- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Fontaine's rings and p-adic L-functions
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Fontaine's rings and p-adic L-functions Tung, Shen-Ning
Abstract
In the first part, we introduce theory of p-adic analysis for one variable p-adic functions and then use them to construct Kubota-Leopoldt p-adic L-functions. In the second part, we give a description of the Iwasawa modules attached to p-adic Galois representations of the absolute Galois group of K in terms of the theory of (φ,Γ)-modules of Fontaine. When the representation is de Rham when K be finite extension of Qp. This gives a natural construction of the exponential map of Perrin-Riou which is used in the construction and the study of p-adic L-functions. In the third part, we give formulas for Bloch-Kato’s exponential map and its dual for an alsolutely crystalline p-adic representation V . As a corollary of these computation, we can give a improved description of Perrin-Riou’s exponential map, which interpolates Bloch-Kato’s exponentials for the twists of V. Finally we use this map to reconstruct Kubota-Leopoldt p-adic L-functions.
Item Metadata
Title |
Fontaine's rings and p-adic L-functions
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2015
|
Description |
In the first part, we introduce theory of p-adic analysis for one variable p-adic functions and then use them to construct Kubota-Leopoldt p-adic L-functions.
In the second part, we give a description of the Iwasawa modules attached to p-adic Galois representations of the absolute Galois group of K in terms of the theory of (φ,Γ)-modules of Fontaine. When the representation is de Rham when K be finite extension of Qp. This gives a natural construction of the exponential map of Perrin-Riou which is used in the construction and the study of p-adic L-functions.
In the third part, we give formulas for Bloch-Kato’s exponential map and its dual for an alsolutely crystalline p-adic representation V . As a corollary of these computation, we can give a improved description of Perrin-Riou’s exponential map, which interpolates Bloch-Kato’s exponentials for the twists of V. Finally we use this map to reconstruct Kubota-Leopoldt p-adic L-functions.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2015-03-02
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivs 2.5 Canada
|
DOI |
10.14288/1.0167676
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2015-05
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivs 2.5 Canada