.

However, as since x′ is a smooth point of G(XR)ss, the fiber σ−1(x′) is R-
equivariantly isomorphic to P(Nx′). Now, gy ∈ σ−1(x′) is an R-fixed point
in P(Nx′). By Lemma 3.5.1, there exists an R-fixed point in Nx′ , which is a
contradiction.

Now, suppose that for a positive dimensional connected reductive sub-
group R, x ∈ P(ZR(Xss

aff)), and that x′ is a semi-stable point of X ′ with
σ(x′) = x. Clearly, StabG(x′) ⊂ Gx. Since x′ is semi-stable, Proposition
3.7.1 implies that StabG(x′)0 ( G0

x = R. Since StabG(x′)0 is a connected
proper subgroup of G0

x, we have that dim(StabG(x′)0) � dim(G0
x). There-

fore, for x ∈ X, we in general have that dim(StabG(x′)0) ≤ dim(G0
x); equal-

ity may only occur when either x is not contained in the center of the blow
up, or if 0 ≤ dim(G0

x) < dim(R).

3.9 Therefore, to conclude the construction of the stable resolution, we
may perform the following algorithm:

1. Given a linearized projective G-variety X with Xss smooth, consider
the set of Luna strata L(Xss

aff), and the set of corresponding reductive
subgroups R(Xss

aff). These sets are finite in cardinality, so we may
define dX = maxRi∈R(Xss

aff)(dim(Ri)). Furthermore, there are only
finitely many Ri ∈ R(Xss

aff) with dim(Ri) = dX .

2. For a reductive subgroup R < G such that (Xss
aff)R 6= ∅ and dim(R) =

dX , we must have that R is conjugate to a subgroup inR(Xss
aff) by max-

imality. Consider ZR(Xss
aff) as defined in paragraph 3.5. P(ZR(Xss

aff)) ⊂
Xss is smooth by Proposition 3.7.1. C = P(ZR(Xss

aff)) = G(XR0)ss (see
Lemma 3.7.2) is such that C \ P(ZR(Xss

aff)) consists only of unstable
points.

3. Consider the blow up X ′ → X centered at C. By 2., (X ′)ss is smooth.
By paragraph 3.8, R((X ′)ssaff) consists of subgroups whose dimensions
are less than or equal to the dimension of those in R(Xss

aff). Further-
more, the number of subgroups with dim(R) = dX is strictly smaller.
Indeed, no conjugate of R is contained in R((X ′)ssaff). By 1., there are
only finitely many reductive stabilizer subgroups R of Xss

aff such that
dim(R) = dX . Iterate steps 1-3 until there are no longer any such
subgroups.
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4. When step 3 is completed, we will have a linearized projective G-
variety X ′ such that (X ′)ss is smooth, and dX′ � dX . Repeat steps
1-4 until we have a linearized projective G-variety X̃ such that dX̃ = 0.

By Lemma 3.4.1, X̃ → X is a stable resolution of X.

That is, the above procedure provides a proof of Theorem (A) stated in the
introduction (chapter 1).

3.10 In this next paragraph, we conclude the section with a few remarks.

1. In [3], Kirwan proves that blowing up X, in the way described in
paragraph 3.6 under the condition that the center of the blow-up is
smooth. However, C = P(ZR(Xss

aff)) may be singular. Thus, Kirwan
first performs a resolution of singularities on C before blowing up along
it. Fortunately, one does not need to know the explicit form of the res-
olution of singularities of C to continue with Kirwan’s procedure. This
is due to the fact that P(ZR(Xss

aff)) is smooth. Thus, the singularities
of C lie strictly on the boundary of C, which consists only of unstable
points.

2. We may take Y to be the resulting blow-up space obtained by re-
solving the singularities of C in X. The linearization of Y may be
taken to be the one described in paragraph 3.3. The result is that one
has a sequence of blow-ups Xk (:= Y ) → Xk−1 → .. → X0 (:= X)
such that the center of each blow-up Xi → Xi−1 is contained in the
unstable locus of Xi−1. Therefore, the composition σ of the above
blow-ups induces an isomorphism σ : Y ss ∼−→ Xss. Furthermore,
as each blow-up is equivariant, σ also induces an isomorphism along
P(ZR(Y ss

aff )) and P(ZR(Xss
aff)). Then, Kirwan considers blowing up Y

along P(ZR(Y ss
aff )) ∼= P(ZR(Xss

aff)), where now P(ZR(Y ss
aff )) is smooth in

Y .

3. Therefore, if X is smooth, and one performs blow-ups along smooth
centers C, then one may construct a stable resolution X̃ → X such
that X̃ is smooth (so that not just X̃ss is guaranteed to be smooth).
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Abelianization Procedure

In the last chapter, we provided a proof of Theorem (A) as presented in
the introduction (see paragraph 3.9). In this chapter, we present a proof of
Theorem (B).

4.1 An important consequence of Proposition 3.4.1 is that once one has
obtained a stable resolution X̃ → X, then the composition X̃ ′ → X̃ → X
is also a stable resolution of X (for a suitable linearization of X̃ ′) for any
G-equivariant birational morphism X̃ ′ → X̃. Even more, if Y → X̃ is any
G-equivariant map, then Proposition 3.4.1 says that Y also has the property
that, for a suitable linearization of Y , all points of Y are either properly sta-
ble, or unstable. Thus, if X̃ → X is a stable model of X, then one cannot
lose the property of being a stable model by resolving X̃ further.

4.2 In [7] Reichstein and Youssin define a type of resolution of generi-

cally free G-variety X: it is a sequence of blow-ups π : Xn
πn−→ Xn−1

πn−1−−−→
. . . X1

π1−→ X so that Xn is in standard form with respect to a certan divisor
D of Xn. The significance of this is that there are choices of D so that the
stabilizers in Xn will be ”tame” stabilizers.

Definition 4.2.1 (G-variety in standard form [7]). A generically free
G-variety X is said to be in standard form with respect to a divisor D if:

1. X is smooth, and D is a normal crossing divisor on X.

2. The action of G on X \D is free

3. For each irreducible component Di of D, for any g ∈ G, we either have
gDi = Di, of gDi ∩Di = ∅
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4.3 One of the main theorems in [7] is the following theorem. We state it
here for reference (Theorem 3.2):

Theorem 4.3.1. Let X be a smooth G-variety and Y ( X be a closed G-
invariant subvariety such that the action of G on X \Y is free. Then, there
is a sequence of equivariant blow-ups:

π : Xn → Xn−1 · · · → X

with smooth G-invariant centers Ci ⊂ Xi such that Xn is in standard form
with respect to the the divisor D := En∪π−1(Y ), where En is the exceptional
divisor of π.

4.4 Let X be a smooth linearized generically free G-variety. Then, we
may apply Theorem 4.3.1 and obtain a Xn → X such that Xn is in standard
form with respect to some divisor D. We show in this paragraph that for a
suitable linearization of Xn, all stable points have abelian stabilizers. Thus,
we define Xab := Xn, where Xab implicitly depends on the divisor D. Xab

is linearized following Proposition 3.4.1 (as usual).

Corollary. If x ∈ Xss
ab is stable, then Gx is an abelian subgroup of G.

Proof. Note that since x is stable, Gx is a reductive subgroup of G. We have
that the action of G on Xab \D is free, so all such points have trivial stabi-
lizers. It suffices to consider x ∈ Xss

ab ∩ D. Suppose that x is contained in
components D1, . . . , Dk components of D. By property 3. in the definition
of a G-variety in standard form, we have that each Di is Gx-invariant, and
so is W = D1 ∩ · · · ∩Dk. Then, we have the tangent space decompositions
Tx(Xab) = Tx(Di)⊕Vi, where Vi is Gx-invariant. Hence, Vi is 1-dimensional,
and Gx acts on Vi by a character χi.

Furthermore, we have then that Tx(Xab) = Tx(W ) ⊕ (
⊕m

i=1 Vi) by the
normal crossing property 1. in Definition 4.2.1. This is a Gx-invariant de-
composition, and Gx acts on V :=

⊕k
i=1 Vi by the characters (χ1, . . . , χk).

That is, we have a homomorphism χ : Gx → Gkm. If χ has trivial kernel,
then Stabx(G) is necessarily abelian.

Suppose that ker(χ) is non-trivial. Then, x ∈ (Xss
ab)ker(χ). In fact, as x

is semi-stable, we may find a G-invariant affine open subset (Xab)f so that

x ∈ (Xab)
ker(χ)
f ⊂ Xss

ab. As the action of G on Xab \ D is free, we actually
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have that (Xab)
ker(χ)
f is contained in D. As (Xab)f is smooth and affine,

(Xab)
ker(χ)
f is smooth. Thus, (Xab)

ker(χ)
f is entirely contained in a single

component Di for some i.

We have that Tx((Xab)
ker(χ)
f ) = Tx((Xab)f )ker(χ) ⊂ Tx(Di). However, by

definition Vi ⊂ Tx((Xab)f )ker(χ). As Vi and Tx(Di) are direct sum comple-
ments of each other, we have a contradiction. Therefore, ker(χ) = {1Gx},
and Gx is finite and abelian.

4.5 Let us illustrate the above theorem (and corollary) when one has a
stable resolution σ : X̃ → X, where X is a generically free G-linearized
projective variety with Xps 6= ∅. Note then that X̃ is also a generically free
G-variety, and we of course have that X̃ss = X̃ps (containing points with
finite stabilizer subgroups). By paragraph 3.10, we can arrange X̃ to be
smooth by constructing a stable resolution X̃ → X by blowing up along
smooth centers. Alternatively, one may equivariantly resolve the singular-
ities of any stable resolution X̃ → X to arrive at a smooth X̃sm that is a
stable resolution of X (see the remark in paragraph 4.1). Therefore, let us
assume that we have constructed a stable resolution X̃ → X such that X̃ is
smooth. Applying Theorem 4.3.1 to X̃, we obtain a smooth X̃ab in standard
form with respect to some divisor D, with an equivariant birational mor-
phism X̃ab → X̃. X̃ab contains only properly stable and unstable points, so
that X̃ab → X is a stable model of X. Furthermore, every x ∈ X̃ps

ab is so
that Gx is a finite abelian subgroup of G.

4.6 In Theorem 4.3.1, the centers of blow up contain only points of Y and
its preimages (see the proof in [7], Theorem 3.2). If G acts freely on Xps,
then we may take Y = X \Xps. The result of this choice of Y will be that
ρ : Xab → X is an isomorphism along Xps. Therefore, we see that if G acts
freely on Xps, then we may find a (smooth) stable resolution X̃ and X̃ab as
above, such that X̃ab → X is an isomorphism along Xps. Thus, we have in
this case that X̃ab → X is a still a stable resolution if X̃ → X is a stable
resolution. Note that if G acts freely on Xps, then it acts freely on X̃ps.

Remark 4.6.1. Note that in the statement of Theorem 4.3.1, X is required
to be a generically free G-variety. It is necessary to impose a condition on the
stabilizer in general position of X, as Xab → X is a birational map. Indeed,
if X has a non-abelian stabilizer in general position, then such a birational
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map is impossible. Xab is a G-variety with an open set containing points
with abelian stabilizer, and thus cannot have a non-abelian stabilizer in
general position. An example of such an X is the space of cubic curves on
P2, with the natural action of PGL3.

Remark 4.6.2. A stronger form of the above corollary is contained in [7] as
Theorem 4.1. The authors prove that if X is in standard form with respect
to a divisor D, then Gx is isomorphic to a semidirect product of a unipotent
group, and a diagonalizable group. In particular, If Gx is reductive, then
it is a abelian. Note that the statement of this result does not involve any
linearizations. Therefore, the claim that stable points of X have abelian
stabilizers is independent of a choice of linearization of X.

Remark 4.6.3. In the case, where G is a finite group, the above corollary
was independently proved by Batyrev [1] and Borisov-Gunnels [2].
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