The Open Collections site will be undergoing maintenance 8-11am PST on Tuesday Dec. 3rd. No service interruption is expected, but some features may be temporarily impacted.
- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Assessment of type II diabetes mellitus
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Assessment of type II diabetes mellitus Barazandegan, Melissa
Abstract
Several methods have been proposed to evaluate a person's insulin sensitivity (ISI). However, all are neither easy nor inexpensive to implement. Therefore, the purpose of this research is to develop a new ISI that can be easily and accurately obtained by patients themselves without costly, time consuming and inconvenient testing methods. In this thesis, the proposed testing method has been simulated on the computerized model of the type II diabetic-patients to estimate the ISI. The proposed new ISI correlates well with the ISI called M-value obtained from the gold standard but elaborate euglycemic hyperinsulinemic clamp (r = 0.927, p = 0.0045). In this research, using a stochastic nonlinear state-space model, the insulin-glucose dynamics in type II diabetes mellitus is modeled. If only a few blood glucose and insulin measurements per day are available in a non-clinical setting, estimating the parameters of such a model is difficult. Therefore, when the glucose and insulin concentrations are only available at irregular intervals, developing a predictive model of the blood glucose of a person with type II diabetes mellitus is important. To overcome these difficulties, under various levels of randomly missing clinical data, we resort to online Sequential Monte Carlo estimation of states and parameters of the state-space model for type II diabetic patients. This method is efficient in monitoring and estimating the dynamics of the peripheral glucose, insulin and incretins concentration when 10%, 25% and 50% of the simulated clinical data were randomly removed. Variabilities such as insulin sensitivity, carbohydrates intake, exercise, and more make controlling blood glucose level a complex problem. In patients with advanced TIIDM, the control of blood glucose level may fail even under insulin pump therapy. Therefore, building a reliable model-based fault detection (FD) system to detect failures in controlling blood glucose level is critical. In this thesis, we propose utilizing a validated robust model-based FD technique for detecting faults in the insulin infusion system and detecting patients organ dysfunction. Our results show that the proposed technique is capable of detecting disconnection in insulin infusion systems and detecting peripheral and hepatic insulin resistance.
Item Metadata
Title |
Assessment of type II diabetes mellitus
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2016
|
Description |
Several methods have been proposed to evaluate a person's insulin sensitivity (ISI). However, all are neither easy nor inexpensive to implement. Therefore, the purpose of this research is to develop a new ISI that can be easily and accurately obtained by patients themselves without costly, time consuming and inconvenient testing methods. In this thesis, the proposed testing method has been simulated on the computerized model of the type II diabetic-patients to estimate the ISI. The proposed new ISI correlates well with the ISI called M-value obtained from the gold standard but elaborate euglycemic hyperinsulinemic clamp (r = 0.927, p = 0.0045).
In this research, using a stochastic nonlinear state-space model, the insulin-glucose dynamics in type II diabetes mellitus is modeled. If only a few blood glucose and insulin measurements per day are available in a non-clinical setting, estimating the parameters of such a model is difficult. Therefore, when the glucose and insulin concentrations are only available at irregular intervals, developing a predictive model of the blood glucose of a person with type II diabetes mellitus is important. To overcome these difficulties, under various levels of randomly missing clinical data, we resort to online Sequential Monte Carlo estimation of states and parameters of the state-space model for type II diabetic patients. This method is efficient in monitoring and estimating the dynamics of the peripheral glucose, insulin and incretins concentration when 10%, 25% and 50% of the simulated clinical data were randomly removed. Variabilities such as insulin sensitivity, carbohydrates intake, exercise, and more make controlling blood glucose level a complex problem. In patients with advanced TIIDM, the control of blood glucose level may fail even under insulin pump therapy. Therefore, building a reliable model-based fault detection (FD) system to detect failures in controlling blood glucose level is critical. In this thesis, we propose utilizing a validated robust model-based FD technique for detecting faults in the insulin infusion system and detecting patients organ dysfunction. Our results show that the proposed technique is capable of detecting disconnection in insulin infusion systems and detecting peripheral and hepatic insulin resistance.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2017-01-21
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0339984
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2017-02
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International