- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- A comparison of touchscreen and mouse for real-world...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
A comparison of touchscreen and mouse for real-world and abstract tasks with older adults Zhang, Kailun
Abstract
Touchscreens have become a mainstream input device for older adults. We compared performance of touchscreen and mouse input for older adults on both abstract and real-world pointing and dragging tasks: classic Fitts’s law tasks and tasks drawn from C-TOC, a computerized cognitive test being designed for older adults. The abstract and real-world tasks were designed to require equivalent motor skills. Sixteen older adult participants completed both types of tasks using a touchscreen and a mouse. The touchscreen was faster for both task types but somewhat more error-prone. However, the speed advantage of touchscreens for abstract tasks did not translate evenly to the corresponding real-world tasks. A KLM was used to explain the different speed gains in real-world tasks by incorporating both physical and cognitive components. As a self-administered test, C-TOC, would benefit from richer performance measures, beyond speed and accuracy, to compensate for the lack of a clinician observer who is typically present in comparable paper-based cognitive tests. We looked into the movement patterns of a real-world dragging task – the C-TOC Pattern Construction task – and found that older adults naturally adopted different movement patterns between devices: they tended to make shorter moves and a greater number of moves on a touchscreen than with a mouse. This indicates that careful device-based calibration will be needed for new performance metrics in computerized tests.
Item Metadata
| Title |
A comparison of touchscreen and mouse for real-world and abstract tasks with older adults
|
| Creator | |
| Publisher |
University of British Columbia
|
| Date Issued |
2015
|
| Description |
Touchscreens have become a mainstream input device for older adults. We compared performance of touchscreen and mouse input for older adults on both abstract and real-world pointing and dragging tasks: classic Fitts’s law tasks and tasks drawn from C-TOC, a computerized cognitive test being designed for older adults. The abstract and real-world tasks were designed to require equivalent motor skills. Sixteen older adult participants completed both types of tasks using a touchscreen and a mouse. The touchscreen was faster for both task types but somewhat more error-prone. However, the speed advantage of touchscreens for abstract tasks did not translate evenly to the corresponding real-world tasks. A KLM was used to explain the different speed gains in real-world tasks by incorporating both physical and cognitive components. As a self-administered test, C-TOC, would benefit from richer performance measures, beyond speed and accuracy, to compensate for the lack of a clinician observer who is typically present in comparable paper-based cognitive tests. We looked into the movement patterns of a real-world dragging task – the C-TOC Pattern Construction task – and found that older adults naturally adopted different movement patterns between devices: they tended to make shorter moves and a greater number of moves on a touchscreen than with a mouse. This indicates that careful device-based calibration will be needed for new performance metrics in computerized tests.
|
| Genre | |
| Type | |
| Language |
eng
|
| Date Available |
2015-11-23
|
| Provider |
Vancouver : University of British Columbia Library
|
| Rights |
Attribution-NonCommercial-NoDerivs 2.5 Canada
|
| DOI |
10.14288/1.0216481
|
| URI | |
| Degree (Theses) | |
| Program (Theses) | |
| Affiliation | |
| Degree Grantor |
University of British Columbia
|
| Graduation Date |
2016-02
|
| Campus | |
| Scholarly Level |
Graduate
|
| Rights URI | |
| Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivs 2.5 Canada