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Abstract

Several methods have been proposed to evaluate a person’s insulin sensitivity (ISI). How-

ever, all are neither easy nor inexpensive to implement. Therefore, the purpose of this

research is to develop a new ISI that can be easily and accurately obtained by patients

themselves without costly, time consuming and inconvenient testing methods. In this the-

sis, the proposed testing method has been simulated on the computerized model of the type

II diabetic-patients to estimate the ISI. The proposed new ISI correlates well with the ISI

called M-value obtained from the gold standard but elaborate euglycemic hyperinsulinemic

clamp (r = 0.927, p = 0.0045).

In this research, using a stochastic nonlinear state-space model, the insulin-glucose dy-

namics in type II diabetes mellitus is modeled. If only a few blood glucose and insulin

measurements per day are available in a non-clinical setting, estimating the parameters

of such a model is difficult. Therefore, when the glucose and insulin concentrations are

only available at irregular intervals, developing a predictive model of the blood glucose of

a person with type II diabetes mellitus is important. To overcome these difficulties, under

various levels of randomly missing clinical data, we resort to online Sequential Monte Carlo

estimation of states and parameters of the state-space model for type II diabetic patients.

This method is efficient in monitoring and estimating the dynamics of the peripheral glu-

cose, insulin and incretins concentration when 10%, 25% and 50% of the simulated clinical

data were randomly removed.
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Abstract

Variabilities such as insulin sensitivity, carbohydrates intake, exercise, and more make

controlling blood glucose level a complex problem. In patients with advanced TIIDM,

the control of blood glucose level may fail even under insulin pump therapy. Therefore,

building a reliable model-based fault detection (FD) system to detect failures in control-

ling blood glucose level is critical. In this thesis, we propose utilizing a validated robust

model-based FD technique for detecting faults in the insulin infusion system and detecting

patients organ dysfunction. Our results show that the proposed technique is capable of

detecting disconnection in insulin infusion systems and detecting peripheral and hepatic

insulin resistance.
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First superscript

Γ Glucagon

B Basal condition

G Glucose

I Insulin

M ncretins

Second superscript

∞ Final steady state value

Metabolic rate subscripts

BGU Brain glucose uptake

GGU Gut glucose uptake

HGP Hepatic glucose production
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Nomenclature

HGU Hepatic glucose uptake

IΨR Intestinal incretins release

KGE Kidney glucose excretion

KIC Kidney insulin clearance

LIC Liver insulin clearance

MΓC Metabolic glucagon clearance

PΓC Plasma glucagon clearance

PΓR Pancreatic glucagon release

PΨC Plasma incretins clearance

PGU Peripheral glucose uptake

PIC Peripheral insulin clearance

PIR Pancreatic insulin release

RBCU Red blood cell glucose uptake

First superscripts

∞ Final steady state value

A Hepatic artery

B Brain

G Gut
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Nomenclature

H Heart and lungs

L Liver

P Periphery

S Stomach

Second subscripts (if required)

C Capillary space

F Interstitial fluid space

l Liquid

s Solid
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Chapter 1

Introduction

1.1 Background

Diabetes Mellitus is one of the leading diseases in the developed world. According to the

International Diabetes Federation, the prevalence of diabetes is growing rapidly in the

world. Diabetes mellitus occurs when the blood glucose levels are not regulated due to the

impaired insulin secretion, action or both. Insulin is a key hormone secreted from β-cells

in the pancreas that regulates glucose homeostasis [3–6]. Diabetes mellitus is generally

categorized into three groups [7]:

• Type I diabetes or insulin dependent diabetes mellitus (IDDM), in which the body

is unable to produce insulin due to the autoimmune destruction of the beta cells in

the pancreas. Therefore, the body becomes insulin dependent and daily insulin doses

must be supplied to the type I diabetic patients to survive. Most often, it occurs in

childhood, but the disease can also develop in adults in their late 30s and early 40s.

• Type II diabetes or non-insulin dependent diabetes mellitus (NIDDM), in which the

pancreas does not produce enough insulin or the human body cells become resistance

against insulin [3]. Type II diabetic patients require gradual treatment and are not

in emergency need of medical attention.

• Gestational diabetes, which develops during pregnancy (gestation). It occurs in preg-
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nant women who have never had diabetes before. Gestational diabetes causes high

blood glucose level that can affect woman’s pregnancy and the baby’s health.

A comparison of type I and type II diabetes is presented in table 1.1 [8].

Table 1.1: Comparison of type I and II diabetes [8]
Feature Type I diabetes Type II diabetes

Onset Sudden Gradual
Age at onset Any age (Mostly in children) Mostly in adults
Body habitus Thin or normal Often obese
Ketoacidosis Common Rare
Autoantibodies Usually present Absent
Endogenous insulin Low or absent Normal, decreased or increased
Concordance in identical twins %50 %90
Prevalence ∼ 10% of diabetic population ∼ 90% of diabetic population

1.1.1 Glucose homeostasis

When the glucose, a simple sugar, is produced from digestion of carbohydrates in the

gastrointestinal tract, it is absorbed by the body cells to provide the primary energy source.

The blood glucose concentration is maintained at a constant level during fast by producing

endogenous glucose through two main metabolic pathways [7]:

• Gluconeogenesis, in which glucose is generated from non-carbohydrate carbon sub-

strates such as lactate, glycerol, and glucogenic amino acids. In this metabolic path-

way, the endogenous glucose is produced by the liver and kidney and is released into

the blood stream.

• Glycogenolysis, in which glucose is generated from breakdown of glycogen. In this

metabolic pathway, the endogenous glucose is produced by the liver and muscles.

The endogenous glucose produced by the liver is released into the blood stream while

the produced glucose in muscle cells is consumed by themselves.
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1.1. Background

Figure 1.1: Glucose homeostasis control mechanism in the body [7]

Approximately 15% of endogenous glucose production released into the blood stream

is derived from the kidney, and the remaining 85% is produced by the liver. [9].

In normal (non-diabetic) subjects, the blood glucose level is controlled within an ap-

proximate range of 60-150 mg/dl, despite disturbances such as exercise or intake of a meal

containing carbohydrates [10]. The blood glucose level is regulated through feedback sys-

tems reacting mainly on glucose, insulin and glucagon concentrations. Insulin and glucagon

are two hormones in the body secreted from the β and α cells of the pancreas, respectively.

These hormones play an important role in glucose homeostasis in the body, however, the

effects of glucagon are opposite to those of insulin (see Figure 1.1). Insulin contributes in

lowering the blood sugar level by stimulating some body cells to absorb glucose, suppressing

endogenous glucose production and inhibiting glucagon secretion. When the blood sugar
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level is high, insulin is secreted from β − cells of pancreas to:

• stimulate the body cells to absorb glucose

• suppress endogenous glucose production

• inhibit glucagon secretion from α− cells of pancreas

Conversely, when the blood glucose concentration is low, glucagon is secreted from α−cells

of pancreas to:

• stimulate the liver to produce more glucose

• inhibit insulin secretion from β − cells of pancreas

1.1.2 Type II diabetes mellitus and the related metabolic abnormalities

Type II diabetes occurs when the pancreas does not produce enough insulin or the human

body cells become resistance against insulin [3]. Type II diabetes is characterized by

multiple abnormalities in a number of body organs such as the liver, the pancreas, muscles

and adipose tissues. These abnormalities are classified as follows:

• Insulin resistance in peripheral tissues: Peripheral tissues (i.e. muscle and adi-

pose tissue cells) absorb blood glucose by sensing insulin hormone. Insulin resistance

happens when the sensitivity of peripheral cells to the metabolic action of insulin is

decreased due to genetic factors, environmental factors, obesity, hypertension, dys-

lipidemias, and/or coronary artery diseases [11]. Impairment of the following factors

is known to be associated with insulin residence in peripheral tissues [9]:

– The number of insulin receptors

– The affinity of insulin receptors
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– Insulin intracellular signalling

– The number of glucose transporters

– Glucose transporter translocation on the cell membrane

– Insulin stimulatory effects on glycogenesis

– Insulin stimulatory effects on glycolysis

• Reduced hepatic glucose uptake: It is believed that reduce in hepatic glucose

uptake rate is due to the impairment of insulin stimulation effect on glucose phos-

phorylation in the liver [12].

• Impaired hepatic glucose production: Many studies have confirmed that type

II diabetic patients have impaired hepatic glucose production rate and low insulin-

induced suppression of endogenous glucose production [13–17]. The impaired effect

of insulin suppression on both pathways of endogenous glucose production (i.e. glu-

coneogenesis and glycogenolysis) have been demonstrated by Basu et al. [16, 17].

• Impaired pancreatic insulin secretion: Deficiency and failure in the pancreatic

insulin production shows the development of overt diabetes [9]. Pancreatic insulin

secretion in response to a glucose stimulus has a biphasic pattern. Early peak of

insulin production and the overall insulin secretion rate are the two forms of defective

pancreatic insulin secretion in type II diabetic patients[18–20].

• Glucose resistance: When the levels of glucose concentration is less than 130

mg/dl, glucose-induced stimulation of glucose disposal is normal in type II diabetic

patients [21]. However, high levels of glucose concentration (particularly above 130

mg/dl) impair the glucose stimulation effect on glucose uptake rate in type II diabetic

patients [22, 23].
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1.1.3 Evaluation of the health status of diabetic patients

There are different clinical tests used for assessing the glucose metabolism in different body

organs to evaluate the health status of diabetic patients. A brief explanation of some of

these clinical tests is as follows [7]:

• Oral glucose tolerance test (OGTT): This test is usually used to diagnose dia-

betes, insulin resistance, impaired beta cell function, and sometimes reactive hypo-

glycemia and acromegaly, or rarer disorders of carbohydrate metabolism. First, the

fasting plasma glucose is tested. Then, to determine how body is able to clear glu-

cose from the blood, a glass of dissolved glucose in water is given to the patient and

blood samples are taken afterwards up to four times to measure the blood glucose.

Depending on different standards, the dose of glucose may vary from 50 gr to 100 gr.

• Euglycemic hyperinsulinemic clamp (EHIC): In this test, the plasma glucose

concentration is held constant at basal levels by intravenous glucose infusion. Mean-

while, the plasma insulin concentration is raised and maintained at 100 µU/ml by a

continuous infusion of insulin. When the steady-state is achieved, the glucose infusion

rate equals glucose uptake by all the tissues in the body. Therefore, for more sensitive

insulin tissues, more glucose infusion is needed. The hyperinsulinemic clamps is a

measure of insulin resistance.

• Hyperglycemic clamp (HGC): In this test, the plasma glucose concentration is

raised to 125 mg/dl above basal levels by intravenous glucose infusion and no insulin

injection. Since the plasma glucose concentration is held constant, at steady states,

the rate of glucose infusion is an index of insulin secretion and glucose metabolism.

The hyperglycemic clamps are often used to assess insulin secretion capacity.
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• Intravenous glucose tolerance test (IVGTT): This test is similar to the OGTT

test. However, instead of oral glucose consumption, glucose is infused intravenously

into the patient’s body. Then, variation of glucose concentration is measured from

patient’s blood samples. Measurements of glucose concentration show how the body

clears glucose from the body.

• Insulin suppression test: Similar to the EHIC test, this test is used to measure

insulin sensitivity. In this test, somatostatin is injected to suppress endogenous se-

cretion of glucose and insulin while a constant rate of glucose and insulin is infused

intravenously. Blood samples are taken from the subject in specific times during the

test. At steady-states, the plasma insulin concentration is the same in all subjects,

and the value of the plasma glucose concentration provides a direct estimate of in-

sulin resistance. Body with high level of insulin resistance, has the higher value of

the plasma glucose concentration at steady-state.

1.1.4 Qualitative and quantitative evaluation of abnormal metabolism

behaviour in diabetic patients

As described in previous section, there are different clinical test that their results used to

evaluate abnormal behaviour of body organs in diabetic patients. To quantify the medical

condition of healthy and diabetic patients, many studies proposed different indices in the

literature such as [7]:

• Insulin Sensitivity Index (ISI), which quantifies the ability of insulin to stimulate

body glucose disposal.

• Glucose Effectiveness Index (GEI), which measures the ability of glucose per se to

mediate its rate of disappearance and to inhibit hepatic glucose production.
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Many different definitions for these two indices are reported in the literature. Direct

measurements of insulin sensitivity are proposed via the following test in the literature:

• Euglycemic hyperinsulinemic clamp test [24, 25]

• Insulin Sensitivity Tolerance (IST) test [26–28]

In addition, indirect measurement of insulin sensitivity is proposed in the literature from

frequently sampled intravenous glucose tolerance test (FSIVGTT) [29–35]. In this method,

from the results of FSIVGTT test the parameters of the minimal model are determined

[36]. Later, the obtained parameters are used to define insulin sensitivity and glucose

effectiveness indices. Also, different surrogate indices for insulin sensitivity have been also

defined in the literature using fasting insulin and glucose measurements as follows:

• Homeostasis model assessment (HOMA) [37–39],

• Quantitative insulin sensitivity check index (QUICKI) [25, 40–43]

• Oral Glucose Tolerance test (OGTT): Matsuda index [44], Stumvoll index [45], Avi-

gnon index [46], oral glucose insulin sensitivity index [47], Gutt index [48], and

Belfiore index [49] are the insulin sensitivity indices obtained from this test by using

different sampling protocols during OGTT test.

1.2 Thesis objectives

The application of dynamic mathematical modelling has increased in every aspect of our

lives. Mathematical modelling of glucose metabolism in diabetic patient is helpful in pro-

viding reliable information without causing serious and irreversible harm to the subject.

Most of the studies in the field of modelling of diabetes have addressed type I diabetes

mellitus. However, type II diabetes is the most pervasive type which affects 90% of the
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diabetes population around the world [50]. Type I diabetes mellitus is characterized by

pancreas dysfunction, however, type II diabetic patients deal with multiple abnormalities

in a number of body organs such as the liver, the pancreas, muscles and adipose tissues.

Therefore, studying, modelling and simulating physiological behaviour of type II diabetic

patients is much more complicated than type I diabetic patients.

In the light of aforementioned above, the goal of my Ph.D. research is to benefit our

society in managing diabetes mellitus, which is one of the most prevalent diseases affecting

at least 285 million people worldwide. The objective of my Ph.D. research mainly is

focused on employing a clinically-relevant physiological model of type II diabetes mellitus

to improve the management of blood glucose level and fault detection features suitable for

monitoring and control. This objective can be achieved in the following three steps:

1. Type II diabetes is characterized by multiple abnormalities in a number of body or-

gans. Insulin resistance is one of the abnormalities happening when the sensitivity

of peripheral cells to the metabolic action of insulin is decreased. The ability of

insulin to stimulate body glucose disposal can be characterized by an insulin sen-

sitivity index (ISI). Several methods have been proposed for evaluating a person’s

insulin sensitivity from an oral glucose tolerance test (OGTT) and the euglycemic

insulin clamp technique. However, none are easy or inexpensive to implement since

the plasma insulin concentration, as a key variable for assessing the insulin sensi-

tivity index (ISI), is required to be clinically measured at specific times. Therefore,

my first thesis objective is using clinically-relevant physiological model of type II di-

abetes mellitus to develop a simple self-administered testing method for estimating

the insulin sensitivity index that can be easily and accurately obtained by patients

themselves without costly, time-consuming, and inconvenient testing methods.

2. Mathematical modelling of glucose metabolism in diabetic patient provides useful in-
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formation to diabetic patients of dangerous metabolic conditions, enables physicians

to review past therapy, estimates future blood glucose levels, and provides therapy

recommendations.The insulin-glucose dynamics in type II diabetes mellitus can be

modelled by using a stochastic nonlinear state-space model. Estimating the parame-

ters of such a model is difficult as only a few blood glucose and insulin measurements

per day are available in a non-clinical setting. Therefore, my second thesis objective

is to develop a predictive model of the blood glucose of a person with type II diabetes

mellitus when the glucose and insulin concentrations are only available at irregular

intervals. The results of this study can be used to inform type II diabetic patients

of their medical conditions, enable physicians to review past therapy, estimate fu-

ture blood glucose levels, provide therapeutic recommendations and even design a

stabilizing control system for blood glucose regulation.

3. Controlling blood glucose level for patient with type II diabetes mellitus (TIIDM)

has been influenced by many variables with significant levels of variability, such as

insulin sensitivity, carbohydrates intake, exercise, and more. These variabilities make

controlling blood glucose level a complex problem. In patients with advanced type

II diabetes mellitus, when the body fails to regulate blood glucose level, an external

loop including an insulin pump and a glucose measurement device can be used in

maintaining glucose regulation. However, the control of blood glucose level may fail

even in patient with insulin pump therapy. Therefore, my third thesis objective is to

build a reliable model-based fault detection system to detect failures in controlling

blood glucose level. The results of this study is helpful to detect faults in the insulin

infusion system and detect patient’s organ dysfunction.
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1.3 Thesis outline

My thesis is organized as follows:

• In chapter 2, the mathematical modelling developed by Vahidi et al. [7, 51] for type

II diabetes is described. The Vahidi model results from initial work by Guyton et al.

[52], which was updated by Sorensen [53]. This model is a much more detailed model

compared to the compartmental minimal modelling (MINMOD) approach proposed

by Bergman [36]. The MINMOD includes three nonlinear differential equations repre-

senting variations of plasma insulin and glucose concentrations. However, the Vahidi

model consists of more compartments for better representation of the glucose and

insulin concentrations in different parts of a human body. Their application of ad-

ditional compartments allows for a more accurate simulation of the physiological

dynamics and individual abnormalities for type II diabetic patients.

• In chapter 3, the feasibility of using the mathematical compartment model proposed

by Vahidi et al. [7, 51] to estimate insulin sensitivity has been described. A simple

method for conveniently estimating insulin sensitivity by patients themselves has

been developed and evaluated.

• In chapter 4, the nonlinear states and the parameters of Vahidi model in the presence

of 10%, 25% and 50% of randomly missing clinical observations have been estimated

by implementing a Bayesian filtering method.

• In chapter 5, faults in insulin infusion system and organs dysfunction are detected in

type II diabetic patients using the model-based fault detection technique based on a

Sequential Monte Carlo (SMC) filtering method.

• Finally, chapter 6 summarizes the thesis and provides recommendations on future

11



1.3. Thesis outline

works.
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Chapter 2

Mathematical modeling of type II

diabetes mellitus

2.1 Introduction

Glucose-insulin interactions in a healthy human body have been mathematically modelled

in many studies. Initially, Bolie [54] and Ackerman et al. [55] proposed a simple linear

model, and later, more complicated nonlinear models have been proposed. Among those

approaches, the compartmental modelling approach is the most popular one. In this ap-

proach, different organs or parts of the body are represented by compartments, and the

model equations are derived from the mass balance equations over each compartment. The

compartmental minimal model (MINMOD) of Bergman et al. [36] has been widely used in

many studies. The MINMOD includes three nonlinear differential equations representing

variations of plasma insulin and glucose concentrations. Later, more complicated compart-

mental models have been proposed including more compartments for better understanding

of the organ’s behaviour [53, 56, 57].

The physiological behaviour of type I and type II diabetes can be developed by adjusting

the structures of healthy human models. For, instance, since the pancreas in type I diabetic

patients does not produce insulin hormone, type I diabetes mellitus model can be simply

adjusted from healthy human models by setting the insulin production rate term to zero
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2.2. The Sorensen model

[7].

However, using the similar approach for type II diabetes modelling is not as simple as

type I diabetes modelling since type II diabetes is associated with multiple abnormalities in

different body organs. In type II diabetic patients, all the body organs are still functioning

and the organ’s abnormalities affects the glucose metabolic rates, the glucose regulatory

secretion rates, and the pancreatic insulin secretion rates. Therefore, type II diabetes

mellitus model can be developed from the same structure of the healthy human model but

with the modified parameters. This approach has been used by Dalla Man et al. [58] and

Vahidi et al.. [7]. Vahidi model is based on a healthy human body model proposed by

Sorensen [53], which is adjusted and validated for type II diabetes using available clinical

data of diabetic patients.

In the following sections, the equations of Sorensen model are presented along with the

parameters updated for type II diabetic patient by Vahidi [7, 53]. The description of the

model variables can be found in Nomenclature.

2.2 The Sorensen model

Sorensen modified the compartmental model of glucose-insulin interactions in a healthy

body developed by Guyton et al. [52]. In this, model, the regulatory effects of insulin and

glucagon hormones on glucose metabolism are considered. However, the hormonal effects

of epinephrine, cortisol, and growth hormone are assumed to be negligible. Also, the

physiology of changes in amino acid and free fatty acid substrate levels are not considered.

In this model, the physiologic parameters such as blood flow rates and capillary space

volumes are selected to represent a typical 70 kg adult male.

The simplified blood circulatory system contributing significantly in glucose production

and consumption is shown in Figure 2.1. The heart left ventricle pumps the Oxygen-rich
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blood and deliver it to all body organs through the arteries. the body organs drain out

deoxygenated blood and deliver it to the heart right atrium through the veins.

Figure 2.1: Simplified blood circulatory system [7]

The Sorensen model contains three main sub-models representing blood glucose, insulin

and glucagon concentrations in the body and their interactions.

Each sub-model is divided into individual numbers of compartments representing spe-

cific parts or organs of a human body. The number of compartments is different in each

sub-model. As can be seen in Figure. 2.2, the insulin sub-model has seven compartments:

brain, liver, heart and lungs, periphery, gut, kidney, and pancreas. The blocks represent

different compartments and the arrows indicate the blood flow directions.
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Figure 2.2: Shematic diagram of insulin submodel [51]

The glucose sub-model is similar to the insulin sub-model except that the pancreas

compartment is excluded. The glucose sub-model can be seen in Figure. 2.3.
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Figure 2.3: Shematic diagram of glucose submodel [7]

Since the glucagon concentration is considered to be identical in all parts of the body,

only one compartment is used in the glucagon sub-model [59]. Each compartment is gen-

erally divided into the following three well-mixed spaces, which are shown in Figure 2.4:

• Capillary blood space

• Interstitial fluid space

• Intracellular space
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Figure 2.4: General representation of a compartment[7]

As can be seen from Figure 2.4, the capillary space is fed in by arterial blood inflow

and drained by venous blood outflow. The blood components may diffuse through capillary

walls to the interstitial fluid and from interstitial fluid to the intracellular space and vice

versa. Due to the following reasons, maximum two of these sub-compartments are phys-

iologically required to be considered in modelling of solute transport from the capillary

blood space to the intracellular space (Figure 2.5):

• The capillary wall may not allowing fluid to pass through a solute and no extravascu-

lar exchange occurs. Therefore, both the interstitial fluid and the intracellular fluid

spaces are omitted and only the capillary blood space is considered (Figure 2.5 a).

• The capillary wall may be very permeable to a solute leading to a fast equilibrium of

the capillary blood and the interstitial fluid spaces. In this case, both of the capillary

blood and the interstitial fluid spaces are considered as a combined sub-compartment

with uniform solute concentration (Figure 2.5 b).

• The cell membrane may be very permeable to a solute leading to a fast equilib-

rium of the interstitial fluid and intracellular fluid spaces. Therefore, both of the
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interstitial fluid and intracellular fluid spaces are combined and considered as one

sub-compartment with uniform solute concentration (Figure 2.5 c).

• The capillary wall and cell membrane are both very permeableto a solute leading to

a fast equilibrium of all three spaces. Therefore, all three spaces are combined and

considered as one space with uniform solute concentration (Figure 2.5 d).

• The concentration of the solute in the intracellular fluid space restricts the rate

of solute transport across the cell membrane. Therefore, the intracellular space is

omitted (Figure 2.5 e).

Figure 2.5: Simplified configurations of physiological compartments[7]

In the following sections, the mass balance equations over each sub-compartment are

presented.
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2.2.1 Glucose sub-model

As explained in section 2.2, the glucose sub-model is divided into six compartments: brain;

liver; heart and lungs; periphery (muscles and adipose tissues); gastrointestinal (GI) tract

(the stomach and intestinal system); and kidney. Mass balance equations over each sub-

compartment results the following eight ordinary differential equations:

V G
BC

dGBC

dt
= QG

B(GH −GBC)−
V G

BF

TG
B

(GBC −GBF ), (2.1)

V G
BF

dGBF

dt
=
V G

BF

TG
B

(GBC −GBF )− rBGU , (2.2)

V G
H

dGH

dt
= QG

BGBC +QG
LGL +QG

KGK +QG
PGPC +QG

HGH − rBCU , (2.3)

V G
G

dGG

dt
= QG

G(GH −GG)− rGGU , (2.4)

V G
L

dGL

dt
= QG

AGH +QG
GGG −QG

LGL + rHGP − rHGU , (2.5)

V G
K

dGK

dt
= QG

K(GH −GK)− rKGE , (2.6)

V G
PC

dGPC

dt
= QG

P (GH −GPC)−
V G

PF

TG
P

(GPC −GPF ), (2.7)

V G
PF

dGPF

dt
=
V G

PF

TG
P

(GPC −GPF )− rPGU , (2.8)

where G is the glucose concentration (mg/dl), Q is the vascular blood flow rate (dl/min), V

is the volume (dl), T is the transcapillary diffusion time constant (min), r is the metabolic

production or consumption rate (mg/min) and t is time (min). The subscripts of these

variables refer to the body organs. Subscript B is the brain, subscript BC is the brain

capillary space and subscript BF is the brain interstitial fluid space. Subscript A is the

hepatic artery, subscript G is gut, subscript L is liver and subscript G is GI tract (stomach
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and intestines). Subscript P is periphery, subscript PC is the periphery capillary space

and subscript PF is the periphery interstitial fluid space.

The general form of the metabolic production and consumption rates in each organ is

as follows [53]:

r = M I(t)MG(t)MΓ(t)rB, (2.9)

where M I , MG and MΓ are the independent multiplicative effect of insulin, glucose and

glucagon on the metabolic rate, respectively. rB is the basal metabolic rate and the mul-

tipliers have the following general form:

MC = a+ b tanh[c(
C

CB
− d)], (2.10)

where a, b, c and d are the parameters of the model. C is the substance concentration

and CB is the basal concentration of the substance. The following equations are used to

calculate the glucose metabolic rates [53]:

rBGU = 70 (2.11)

rRBGU = 10 (2.12)

rGGU = 20 (2.13)

rPGU = M I
PGUM

G
PGUr

B
PGU , (2.14)

rBPGU = 35 (2.15)

M I
PGU = 7.03 + 6.52 tanh(0.338(

IPF

IBPF

− 5.82) (2.16)

MG
PGU =

GPF

GB
PF

(2.17)
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rHGP = M I
HGPM

G
HGPM

Γ
HGP r

B
HGP , (2.18)

rBHGP = 35 (2.19)

d

dt
M I

HGP = 0.04(M I∞
HGP −M

I
HGP ) (2.20)

M I∞
HGP = 1.21− 1.14 tanh[1.66(

IL

IBL
− 0.89)] (2.21)

MG
HGP = 1.42− 1.14 tanh[0.62(

GL

GB
L

− 0.497)] (2.22)

MΓ
HGP = 2.7 tanh[0.39(

Γ

ΓB
]− f (2.23)

d

dt
f = 0.0154[(

2.7 tanh[0.39( Γ
ΓB ]− 1

2
)− f ] (2.24)

rHGU = M I
HGUM

G
HGUr

B
HGU , (2.25)

rBHGU = 20 (2.26)

d

dt
M I

HGU = 0.04(M I∞
HGU −M

I
HGU ) (2.27)

M I∞
HGU = 2.0 tanh[0.55(

IL

IBL
] (2.28)

MG
HGU = 5.66 + 5.66 tanh[2.44(

GL

GB
L

− 1.48)] (2.29)

KGE = 71 + 71 tanh[0.11(GK − 460)] 0 ≤ GK < 460

rKGE = 71 + 71 tanh[0.11(GK − 460)] GK ≥ 460
(2.30)

where rBGU is brain glucose uptake rate, rRBGU is red blood cell glucose uptake rate,

rGGU is gut glucose uptake rate, rHGP is hepatic glucose production rate, rHGU is hepatic

glucose uptake rate, rKGE is kidney glucose excretion rate, and rPGU is peripheral glucose

uptake rate. G, I and Γ are the concentration of glucose, insulin and glucagon, respectively.
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Superscript B refers to the basal condition and ∞ refer to final steady state value.

In equation 2.17, the glucose multiplier of peripheral glucose uptake rate is different

from other multipliers. It is a linear function of the peripheral glucose concentration and

has the following general form:

MG
PGU = a(

GPF

GB
PF

) + b (2.31)

where a and b are the parameters of glucose multiplier of peripheral glucose uptake rate.

The glucose absorption model that calculates the glucose appearance rate into the blood

stream following an oral glucose intake is considered in the gut compartment of the glucose

sub-model as follows:

dqSs
dt

= −k12qSs +Dδ(t), (2.32)

dqSI
dt

= −kemptqSs + k12qSI , (2.33)

dqint
dt

= −kabsqint + kemptqSI , (2.34)

kempt = kmin +
kmax − kmin

2
{tanh[ϕ1(qSs + qSI − x1D)]− tanh[ϕ2(qSs + qSI − x2D)] + 2},

(2.35)

ϕ1 =
5

2D(1− x1)
, (2.36)

ϕ2 =
5

2Dx2
, (2.37)

Ra = fkabsqint, (2.38)

where δ(t) is the impulse function. x1, x2 and f are constant and their values are 0.9.

0.82, and 0.00236 respectively [58]. D is the amount of oral glucose intake (mg). The
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2.2. The Sorensen model

parameters that are unknown and need to be estimated are k12, kmin, kmax, and kabs.

2.2.2 Incretins sub-model

The incretins production is calculated from the following differential equation:

dψ

dt
= ς kempt qS2 − rIΨP , (2.39)

where ψ is the amount of produced incretins, kempt qS2 is the rate of glucose entrance to

the small intestine, rIΨP is the rate of incretins absorption into the blood stream, and ς is

a constant. rIΨP is calculated from the following equation:

rIΨP =
Ψ

τΨ
, (2.40)

where τΨ is the time constant of the incretins absorption process into the blood stream.

The mass balance equation over the incretins compartment results in:

V Ψdψ

dt
= rIΨP − rPΨC , (2.41)

where V Ψ=11.31 (l) is the incretins distribution volume, Ψ is the blood incretins concen-

tration and rPΨC the rate of plasma incretins clearance, which depends on the incretins

concentration. The clearance rate is calculated from the following equation:

rPΨC = rMΨC ψ, (2.42)

The parameters that are unknown and need to be estimated are ς, τΨ, and rMΨC .
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2.2. The Sorensen model

2.2.3 Insulin sub-model

As explained in section 2.2, the insulin sub-model is divided into seven compartments:

brain; liver; heart and lungs; periphery (muscles and adipose tissues); gastrointestinal (GI)

tract (the stomach and intestinal system); kidney; and pancreas. Since pancreatic insulin

production is a complex mechanism that cannot be described by simple mass balance equa-

tions, the insulin sub-model comprises mass balance equations over each sub-compartment

except for the pancreas compartment. Therefore, a separate model is considered for the

pancreas.

Mass balance equations over each sub-compartment results in the following equations:

V I
B

dIB
dt

= QI
B(IH − IB), (2.43)

V I
H

dIH
dt

= QI
BIB +QI

LIL +QI
KIK +QI

P IPV −QI
HIH , (2.44)

V I
G

dIG
dt

= QI
G(IH − IG), (2.45)

V I
L

dIL
dt

= QI
AIH +QI

GIG −QI
LIL + rPIR − rLIC , (2.46)

V I
K

dIK
dt

= QI
K(IH − IK)− rKIC , (2.47)

V I
PC

dIPC

dt
= QI

P (IH − IPC)−
V I

PF

T I
P

(IPC − IPF ), (2.48)

V I
PF

dIPF

dt
=
V I

PF

T I
P

(IPC − IPF )− rPIC , (2.49)

where I is the insulin concentration (mU/l), Q is the vascular blood flow rate (dl/min), V

is the volume (dl), T is the transcapillary diffusion time constant (min), r is the metabolic

production or consumption rate (mg/min) and t is time (min). The subscripts of the

variables refer to the body organs. subscript B is the brain, subscript A is the hepatic
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2.2. The Sorensen model

artery, subscript G is gut, subscript L is liver and subscript G is GI tract (stomach and

intestines). Subscript P is periphery, subscript PC is the periphery capillary space and

subscript PF is the periphery interstitial fluid space.

The following equations are used to calculate the insulin consumption rates:

rLIC = 0.4[QI
AIH +QI

GIG + rP IR] (2.50)

rKIC = 0.3QI
KIK (2.51)

rPIC =
IPF

[( 1−0.15
0.15QI

P

)− 20
V I
PF

]
(2.52)

where R is the inhibitor (dimensionless) and r is the metabolic production or consumption

rate (mU/min). rKIC is kidney insulin clearance rate, rLIC is liver insulin clearance rate,

rPIC is peripheral insulin clearance rate and rPIR is pancreatic insulin release rate.

Pancreatic insulin release

Pancreatic insulin release is mainly stimulated by blood glucose concentration changes.

Insulin release pattern in response to a glucose concentration step change has a biphasic

in a healthy pancreas (see Figure 2.6). As can be seen from Figure 2.6, there is a sharp

release of insulin about 5-10 min in the first phase [7].
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2.2. The Sorensen model

Figure 2.6: Biphasic response of a healthy pancreas to a glucose concentration step change
[7]

To mimic the biphasic behaviour of pancreatic insulin secretion in response to a glucose

stimulus, Landahl and Grodsky [60] proposed the pancreatic insulin release model presented

in Figure 2.7.

Figure 2.7: Schematic diagram of Landahl and Grodskys model [7]

In the pancreas model, insulin is exchanged between a small labile insulin unit and a

large stored insulin unit. Glucose-stimulated factor, P , regulates the rate at which insulin

flows into the labile compartment. The rate of insulin secretion from the labile insulin

compartment is a function of the glucose concentration, the amount of labile insulin m, and
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2.2. The Sorensen model

the instantaneous level of glucose-enhanced excitation factor X and its inhibitor R. The

first phase insulin release is caused by an instantaneous increase in the glucose-enhanced

excitation factor (X) followed by a rapid increase in its inhibitor (R). The second phase

release results from the direct dependence of the insulin secretion rate (S) on the glucose

stimulus and the gradual increase in the level of the labile compartment filling factor (P ).

The pancreas model equations including mass balance equations over its compartments

and correlations between variables results in:

dm

dt
= K ′mSKm+ γP − S, (2.53)

dmS

dt
= Km−K ′mS − γP, (2.54)

It is assumed that the capacity of the storage compartment is large enough and remains

at steady state. For a glucose concentration of zero, P is set to zero. Therefore, the steady

state mass balance equation around the storage compartment is:

K ′mS = Km0, (2.55)

where m0 is the labile insulin quantity at a glucose concentration of zero. The rest of the

equations for the pancreas model are:

dP

dt
= α(P∞ − P ), (2.56)

dR

dt
= β(X −R), (2.57)

S = [N1Y +N2(X −R) + ξ1ψ]m x > R,

S = [N1Y + ξ1ψ]m x ≤ R,
(2.58)
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2.2. The Sorensen model

P∞ = Y = X1.11 + ξ2ψ, (2.59)

X =
G3.27

H

1323.27 + 5.93G3.02
H

(2.60)

P∞ and Y reflect the glucose-induced stimulation effects on the liable compartment filling

factor and the insulin secretion rate, respectively. The parameters that are unknown and

need to be estimated are α, β, K, N1, N2, γ, ξ1 and ξ2.

2.2.4 Glucagon sub-model

The glucagon sub-model has one mass balance equation over the whole body as follows:

V ΓdΓ

dt
= rPΓR − rPΓC , (2.61)

The metabolic rates for the glucagon sub-model are summarized below:

rPΓC = 9.1Γ (2.62)

rPΓR = MG
PΓRM

I
PΓRr

B
PΓR (2.63)

MG
PΓR = 1.31− 0.61 tanh[1.06(

GH

GB
H

− 0.47)] (2.64)

M I
PΓR = 2.93− 2.09 tanh[4.18(

IH

IBH
− 0.62)] (2.65)

rBPΓR = 9.1 (2.66)

The Sorensen model parameters are summarized in Table 2.1.
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2.3. Type II diabetes model

Table 2.1: The model parameters [53]

V G
BC = 3.5 dl QG

B = 5.9 dl/min TG
B = 2.1 min

V G
BF = 4.5 dl QG

H = 43.7 dl/min TG
P = 5.0 min

V G
H = 3.5 dl QG

A = 2.5 dl/min T I
P = 20 min

V G
L = 25.1 dl QG

L = 12.6 dl/min m0 = 6.33 U

V G
G = 11.2 dl QG

G = 10.1 dl/min

V G
K = 6.6 dl QG

K = 10.1 dl/min

V G
PC = 10.4 dl QG

P = 12.6 dl/min

V G
PF = 67.4 dl QI

B = 0.45 l/min

V I
B = 0.26 l QI

H = 3.12 l/min

V I
H = 0.99 l QI

A = 0.18 l/min

V I
G = 0.94 l QI

K = 0.72 l/min

V I
L = 1.14 l QI

P = 1.05 l/min

V I
K = 0.51 l QI

G = 0.72 l/min

V I
PF = 6.74 l

V Γ = 6.74 l

2.3 Type II diabetes model

To develop a model for type II diabetes, the same structure of Sorensen model can be used.

However, the parameters of the healthy human body model should be modified based on

the blood glucose and insulin concentrations sampled from type II diabetic patients during

standard clinical test.

As mentioned in section 1.1.2, type II diabetes mellitus is characterized by several organ

malfunctions. These abnormalities are summarized as follows:
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2.3. Type II diabetes model

• Insulin resistance in peripheral tissues

• Impaired insulin mediated effects on hepatic glucose uptake

• Impaired insulin suppression effects on endogenous glucose production

• Impaired pancreatic insulin secretion both in first phase of release and in overall

secretion rate

• Glucose resistance in the liver and peripheral tissues

2.3.1 Selection of model parameters for estimation

The parameters showed in Table 2.1 in section 2.2.4 for a healthy person, represent the

physical characteristics of the body, which are the same for diabetic patients. These pa-

rameters do not need to be updated in type II diabetes model.

However, from the abnormalities of type II diabetic patients, the parameters within the

insulin secretion rate and glucose metabolic rates should be modified. These parameters

should be estimated using the available clinical data for type II diabetic patients through

a non-linear optimization problem.

Table 2.2 summarizes the abnormalities associated with type II diabetes and their

corresponding model equations.
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2.3. Type II diabetes model

Table 2.2: Abnormalities associated with type II diabetes and their corresponding equations
Abnormalities Corresponding Equations

Insulin resistance in Insulin multiplier in
peripheral tissues peripheral glucose uptake rate (equation 2.16)

Insulin-induced stimulation Insulin multiplier in
of hepatic glucose uptake hepatic glucose uptake rate (equation 2.28)

Insulin-induced stimulation Insulin multiplier in
of hepatic glucose production hepatic glucose production rate (equation 2.21)

Glucose-induced stimulation glucose multiplier in
of hepatic glucose uptake hepatic glucose uptake rate (equation 2.29)

Glucose-induced stimulation glucose multiplier in
of peripheral glucose uptake peripheral glucose uptake rate (equation 2.31)

Pancreatic insulin secretion rate N1 and N2 in the pancreas model (equation 2.58)
both in early peak and overall rate

Vahidi et al. [7, 51] estimated the following parameters in their type II diabetes mellitus

model:

• From the glucose sub-model, parameters of the glucose metabolic rates and some

parameters of the glucose absorption model have been considered for the parameter

estimation. the glucose metabolic rates in the glucose sub-model has the general

form of equation 2.9 and the multipliers have the general form of equation 2.10.

Considering equation 2.10, a, b, c and d are the parameters of the glucose metabolic

rates. To reduce the number of parameters for estimation c and d are selected for

the parameter estimation and a and b are considered to be unchanged.

• The glucose absorption model equations are represented by equations 2.32 to 2.38.

The model parameters that have been chosen for parameter estimation are k12, kmin,

kmax, and kabs.
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2.3. Type II diabetes model

• From the insulin sub-model, some parameters from the pancreas model have been

chosen for parameter estimation. The pancreas model is represented by equations

2.53 to 2.60 from which N1, N2, K, γ, α and β are selected for parameter estimation.

• The hormonal effects of incretins on the pancreatic insulin production are included in

equation 2.58. The parameters representing the hormonal effects of incretins on the

pancreatic insulin secretion rate are ξ1 and ξ2, which are considered for parameter

estimation.

• The incretins sub-model is represented by equations 2.39 to 2.42. It has three pa-

rameters (i.e. ς, τΨ and rMΨC), which all of them are selected for the parameter

estimation.

2.3.2 Nonlinear optimization problem

Vahidi et al. [7, 51] has used a set of available clinical data to estimate the parameters of the

model by solving a nonlinear optimization problem. The model parameters are estimated

through an iterative optimization algorithm using a sequential quadratic programming

(SQP) method. In each iteration, the new values of the estimated parameters are used to

solve the model equations.

Estimation of the modified model parameters were carried out by minimizing the devi-

ation of model predictions from the available measurements of peripheral glucose, insulin

concentrations. The deviation of model predictions from the measured clinical data is

minimized through the following objective function:

min
Θ

n∑
j=1

[(Gj − Ĝj)2 + (Ij − Îj)2 + (Ψj − Ψ̂j)2]. (2.67)

where Gj and Ij , and Ψj are peripheral glucose, insulin, and incretins concentrations at
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2.3. Type II diabetes model

time j obtained from the model respectively; Ĝj , Îj , Ψ̂j are the corresponding clinical

measurements; n is the number of samples in the clinical data set; and Θ is the vector of

parameters that should be estimated [51].

Different parameters of metabolic rates will be obtained after the optimization pro-

cedure for each type II diabetic patient since there are different peripheral glucose, and

insulin concentrations profile for different patients.

This optimization problem contains totally four constraints; three constraints for the

insulin multipliers in peripheral glucose uptake rate, hepatic glucose uptake rate, and

hepatic glucose production rate; and one constraint for the glucose multiplier in hepatic

glucose uptake rate.

These constraints express that the value of the multiplier must be set to 1 at basal

conditions. The general form of the constraints based on equation 2.10 is:

a+ b tanh[c(1− d)] = 1, (2.68)
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Chapter 3

A novel and simple

self-administered method for

assessing insulin sensitivity

3.1 Introduction

Insulin is a key hormone secreted from β-cells in the pancreas that regulates glucose

homeostasis. Type II diabetes is characterized by both insulin resistance and decreas-

ing βcell mass [61]. Insulin resistance happens when the sensitivity of peripheral cells to

the metabolic action of insulin is decreased due to genetic or environmental factors, obe-

sity, hypertension, dyslipidemias, and/or coronary artery diseases. The ability of insulin to

stimulate body glucose disposal can be characterized by an insulin sensitivity index (ISI)

[11, 25, 29, 62].

Various methods have been developed for determining the presence and degree of insulin

resistance. In Section 1.1.4, some of the common methods usually employed in diabetes

research are briefly described. These methods are summarized in the next following sec-

tions.
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3.1.1 Hyperinsulinemic euglycemic insulin clamp technique

The hyperinsulinemic euglycemic insulin clamp technique has been widely used as a gold

standard for understanding insulin resistance in vivo [24]. Defronzo et al. [24] in 1979

developed this test. In this test, by a continuous infusion of insulin, the plasma insulin

concentration is raised and clamped at around 100 µU/l. At the same time, by glucose

injection via a negative feedback principle, the plasma glucose concentration is kept con-

stant at basal levels. Endogenous glucose production rate is suppressed by high insulin

concentration to almost zero. At steady state conditions, the rate of glucose infusion rate

is equal to the glucose uptake rate by all body tissues and is therefore a measure of the

body insulin sensitivity. This is the only information that can be obtained from this test.

This method is labor-intensive, expensive, and limiting for large-scale clinical studies [63].

3.1.2 Modified minimal model (MINMOD) analysis in conjunction

with the frequently sampled intravenous glucose tolerance test

(FSIVGTT)

More accurate and less labor-intensive than the insulin clamp technique is a modified min-

imal model (MINMOD) analysis in conjunction with the frequently sampled intravenous

glucose tolerance test (FSIVGTT) [32] for the estimation of insulin sensitivity. This method

proposed by Yang et al. [32] in 1987. In this method, the results of FSIVGTT test is used

to determine the parameters of the minimal model [29] and then, obtained parameters

are used to define insulin sensitivity and glucose effectiveness indices. They attempted to

improve the precision of the estimation of insulin sensitivity (SI) from the minimal model

technique by modifying insulin dynamics during a frequently sampled intravenous glucose

tolerance test (FSIGT). However, the FSIVGTT is still restrictive for large studies [25, 63].
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3.1.3 Homeostasis model assessment (HOMA) of insulin resistance

(HOMA-IR)

Homeostasis model assessment (HOMA) of insulin resistance (HOMA-IR), fasting plasma

insulin [64], and the fasting-glucose-to-insulin ratio [65] are simple indices of insulin resis-

tance compared with the insulin clamp test. HOMA proposed by Matthews et al. [37] in

1985 is a structural computer model of the glucose-insulin feedback system in the homeo-

static (overnight-fasted) state. A number of nonlinear empirical equations describing the

functions of organs and tissues involved in glucose regulation are included in their model.

By solving these equations numerically, glucose, insulin, and C-peptide concentrations are

predicted in the fasting steady state for any combination of pancreatic β-cell function and

insulin sensitivity (or resistance). From these predictions, the deduction of β-cell function

and insulin sensitivity from pairs of fasting glucose and insulin (or C-peptide) measure-

ments can be taken.

Matthews et al. [37] demonstrated that in only a few patients with type II diabetes,

the homeostasis model assessment of insulin resistance (HOMA-IR) is closely correlated

with the insulin sensitivity index assessed by euglycemic clamp. Also it was reported in

[66] and [67] that in a relatively greater number of diabetic subjects, HOMA-IR provided a

good correlation in the clamp studies. However, some investigators recognized that when

the insulin secretion decreases in patients with advanced type II diabetes, the HOMA-IR

shows relatively low value since the HOMA-IR is a product of fasting glucose and insulin

levels.
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3.1.4 Insulin sensitivity indices investigated from oral glucose tolerance

test (OGTT)

Recently, several methods have been investigated from oral glucose tolerance test (OGTT).

Cederholm and Wibell [68] proposed a formula for ISI that uses the OGTT based on

four timed samples of insulin and glucose (at 0, 30, 60, and 120 min). It has fairly

good agreement with more complicated procedures, such as the clamp test and the insulin

suppression test.

Stumvoll et al. [45] disclosed that the insulin sensitivity in non-diabetic subjects can

be assessed from OGTT. Simple ISI for type II diabetic patients were derived based on

the OGTT by Matsuda and DeFronzo [44]. Their index was correlated to clamp-derived

insulin sensitivity.

Gutt et al. [48] devised a formula for an insulin sensitivity index, ISI0,120 that uses the

fasting (0 min) and 120 min post-oral glucose (OGTT) insulin and glucose concentrations.

Their data showed that ISI0,120 correlated well, when applied prospectively in comparative

studies, with the insulin sensitivity index obtained from the euglycemic hyperinsulinemic

clamp. Their correlation was demonstrably superior to other indices of insulin sensitivity

such as the HOMA formula presented by Matthews et al. [37], and performed comparably

to the computerized HOMA index.

Although the above methods are relatively easy to conduct, accurate, and adaptable

to both population studies and clinical settings, they are not inexpensive, self-monitoring,

and convenient since the plasma insulin level must be measured at a specific time as a key

variable for calculating these indices in medical labs.

In this chapter, we propose a new ISI estimated from capillary blood glucose measure-

ments. Our approach is to evaluate the feasibility of using the mathematical compartment

model proposed by Vahidi et al. [7, 51] to estimate insulin sensitivity.
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In the next section, the model of 15 diabetic patients have been developed using the

available clinical data from OGTT. In section 3.3, 15 simulated patients’ models were used

for the development and evaluation of a self-assessment method for obtaining the ISI.

3.2 Clinical data used for model development

The aim of this study is to develop a simple measure of insulin sensitivity by using a self-

assessment test without laboratory requirements. From a literature review of OGTT, it

was found that the pattern of glucose response to insulin varies from patient to patient.

To ensure that the proposed test for estimating the ISI is valid for all available patterns of

glucose and insulin concentrations, different sets of blood glucose and insulin measurements

must be used for the estimation of the Vahidi model parameters. Different sets of clinical

data for type II diabetic patients have been published in the literature from the 2-h 75-

g OGTT. Based on the Canadian Diabetes Association 2013 criteria [69], the diagnostic

criteria for diabetes are summarized in Table 3.1.

Table 3.1: Diagnosis of diabetes

Type FPG (mg/dl) 2-h PG (mg/dl)

Normal <110 <140
Impaired Glucose Tolerance (IGT) <110 140-199
Impaired Fasting Glucose (IFG) 110-125 <140

Combined IFG and IGT 110-125 140-199
Type II diabetes ≥126 ≥200

From our literature survey, it was found that the insulin concentration profile during

an OGTT can be grouped in to a few patterns. Hayashi et al. [70] derived four possible

patterns of insulin profile from a study involving 400 non-diabetic Japanese Americans.

They concluded that the insulin concentration pattern during an OGTT strongly predicts
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3.2. Clinical data used for model development

the development of type II diabetes and is correlated with measures of insulin sensitivity.

Bakari and Onyemelukwe [71] studied the plasma insulin pattern both in the fasting state

and in response to a standard OGTT in 42 type II diabetic Nigerians and 36 healthy

control subjects. They found that the type II diabetic patients demonstrated both fasting

and post-OGTT hypoinsulinaemia. Therefore, for our model development, 15 available

patterns of glucose and insulin concentrations during the 2-h 75-g OGTT for diabetic and

non-diabetic subjects were included and presented in details in Table 3.2.
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Table 3.2: Mean plasma glucose and insulin levels during OGTT

Subject
Plasma glucose during OGTT (mg/dl) Plasma insulin during OGTT (µU/ml)

Reference
0 min 30 min 60 min 90 min 120 min 0 min 30 min 60 min 90 min 120 min

1 175.86 249.84 315.00 338.40 323.64 4.20 5.50 6.01 6.98 9.92 [71]

2 71.10 135.90 124.92 116.10 101.34 5.72 15.58 13.67 10.48 8.03 [71]

3 75.29 125.71 129.13 108.50 84.67 8.18 30.00 33.05 33.47 16.77 [72]

4 80.00 120.40 110.40 92.10 76.50 7.00 38.40 31.10 21.90 9.30 [72]

5 71.30 130.20 145.00 122.40 91.60 9.20 23.10 34.70 41.90 21.90 [72]

6 74.00 121.00 177.00 180.00 154.00 9.00 13.00 35.00 46.00 41.00 [72]

7 71.00 125.00 134.00 103.00 80.00 7.00 62.00 58.00 36.00 20.00 [72]

8 72.00 118.00 115.00 92.00 62.00 10.00 12.00 35.00 20.00 14.00 [72]

9 89.90 160.2 134.20 - 109.00 11.30 98.90 68.40 - 43.70 [70]

10 90.90 154.80 124.70 - 130.80 11.60 109.80 53.90 - 71 [70]

11 93.30 166.20 171.40 - 122.10 11.70 66.80 103.90 - 58.30 [70]

12 95.50 171.30 193.30 - 159.10 12.70 59.60 86.70 - 118.90 [70]

13 91.30 158.10 148.50 - 144.80 14.90 96.40 74.80 - 130.20 [70]

14 153.40 238.40 292.58 278.68 239.89 6.47 18.88 22.00 20.64 14.57 [73, 74]

15 97.75 164.68 154.54 110.50 87.61 5.52 37.75 42.63 19.58 7.89 [73, 74]
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3.3. Proposed self-assessment method for estimation of insulin sensitivity

After the Vahidi model had been developed, 15 simulated patients’ models were used

for the development and evaluation of a self-assessment method for obtaining the ISI. The

next section describes the development of the proposed method for obtaining the ISI.

3.3 Proposed self-assessment method for estimation of

insulin sensitivity

Several authors proposed various indices for measuring insulin sensitivity by using fasting

state or OGTT data and correlated the indices with the data obtained from the hyperinsu-

linemic euglycemic clamp test. Formulas proposed for calculating the ISI are based on the

intercorrelations between the concentrations of glucose and insulin and other parameters.

However, they all require the measurements of plasma insulin levels sampled at specific

times by laboratory equipment, which is expensive and inconvenient. Therefore, a more

practical method for obtaining the ISI is the focus of this research.

A practical test for obtaining the ISI should not require plasma insulin measurements

and only need capillary blood glucose measurements. Capillary blood glucose refers to the

blood glucose concentration measured from capillary blood vessels. This is most commonly

done by a finger prick test by a diabetic patient. The plasma insulin measurement refers

to the actual insulin concentration in a persons blood sampled and measured by a lab

technician.

For type II diabetic patients, the body is suffering from some insulin resistance and

it requires larger amounts of insulin either from the pancreas or from injections to lower

their plasma glucose level compared to that of an insulin-sensitive body. For those with

severe insulin resistance, the normal physiological response to a given amount of insulin is

blunted. As a result, higher levels of insulin are needed to achieve a proper effect.
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In light of this, we propose a simple testing approach, in which the simulated patients

take a dose of oral glucose ingestion followed by multiple insulin injections at different

times. The proposed test is considered clinically acceptable and safe as the insulin dosage

can be selected with a large safety margin. We have conducted extensive simulation with

different combinations of testing protocols on the fifteen simulated patients using the Vahidi

model. After the extensive simulations, we have found that the ISI can be estimated

by patients completing a simple testing protocol, which includes two procedures on two

separate occasions.

In the first procedure, the fifteen simulated subjects were given a single dose of 75-g

glucose. The plasma glucose concentrations of the fifteen subjects were sampled in order

to check how their bodies suppress the plasma glucose level with no insulin injection.

In the second procedure, a single dose of 75-g glucose was given to the fifteen simulated

subjects. Then, 10 mU/kg insulin was injected twice subcutaneously into the body of the

simulated subjects 20 and 50 min after glucose consumption since the major response to

a moderate load occurs within 15 min of glucose ingestion [75, 76]. The plasma glucose

concentrations of the fifteen subjects were sampled in order to check how their bodies

regulate the plasma glucose level with two insulin injections.

After statistical evaluation, it was found that the differences in the plasma glucose

concentration profile of each subject from the first and second procedures can be used to

define a formula for the ISI. The formula adopted for the estimation of the ISI is described

in Section 3.4.2. This section also shows how well the proposed index correlates with the

ISI (called M-value) obtained from the euglycemic insulin clamp technique.

43



3.4. Results and discussion

3.4 Results and discussion

The Vahidi model includes a set of nonlinear ordinary differential equations and algebraic

equations. The model parameters are estimated through an iterative optimization algo-

rithm using an SQP method, as described in Section 2.67. The estimated parameters

are then used to solve the Vahidi model equations. The optimization was carried out in

MATLAB.

3.4.1 Parameters estimation results

Since different patterns of glucose and insulin concentrations result in different sets of

parameters in the Vahidi model, for each subject in Table 3.2, a set of parameters was

estimated using the nonlinear optimization algorithm described in Section 2.67. As an

example, using the blood glucose and insulin concentration data of subject 1 in Table

3.2, the parameters of the glucose metabolic rates have been considered for the parameter

estimation. As the model equations in Section 2.2.1 shows, the glucose metabolic rates in

the glucose sub-model has the general form of equation 2.9 and the multipliers have the

general form of equation 2.10.

Considering equation 2.10, parameters a, b, c and d in the hepatic glucose production

(HGP) rate, the hepatic glucose uptake (HGU) rate, and the peripheral glucose uptake

rate (PGU) are selected to be estimated. Also, considering equation 2.58 in Section 2.2.3,

the parameters N1 and N2 in the pancreatic insulin release model are estimated.

As an example, the estimated model parameters for the glucose and insulin sub-models

presented above are shown in Table 3.3 and Table 3.4, respectively for subject 1.
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Table 3.3: Parameter estimation results for glucose sub-model (subject 1).

Multiplier in equation (2.10) a b c d

M I
PGU 7.035 6.516 0.15 4.000

M I∞
HGP 1.425 1.406 0.607 0.241

M I∞
HGU 0.001 2.000 1.500 0.001

MG
HGU 5.664 5.658 2.013 1.678

Table 3.4: Parameter estimation results for insulin sub-model (subject 1).

Parameter in equation (2.58) Value

N1 1.096

N2 0.654

The model estimation results of the fifteen subjects presented in Table 3.2, are shown

in Figures. 3.1 and 3.15.

45



3.4. Results and discussion

0 20 40 60 80 100 120
150

200

250

300

350

Time (min)

P
la

sm
a 

G
lu

co
se

 c
o
n
ce

n
tr

at
io

n
 (

m
g
/d

l)

 

 

Clinical data

The model result

0 20 40 60 80 100 120
4

5

6

7

8

9

Time (min)

P
la

sm
a 

In
su

li
n
 c

o
n
ce

n
tr

at
io

n
 (

µ
U

/m
l)

 

 

Clinical data

The model result

Subject #1

Figure 3.1: Plasma glucose and insulin concentration profile in subject #1, the clinical
data (•), the model results (−)
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Figure 3.2: Plasma glucose and insulin concentration profile in subject #2, the clinical
data (•), the model results (−)
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Figure 3.3: Plasma glucose and insulin concentration profile in subject #3, the clinical
data (•), the model results (−)
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Figure 3.4: Plasma glucose and insulin concentration profile in subject #4, the clinical
data (•), the model results (−)
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Figure 3.5: Plasma glucose and insulin concentration profile in subject #5, the clinical
data (•), the model results (−)
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Figure 3.6: Plasma glucose and insulin concentration profile in subject #6, the clinical
data (•), the model results (−)
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Figure 3.7: Plasma glucose and insulin concentration profile in subject #7, the clinical
data (•), the model results (−)
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Figure 3.8: Plasma glucose and insulin concentration profile in subject #8, the clinical
data (•), the model results (−)
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Figure 3.9: Plasma glucose and insulin concentration profile in subject #9, the clinical
data (•), the model results (−)
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Figure 3.10: Plasma glucose and insulin concentration profile in subject #10, the clinical
data (•), the model results (−)
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Figure 3.11: Plasma glucose and insulin concentration profile in subject #11, the clinical
data (•), the model results (−)
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Figure 3.12: Plasma glucose and insulin concentration profile in subject #12, the clinical
data (•), the model results (−)
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Figure 3.13: Plasma glucose and insulin concentration profile in subject #13, the clinical
data (•), the model results (−)
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Figure 3.14: Plasma glucose and insulin concentration profile in subject #14, the clinical
data (•), the model results (−)
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Figure 3.15: Plasma glucose and insulin concentration profile in subject #15, the clinical
data (•), the model results (−)

The goodness of fit between the model estimation and the available clinical data set

can be calculated using different cost functions in MATLAB. In this study, the goodness

of fit is calculated using the mean square error (MSE) as a cost function:

MSE =
|x− xref |
Ns − 1

(3.1)

where x is the glucose or insulin concentration matrix estimated by the model, xref is the

available glucose or insulin concentration from Table 3.2 as the reference, and Ns is the

number of actual measured clinical data. From equation (3.1), the overall average goodness

of fit for all fifteen subjects is 92%. The simulated trends are reasonably consistent with
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the actual clinical data from both a visual inspection and the average goodness of fit.

3.4.2 Quantitative estimation of insulin sensitivity

In order to validate the proposed protocol for estimating the ISI, the M-values from the

euglycemic insulin clamp test were obtained for the fifteen subjects from the simulated

models. To perform the euglycemic insulin clamp test on the simulated bodies of the

fifteen subjects with the Vahidi model, the plasma insulin concentration was acutely raised

and maintained at 100 µU/ml by a continuous infusion of insulin. Meanwhile, the plasma

glucose concentration was held constant at basal levels by a variable glucose infusion in

MATLAB. Then, proposed testing protocols described in Section 3.3 were applied to the

fifteen simulated subjects.

The plasma glucose concentration profiles of each subject from the first and second

procedures are plotted in Figures. 3.16-3.30.
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Figure 3.16: Effect of insulin injection in subject #1, two 10 mU/kg insulin injections at
20 and 50 min respectively (-), and no injection (–)
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Figure 3.17: Effect of insulin injection in subject #2, two 10 mU/kg insulin injections at
20 and 50 min respectively (-), and no injection (–)
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Figure 3.18: Effect of insulin injection in subject #3, two 10 mU/kg insulin injections at
20 and 50 min respectively (-), and no injection (–)
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Figure 3.19: Effect of insulin injection in subject #4, two 10 mU/kg insulin injections at
20 and 50 min respectively (-), and no injection (–)
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Figure 3.20: Effect of insulin injection in subject #5, two 10 mU/kg insulin injections at
20 and 50 min respectively (-), and no injection (–)
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Figure 3.21: Effect of insulin injection in subject #6, two 10 mU/kg insulin injections at
20 and 50 min respectively (-), and no injection (–)
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Figure 3.22: Effect of insulin injection in subject #7, two 10 mU/kg insulin injections at
20 and 50 min respectively (-), and no injection (–)
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Figure 3.23: Effect of insulin injection in subject #8, two 10 mU/kg insulin injections at
20 and 50 min respectively (-), and no injection (–)
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Figure 3.24: Effect of insulin injection in subject #9, two 10 mU/kg insulin injections at
20 and 50 min respectively (-), and no injection (–)
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Figure 3.25: Effect of insulin injection in subject #10, two 10 mU/kg insulin injections at
20 and 50 min respectively (-), and no injection (–)

0 50 100 150 200 250 300 350
80

90

100

110

120

130

140

150

160

170

180

Time (min)

P
er

ip
h

er
a
l 

G
lu

co
se

 C
o
n

ce
n

tr
a
ti

o
n

 (
m

g
/d

l)

Subject # 11

Figure 3.26: Effect of insulin injection in subject #11, two 10 mU/kg insulin injections at
20 and 50 min respectively (-), and no injection (–)
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Figure 3.27: Effect of insulin injection in subject #12, two 10 mU/kg insulin injections at
20 and 50 min respectively (-), and no injection (–)
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Figure 3.28: Effect of insulin injection in subject #13, two 10 mU/kg insulin injections at
20 and 50 min respectively (-), and no injection (–)
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Figure 3.29: Effect of insulin injection in subject #14, two 10 mU/kg insulin injections at
20 and 50 min respectively (-), and no injection (–)
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Figure 3.30: Effect of insulin injection in subject #15, two 10 mU/kg insulin injections at
20 and 50 min respectively (-), and no injection (–)

From Figures. 3.16-3.30, the plasma glucose level for insulin-sensitive subjects 2, 4, 5,
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8, 9, and 10 were suppressed significantly after the two insulin injections. However, the

peripheral glucose concentration profile did not change or were suppressed slightly after

the two insulin injections for insulin-resistant subjects 1, 3, 6, 7, 11, 12, 13, 14, and 15.

In the same figure, the maximum differences between plasma glucose levels in the

insulin-sensitive subjects occur almost at 60 min and 80 min after glucose consumption

because of the two insulin injections. In statistics, multiple linear regression is an approach

for modelling the relationship between two or more explanatory variables denoted X and

a response variable y by fitting an equation to observed data. To find a new ISI, step-wise

multiple regression analysis was performed with the M-value as the dependent variable (y)

and the glucose concentrations at fasting (0 min), 60 min, and 80 min after ingestion

of 75-g glucose as the three independent variables (X) in MATLAB. The obtained ISI

equation from the multiple regression analysis is:

ISI = 44.071− 0.1534× FPG

− 0.1855×G60min + 0.182×G80min

− (
1.95

FPG
+

6.81

G60min

− 5.88

G80min

)× 103

(3.2)

where FPG, G60min , and G80min are the peripheral glucose concentrations in mg/dl at

fasting (0 min), 60 min, and 80 min after ingestion of a 75-g glucose, respectively.

The means and standard deviations were computed in MATLAB for the defined insulin

sensitivity and M-values. Pearsons r coefficient was used for the calculation of correlations

between these two measures. The scatter plot of the relationship between the M-value and

the ISI from equation ((3.2)) for each subject is shown in Figure. 3.31. Both the Pearsons

coefficient (r = 0.927) and the p-value (p = 0.0045) indicate a strong correlation between

the new ISI and the M-value from the euglycemic clamp test.
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Figure 3.31: Correlation between the ISI and the M-value for the fifteen subjects; r =
0.927, p = 0.0045

Previous ISIs derived from the OGTT data require the measurements of plasma insulin

levels at specific times by laboratory equipment, which is inconvenient, time-consuming,

and expensive. The proposed ISI can be estimated from data collected by diabetic patients

who need to frequently monitor their status without the need for expensive laboratory

facilities.

3.4.3 Comparison of various insulin sensitivity indices obtained from

OGTT

The derivations of other indices obtained during the OGTT are briefly presented here. The

index of whole-body insulin sensitivity derived by Matsuda and DeFronzo [44] calculates

insulin sensitivity from plasma glucose (mg/dl) and insulin (mU/l) concentrations in the

fasting state and during the OGTT. Stumvoll et al. [45] proposed several ISI equations,
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which were obtained from multiple linear regression analysis. The equations calculate

the insulin sensitivity from plasma glucose (mmol/l) and insulin (pmol/l) concentrations

during the OGTT. The Gutt index (ISI0,120) [48] was adopted from the ISI proposed by

Cederholm and Wibell [68]. The calculation of ISI0,120 (mgl2mmol−1mlU−1min−1) only

uses the fasting (0 min) and 120 min concentrations of glucose and insulin during the

OGTT.

These three ISIs calculated from the OGTT data are shown in Table 3.5 to compare

the correlation of each index with the M-value. Table 3.5 shows the Pearsons correlation of

each measurement of insulin sensitivity with the M-value computed in MATLAB. As can

be seen from Table 3.5, the correlation of the proposed ISI with the M-values is significantly

stronger than those of the other indices, (r = 0.927, p = 0.0045). Although Table 3.5 shows

a very promising and convenient ISI estimation, a proper comparison should be done by

applying the proposed ISI protocol to real subjects. This can be a part of future studies

research.
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Table 3.5: Pearson correlations with M-Value and results of correlation comparisons [1]
Measure Formula Correlation with M-value Reference

ISIMatsuda
10000√

FPG×FPI×Gmean×Imean
r = −0.43 p = 0.1 [44]

ISIStumvoll 0.156− 0.0000459× I120 min − 0.0000321× FPI − 0.0054×G120 min r = 0.47 p = 0.0794 [45]

ISIGutt
75000+(FPG−G120 min)×0.19×BW

Gmean×log(Imean) r = −0.2965 p = 0.28 [48]

Proposed ISI equation (3.2) r = 0.927 p = 0.0045 -
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Chapter 4

Assessment of type II diabetes

mellitus using irregularly sampled

measurements with missing data

4.1 Introduction

In diabetic patients, the glucose metabolic rates represent the health status of the liver,

muscles and adipose tissues. To measure the glucose metabolic rates in the type II dia-

betic patients, the measurement of the glucose and insulin concentrations in different parts

of the body are needed. However, clinical measurements of all necessary concentrations

deep inside different organs or tissues are just not practical or realistic. Therefore, physi-

cians mostly rely on a few measurements from patients’ blood and/or capillary glucose

measurements at regular or irregular intervals for clinical decisions [77].

Previous studies have shown that important clinical data may be missing owing to

different reasons such as inability to record clinical results, infrequent sampling by patients,

and illegible hand writing. Lack of complete knowledge about the health status of the

diabetic patients poses more problems to physicians in managing type II diabetes while

they need time oriented clinical data of past and present status of diabetic patients [78–80].

Since only a few blood glucose measurements per day are available in a non-clinical
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setting, developing a predictive model of the blood glucose of a person with type II diabetes

mellitus is important. Such a model may provide useful information to diabetic patients of

dangerous metabolic conditions, enable physicians to review past therapy, estimate future

blood glucose levels, and provide therapy recommendations. It can also be used in the

design of a stabilizing control system for blood glucose regulations [81, 82].

Many studies proposed on-line identification of type I diabetes mellitus using neural

network modelling approaches [82–85]. Tresp et al. [82] developed a predictive model of

the blood glucose of a person with type I diabetes mellitus with partially missing clinical

data by using a combination of a nonlinear recurrent neural network and a linear error

model. However, developing a nonlinear state-space model for type II diabetes mellitus

that can easily deal with missing data has received limited attention.

The goal of this work is to develop a blood glucose predictive model for a type II

diabetic patient and the model can be estimated by using patient data collected under

normal everyday conditions rather than a well-controlled environment typically done in a

clinical facility. Such a model should be able to detect dangerous metabolic states of a

patient, and optimize the patient’s therapy.

In this study, we use online Bayesian estimation framework to estimate a stochastic

nonlinear model for type II diabetes mellitus using clinical data with missing data at

random intervals. We adopt the detailed nonlinear model developed by Vahidi et al. [7, 51]

for type II diabetes since the Vahidi model is a much more detailed model comparing

with the MINMOD approach. The Vahidi model is able to effectively model individual

abnormalities by characterizing distinct compartments as the faulty organs. To artificially

create clinical data sets with missing data at random intervals, we then randomly remove

10%, 25% and 50% of the original available data obtained from the Vahidi model. At the

end, glucose, insulin, and incretins concentrations, as well as the parameters of different
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compartments, are estimated from clinical data with missing data at random intervals.

These estimates can then be used to measure the glucose metabolic rates in different

organs of the type II diabetic patients.

There is an extensive discussion on estimating the states and the parameters of the

nonlinear state-space models from partially missing data using mathematical approaches

such as Bayesian filters, Particle filters (PFs), Expectation-Maximization (EM) algorithms,

Sequential Importance Resampling (SIR) particle filters [86–89]. In many studies, Baysian

estimation has been used in metabolism and physiological modelling [90–92]. Among these

methods, we use the SIR based PF proposed by Tulsyan et al. [93] for online Bayesian

estimation of the states and the parameters of the Vahidi model since it needs less compu-

tational cost when a large number of unknown states and parameters must be estimated

simultaneously. To do this, a clinical data set, as well as a prior information on the un-

known states and parameters of the Vahidi model, are needed. This kind of information

can be gathered from physical considerations and population studies.

In this study, the estimation of the Vahidi model parameters are carried out by the SIR

particle filtering method for the data sets containing randomly deleted simulated data.

4.2 Mathematical model preparation

The continuous mathematical model of type II diabetes developed by Vahidi et al. [7, 51]

has been described previously in chapter 2. In order to estimate the unknown parameters

of the Vahidi model using particle filtering method, the model must be discretized. To

discretize the model, any discretization method is possible to be used. In this study,

simply the fixed-step backward difference approximation has been used since it was accurate

enough to discretize the model. The following equation represents general discretization
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using fixed-step backward difference approximation:

dy

dx
=
yi − yi−1

∆x
, (4.1)

The above equation is applied to all ordinary differential equations explained in chapter

2. The model can be then rewritten in state space general form as follows:

xt+1 = f(yt, θt, ut) + vt, (4.2a)

yt = g(xt, θt, ut) + wt, (4.2b)

where:

• f is the state function representing equations 2.1 to 2.8, 2.20, 2.24, 2.27, 2.43 to 2.49,

2.53, 2.56, 2.57, and 2.61.

• g is the measurement dynamic function representing equations 2.7 and 2.48.

• t is the sampling time index.

• xt is the vector of states.

• ut is the vector of inputs.

• yt is the vector of measurements.

• θ is the vector of model parameters, which are constant values.

• vt and wt are state and measurement noise sequences with known probability den-

sity functions with zero mean. Since all real systems normally incorporate different

environmental noises affecting the measurements and also mathematical models nor-

mally have some uncertainties, these noise sequences are added to the model states

and outputs to address usual measurement noises and also model uncertainties.
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In type II diabetes model g represents the measurement dynamic function variables and

ŷt is the vector of concentration of either insulin, glucose, or glucagon at sampling time t

monitored and recorded by several sensors and measuring devices. These devices record

patient’s critical variables yt (output) in response to the test action ut (input) implemented

at some point in time indexed by t. For example, in the intravenous glucose infusion test,

insulin concentration measurements as output yt are recorded at regular intervals against

the infused glucose concentration as input ut. A summary description of this on-line

estimation method is provided in the next following sections.

4.3 Response models

In clinical trials, several sensors and measuring devices were used for monitoring the re-

sponse of a patient to a clinical test. Let us assume that we have a sequence of time-tagged

clinical measurements y1:t = {y1, y2, . . . , yt} corresponding to the input action u1:t = {u1, u2, . . . , ut},

and that we are interested in predicting the response yt+1 for some known input action ut+1.

Such predictions are valuable to the physician assessing the health of the patient during

clinical trials. To solve this problem, we can assume yt+1 is independent of {u1:t, y1:t}, in

which case, the prediction of yt+1 is impossible. Alternatively, we can assume yt+1 depends

on the trend recorded in the past data {u1:t, y1:t}. For the latter assumption– which is true

for any causal system– a response model1 is useful in predicting the response of a patient

to a clinical test.

A reliable response model should not only accurately model a patient’s physical and

biological response to a clinical test, it should also account for the various uncertainties

such as modelling and measurement errors. For example, random measurement errors can

1A response model is a mathematical model describing the dynamics of the key internal states of a
patient in response to a clinical test.
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be modelled by viewing yt as a random realization of a stochastic process. In this work, we

use stochastic state-space models (SSMs) to represent a response model. Mathematically,

a SSM can be represented as:

xt+1 = f(yt, θt, ut) + vt, (4.3a)

yt = g(xt, θt, ut) + wt, (4.3b)

where xt describes evolution of the internal states of the patient. Physically, xt models the

complete response of a patient subject to a clinical test. Given the states xt, inputs ut and

model parameters θt at time t, the internal states evolve to xt+1. vt in equation(4.3a) is

the state noise, which accounts for the unknown and unmeasured variations in the states

not captured by the response model. Due to the non-zero random state noise vt, the states

are not precisely known. Equation (4.3b) describes how sensor readings yt relate to the

states xt and parameters θt. wt in equation (4.3b) is the noise term, which accounts for

the random sensor noise.

In clinical trials, measurements of only a few critical states are available at our disposal.

This is because the high cost or lack of appropriate sensing technology or devices precludes

measurement of all but key internal states. The state-space modelling framework is general,

and can be used to represent a wide class of response models, including the type II diabetes

mellitus response model given in section 2.1.

In this study, we use equation (4.3) for real-time estimation of the critical response

variables, such as blood glucose, insulin and incretins concentrations during clinical trial of

patients with type II diabetes mellitus. Monitoring these variables is critical as it enables

the physicians to review past therapy, estimate future blood glucose levels and provide

therapy recommendations. To predict the critical variables using equation (4.3), the model

states and parameters, which are typically unknown for a patient need to be estimated first.
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Given the state and parameter estimates, the model predictions at t can be computed as:

ŷt = g(x̂t, θ̂t, ut), (4.4)

where ŷt is the response predictions and x̂t and θ̂t are the parameter and state estimates,

respectively. Ideally, given an accurate estimate of the states and parameters, the model

predictions should match the clinical measurements as closely as possible. Any standard

estimation approach involves fitting the model using available clinical measurements; how-

ever, data fitting is not straightforward for SSMs because of the following reasons: 1) the

states are stochastic, which makes estimation of both states and parameters challenging and

2) the clinical measurements are assumed to be irregularly sampled. In the next section,

we explain how the unknown states and parameters of the response model are estimated.

Remark. There is a much larger appeal to use state-space modelling framework to

represent response models. From equation 4.4, it is evident that computing the response

predictions using a SSM also requires estimation of all the internal states of the patient.

Thus, any method designed to compute the response predictions gives away estimation of

all the internal states as a side product. This is of immense value to a physician, considering

only a handful of the internal states are actually measured.

4.3.1 States and parameters estimation of the response model

In most real systems, all the physical states are not measurable due to the various inherent

restrictions. Therefore, by applying a series of mathematical calculations called “states

observer” or “states filtering”, unknown model states are estimated by input and output

measurements from the real system [7]. For instance, in the type II diabetes model, obtain-

ing measurements of blood glucose and insulin concentrations from different body organs

are extremely difficult, dangerous for the subjects and in most of the times clinically im-
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possible. However, having this type of information is necessary in evaluating the behaviour

of body organs. An alternative is to estimate these concentrations using available mea-

surements from peripheral tissues along with a mathematical model and a states estimator

algorithm [7].

If the models is deterministic (the output of the model is fully determined by the

parameter values and the initial conditions), the unknown states and parameters are often

generated using an observer such as Luenberger observer. Otherwise, for stochastic models

(the output of the model is unpredictable due to the influence of a random variable), a

filter is used for estimation [94].

In the stochastic state-space model, when the model parameter θ is known, on-line

inference about the state process xt given the observations yt is a so-called optimal filtering

[94]. Kalman filtering methods rely on the model being linear and noise being Gaussian

[95]. Extensions to nonlinear systems have also been considered in the literature such as

extended Kalman filters (EKF), and unscented Kalman filters (UKF). These suboptimal

filters either approximate the nonlinear system through linearization and/or assume that

the noise is Gaussian. The approximations are often not satisfactory.

However, Sequential Monte Carlo (SMC) methods, also known as particle methods

do not require linearization of the stochastic state-spaces model or Gaussianity of the

measurement noises [96]. Particle filtering algorithm are a class of sequential simulation-

based algorithms to approximate the posterior distributions of interest. This algorithm

is a powerful state estimation method whose accuracy is independent on the degree of

model nonlinearity and is able to be improved by increasing the number of particles unlike

Kalman filter [94].

In the stochastic state-space model, when the parameter θ is unknown and needs to be

estimated from the data either in an on-line or off-line manner, the following methods are
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used [94]:

• Bayesian or Maximum Likelihood (ML)

• Off-line (batch) or on-line (recursive)

In the past 15 years, several algorithms have been proposed to solve the simultaneous

state-parameter estimation problem in real-time using likelihood and Bayesian derived

methods. The recent review paper by Kantas et al. [94] provided a detailed exposition of

on-line and off-line methods for parameter estimation using Bayesian and likelihood based

methods. Simultaneous on-line Bayesian estimators is performed by filtering an extended

vector of states and parameters using an adaptive sequential-importance-resampling (SIR)

filter with a kernel density estimation method [93].

The existing literature for on-line state-parameter estimation using Bayesian and like-

lihood based methods assumes that measurement will be available at all sampling time;

however, in practice, measurements may not be available at all sampling time instants.

Tulsyan et al. [93] proposed on-line Bayesian state and parameter estimation in non-linear

state- space models (SSMs) with non-Gaussian noise under missing measurements. They

used a particle based SIR filtering approach due to the inherent limitations of the EKF and

UKF based simultaneous state-parameter estimators. They selected the SIR filter since

it is relatively less sensitive to large process noise and is computationally less expensive.

Furthermore, the importance weights are easily evaluated and the importance functions

can be easily sampled [93].

In the light of aforementioned above, in this study, we apply a particle based SIR

filtering approach proposed by Tulsyan et al. [93] to estimate the real-time states and

parameters of the stochastic nonlinear state-space type II diabetes model under irregularly

sampled clinical measurements.
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A brief description of the standard particle filter algorithm is presented below to provide

the necessary background for the algorithm developed in the following section.

4.3.2 Recursive bayesian estimation

The Sequential Monte Carlo (SMC) approach is a recursive Bayesian estimation method

for nonlinear and non-Gaussian filtering problems. In this approach, given a sequence

of measurements, the probability density function (PDF) of the current state xt is es-

timated. Let us assume that we have a sequence of time-tagged clinical measurements

y1:t = {y1, y2, . . . , yt} corresponding to the input action u1:t = {u1, u2, . . . , ut}, and we are

interested in predicting the density of the state, i.e. p(xt|y1:t), for every iteration. Using

the Bayes’ theorem and Total law of probability, p(xt|y1:t) can be recursively computed in

two steps, which are the update and prediction steps as shown below:

Update Step:

p(xt|y1:t) ∝ py(yt|xt)p(xt|y1:t−1). (4.5)

Prediction Step:

p(xt|y1:t−1) =

∫
px(xt|xt−1)p(xt−1|y1:t−1)dxt. (4.6)

It is assumed that the PDF of the initial time step, p(x0|y0), is known. Equations (4.5)

and (4.6) do not have analytical solutions for nonlinear processes with Gaussian noise. The

Sequential Monte Carlo algorithms make these complex integrals tractable through the use

of efficient sampling strategies.
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4.3.3 Sequential monte carlo (SMC)

The basic idea of SMC is the recursive computation of any given target PDF π(x) (e.g.,

p(xt|y1:t)) by generating a set of random particles (samples) and associated weights from

the target PDF π(x). Furthermore, due to its generality and robustness, it has become

an important alternative to the extended Kalman filter (EKF) and unscented Kalman

filter (UKF). Unlike Kalman filter method, in the particle filtering method, the exploited

approximation does not involve linearization around current estimates [97].

Consider the state space model given by equations (4.3a) and (4.3b). Rather than

direct solving the integrals in equations (4.5) and (4.6), the Bayesian recursive estimation

is implemented via Monte Carlo sampling. For estimating the PDF, the two pieces of

information required at each time step t: the samples xit and their associated weights

ωi
t. From a known density called importance density function, q(xt|y1:t), samples xit are

assumed to be generated. The corresponding weights of the samples are defined as:

ωi
t =

p(xit|y1:t)

q(xit|y1:t)
(4.7)

and after normalization the weights become:

ωi
t =

ωi
t∑N

i=1 ω
i
t

(4.8)

where N is the number of samples used. The samples at time step t, xit ∼ q(xit|y1:t), are

computed by multiplying the existing samples, xit−1 ∼ q(xit−1|y1:t−1), and the new state,

xit ∼ q(xit|xit−1, y1:t) if the importance density function is chosen to be factorized such that:

q(xt|y1:t) = q(xt|xt−1, yt)q(xt−1|y1:t−1) (4.9)
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and the updated weight ωi
t associated with xit can be obtained according to:

ωi
t ∝ ωi

t−1

p(yt|xit)p(xit|xit−1)

q(xit|xit−1, y1:t)
(4.10)

It is useful to assume that q(xit|xit−1, y1:t) = q(xit|xit−1, yt) when only a filtered estimate

of p(xt|y1:t) is required. Then, the importance density only depends on xt−1 and yt. Under

this assumption, equation 4.11 can be rewritten as:

ωi
t ∝ ωi

t−1

p(yt|xit)p(xit|xit−1)

q(xit|xit−1, yt)
(4.11)

and the filtered density p(xt|y1:t) is approximated as follows:

p(xt|y1:t) ≈
N∑
i=1

ωi
tδ(xt − xit) (4.12)

where δ(.) is a multi-dimensional Dirac function. xit is the ith sample that approximates

the distribution, and the coefficient ωi
t is the corresponding weight. As N →∞, the above

density approximation approaches the true filtered density p(xt|y1:t). In the next section,

a description of real-time Bayesian estimation is provided.

4.4 Online state and parameter estimation in nonlinear

state-space models

Our objective is to estimate zt in real-time using clinical data {u1:t; y1:t}. Let zt = {xt, θt}

denote an extended vector of unknown states and parameters. It is further assumed that

the clinical measurements are recorded at irregular times, such that only a subset of y1:t

is available for estimation at t. For notational convenience, we dispense with the input ut
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in the succeeding discussions; however, the method presented in this study holds with the

inputs included.

In the Bayesian framework, the variables to be estimated are assumed to be random

variables. The states are inherently random due to the noise in equation (4.3a); and the

parameters, which are unknown but non-random are assumed to be random, such that

zt = {xt, θt} is a vector of random variables. To set up the Bayesian estimation, we

assume z0 to be distributed with a prior density p(z0|y1:0). Also, we assume the state

and measurement noise are independent and identically distributed (i.i.d) zero mean finite

variance Gaussian sequences with the probability density functions (PDF) px(.) and py(.)

known a priori.

4.4.1 Complete clinical data

First we consider the estimation problem using the complete clinical data set. Assuming

y1:t to be available, the real-time Bayesian estimation of zt at t involves computing the

posterior density p(zt|y1:t). Here, p(zt|y1:t) is a probabilistic representation of the statistical

information available on zt conditioned on the clinical measurements y1:t. Based on the

Bayes’ theorem and Total law of probability presented in equations (4.5) and (4.6), p(zt|y1:t)

can be recursively computed as shown below:

Update Step:

p(zt|y1:t) ∝ py(yt|zt)p(zt|y1:t−1). (4.13)

Prediction Step:

p(zt|y1:t−1) =

∫
pz(zt|zt−1)p(zt−1|y1:t−1)dzt. (4.14)
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In equation (4.13), py(yt|zt) is the measurement noise distribution or the likelihood

function indicating how likely it is for zt to have generated the clinical measurement yt.

p(zt|y1:t−1) is a one-step-ahead prior density representing statistical information on zt prior

to the recorded clinical measurement yt. The prior density p(zt|y1:t−1) is computed using

equation (4.14), where pz(zt|zt−1) is the joint state and parameter noise distribution and

p(zt−1|y1:t−1) is the posterior distribution at t− 1.

Starting with p(z0|y0:1), in principle, the recurrence relation between equations (4.13)

and (4.14) provides a complete Bayesian solution to the state and parameter estimation

problem under complete clinical data. Finally using p(zt|y1:t), the estimate of ẑt at t can be

computed as the mean of the posterior density, such that the estimate step can be defined

as:

ẑt =

∫
ztp(zt|y1:t)dzt, (4.15)

where ẑt = {x̂t, θ̂t} is the state and parameter estimation at t. Note that other values, such

as the mode or median of p(zt|y1:t) can also be selected as the point estimate.

4.4.2 Irregular clinical data

From section 4.4.1, it is evident that if yt is not measured at t, the posterior density

p(zt|y1:t) cannot be computed using equation (4.13). In such situations, the estimates at

t, in presence of irregular data can be computed by replacing p(zt|y1:t) in equation (4.15)

using the one-step ahead prior density p(zt|y1:t−1).

Now assuming yt+1 to be available at t + 1, the posterior density for zt+1, given clin-

ical measurements {y1:t−1, yt}, i.e., p(zt+1|y1:t−1, yt+1) can be computed using the Bayes’

theorem and the law of total probability, such that the update step shows that:
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p(zt+1|y1:t−1, yt+1) ∝ p(yt+1|zt+1)p(zt+1|y1:t−1). (4.16)

where p(zt+1|y1:t−1, yt+1) is the posterior density for zt+1 and p(zt+1|y1:t−1) is a two-step

ahead prior density computed using the law of total probability, i.e.:

p(zt+1|y1:t−1) =

∫
pz(zt+1|zt)p(zt|y1:t−1)dzt. (4.17)

Substituting equation (4.14) into equation (4.17) yields the prediction step:

p(zt+1|y1:t−1) =

∫∫
pz(zt+1|zt)pz(zt|zt−1)p(zt−1|y1:t−1)dzt−1:t. (4.18)

Similar to section 4.4.1, having computed p(zt+1|y1:t−1, yt+1), the estimate of zt+1 can

be computed by replacing the density by p(zt+1|y1:t−1, yt+1) in equation (4.15). Note that

the method proposed in this section is general and can naturally be extended to handle

consecutively missing measurements as well.

The Bayesian approach developed in section 4.4 provides an excellent framework for

real-time state and parameter estimation under complete and irregular clinical measure-

ments. Computing the Bayesian solution requires evaluation of the multiple integrals in the

prediction and estimation steps. Unfortunately, except for linear systems with Gaussian

state and measurement noise, or when the states and parameters take on only finite values,

the Bayesian solution cannot be solved exactly with finite computing capabilities.

This study uses a sequential Monte-Carlo (SMC)-based adaptive sequential-importance-

resampling (SIR) filter proposed by Tulsyan et al. [93] to numerically approximate the

Bayesian solution. In the next section, using SMC method, the estimation results of states

and parameters of the state-space model for type II diabetic patients under various levels

of randomly missing clinical data are presented.
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4.5 Results and discussion

In this section, the efficiency of the SIR filtering method in handling missing measure-

ments for estimation of the nonlinear stochastic model for type II diabetes mellitus is

demonstrated. All the simulations were conducted on a 2.90 GHz CPU with 8 GB RAM

Mac using MATLAB 2012b. On-line estimation of states and all the parameters cited in the

reference [7] by SIR filtering leads to large memory requirements and computational com-

plexity. To reduce the computation load, only the parameters of type II diabetic subjects

that have considerable effects on peripheral glucose, insulin and incretins concentrations

were chosen for estimation while keeping all other non-essential model parameters constant.

4.5.1 Clinical data used for model development

The states and the parameters of the Vahidi model were estimated using two different clin-

ical tests, oral glucose tolerance test (OGTT) and isoglycemic intravenous glucose infusion

test (IIVGIT) performed by Knop et al. [73, 74]. Ten type II diabetic patients (eight men

and two women) have been selected for the tests.

A 50 g glucose tolerance test (OGTT test) is performed in the first test and 17 blood

samples are taken from the subjects during the test to determine how quickly glucagon

suppression occurred. Blood was sampled 15, 10 and 0 minutes before, and after the

ingestion of glucose at 5, 10, 15, 20, 30, 40, 45, 50, 60, 70, 90, 120, 150, 180 and 240

minutes.

In the second test, isoglycemic intravenous glucose infusion test (IIVGIT test) is carried

out to mimic the plasma glucose profile obtained from the OGTT test. Therefore, the same

amount of glucose was injected intravenously to the diabetic subjects in the IIVGIT test.

Blood was sampled every 5 minutes [73, 74]. 20 blood samples are taken from the subjects

during the second test. Details about the experiments and the subjects’ characteristics are
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available in [73, 74].

Since the Sorensen model is proposed for a typical 70 kg subject and the clinical data

sets, which we used are from subjects with different body weights, all clinical data is scaled

to a 70 kg body weight using the following equation:

C = (CC − CB)
W

70
+ CB (4.19)

where C is the substance concentration, W is the subjects body weight (kg), CC refers to

the concentration from original clinical data, and CB refers to the concentration at basal

condition. The normalized values of the clinical data sets for a 70 kg are provided in

Appendix A.

The information included in data sets are peripheral glucose, insulin and incretins

(GLP-1 plus GIP) concentrations. The data from both tests are used for estimating the

parameters of the model using SIR particle filtering method as follows:

• From the IIVGIT test:

– Incretins concentrations are not used since no secretion of incretins occurs during

the IIVGIT test.

– Insulin concentrations are used to estimate the parameters of the pancreas

model.

• From the OGTT test:

– The rest of the integrated model parameters including the parameters of the

glucose sub-model which also comprises the parameters of the glucose absorption

model and the parameters representing the hormonal effects of incretins on the

pancreatic insulin production are all estimated using OGTT test data set.
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4.5.2 On-line states and parameters estimation results

To apply the SIR particle filtering method, a prior information on the unknown parameters

of the Vahidi model from both OGTT and IIVGIT is needed. This information can be

obtained from equation (2.67) by minimizing the deviation of model predictions from the

available clinical measurements of peripheral glucose, insulin and incretins concentrations

described in section 4.5.1.

After the prior information on the unknown parameters obtained, the estimation of

the states and parameters of the Vahidi model were estimated using SIR particle filtering

method. Firstly, the parameters of the pancreas model were estimated from the isoglycemic

intravenous glucose infusion test (IIVGIT) test since no secretion of incretins occurs during

the IIVGIT test. In the model parameter estimation, the peripheral insulin concentration

in the Vahidi model [7] was considered as a measurement yk. For implementing the SIR

filtering based on the discrepancies between the Vahidi model and the Knop’s experimental

data, the following parameters were selected:

• The number of particles N = 5000

• The sampling time used for discretizing the Vahidi model ∆k = 0.4 min

• The maximum states noises vk ∼ N (0, 0.001)

• The measurement noise wk ∼ N (0, 0.001)

A priori information on {x0; θ} includes the lower (LB) and the upper bound (UB)

based on the physiological considerations. Four simulation experiments were carried out to

evaluate the effectiveness of our proposed method to identify patient models with incom-

plete data. In the four experiments, 0%, 10%, 25% and 50% of available data simulated

from the Vahidi model were removed randomly. For example, when 10% of data were
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considered missing, a peripheral insulin concentration at each sampling time was removed

from the original data set if a uniformly distributed random variable q in the interval (0,1)

is less than 0.1. Similar experiments were done with 25% and 50% missing data [88].

The parameter values after 600 samples from each of these experiments are shown in

Table 4.1. The detailed information about these parameters were presented previously

in section 2.2.3 from equation 2.53 to 2.58 in detail. For all the experiments, all the

parameters except θ6 and θ7 converged to the neighbourhood of the original values after a

certain number of iterations. θ6 and θ7 are not estimated precisely since the sensitivity of

the KLD in kernel smoothing algorithm to changes in θ6 and θ7 is smaller than its variance.

Table 4.1: Parameter estimation results for insulin sub-model after 600 sampling time
during IIVGIT test

Parameters [7] OriginalValues Percentage of Missing insulin measurements
0% 10% 25% 50%

θ1 : α(min)−1 0.6152 0.6168 0.5728 0.5803 0.5159

θ2 : γ(U/min) 2.3665 2.3422 2.1860 2.3667 2.5200

θ3 : K(min)−1 0.0572 0.0565 0.0560 0.0561 0.0544

θ4 : N1(min)−1 0.0499 0.0496 0.0519 0.0481 0.0474

θ5 : N2(min)−1 0.0001490 0.0001489 0.0001482 0.0001500 0.0001506

θ6 : ξ1(min)−1 0.000124 0.000125 0.000126 0.000125 0.000141

θ7 : ξ2(min)−1 0.00270 0.00271 0.00280 0.00152 0.00122

Variations of the parameters N1, N2, ξ1 and ξ2 are shown in Figure. 4.1 and the

variations of the parameters α, γ, and K are shown in Figure. 4.2.

91



4.5. Results and discussion

Figure 4.1: Variations of the parameters N1, N2, ξ1 and ξ2 in the Pancreatic insulin release
model
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Figure 4.2: Variations of the parameters α, γ, K in the Pancreatic insulin release model
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Variations of the peripheral insulin concentrations during the IIVGIT test are shown

in Fig. 4.3a in which, r shows the percentage of missing observations. From the Fig. 4.3a,

the dynamics of peripheral insulin concentration can be estimated reasonably well with

physiological responses in all the experiments even when 50% of the simulated clinical data

were absent. Fig. 4.3b presents the goodness of fit between the estimated output and

the measured output performed with MATLAB System Identification Toolbox by using

normalized root mean square error (NRMSE) as a cost function. Based on the NRMSE

measure, the goodness of fit between the simulated peripheral insulin concentration and

the available measurements are more than 80%.

Figure 4.3: Peripheral insulin concentration for type II diabetic subjects during the IIVGIT
test

Secondly, from the oral glucose tolerance test (OGTT), the peripheral insulin concen-

tration, peripheral glucose concentration and incretins concentrations were considered as
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measurements yk for estimation of the rest of the model parameters. These parameters

consist of the parameters of the glucose sub-model including the parameters of the glucose

absorption model and the parameters describing the hormonal effects of incretins on the

pancreatic insulin production as described previously in section 2.2.1.

From the glucose sub-model, parameters of the glucose metabolic rates and some param-

eters of the glucose absorption model have been considered for the parameter estimation.

As the model equations in section 2.2.1 shows, the glucose metabolic rates in the glucose

sub-model has the general form of equation 2.9 and the multipliers have the general form

of equation 2.10. Considering equation 2.10, a, b, c and d are the parameters of the glucose

metabolic rates. To reduce the number of parameters for estimation, c and d are selected

for the parameter estimation and a and b are considered to be unchanged.

Therefore, parameters c and d in the hepatic glucose production (HGP) rate, the hepatic

glucose uptake (HGU) rate, and the peripheral glucose uptake rate (PGU) are selected to

be estimated. For implementing the SIR filtering based on the discrepancies between the

Vahidi model and the Knop’s experimental data, the following parameters were selected:

• The number of particles N = 20000

• The sampling time used for discretizing the Vahidi model ∆k = 0.1 min

• The maximum states noises vk ∼ N (0, 0.7)

• The measurement noise wk ∼ N (0, 0.7)

The parameter values after 2400 samples from each of these experiments are shown in

Table 4.2. In all the experiments, the estimated parameters, except θ1 and θ4 converged

to the neighbourhood of the original values after a certain number of iterations. θ1 and θ4

are not estimated precisely since the sensitivity of the KLD in kernel smoothing algorithm

to changes in θ1 and θ4 is smaller than its variance.
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Table 4.2: Variation of the parameters cGHGP , cGHGU , dI∞HGP and K12 in glucose sub-model
after 2400 sampling time during OGTT test

Parameters [7] OriginalValues Percentage of Missing insulin measurements
0% 10% 25% 50%

θ1 : cGHGP 1.0385 1.0352 1.0885 1.9743 2.0649

θ2 : cGHGU 2.03 1.97 1.84 2.23 1.53

θ3 : dI∞HGP 0.3648 0.3676 0.3610 0.3625 0.3667

θ4 : K12(min)−1 0.0783 0.0796 0.0798 0.0842 0.0616

θ5 : cIPGU 0.0970 0.0965 0.0965 0.0902 0.1300

θ6 : cI∞HGU 3.2606 3.3125 2.9543 2.9625 2.8057

θ7 : dIPGU 2.752 2.747 2.724 2.897 2.909

θ8 : dI∞HGU 0.0031 0.0030 0.0028 0.0030 0.0038

Variations of the parameters cGHGP , cGHGU , dI∞HGP and K12 are shown in Figure. 4.4 and

the variations of the parameters cIPGU , cI∞HGU , dIPGU and dI∞HGU are shown in Figure. 4.5.
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Figure 4.4: Variations of the parameters cIPGU , cI∞HGU , dIPGU and dI∞HGU in glucose sub-model
after 2400 sampling time during OGTT test
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Figure 4.5: Parameter estimation results for glucose sub-model after 2400 sampling time
during OGTT test

Variations of the peripheral glucose, insulin, and incretins concentrations during the

OGTT test after 2400 iterations are shown in Figs. 5.2a-5.4a. r shows the percentage

of missing observations. From the Figs. 5.2a-5.4a, the dynamics of peripheral glucose,

insulin, and incretins concentration can be estimated reasonably well with physiological

responses in all the experiments even when 50% of the clinical data is missing. Figs. 5.2b-

5.4b present the goodness of fit between the estimated output and the measured output

performed with MATLAB System Identification Toolbox by using the normalized root

mean square error (NRMSE) as a cost function. From Figs. 5.2b-5.4b, the goodness of
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fit between the simulated peripheral glucose, insulin and incretins concentration and their

available measurements were almost 80% in all the experiments except in Fig. 5.4b when

25% and 50% of peripheral insulin measurements removed randomly. Comparing to Fig.

4.3b in the IIVGIT test , the peripheral insulin concentration was not estimated precisely

in the OGTT test since only the parameters of the incretins sub-model and the parameters

of the glucose sub-model were estimated in order to reduce the computational complexity.

Figure 4.6: Peripheral glucose concentration for type II diabetic subjects during the OGTT
test
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Figure 4.7: Peripheral insulin concentration for type II diabetic subjects during the OGTT
test
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Figure 4.8: Incretins concentration for type II diabetic subjects during the OGTT test

The probability density function of the parameter CI
PGU , one of the parameters of the

peripheral glucose uptake rate in the insulin sub-model in [98], is reported in Fig. 5.5. As

somewhat expected, the posterior provided by SIR filtering method is concentrated around

its original value after about 620 sampling times.
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Figure 4.9: The probability density function of cIPGU from Bayesian identification at sam-
pling time number 1, 600, 607 and 620 (area under each curve is unitary). The y-axis
quantity is unit-less.

4.5.3 Application of SIR particle filtering in detection of organ

dysfunction in diabetic patients under irregular clinical data

In this section, the application of the adaptive sequential-importance-resampling (SIR)

filter in the estimation of the glucose, insulin, and incretins concentrations in different

parts of the body under irregularly sampled clinical data is presented. These estimates are

used for calculating the glucose metabolic rates in different organs of the type II diabetic

patients using irregularly sampled data. Then, by comparing the glucose metabolic rate of

each organ in the diabetic patients with the glucose metabolic rate of the same organ in a
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normal subject, the abnormal functioning of certain organs is detected and identified.

Using the states and parameters of the Vahidi model estimated in the previous section,

the glucose metabolic rates in the peripheral tissues and the liver are calculated from

equations (2.9) and (2.10). Figure 5.6 shows the glucose metabolic rates in peripheral

tissues and the liver compared with the healthy subjects. According to Figs. 5.6a and

5.6b, the peripheral glucose uptake rate and hepatic glucose uptake rate in type II diabetic

patients for all experiments are less than the corresponding values in the healthy subjects

due to insulin sensitivity in peripheral tissues and dysfunction in the liver of the diabetic

patients. Decreased rate of glucose infusion shows that the overall insulin sensitivity of the

body is decreased about 54% in diabetic patients. Even under the presence of 50% missing

data, the abnormalities of the liver and adipose tissues are detectable, which provides more

physiological information to physicians.
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Figure 4.10: Variation of different glucose metabolic rates

4.5.4 strengths and limitations of the SIR particle filtering in clinical

practice

The primary practical advantage of the SIR particle filtering method comparing to the

traditional statistical methods is its independence from the degree of nonlinearity of the

model unlike extended Kalman filtering [77]. An additional advantage in a clinical practice

is that the SIR filtering approach is readily adaptable to sequential updating of informa-

tion obtained from owner history, clinical examination of diabetic patients, and results of

different diagnostic tests [99]. It exhibits good performance even for systems with large

process or measurement noise.

Furthermore, the accuracy of the particle filtering method can be improved by increas-
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ing the number of particles used in the estimation algorithm. However, particles size over

1000 can be computationally intensive and time consuming [88, 99]. The SIR based PF

used in this study, needs less computational cost when a large number of unknown states

and parameters must be estimated simultaneously since the marginal probability distribu-

tion of each parameter and state can be obtained from a posteriori probability distribution

of the model parameters and states [92].
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Chapter 5

Model-based detection of organ

dysfunction and faults in insulin

infusion devices for type II

diabetic patients

5.1 Introduction

Diabetes is a disease characterized by abnormal glycemic values due to the inability of the

pancreas to produce insulin (Type I diabetes) or to the inefficiency of insulin secretion and

action (type II diabetes). Patients affected by diabetes need to monitor their glycemic level

during all day and control it inside the normal range of 70-180 mg/dl as much as possible.

Glycemic level can be controlled by being in diet, doing exercise and taking oral med-

ication. However, in patients with severe type II diabetes mellitus, insulin treatment is

needed like type I diabetes. The insulin treatment can be either multiple daily injection

regimens (MDIR) or a continuous subcutaneous insulin infusion (CSII) pump [59]. Re-

cently, new technologies have been developed in order to improve and facilitate diabetes

therapy such as [100]:
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• sensors for continuous glucose monitoring (CGM), minimally invasive devices, which

measure real-time glucose levels and returns the value in every 1 to 5 minutes for up

to 7 days.

• pumps for continuous subcutaneous insulin infusion (CSII), which allow a more ef-

fective and physiological delivery of insulin. Moreover, the sensor-augmented pump,

which are the simple combination of pumps in a single device, makes a further re-

duction of time spent in hypoglycemia and hyperglycemia.

The availability of CGM sensors and CSII pumps gave the idea of developing an artificial

pancreas. These system is based on a closed-loop control algorithm in which CGM measures

the glycemic value as a receiving input and the optimal insulin dosage as an output of the

controller is infused by CSII pump to keep glycemia in the normal range [100].

The usage of CGM sensors and CSII pumps have made more progress, efficacy and

safety in improving the quality of life of people with diabetes compared to the usual multiple

daily injection therapy [59, 101]. In such a system, detection of possible failures in either

the CGM sensor or CSII pump is crucial for safety.

During day-time while the patient is awake, failures are less critical since they can be

fixed by patients. However, in the night-time while the patient is asleep, failures are more

dangerous. The possible failures in insulin pump therapy are listed as follows [101]:

• Occlusions in the infusion set; An occlusion is any blockage that prevents the pump

from delivering insulin properly. Occlusions may occur for any of the following rea-

sons:

– If pressure is being applied to the tubing or the infusion site

– If the cannula has been bent during insertion

– Kinked insulin pump tubing
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– Crystals forming in the insulin and causing blockages at the cannula

• Disconnection or leakage in the infusion set

• Presence of the bubbles in insulin pumps

If any of the aforementioned issues happen during the insulin pump therapy, the body

will not get the intended full insulin dose, which can lead to higher than normal blood

glucose level. In addition, even under safe insulin pump therapy, the control of the blood

glucose level may fail due to the organ dysfunction progression. Multiple abnormalities in

different body organs are listed as follows [77, 102]:

• Resistance of muscles and adipose tissues against the secreted insulin

• Impaired insulin-induced suppression of hepatic glucose production

• Abnormal hepatic glucose uptake rate

• Deficiency in pancreatic insulin production rate

The goal of using fault detection (FD) of glucose-insulin system is to detect the glucose

control failure. FD technique has been used previously in many literatures to detect failures

in insulin pump therapy for type I diabetes mellitus.

A multivariate statistical technique proposed by Finan et al. [103] detects insulin pump

leakages and glucose sensor bias. Fecchinetti et al. [100] proposed a model-based approach

using a Kalman estimator for detecting failures in both continuous subcutaneous insulin in-

fusion (CSII) and continuous glucose monitoring (CGM) to improve safety during overnight

glycemic control. Herrero et al. [101] proposed utilizing a validated robust model-based

fault detection technique based on the interval analysis for detecting disconnections of the

insulin infusion set.
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All the aforementioned studies used the Bergman minimal model (MINMOD) including

three nonlinear differential equations representing variations of plasma insulin and glucose

concentrations for type I diabetic patients. However, in this study, we used the detailed

nonlinear compartmental type II diabetes model developed by Vahidi et al. [51].

In the previous chapter, we estimated the states and the parameters of the Vahidi

model using a sequential monte carlo (SMC) filtering method called particle filters. In this

chapter, we propose for the first time to our knowledge, the application of the model-based

FD algorithm based on a sequential monte carlo (SMC) method to detect either the faults

in insulin pump therapy or the organ abnormalities in type II diabetic patients. In the

next section, we present definitions of FD and a theoretical background.

5.1.1 Theoretical background on fault detection approaches

There is a large volume of literature on fault detection. In the last four decades, a variety

of techniques to solve a number of process monitoring and fault detection problems have

been developed. Many of these techniques are described in the survey papers by Basseville

[104], Frank [105], Isermann[106], and Willsky [107] and in the books by Willsky [108],

Basseville and Nikiforov[109], Pouliezos and Stavrakakis [110] and the references therein.

The primary objectives of all FD methods are to detect any deviation from the normal

behaviour of the process by providing an alarm tool [111].

There are two approaches for detection of failures [96]:

• Model-based approaches, which are based on a physical model of the process.

• History-based approaches, which rely on large historical data sets.

A model-based approaches often tend to be more powerful and provide a better per-

formance if the process is well modelled [112]. The model-based approaches typically are

consist of two procedures [97, 113, 114]:
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1. extracting fault symptoms from the process, and residual evaluation

2. decision making based on the residual evaluation

Residual generation in model based approaches is the most important step, which

is non-trivial in processes with unmeasured state variables [97, 113, 114]. A schematic

representation of model-based fault diagnosis is shown in Figure. 5.1.

Figure 5.1: Model-based fault diagnosis Scheme [97, 113, 114]

If the models is deterministic, the residuals are often generated using an observer.

Otherwise, for stochastic models, a filter has been used. Typically, for residuals generation,

the model-based methods rely on the model being linear and noise being Gaussian [95].

The model-based methods have been extended to nonlinear systems in the literature.

However, these extensions are based on suboptimal state estimators such as extended

Kalman filters (EKF), and unscented Kalman filters (UKF). In these suboptimal filters,

the nonlinear system has been approximated through linearization and/or the noise has

been assumed Gaussian. The approximations are often not satisfactory and lead to a high
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rate of false alarms.

In the light of aforementioned above, we use the model-based FD algorithm based on

a sequential monte carlo (SMC) method called particle filter to detect either the faults

in insulin pump therapy or the organ abnormalities in type II diabetic patients. The

proposed approach does not require linearization of the Vahidi model or Gaussianity of the

measurement noises [96].

Since the SMC methods are computationally intensive, their implementation needs the

high performance computers. There is some existing literature on the use of SMC for

fault detection [96, 115–117]. In these studies, the SMC algorithms proposed are based

on the log-likelihood test of observed data under a null and an alternate hypothesis. In

these approaches the likelihood function is estimated under both hypotheses and the like-

lihood function is driven through an approximation that is not applicable to all types of

nonlinearities.

In this study, we propose the application of the model-based FD algorithm based on a

sequential monte carlo (SMC) method to detect either the faults in insulin pump therapy

or the organ abnormalities in type II diabetic patients.

This chapter is organized as follows. In the following section, the model-based fault

detection based on the SMC filtering method is discussed. In section 5.3, the proposed

technique for detecting disconnection in insulin infusion systems and detecting organs de-

ficiency are explained.

5.2 Problem statement

In order to use the model-based fault detection technique, the discrete format of the Vahidi

model described in section 4.2 in equation 4.3 has been used. The measurement and state

noises presented in equations (4.3a) and (4.3b) are assumed to enter the process in a
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linear fashion in linear processes and, to some extent, in nonlinear processes. Therefore,

based on this fundamental assumption, faults can be detected simply by generating and

monitoring the prediction errors (or residuals) between the process measurements and

model predictions. The one step-ahead predictions from equation (4.3b) can be written as:

ŷt = g(xt|t−1, ut, θ) (5.1)

where xt|t−1 is the one step-ahead prediction of the state, ŷt is the one-step ahead prediction

of the output. Then the prediction error or the residual can be simply written as:

r̂t = yt − ŷt (5.2)

When there are no changes in the glucose-insulin system, the density function of the

residuals, r̂t, must closely follow the measurement noise, wt. Any deviation of the residuals

from this density function implies a fault in the glucose-insulin system.

Measurements of glucose and insulin concentrations in different parts of the body re-

quire complex clinical facilities and in some cases may risk the life of the patient. Therefore,

clinical measurements of all required concentrations are not possible. The commonly avail-

able clinical data include peripheral insulin and glucose concentrations only. Therefore,

a straightforward residual analysis, as presented in equations (5.1) and (5.2) is difficult.

To overcome this problem, we use a sequential monte carlo (SMC) filtering method called

particle filters on a nonlinear model of a group of diabetic patients to estimate the glucose

and insulin concentrations in different parts of the body. SMC filtering method previously

described in details in section 4.3.3.
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5.3 Fault detection of glucose-insulin system

In this section, the efficiency of the sequential monte carlo (SMC) filtering method for

failure detection in a glucose-insulin system is demonstrated. To build a model-based

fault detection system, we need to have reliable type II diabetes model. In the previous

chapter, we used the data provided by Knop et al. [73, 74] to estimate the parameters of

the Vahidi model. In this chapter, we use the same parameters to simulate the body of the

type II diabetic patient, which is under closed-loop insulin pump therapy. The closed-loop

simulation assumes that the patient’s initial blood glucose is at 115.63 mg/dl. The meal

disturbance of 75 gr glucose was introduced at time 500 min. A PI controller with tuning

parameters KC = 0.22 and KI = 0.44 is simulated to control the patient’s blood glucose

level at 90 mg/dl. Fig. 5.2 presents the responses of the PI controller. At time 500 min

glucose level increases due to 75 gr meal disturbance. However, the PI controller is able

to control the blood glucose level at 90 mg/dl.
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Figure 5.2: Response of the PI controller with a 75 gr meal disturbance at time = 500
min.

In the following sections, four different fault cases are simulated and the SMC filtering

method is used to detect the faults. For implementing the SMC filtering, based on the

discrepancies between the Vahidi model and the Knop’s experimental data, the following

parameters were selected:

• The number of particles N = 25

• The sampling time used for discretizing the Vahidi model ∆t = 0.2 min

• The maximum states noises vt ∼ N (0, 0.001)

• The measurement noise wt ∼ N (0, 0.001)
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All the simulations were conducted on a 2.90 GHz CPU with 8 GB RAM Mac using

MATLAB 2012b.

5.3.1 Detection of insulin pump disconnection (Case 1)

In case 1, we assume that the insulin pump is disconnected 800 min after the diabetic

patient consumes the 75 gr meal at 500 min. Figure. 5.3a shows the response of the PI

controller when there is no fault and one when the insulin pump is disconnected at time

1300 min.
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Figure 5.3: Detection of insulin pump disconnection. The blue solid line curve represents
no fault and red dashed curve represents fault in Case 1

The residual or prediction error between the measured and the predicted blood glucose
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level is shown in Fig. 5.3b. The residual closely follows the measurement noise, wt before

insulin pump gets disconnected. However, it deviates from this density function after time

1300 min.

Figure. 5.3c shows the alarm signal, which stays at zero while the prediction error

between predicted and measured blood glucose level is less than 10 mg/dl. Otherwise, it

stays at one. Figure. 5.3d shows that the insulin pump is disconnected at time 1300 min

and the insulin infusion rate is zero after time 1300 min.

5.3.2 Detection of kinked insulin pump tubing (Case 2)

In case 2, we assume that the insulin pump is kinked 800 min after the diabetic patient

consumes the 75 gr meal at 500 min. Figure. 5.4a shows the response of the PI controller

when there is no fault and one when the insulin pump is kinked after time 1300 min. To

simulate the kinked insulin pump tubing, we assume that the PI controller output (insulin

infusion rate) is fluctuated between 0 to 6 mU/min after 1300 min.
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Figure 5.4: Detection of kinked insulin pump tubing. The blue solid line curve represents
no fault and red dashed curve represents fault in Case 2

The residual or prediction error between the measured and the predicted blood glucose

level is shown in Fig. 5.4b. The residual closely follows the measurement noise, wt before

insulin pump gets kinked. However, it deviates from this density function after time 1300

min.

Figure. 5.4c shows the alarm signal, which stays at zero while the prediction error

between predicted and measured blood glucose level is less than 10 mg/dl. Otherwise, it

stays at one. Figure. 5.4d shows that the insulin pump is kinked at time 1300 min and

the insulin infusion rate is fluctuated.
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5.3.3 Detection of organ dysfunction

The glucose metabolic rates in the liver, muscles and adipose tissues represent the behaviour

of those organs. From section 2.1, these rates are calculated by measuring the glucose and

insulin concentrations in different parts of the body using complex clinical facilities. How-

ever, only peripheral insulin and glucose concentrations are available in common clinical

data.

In the following sections the glucose concentration in peripheral tissues and the liver

are estimated using the SMC filtering method. Then, using the estimated glucose concen-

trations in peripheral tissue and liver, peripheral glucose uptake rate and hepatic glucose

uptake rate are calculated. Decrease in the glucose uptake rate and hepatic uptake rate

will provide insight into the insulin resistance of peripheral tissues and liver.

Detection of peripheral insulin resistance (Case 3)

In case 3, we assume that the peripheral glucose uptake rate, rPGU , is decreased by 80%

from the previous rate in the simulated patient under insulin pump therapy. The meal dis-

turbance of 75 gr glucose was introduced at time 500 min. Figure. 5.5a shows the response

of the PI controller when the insulin sensitivity of the peripheral tissues is decreased by

80%.
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Figure 5.5: Detection of peripheral insulin resistance. The blue solid line curve represents
no fault and red dashed curve represents fault in Case 3

The residual or prediction error between the measured and the predicted blood glucose

level is shown in Fig. 5.5b. The residual deviates significantly during the meal ingestion.

Figure. 5.5c shows the alarm signal, which stays at zero while the prediction error between

predicted and measured blood glucose level is less than 10 mg/dl. Otherwise, it stays at

one.

In Fig. 5.5d, the profile of the peripheral glucose uptake rate is shown. The increase

in blood glucose level during the meal ingestion at time 500 min is due to %80 increase in

insulin resistance of the peripheral tissues.
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5.3. Fault detection of glucose-insulin system

Detection of hepatic insulin resistance (Case 4)

In case 4, we assume that the hepatic glucose uptake rate, rHGU , is decreased by 80%

from the previous rate. The meal disturbance of 75 gr glucose was consumed at time 500

min. Figure. 5.6a shows the response of the PI controller when there is no hepatic insulin

resistance and one when the hepatic insulin resistance decreased by 80%.
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Figure 5.6: Detection of hepatic insulin resistance. The blue solid line curve represents no
fault and red dashed curve represents fault in Case 4

The residual or prediction error between the measured and the predicted blood glucose

level is shown in Fig. 5.6b. The residual deviates significantly during the meal ingestion.

Figure. 5.6c shows the alarm signal, which stays at zero while the prediction error between

predicted and measured blood glucose level is less than 10 mg/dl. Otherwise, it stays at
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5.3. Fault detection of glucose-insulin system

one.

In Fig. 5.6d, the profile of the hepatic glucose uptake rate is shown. The increase in

blood glucose level during the meal ingestion at time 500 min is due to %80 increase in

hepatic insulin resistance.
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Chapter 6

Conclusions and recommendations

6.1 Summary

This thesis focuses on assessment of type II diabetes mellitus using compartmental mathe-

matical modelling. The outcomes of this research are summarized in the following sections.

6.1.1 A simple self-administered method for assessing insulin

sensitivity in type II diabetic patients

Chapter 3 presented a simple self-administered method for assessing insulin sensitivity

in type II diabetic patients. In this chapter, the feasibility of using the mathematical

compartment model proposed by Vahidi et al. [7, 51] to estimate insulin sensitivity has been

evaluated. Fifteen sets of OGTT data from diabetic patients published in the literature

have been used to estimate the Vahidi model parameters. From the estimated model

parameters, a simple method for conveniently estimating insulin sensitivity by patients

themselves has been developed and evaluated. It is shown that the proposed method

yields an ISI measure, which is strongly correlated with the M-value obtained from the

euglycemic clamp test (r =0.927, p= 0.0045).
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6.1. Summary

6.1.2 Assessment of type II diabetes mellitus using irregularly sampled

measurements with missing data

In chapter 4, we have identified the nonlinear states and the parameters of glucose, insulin

and incretins sub-model developed by Vahidi et.al [7] for type II diabetes mellitus in the

presence of 10%, 25% and 50% of randomly missing clinical observations by employing the

Sequential Importance Resampling (SIR) filtering method. The motivation for this study

originates from the lack of complete knowledge about the health status of the diabetic

patients. In addition, only a few blood glucose measurements per day are available in a

non-clinical setting due to different reasons like unreadable hand writing, inability to record

clinical results, and infrequent sampling by patients.

It is shown that by implementing an on-line SIR particle filtering method to the Vahidi

model developed for type II diabetes mellitus, we are able to estimate the dynamics of the

plasma glucose, insulin and incretins concentration under the presence of maximum 50%

available clinical data. In addition, the goodness of fit between the simulated peripheral

glucose, insulin and incretins concentration and their available measurements were almost

80% in the most of the experiments. The results of this study can be used to inform type

II diabetic patients of their medical conditions, enable physicians to review past therapy,

estimate future blood glucose levels, provide therapeutic recommendations and even design

a stabilizing control system for blood glucose regulation.

6.1.3 Model-based detection of organ dysfunction and faults in insulin

infusion devices for type 2 diabetic patients

In chapter 5, we have used the type II diabetes model developed by Vahidi et.al [51].

We employed model-based fault detection technique based on a Sequential Monte Carlo

(SMC) filtering method for detecting faults in insulin infusion system and detecting organ
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6.2. Recommendations for future work

dysfunction. The proposed approach has been demonstrated (in silico) to be an effective

tool for detecting disconnection faults in insulin infusion systems and detecting organ

deficiencies. In the future work, we intend to extend this work to develop an algorithm

capable of detecting and isolating faults simultaneously in a glucose-insulin system.

6.2 Recommendations for future work

Various medications are available for type II diabetic subjects such as insulin, sulfonylureas,

meglitinides, biguanides and thiazolidinediones that decrease the blood glucose level in type

II diabetic patients. Specific type of medication is prescribed to the diabetic patients based

on the type and severity of abnormalities. Therefore, the information obtained from the

developed type II diabetes model would be helpful in prescribing a suitable medication for

the diabetic patients. In addition, the chance of prescribing an efficient medication for the

patients in a safe and cost effective way has been increased.

In the light of aforementioned above, the research area, which can be taken into more

consideration is the study of development of pharmacokinetic-pharmacodynamic (PK-PD)

models for different medicines. The term “pharmacokinetics” refers to a branch of phar-

macology studying the fate of an external substance administered to a live organism. The

term “pharmacodynamic” refers to another branch of pharmacology examining the bio-

chemical and physiological effects of a medicine on a live organism. The PK-PD models

study the effect of different medicines on the patients safely without any administration

that may be harmful for the patients.

A pharmacokinetic model can be attached to the type II diabetes model representing

how the medication is distributed into the body organs and consumed by them. For the

pharmacodynamic part, structural modification should be attached into the type II diabetes

model to represent the effects of the medication on body organs. I have contributed in
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developing a pharmacokinetic pharmacodynamic model for metformin and four types of

insulin (regular, NPH, lente and ultralente) whose preliminary results have been published

in [76]. Similarly, PK-PD models for other medications can be developed for studying the

effects of them on lowering the blood sugar level.
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Appendix A

The numerical values of the clinical data sets used in chapter 4 are provided here in detailed.

These values are normalized by the body weight of the subjects shown in Table A.1.

Table A.1: Gender and body weight of diabetic subjects [7]

Subject
1 2 3 4 5 6 7 8 9 10

Body weight Kg 73.0 81.0 106.0 74.0 53.0 65.5 77.5 69.0 69.0 69.5

Gender M M M M F F M M M M

Table A.2: Normalized GLP-1 concentration data set (pmol/l) of diabetic subjects for
OGTT [7]

Time (min)
Subject

Mean
1 2 3 4 5 6 7 8 9 10

0 17.7 19.7 18.0 18.3 15.7 11.7 22.7 8.0 9.7 9.3 15.1
15 41.0 28.2 30.1 15.9 28.8 14.8 25.3 9.0 9.0 16.0 21.8
30 26.4 42.0 36.2 32.8 28.8 48.5 33.0 29.7 13.9 19.9 31.1
45 29.5 36.3 36.2 18.0 36.4 65.3 27.5 35.6 16.9 30.8 33.2
60 36.8 28.2 39.2 22.2 29.5 45.7 25.3 22.8 17.9 29.9 29.7
90 22.2 16.6 30.1 18.0 20.5 20.4 23.0 18.8 22.8 21.9 21.4
120 12.8 10.8 33.1 11.6 13.6 15.7 24.1 12.9 13.9 16.0 16.5
150 9.7 10.8 39.2 14.8 21.2 18.5 23.0 13.9 10.5 14.0 17.6
180 14.9 13.1 28.6 21.2 16.7 14.8 14.2 16.9 7.0 15.0 16.2
240 9.7 14.3 19.5 16.9 11.4 12.0 9.8 10.0 10.0 16.0 12.9
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Table A.3: Normalized GIP concentration data set (pmol/l) of diabetic subjects for OGTT
test [7]

Time (min)
Subject

Mean
1 2 3 4 5 6 7 8 9 10

0 9.0 6.7 9.0 36.0 16.3 12.3 30.3 8.7 11.7 42.3 18.2
15 89.3 80.0 127.1 77.2 61.5 47.6 125.2 26.7 19.9 100.6 75.5
30 59.1 118.1 133.2 144.9 67.6 78.5 107.5 32.7 45.5 110.5 89.7
45 83.0 95.0 115.0 142.8 72.9 55.1 108.6 28.7 57.3 111.5 87.0
60 69.5 95.0 90.8 113.2 61.5 60.7 105.3 35.6 62.3 118.5 81.2
90 72.6 39.5 68.1 66.7 59.2 40.1 78.7 26.7 51.4 93.6 59.7
120 33.0 22.1 31.7 40.2 24.4 30.7 41.0 15.9 24.8 32.1 29.6
150 15.3 11.7 9.0 18.0 13.1 17.6 20.0 8.0 17.4 21.2 15.1
180 10.0 11.7 10.5 19.1 10.0 14.8 8.9 10.0 10.0 24.1 12.9
240 6.9 10.5 12.0 10.6 12.3 9.2 17.8 9.0 7.1 12.2 10.8
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Table A.4: Normalized peripheral glucose concentration data set (mmol/l) of diabetic
subjects for OGTT test [7]

Time (min)
Subject

Mean
1 2 3 4 5 6 7 8 9 10

0 8.4 9.1 7.5 10.4 7.6 7.3 8.3 6.2 12.0 8.4 8.5
5 8.1 8.8 6.7 9.9 7.2 6.7 8.0 6.1 11.6 8.3 8.1
10 8.8 9.9 8.3 10.8 8.5 7.5 8.1 6.6 12.5 8.7 9.0
15 10.0 11.3 9.6 11.5 9.3 8.3 9.3 8.0 12.8 9.7 10.0
20 11.1 13.2 10.7 12.5 10.1 9.1 10.7 7.9 14.1 10.8 11.0
30 12.3 15.8 13.6 16.4 11.0 11.4 14.4 10.0 15.1 12.5 13.2
40 13.2 18.0 14.6 17.6 12.0 13.0 15.3 11.2 16.8 14.5 14.6
50 14.7 18.6 16.4 18.6 12.7 12.7 16.4 11.7 17.5 15.8 15.5
60 16.3 19.4 17.3 19.6 13.1 12.7 17.0 11.5 18.5 16.9 16.3
70 16.8 19.6 16.3 19.6 13.4 11.3 16.8 11.6 19.1 17.7 16.2
90 18.4 16.7 15.5 19.3 12.7 9.6 13.5 11.3 20.2 17.5 15.5
120 17.5 14.0 13.3 17.4 10.9 7.8 10.1 9.7 19.2 13.6 13.3
150 16.4 12.0 10.2 15.4 8.6 5.8 8.3 7.6 17.5 11.0 11.3
180 14.3 9.6 7.7 14.0 7.5 5.2 7.1 6.5 16.2 9.0 9.7
240 12.2 7.2 5.7 12.4 6.4 5.3 5.4 5.5 14.7 6.4 8.1
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Table A.5: Normalized peripheral insulin concentration data set (pmol/l) of diabetic sub-
jects for OGTT test [7]

Time (min)
Subject

Mean
1 2 3 4 5 6 7 8 9 10

0 43 50 126 48 52 32 27 17 22 33 45
10 33 71 102 42 68 34 34 14 29 39 46
20 75 122 216 29 122 89 68 40 37 62 86
30 109 153 379 67 114 197 99 77 34 83 131
40 66 202 399 55 152 202 99 91 57 59 138
50 68 180 408 81 201 155 133 59 53 102 144
60 81 184 446 75 199 196 152 48 47 102 153
70 73 85 393 50 161 198 179 57 35 165 140
90 82 107 414 65 175 173 129 59 36 194 143
120 49 111 378 52 107 102 74 38 24 78 101
150 63 87 250 63 60 38 40 28 24 64 72
180 50 69 184 42 66 26 30 14 33 65 58
240 38 44 81 46 42 30 14 5 22 28 35
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Table A.6: Normalized peripheral glucose concentration data set (mmol/l) of diabetic
subjects for IIVGIT test [7]

Time (min)
Subject

Mean
1 2 3 4 5 6 7 8 9 10

0 9.3 10.8 7.5 10.4 6.7 7.4 7.2 5.5 12.4 8.8 8.6
5 8.7 11.0 6.4 9.7 7.5 6.3 6.3 4.8 11.9 8.3 8.1
10 9.1 11.1 8.9 10.7 8.3 7.7 8.2 6.6 12.3 8.6 9.1
15 9.7 11.1 10.7 11.9 9.2 9.2 9.7 8.0 13.5 10.5 10.3
20 10.4 13.3 12.0 12.1 9.9 9.5 10.3 8.7 14.0 11.4 11.2
25 10.8 14.3 13.1 12.8 10.3 9.7 10.6 9.3 14.0 11.8 11.7
30 11.4 15.4 15.2 14.0 11.3 10.5 12.3 10.5 15.3 13.1 12.9
35 12.3 16.0 16.1 13.5 12.3 10.8 13.1 10.5 15.7 13.8 13.4
40 13.2 17.0 18.7 15.9 13.3 11.5 15.4 11.3 16.6 14.3 14.7
45 14.0 17.7 18.7 17.8 14.3 11.9 16.7 10.1 16.8 14.6 15.3
50 14.6 18.3 18.6 18.6 14.4 13.8 17.4 12.2 17.3 15.7 16.1
60 16.3 19.0 17.9 19.4 14.1 13.9 16.9 12.1 18.0 17.4 16.5
70 16.9 19.8 17.2 19.9 12.8 12.4 16.9 12.3 19.1 17.9 16.5
90 17.4 18.0 14.9 20.2 11.5 9.6 15.2 12.9 19.7 17.8 15.7
120 17.9 15.1 12.3 18.1 10.3 7.4 11.9 11.8 19.9 14.9 13.9
150 16.1 12.9 9.8 16.2 8.8 6.0 8.2 9.9 18.2 12.5 11.9
180 15.0 11.0 8.3 13.8 7.3 5.3 7.1 8.3 17.1 10.4 10.4
240 12.6 8.8 5.8 12.3 6.1 5.2 5.2 6.3 15.3 7.3 8.5
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Table A.7: Normalized peripheral glucose concentration data set (mmol/l) of diabetic
subjects for IIVGIT test [7]

Time (min)
Subject

Mean
1 2 3 4 5 6 7 8 9 10

0 9.3 10.8 7.5 10.4 6.7 7.4 7.2 5.5 12.4 8.8 8.6
5 8.7 11.0 6.4 9.7 7.5 6.3 6.3 4.8 11.9 8.3 8.1
10 9.1 11.1 8.9 10.7 8.3 7.7 8.2 6.6 12.3 8.6 9.1
15 9.7 11.1 10.7 11.9 9.2 9.2 9.7 8.0 13.5 10.5 10.3
20 10.4 13.3 12.0 12.1 9.9 9.5 10.3 8.7 14.0 11.4 11.2
25 10.8 14.3 13.1 12.8 10.3 9.7 10.6 9.3 14.0 11.8 11.7
30 11.4 15.4 15.2 14.0 11.3 10.5 12.3 10.5 15.3 13.1 12.9
35 12.3 16.0 16.1 13.5 12.3 10.8 13.1 10.5 15.7 13.8 13.4
40 13.2 17.0 18.7 15.9 13.3 11.5 15.4 11.3 16.6 14.3 14.7
45 14.0 17.7 18.7 17.8 14.3 11.9 16.7 10.1 16.8 14.6 15.3
50 14.6 18.3 18.6 18.6 14.4 13.8 17.4 12.2 17.3 15.7 16.1
60 16.3 19.0 17.9 19.4 14.1 13.9 16.9 12.1 18.0 17.4 16.5
70 16.9 19.8 17.2 19.9 12.8 12.4 16.9 12.3 19.1 17.9 16.5
90 17.4 18.0 14.9 20.2 11.5 9.6 15.2 12.9 19.7 17.8 15.7
120 17.9 15.1 12.3 18.1 10.3 7.4 11.9 11.8 19.9 14.9 13.9
150 16.1 12.9 9.8 16.2 8.8 6.0 8.2 9.9 18.2 12.5 11.9
180 15.0 11.0 8.3 13.8 7.3 5.3 7.1 8.3 17.1 10.4 10.4
240 12.6 8.8 5.8 12.3 6.1 5.2 5.2 6.3 15.3 7.3 8.5

147



Appendix A.

Table A.8: Normalized peripheral insulin concentration data set (pmol/l) of diabetic sub-
jects for IIVGIT test [7]

Time (min)
Subject

Mean
1 2 3 4 5 6 7 8 9 10

0 27 74 111 46 45 33 17 7 17 32 41
10 21 73 90 46 47 44 21 26 18 30 42
20 22 84 152 36 47 51 28 28 11 30 49
30 20 80 209 43 63 55 31 26 12 36 57
40 18 98 244 45 62 78 39 31 16 47 68
50 22 106 297 57 67 99 44 30 19 49 79
60 25 101 334 75 79 126 73 25 15 66 92
70 27 105 259 91 64 117 71 23 17 47 82
90 37 101 349 75 70 108 62 24 20 42 89
120 36 95 294 64 84 68 72 19 23 62 82
150 41 100 197 47 56 53 55 21 21 16 61
180 50 110 161 53 40 21 29 17 24 16 52
240 30 50 91 35 31 19 17 10 20 27 33
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Table A.9: : Intravenous glucose infusion amount (g) to diabetic subjects during IIVGIT
test [7]

Time (min)
Subject

Mean
1 2 3 4 5 6 7 8 9 10

0-15 1.53 0.2 13.8 2.4 8 3.2 6 6.4 2.8 2.6 4.7
15-30 4.41 11 10.6 6.4 8.8 7.6 11.2 10 7.8 8.2 8.62
30-45 9.21 8.6 17.4 13.2 12.4 11.6 12.8 3.8 8.4 8.4 10.62
45-60 7.48 8.6 4.8 12.2 3.8 7.8 8 7.8 8.2 11.2 8.02
60-75 5.95 6.6 2.8 7.6 1.4 0.8 4.8 5.8 9.2 8.6 5.38
75-90 4.99 1.4 0.8 3.2 2 0.4 2 4.2 7.2 6.2 3.26
90-105 6.33 0 0.2 2 2.8 0.2 0.2 3 7 0.4 2.24
105-120 0.96 0 0 2 3 0.4 0 1.4 0.4 0 0.82
120-135 0.58 0 0 0.6 3.2 0.2 0 0 0.2 0 0.48
135-150 0.38 0 0 0.4 0 0.2 0 0 0 0 0.1
150-165 0.58 0 0 0 0 0 0 0 0 0 0.06
165-180 0 0 0 0 0 0 0 0 0 0 0
180-195 0.19 0 0 0 0 0 0 0 0 0 0.02
195-240 0 0 0 0 0 0 0 0 0 0 0
Total 42.6 36.4 50.4 50 45.4 32.4 45 42.4 51.2 45.6 44.32
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