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Abstract

In the first part, we introduce theory of p-adic analysis for one variable p-adic functions and then use
them to construct Kubota-Leopoldt p-adic L-functions.

In the second part, we give a description of the Iwasawa modules attached to p-adic Galois represen-
tations of the absolute Galois group of K in terms of the theory of (¢,I")-modules of Fontaine. When
the representation is de Rham when K be finite extension of Q,. This gives a natural construction of the
exponential map of Perrin-Riou which is used in the construction and the study of p-adic L-functions.

In the third part, we give formulas for Bloch-Kato’s exponential map and its dual for an alsolutely
crystalline p-adic representation V. As a corollary of these computation, we can give a improved descrip-
tion of Perrin-Riou’s exponential map, which interpolates Bloch-Kato’s exponentials for the twists of V.

Finally we use this map to reconstruct Kubota-Leopoldt p-adic L-functions.
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Preface

This thesis is a reorganisation of classical materials on Perrin-Riou’s big reciprocity law maps and theory
of (¢,I') module. The author is benefited from papers of Cherbonnier, Colmez, Berger, Loeffler and

Zerbes. The topic of this thesis was suggested by my supervisor, Professor Sujatha Ramdorai.
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Chapter 1

Introduction

1.1 Overview

We fix an algebraic closure Qp of Q,. If K is a finite extension of Q, and n € N, we put K, = K(u,,)
with i, the p-th root of unity and we denote by K., the union of K,,. We denote by G the Galois group
Gal(Q,/K) and H the kernel of the restriction of x on Gg where x : Go, — Z is the cyclotomic units.
Thus Hx = Gal(Q,/K-) and we put I'y = Gg /Hx = Gal(K../K).

The theory of (¢,I")-modules, introduced by Fontaine, associate a p-adic representation V of Hg to
a module D(V) over a dimension 2 local field (ring of Laurent series in one variable with coefficient in a
finite unmarried extension of Q,, with a Frobenius action ¢ and a left invere y of @. If V is a representation
of G, then the module D(V) is endowed with an residue action I'y commuting with ¢. The reason this
theory is interested is because we can reconstruct V via D(V'), which is a more amenable object. Indeed,
since [k is procyclic, the structure of D(V) is totally decided by the action of two operators (¢ and the
generator of I'x) verifying the commutative relation. Thus, to study the p-adic Galois representations of

Gk is equivalent to (¢,T")-modules. Two main results we will prove are

1. the construction of the isomorphism Expy. |, from the Iwasawa module H kv =Qp® (limH YK, T))
to D(V)¥=! where T is a Galois fixed lattice in V.

2. an explicit reciprocity law of Expz‘/*(l) where V is a de Rham representation in terms of the the

Bloch-Kato’s exponential maps.

The first one using the result of Herr, which gives a description of H} (K,V) in terms of D(V). In
the case V = Q,(1) and K is unramified extension over Q,, the map Exp;“,*(l) can be described in terms
of derivatives of classical Coleman’s power series (See [8]). We therefore obtain a generalized Coleman
power series without any restriction of K. To prove the explicit reciprocity law, we use the fact that every

representation of Gk is overconvergent. This is an ingredient permits us to link D(V') and the of Dgg (V).



When K is unramified extension of Q, and V is crystalline representation of Gk, Perrin-Riou has
constructed in [18] a period map Qy,j, which interpolates the expg y () as k runs over the positive integers.
It is a generalization of Coleman’s map. Using the inverse of Perrin-Riou’s map, one can then associate to
an Euler system a p-adic L-function. If one starts with V = Q,(1), then Perrin-Riou’s map is the inverse

of the Coleman isomorphism and one recovers Kubota-Leopoldt’s p-adic L-functions.

1.2 Structure of the thesis

In chapter 2-3, following [11] and [12], we introduce the theory of one variable p-adic functions and use
it to construct Kubota-Leopoldt p-adic L-functions which interpolate the value of Dirichlet L-functions at

negative integers.

In chapter 4-6, we begin with background of (¢,I")-modules and its relation with p-adic Galois repre-
sentations. Following [14], we can use Herr complexes to compute Galois cohomology groups of p-adic
Galois representations. Finally, we prove the Fontaine’s isomorphism in [6] which relates Iwasawa coho-

mology groups of p-adic Galois representations with its associated (¢, I")-modules.

In chapter 7-8, we introduce Fontaine’s period rings and overconvergent representations. Following
[5], we can compare Dggr and D'. We then introduce Bloch-Kato’s exponential map and its dual in [4] and

use overconvergent representation to deduce Colmez’s explicit reciprocity law in [6].

In chapter 9, we recall the definition of Coleman’s power series in [8]. Following [6], we study its
relation with the (¢, I")-modules associated to Z,(1). Combining with Colmez’s explicit reciprocity laws,
we reinterpret classical Coates-Wiles homomorphisms.

In chapter 10-11, we first introduce the Robba ring B;g, which can be used to reinterpret Fontaine’s
isomorphism. By [2], we can get three explicit reciprocity formulas for Bloch-Kato’s exponential map
and its dual and use these explicit reciprocity formulas to deduce Perrin-Riou’s big exponential map in

[18].

In chapter 12, we follows the variance in appendix of [17], which allows us to add a finite order char-
acter in the inverse of Perrin-Riou’s big exponential map constructed in chapter 10. Via this map, we can

reconstruct Kubota-Leopoldt p-adic L-functions via cyclotomic units.



Chapter 2

One variable p-adic functions

2.1 Functions on Z,

Let %O(ZP,L) be the space of continuous functions from Z, to L. Since Z, is compact, every contin-
uous function on Z, is bounded. This allows us to define a valuation v4o on €°(Z,,L) by v4o(¢) =
infyez, (¢ (x)), which makes ¢°(Z,,L) an L-Banach space.

If n € N, let (¥) be the polynomial defined by

(x) 1 ifn=0
n x(x—1)-(x—n+1) ifn>1.

n!

Theorem 2.1.1. (Mahler) {(*),n€ N} forms a Banach basis of €°(Z,,L).

If h € N, let LA, (Z,, L) be the space of functions from Z, to L which is analytic on a + p"Z, for all
acZ, ie. if € LAy(Z,,L), xo € Z,, then ¢ can be written as the form

0(x) =Y ar(¢,x0) (x—x0)* Vx € o+ pZy,
k=0
where ay(xo, ¢) is a sequence in L such that v, (ax(¢,x0)) + kh tends to 4o as k tends to +-co. We endow
LA,(Z,,L) a valuation v, defined by

via,(9) = xoig{p ]:glfl Vp(ar(¢,x0)) + kh,

which makes LAj,(Z,,L) an L-Banach space. One can show that via,(¢) = inggnlfI Vp(9,ak(a)) + kh
acd ke

where S is a representative of Zp/pth. (See [12, remark 1.4.4.])
We denote LA(Z,,L) the space of locally analytic functions on Z,. Since Z, is compact, it is an

inductive limit of LA,(Z,,L), h € N, and we endow it with the inductive limit topology.

3



Theorem 2.1.2. (Amice) {[[%] I(}),n € N} forms a Banach basis of LAy(Z,,L), where [ ] is the Gauss

symbol and ! is the factorial.

Theorem 2.1.3. The function ¢ =¥, an(9)(}) € €°(Z,,L) is in LA(Z,, L) if and only if liminf,, e 1 v, (an()) >
0.

w exists. The limit is denoted

A function ¢ : Z, — L is differentiable at xo € Z,, if lim;,_¢
by ¢’(x0). A function is said to be differentiable of order 1 if it is differentiable at all xo € Z,. Inductively,
we say that a function is differentiable of order £ if its differentiation is of order k — 1.

If » > 0, we say that ¢ : Z, — L is of class €™ if there exist functions (P(j) :Z, — Lfor0<j<][r,
such that, if we define &y, : Z, x Z, — L and Cy , : N = RU {40} by

J
£o.r(x,y) = O(x+y) — Z¢ y and Co (h)= inf  v,(g5,(x,y))—rh,

x€Z,.yep"ZL,
then Cy ,(h) tends to +oo as /i tends to +oo.
We denote " (Z,,L) the set of functions ¢ : Z, — L of class €. We endow ¢”(Z,,L) the valuation
vegr defined by

vgr(9) = inf inf v ((p(j)(x)) inf v, (&p(x,y) = rv,(y))
g 0<j<[r],x€Z, P Jj! ’,yeZ p\Ep.r{ X,y Y ,

which makes it an L-Banach space.

Proposition 2.1.4. If h € N, and if r > 0, then LAy(Z,,L) C ¢"(Z,,L). Moreover, if ¢ € LAy(Z,,L),
then

ver(9) > via,(¢) —rh.

Proof. See [12, proposition 1.5.7]. O
If i € N, we denote /(i) the least integer n such that p” > i, then we have

logi
logp

1(0)=0 and [(i)=] |+ 1,if i > 1.

Theorem 2.1.5. (Mahler) The function ¢ =Y.% an(9) () € €°(Zy,L) isin 6" (Zy,L), r > 0 if and only
if Vp(an(9)) —rl(n) — +oeo as n — +oo. Moreover, the valuation v;,, defined on €"(Z,,L) by the formula

Ve 0) = g (VolantoD) =) )

is equivalent to the valuation ver.

Proof. See [12, proposition 1.5.18]. O



Corollary 2.1.6. pl"/()] (z) n € N forms a Banach basis of ¢€"(Z,,L).

2.2 Distributions on Z,

A continuous distribution on Z,, is a continuous linear function on LA(Z,,L), that is, a linear function
on LA(Z,,L) whose restriction to LA,(Z,,L) is continuous. We denote Z(Z,,L) the set of continuous
distributions on Z, with values in L and endow %(Z,,L) with the Fréchet topology defined by the family
of valuations vy a,, h € N.

Given a continuous distribution u, we associate it with the formal series:

A= [ arrru=yr [ (M

which is called the Amice transform of u. Hence we define a map u +— .27, from continuous distributions

to formal power series.
Lemma 2.2.1. Ifu € 9(Zy,L) and if vp(x) > 0, then [z (1+2)"p(x) = @ (2).

Let Z* be the ring of power series f = Yo a,T" with coefficients in L, which is convergent if
v,(T) > 0.

We say that an element f =Y ca,T" € Z" is of order r if v,(a,) + rl(n) is bounded. We denote
by %’; the subset of Z* of elements of order r, and we endow %, the valuation v, defined by v,(f) =
inf,en Vp(an) + rl(n), which makes it a L-Banach space. We endow #* the Fréchet topology defined by

the family of valuations v,.
Theorem 2.2.2. The map |1 — <7, is an isomorphism of Fréchet space from 9(Z,,L) to #™.
Proof. See [12, Theorem I1.2.2]. OJ

If r > 0, we say a continuous distribution i on Z, is of order r if it can be extended by continuity to
¢". We denote Z,(Z,, L) the set of distributions of order r, which is equipped with a valuation v, defined
by

vy, (1) = inf <V / fu _V%’ff>a
() oy (e, s =ver )

fe€r(Z,,.L

which gives %,(Z,,L) the dual topology of 6" (Z,,,L).
A distribution is said to be tempered if there exist »r € R™ such that it is of order r. We denote

Dremp(ZLp, L) the space of tempered distributions.

Proposition 2.2.3. The map u — 7, induces an isometry from 9,(Z,,L) equipped with valuation v, to

R+ equipped with valuation v,.



A distribution of order O is called measure. By definition, Zy(Z,,L) is the topological dual of the

space of continuous functions. By proposition 2.2.3, we have a one-one correspondence from a measure

to a power series of bounded coefficients.

To sum up, we have
¢ > ¢" DLADLA,

Do C D C P CLA;

2.3 Operations on the distributions

1.

Haar measure: ((Z,) = 1 and u is invariant by translation. We must have u(i+ p"Z,) = [% which is

not bounded. Hence there exists no Harr measure on Z,,.

Dirac measure: For a € Z,,, we define J, the Dirac measure associated to f(a). The Amice transform
of 0,1s @5 (T) = (1+T)"

Multiplication by a function: If u is a distribution on Z,, and f is a locally analytic function on Z,, we
define the distribution fu bnyp o(fu) = fz,, (fo)u.

e Multiplication by x: We have x- () = ((x—n)+n)(}) = (n+1)(,1,) +~1(;). and hence we have

oy (T) =dety whered = (l—i-T)%.

e Multiplication by z* when v, (z—1) > 0: By lemma 2.2.1, if v,(y— 1) >0, and if A is a continuous
distribution on Z,,, then fzp Y'A(x) = (y—1). Applying this to A = 7", we obtain o7) (y— 1) =
7, (yz—1). We have the formula

Aoy (T) = (14 T)z—1).

Restriciton to compact open subset: If X is a compact open subset of Z,, then the characteristic function
Ly is continuous on Z,. If u is a distribution on Z,, the measure 1x u is the restriction of u to X and is

denoted by Resy (u). In particular for n € N and a € Z, we have 1,1z, (x) = p™" ¥ »_ 2 “Z", hence

‘Q{RCSquanp(u)(T) = pin Z Ziadﬂ((l + T)Z_ 1)

an:1

Derivation of distribution: If u € 2(Z,,L), we define du by

/Z(p(x)d/.t:/z ¢'(x)p, and therefore o7y, (T) =log(1+T)- <, (T).



6. Actions of Z},, ¢ and y:

e IfacZ, andif p € P(Zy,L), we define 6,(1) € Z(Z,,L) by

J,

P

0(0)0a(1) = /Z 9 (ax) 1, and therefore 7, ) (T) = Ay (1+T)* —1).
»
e ( acts on distribution i by
[ 0wt = /z,, 0 (px)11, and therefore o) (T) = oAy (14 T)7 —1).
e If yu is a distribution on Z,, we denote y/(u) the distribution on Z, defined by
/ o = /p , O Ou and therefore o) = V(%)

where y: %" — %7 is defined by W(F)((1+T)? —1) = 3 Yo F(1+T) — 1).
The action of Z,, ¢ and y satisfy the relations:

(a) yoo¢ =id.
(b) yoo,=o0,0y and (poGa:Gao(pifaGZ;‘,.

(¢) y(#)=0if and only if u has support on Z, and Fes,,. (u) = (1 — QY)F).
'p
7. Convolution of distribution: If 4 and u are two distributions on Z,, we define the convolution A * i by
/ Q- Axp= / (/ O (x+y)p(x))A(y).
Z, Jz, " Jz,

Let ¢(x) be the function x + ¥, where v, (z— 1) > 0, then we have %7}, (z) = <7, (z) @4 (z). Hence
we deduce ), = ) - D).



Chapter 3

Kubota-Leopoldt p-adic L-functions

3.1 The Riemann zeta function

Let §(s) = X n ™ =T1pprime(1 — p~*) ! be the Riemann zeta function. Let I'(s) = f,:ge_’ts% be the
Gamma function, which is holomorphic on Re(s) > 0 and satisfies the functional equation I'(s+ 1) =
sI'(s), and thus it can be extended to a meromorphic function on C.

Recall we have:

Lemma 3.1.1. IfRe(s) > 1, then

1 /= 1 .t
c<s>=r(s)/0 .

Proposition 3.1.2. If f is a € function on R™ which decreases rapidly at infinity, then the function

dt
t

1t
LS =g [, FOF

defined on Re(s) > 0 admits a holomorphic extension to C and if n € N, then L(f, —n) = (—1)"f"(0).

Apply proposition 3.1.2 to fo(r) = 7. Let ¥,/ Bn% be the Taylor expension of fj at 0, where B, is
the Bernoulli number. We have, in particular

1 1 —1
By =1, 312—57 3226, By=——---.

Since fo(t) — fo(—t) = —t, we have By =0if k > 1.
Theorem 3.1.3.

i) The function { has a meromorphic continuation to C, which has a simple pole at s = 1 with residue
1.



ii) Ifn €N, then {(—n) = (=1)"2=L and in particular {(—n) € Q.

n+1’

3.2 Kummer congruences

If a € R’ by applying proposition 3.1.2 to the function f,(1) = %1 — which is € (the pole at

e[ ell[ 1 9
t = 0 canceling out) on R™ and decreases rapidly at infinity, we have
Corollary 3.2.1. Ifa € R*, the function (1 —a'~%){(s) = L(f,,s) has an analytic continuation on C, and
ifn €N, then (1 —a't"){(—n) = (—1)”f¢5") (0). In particular, if a € Q, then (1 —a'™){(—n) € Q.

Given a continuous distribution u, we associate it with the formal series:

+°°tn N
/eu Z /me
P

which is called the Laplace transform of u.
We have ), (1) = 7 (e —1).

Proposition 3.2.2. If a € Z, there exists a measure U, whose Laplace transform is f,(t). Moreover
vay(la) = 0 and if n €N, then [, x"pa = (—1)"(1 —a'™)¢(—n).

Proof. To show the existance of L, it suffices to prove that the coefficients of series obtained by replace
¢' by 1 +T (Amice transform of ) is bounded by proposition 2.2.3. Since (1+T7)%— 1 is of the form
aT (14 Tg(T)) where g(T) = ¥, 1(4)T"~2 € Z,[[T]], we have

n=2 a

1 Ry nln
T UT:; €Z,[[T]].

Since the coefficients are in Z,,, we have vg,(1,) > 0. Moreover, we have fsz” Uy = fli’:) (0) = ftgn) (0).

O]

Corollary 3.2.3. (Kummer congruences) If a € Z,, and k > 1, if ny and ny are two integers > k such that
ny = ny mod (p —1)p*=1, then

Vp((la”"])é(m)(1a1+"2)C(n2)> >k

Proof. Since by assumption n; > k and ny > k, we have v,(x™) > k and v, (x"?) > k if x € pZ,. On the
other hand, since the order of (Z/p*Z)* is (p — 1)p*~!, and by assumption n; = ny mod (p — 1)pk=!, we
have x" —x" € p*Z, if x € Z;,. To sum up, we have v, (x"' —x"?) > kif x € Z,, and hence veo (x" —x") >
k. Since vg, (Ug) > 0, which implies

V(1 =@ (=m) = (1=a'"){(~m)) = Vp(/ (" =X o (%)) > k.



Proposition 3.2.4. Ifa € 7%, then
i) W(”a) = Ua-
ii) Resz:(a) = (1— @)1y

iii) fZ;x”,ua =(1-p") fsz”uafor alln e N.
Proof. Let F(T) = y(7). By definition, we have
1 1

-1 oo
F(1+T)P—1) :ngz_:1 a+ni-1- pcglr;)((l +7)%)"

~+oo 1
=Y (U+T)"m=—
ngb( ) (1+T)P—1

Thus, we have y(3) = 4. On the other hand, since the Amice transform of , is 5 — W =1-
acy,(7), the action of ¥ commutes with o,, and by y(2,) = Gy () if W is a distribution, we deduce i).

i) follows from i) since we have Resz; (1) = (1 — @y)u if p is a distribution. iii) follows from ii)
and [, x"Q(1) = [z (px)"u. u

Corollary 3.2.5. Let a € N— {1} be prime to p. Let k > 1. If n| and n, are two integers > k such that
ny =ny mod (p —1)p*=1, then

Vp((1=a™)(1=p")E(—n1) = (1—a"""2)(1 = p"){ (~m2)) > k.

By corollary 3.2.5, the function n — (1 — p"){(—n) is continuous under the p-adic topology. To have
a uniform formula, we put g =4 if p =2 and g = p if p # 2. We denote by ¢ the Euler ¢ — function, and

thus ¢(q) =2ifg=4and ¢(q) =p—1if p#2.

Theorem 3.2.6. If i € Z/§(q)Z, there exist an unique function §,; continuous on Z, (resp. Z, —{1}) if
i # 1 (resp. i = 1) such that the function (s — 1), ; is analytic on Z,, (resp. i+2Z, if p = 2) and one has
Cpi(—n) = (1 —=p")E(—n) if n € N satisfying —n =i mod p — 1.

Remark 3.2.7. ,; is called the i-th branch of Kubota-Leopoldt zeta function. If i is even, then (,; is

identically zero since {(—n) =0if n > 2 is even.

3.3 p-adic Mellin transform and Leopoldt’s I'-transform

We denote A the group of roots of unity of Q),. Therefore A is a cyclic group of order ¢(q) and Z,is
disjoint union of € +¢gZ, with € € A. We denote @ : Z,, — AU {0} the function defined by w(x) = 0 if
x € pZy, and x — (x) € gZ,, if x € ;. If x € Z;;, we define (x) € 1 +¢Z, by (x) = xo(x)"".
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Proposition 3.3.1. Ifi € Z/¢(q)Z, the function x — & (x)'(x)* is a locally analytic function on Z,. More-

over, we have
i) o(x)'(x)" =x"ifn=imod ¢(q) and ifx € Z,

i) o(x)'(x)* = lim X" forx € Z).
n=imod ¢ (q)

Proof. Note that we have @(x)'(x)* = 0 on pZ, and

(D()C)i<x>S — gi(f)s _ —iio N ei*"(x— g)n
€ = \n ’
if x € € +qZ, and € € A, thus the function is locally analytic.
Since the order of A is ¢(g), we have @(x)" = @(x)" if n =i mod ¢(q), i) and ii) follows. O

If i € Z/$(q)Z, we defined the i-th branch of the Mellin transform of a continuous distribution u by

the formula

Meliu(5) = | o)/ ()0 = | o)/ t)°ae)

the second equality is because @ (x) = 0 if x € pZ,. On the other hand, we have Mel; ;,(n) = fZ; X' if
n=imod y(q).

Let u be a topological generator of multiplicative group of 1+ gZ,, and let 6 : 1+ ¢Z, — Z, the
homomorphism which sends x to }g%. This homomorphism is analytic and also its inverse be. If f is a
locally analytic function (resp. continuous) function on 1+ gZ,, the function 6* f defined by 0*¢ (x) =
¢(0(x)) is locally analytic (resp. continuous) on Z,.

If  is a distribution support on 1+ gZ,, we define a distribution 6, i on Z,, by the formula

/ 00m) = / OO

In particular, 6, sends measure to measure.

Lemma 3.3.2. If X is a open compact subset of Z,, If a € Z;, and if | is a continuous distribution on
Z,, then

Resy (0a(i)) = 0a(Resq-1x (1))

11



Proof. Since we have 1x(ax) = 1,-1x(x) if X C Z,, we deduce the formula

1x (%) (x) oalt

14

Ix (ox) ¢ (aux)u(x)

'p

¢ (o) (11 (X) 1t (x))

P

0(ax)Res 1y (H)

P

¢ (x)0a (Resg-1x (1)),

P

| 9(Resx (0u(u) =
ZP

[l
N— NN NN

which proves the lemma. O

Definition 3.3.3. If y is a distribution on Z, and if i € Z/¢(q)Z, we define F,(p the i-th branch of the
I'-transform of u by

rﬁb - G*Resqup(z e "o (1)) = 9*(2 £_i0'8(Res£_1+qu (1)),

eeA eeA

where the second equality follows from the above lemma. Moreover, it is clear that if y is a measure on

Z;, then FL) is a measure on Z,, and we have vg, (F< )) >vg, (1).

Proposition 3.3.4. If i1 is a continuous distribution on Z, and i € Z./ §(q)Z, then

Meliu(s) = | o0 (ut) = [ T 0) = sy =1)

P

Proof. The first equality is by the definition of Mellin transform and the third equality is by the definition

logx

of Amice transform. If y = 0(x) = Togu®

, we have u® = exp(slogx) = (x)* and

i )= / L Rese g (),

£EA

Using the fact that w(x) = e if x € e7! + ¢Z, and (ex) = (x), we obtain

[ erio-% [ e,

ecA +qZ
and the proposition follows from that Z), is the disjoint union of € 4+ gZ, for € € A. O

Corollary 3.3.5.
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i) If W is a continuous distribution and i € Z./¢(q)Z, the function Mel; ,(s) is an analytic function of s

and even u® — 1.

ii) If u is a measure verifying vy, (1) > 0, and if i € Z/¢(q)Z, then there exists g; y € OL[[T]] such that
Mel; ;i (s) = giu (1’ —1).

3.4 Construction of the Kubota-Leopoldt zeta function

Ifi€Z/¢(g)Z and a € Z;, such that (a) # 1, we define the function g,; on Z,, by the formula

1 1
8ail8) = T g @)y M=) = T @

o(a)"'{a) " ta.

By corollary 3.3.5, Mel_; ,,(—s) is an analytic function of s. On the other hand, if @(a)!™" # 1, the
function s +— 1 — @(a)'~/(a)!~* is a nonzero analytic function on Z,, since (a)* € 1 +¢Z, and w(a)' 7 €
A — {1}, therefore @(a)' ™' & 1+ ¢Z, and if ®(a)' = = 1, the function 1 — (a)!~* vanishes only at s = 1.
We deduce that g, ; is a function continuous on Z, — {1} and even continuous on Z, if w(a)' 7 # 1.

Moreover, if —n =i mod ¢(g), we have w(a)' ™' = w(a)' ™" and (x)~" = w(x)" if x € Z;,. Therefore

@ (x)"(a)" ta(x) = I%GH'” X pa(x) = (=1)*(1 = p")E(=n)

1
8ai(—n) = 1—(a) 4 (a)1+n /Z z;

;;

does not depend on the choice of a. If a and @’ two elements of Z,, the function g,; — g« is a quotient
of analytic functions on Z, vanishing at infinitely many points, which implies it identical zero and the
function g,; is independent of choice of a. Thus we set {,; = g,; for any a satisfying (a) # 1 and
o(a)' 7" # 1 if i # 1 to construct Kubota-Leopoldt zeta function.

Let F, = Q,(&p) and F. = UF,. The norm N/, induces a homomorphism from {1 to fy,
where 1, be the set of p"-th roots of unity in F,. We denote the projective limit of u,» with respect to
Ng,,,/F, by Up= (the Tate module), which is a compact Z,-module.

The following theorem is due to Mazur and Wiles:
Theorem 3.4.1. Ific (Z/(p—1)Z)" is odd and if s € Z,, then the following two conditions are equivalent:
i) gp,i(s) =0;

ii) There exists an element u € |~ which is not killed by a power of p such that ¢ € Gal(F../Q),) acts
by the formula

G(u) = w(%cycl(a))io&ycl(c»s ‘Uu.

13



3.5 The residue at s = 1 and the p-adic zeta function

10g(1+T)

The formal power series converges on open unit disk, thus it is an Amice transform of a unique

distribution gy . The Laplace transform of Lgr 1s = fo(t) and

| = (=1 g (1)

P
Lemma 3.5.1. [, iz, MKL = Ln

Proof. Since faﬂ,nzp UKL = # Y1 € “Ay,, (€ —1) and since loge = 0 if € is a root of unity of order a
power of p, all terms of the sum are zero except for the term corresponding to € = 1, we get the result. [

Proposition 3.5.2. We have
i) w(ukr) = p~ ke
ii) Resz;(puxe) = (1—p~'@)uke
iii) pr kL= (—1)"n(1—pHE(1—n)ifneN.

Proof. i) follows from the formula y(4) = £ (c.f. proposition 3.2.4) and @(log(1+T)) = plog(1+T)
and y(@(a)b) = ay(b). The rest can be deduced from proposition 3.2.4. O

Theorem 3.5.3. The p-adic zeta function §, | has a simple pole at s = 1 with residue 1 — %.

Proof. According to the above, we can define the function (, ;, if i € Z/¢(q)Z by the formula

il _ il ,
Gputs) = Comely (19 = CV [ 0t i ),

s—1

Indeed, the function is analytic on Z, — {1} by the above formula, and takes the same value {, ;(—n) =
(1 —=p")¢(—n) if n € N satisfies —n = i mod p — 1. Moreover,

hn}(s—l 8pi(s) /(D ke (x)

. 1-1 ifi=1
~Yo@'" [ ua={
a+pZ,

0 otherwise.

14



3.6 Dirichlet L-function

For x a Dirichlet character of conductor D > 1 and if n € Z, we define the Gauss sum G(}) by

Z %(a)eZm'%'

amodD

Let

[T (0=x(p)p~*)", forRe(s) > 1,

p:prime

v

be the Dirichlet L-function attached to ). By the formula

X( Z X ZmD
x bmodD
we obtain
277:17
L(x,s) Z x!
G(x™") yodn
Using the formula [ e "4 = l? with gp := e%, we obtain
g 0 t n
L) =501 L /+°°+°° b ,—nt 5 4
F(S bmodD
_ 11 /*"" x(b) dt
G T b el 1 1

In particular, proposition 3.1.2 implies that L(y,s) can be extended to a holomorphic function on C.

Moreover, L(x,—n) = (£)".%(t) |i—o where

~1 x~'(b)
G(X_l) bmodD Sge’ -1

Ly (1) =

3.7 p-adic L-function attached to Dirichlet character

Let x be a Dirichlet character of conductor D > 1 prime to p. If y~'(b) # 0, then 8}3 is a root of unity of

order prime to p and distinct from 1, this implies v, (€ — 1) = 0. We deduce that the power series

Rr- Loy A0 S S A
* G(x™") pricin (1+T)eg—1 L pmodD = (e — 1)t

is of bounded coefficients (since v,(G(x)G(x~')) = v,(D) = 0) and hence there exists an Amice trans-
form of a measure u, on Z, whose Laplace transform Fy (¢ — 1) = .2 (). We have pr X'y = fén) (0) =
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L(x,—n) and vg,(ty) > 0.

Definition 3.7.1. We define the p-adic L-function associated to y as the Mellin transform of p,, that is,
the function B — L,(x ® B) defined by

Lz @)= [ B .

P

where f§ is a locally analytic character on Zj,. On the other hand, if i € Z/¢(q)Z, we put

Lpi(2:5) = Lp(x ® (@ (@) ) = | o) sy (x).

*

Proposition 3.7.2. Ifi € Z/¢(q)Z, the function L, j(x,s) is an analytic function on Z, and thus L, ;(x,—n) =
(1—x(p)p")L(x,—n) if n € N satisfying —n =i mod ¢(q).

Proof. The fact that L, ;(x,s) is an analytic function on Z, follows from corollary 3.3.5. On the other

hand, we have
1 1

=p :
,El (I+T)epn—1 " (14T)rell —1

thus we deduce the Amice transform of p restriction to Z,, is

—1 x ') x')
G(x>bmodD(1+T)glb)71 (1+T)p85b—1’

which can be written as .7, (T') — x(p) ), ((1+T)? — 1). Hence we deduce the formula
Ty 0 = Loy =X (D) Za (1) and [ Py = (1= 7))L, n),
p

and the proposition follows. O

3.8 Behavior at s = 1 of Dirichlet L-function

By section 3.6, we have

= e
L(x,1) 1 i
(% bmzo:dD ";) "
Z x 1(b)log(1—gb).
G(% medD

We will establish the p-adic analogue of this formula by calculating fz;; x! Uy. To do this, we will

calculate the Amice transform of x~! My and then restrict it to Z,.
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Proposition 3.8.1. The Amice transform of x~! My is

fQ{x*lyl (T X

=Y xN(B)log((14T)ep—1).
bmodD

Proof. If u is a distribution, the relation of Amice transform of u and x~ !t is given by
d
(U4 T) 1y (T) = Ay (T).

Applying the operator (14T diT on the right hand side of the equality in the proposition we obtain

_ (1+T)ep 1
G(%_l)meOde l(b)(1+T)£f)li1 - bn%Dx <(1+T)Sg_1 +1>

which is equal to 7, since }.moan X ~1(b) = 0. We deduce that the two elements have the same image
by (1+ T)% and therefore differ by a locally constant function. To conclude, we must verify that the

right hand side is given by a series which converges on the open unit disk. Since

b b epT b S (=0t ggT s
log((14+T)ep—1) =log(ep — 1) +1og(1+ ):log(sD—l)—i—Z ( 5 )
ep—1 = n ep—1

and we suppose (D, p) = 1, we have v, (g5, — 1) =0, and hence the series converges on open unit disk. ]

Lemma 3.8.2. The Amice transform of the restriction of x~' My to Z, is defined by

Z 2! <10g (1+T)eg—1)—;1og((1+T)Peg”—1)>

bmodD

ol (1) =B (41 1),

JZ%Rflszl*, () (T)

Proof. Use the formula for Amice transform of Resz: . [

By taking T = 0 in the above formula, we obtain

tpae) =05 ) = [ 57 = g5 B 2 0eeb 1)

which differs from the complex L-function case by an Euler factor.

3.9 Twist by a character of conductor power of p

Let y be a Dirichlet character of conductor D prime to p and 8 be a Dirichlet character of conductor
p*. We denote y ® B to be the Dirichlet character of conductor Dp* defined by (¥ ® B)(a) = x(a)B(a),
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where x and 8 are viewed as characters mod Dp* via the projections from (Z/Dp*Z)* to (Z/DZ)* and
(Z/p'2)".

Lemma 3.9.1. Let k > 1, B a Dirichlet character of conductor p* and p a continuous distribution on Z,

then we have

1
J,BO0+ TR0 =5 T BT )
Proof. We have
fpwasrrun= L [ 04Ty
L p@(; ¥ neenamn-)

amod p¥ nr*=1

= 2 ((14+T)n

npkz—l (( ! <p am%pﬁ >

and the lemma follows from the identity

Proposition 3.9.2. If u is a measure on Z, with Amice transform of the form

( Y 2 'BF((1+T)ep—1)
X! bmodD

and if B is a Dirichlet character of conductor p* with k > 1, then

1

/ZPB(X)(I‘*‘T)X#(X) “Gxep)

Y (x@B) N @F((1+T)epes —1).

amod Dpk
Proof. By the preceding lemma we have

X _ —1 _ _ ¢
/zpﬁ(x)(1+T) #(@—W Y Y 2B 1(C)F((1+T)81138pk—1)-

»mod D e mod pt

Using the fact that every element of Z/Dp"Z can be written uniquely of the form Dc + p*b, where b €

18



7./DZ and ¢ € 7/ p*Z, we have the following formulas

€D =EDE
(x©B) (@) =x~' (P B (D)~ (B)B~"(c)
G((xeB) =) (®B) (@,

amod Dpk
=1l k-1 -1 b “1(e)el,
—x (M8 <D><bm§de <b>eD)(cm§lpkB (¢
=x'(PHB(D)G(x HG(B)
and the conclusion follows. ]

Proposition 3.9.3. If B is a non-trivial Dirichlet character of conductor a power of p and if n € N, then
Ly(x©("B)) =L(x @B, —n)

Proof. By proposition 3.9.2 and the formula for the Amice transform of 1, we have the Amice transform
of By is
—1 y (x®B)'(x)
G((x®B)™) (1+T)ep, —1

and thus its Laplace transform is the function %, - g(t). O

xmod Dp»
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Chapter 4

(¢,I')-modules and p-adic representations

Throughout this article, k will denote a finite field of characteristic p > 0, so if W (k) denotes the ring of
Witt vectors over k, then F = W(k)[}%] is a finite unramified extension of Q,,. Let 6], be the algebraic
closure Q,, let K be a totally ramified extension of F, and let Gx = Gal(Q,,/K) be the absolute Galois
group of K. Let u,» be the group of p"-th roots of unity; for every n, we will choose a generator e of Hpn
with the additional requirement that (£())? = £("~1) This makes @8(") into a generator im i, ~ Z »(1).

We set K, = K(u,») and K., = |J K,. Recall that the cyclotomic character ) : Gx — Z,, is defined by the
n>0

relation: g(&™) = (¢™)*(¢) for all g € Gk. The kernel of the cyclotomic character is Hx = Gal(Q,/K-.),
and y therefore identifies I'x = Gg/Hk with an open subgroup of Z;‘,.

4.1 The field E and its subrings.

Let C, be the completion of Q,, for the p-adic topology and let
E— l'glcp - {(x(o),x(l),...) | (x<n+1>)p _—

and let E* be the set of x € E such that x(¥) ¢ Oc,. Ifx= (x®) and y = (y)) are two elements of E, we
define the sum x 4 y and their product xy by
(x+)?D = lim (x(+)) +y(i+j))pf and  (xy)?) = x0y@,
j—rtoo

which makes E an algebraically closed field of characteristic p. (c.f. [13] proposition 4.8) If x = (x(")) €E,
let vg(x) = v, (x(?). This is a valuation on E and E is complete for this valuation; the ring of integers of
Eis E*. If a is an ideal satisfying p € a C m, where m is the maximal ideal of Oc,, the E" is identified
with the projective limit of A,, where if n € N, we put A, = Oc,/a and the transition amp from A, to
A, is given by x — x”.

Let € = (1,8(1), ...7£<”), ...) be an element of E such that ¢! # 1, this implies that e isa primitive
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p"-th root of unity if n > 1. Let T = € — 1, we have vg(7) = % and let Eq, be the subfield F,((7)) of
E. We denote by E the separable closure of Eq, in E and E* (resp. mg) the ring of integers (resp. the
maximal ideal of ET).

By ramification theory, if K is a finite extension of Q,, then for all ) > 0, there exists n, € N such
that if n > ny, and if 7 € I'x,, then v, (7(x) —x) > % — 1. In particular if a is an ideal of O, defined by
a={x€elc,|vpx) > %}, then Nk, /k, (x) —x” € aif n is large enough and x € O, . This allows us
to construct a map 1x from the projective limit @ O, of Ok, with respect to norm map to E* (field of
norms), such that u = (u"),cn is associated to 1x (u) = (x""),.en, where x) is the image of u in Oc,/a

if n large enough. Hence we have the following proposition:

Proposition 4.1.1. If K is a finite extension of Q,, then 1k induces a bijection from @ Ok, to the ring of
integers Ez of Ex = Efk,

By this proposition, one can show that Ex is a finite separable extension of Eq,, of degree [HQp :Hg] =
[Kw : Q,(1p=)] and that one can identify Gal(E/Eg) with Hg.

Remark 4.1.2.

i) If F is a finite unramified extension of Q,, with residue field kr, the field E is the composition of kg
and EQp’ that is, kp((f))

ii) If K is a finite extension of Q) and F = KN Q" it maximal unramified subfield, then Eg is an

extension of Er of degree [K.. : F..] which is equal to [K, : F,] for n large enough.

4.2 The field B and its subrings

Let A = W(E) (resp. At = W(E")) the Witt vectors with coefficients in E (resp. E*). By construction,
we have A/pA = E (resp. AT /pA+t =E"). Let

B=All/p)={ ¥ rlullwcE} (resp. B =A'[1/p]={ ¥ p'lu)|n k'),

k>—o0 k>—o0
where [x] € A is the Teichrhuller lift of x € E (resp. E").

We endow A (resp. A™) with the topology by taking the collection of open sets { [ﬁ]’ﬁ* + png}k,nzo
(resp. {([®]* —l—p”):fr}k’nzo) as family of neighborhoods of 0 and endow B = U,,eNp_”K (resp. B")
the inductive limit topology. The action of Gq, on E can be extended by continuity to A and B which
commutes with the Frobenius action ¢.

For F a finite unramified extension over Q,,, let 7 = [¢] — 1, we define A the closure of Or[[7, 7!]]
in A by the above topology, thus

AF = {Z aknn ‘ ay S ﬁF, hm Vp(ak) = +oo}
keZ k——co
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which is a complete discrete valuation ring with residue field Er and the Galois action and Frobenius
action is defined by

o(m)=(1+m)"—1 and g(x)=(1+m)* 1 geGr,
and its fraction field By = AF[%] is stable by actions of ¢ and Gr.

Let B be the completion for the p-adic topology of the maximal unramified extension of Br in B
and A =BNA. We have B = A[%] and A are complete discrete valuation ring with fraction field B and
residual field E. We then define Bt = BNB* and A" = ANA™. These rings are endowed with an action
of Galois and a Frobenius induced from those on E.

If K is a finite extension of Q,, we put Ax = Ak and Bg = Ak|[1/p], this makes Ag a complete
discrete valuation ring with residue field Ex and fraction field By = Ag[1/p]. On the other hand, when
K = F, the definitions of Ar and Br coincide with previous definitions. We put Af{ = (A+)HF and
B/ = (B")fr then by using fields of norm above, we can show that A} = Or[[r]] and B} = F[[n]].

If L is a finite extension of K, B is an unramified extension of Bg of degree [L. : K.]. If L/K is a
Galois extension, then the extension B, /B (resp. B./By) is Galois with Galois group Gal(B;/Bg) =
Gal(B./Bk) = Gal(E./Eg) = Gal(Lw/Kw) = Hx /Hy..

Remark 4.2.1.

i) If Tg is a uniformizer of Eg, let mx be any lifting of T in Agx and F’ is the maximal unramified

extension of F contained in K... Then,

Ag = {Z Clkﬂ'[k( | ax € O, lim Vy,(ay) = +oo}.
keZ k— —o0

i1) In the above construction, the correspondence R — R is obtained by making ¢ bijective and then do

the completion with respect to the given topology on R, where R = {Eg,E,Ax, A Bg,B}.

43 (¢,I')-module and Galois representations

A p-adic representation V is a finite dimensional Q,,-vector space with a continuous linear action of G.
It is easy to see that there is always a Z,-lattice of V which is stable by the action of Gk, and such lattices
will be denoted by T (called a Z,-representation). The main strategy due to Fontaine for studying p-adic
representations of a Galois group G is to construct topological Q,-algebras B (period rings), endowed

with an action of G and some additional structures so that if V is a p-adic representation, then

Dg(V):=(B®q,V)°
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is a B%-module which inherits these structures, and so that the functor V + Dg(V) gives interesting
invariants of V. We say that a p-adic representation V of G is B-admissible if we have B®q, V ~ B? as
B[G]-modules, where d = dimV .

Definition 4.3.1. If K is a finite extension of Q,, we say

i) A (¢,I')-module over Ag (resp. Bg) is an Ax-module of finite type (resp. a finite dimensional

Bx-vector space) equipped with a I'g-action and a Frobenius action ¢ which commutes with I'k.

ii) A (@,I')-module D over Ak is étale if (D) generates D as an Agx-module. A (¢,T")-module D over
Bk is étale if it has an Ag-lattice which is érale, equivalently, there exists a basis {ej,...,e;} over

Bk, such that the matrix of ¢ in terms of the basis is in GL;(Ak).

If K is a finite extension of Q, and V is a Z,-representation (resp. p-adic representation) of Gg, we
put
D(V)=(A®z, V)" (resp. D(V)=(B®g,V)")

Since the action of ¢ commutes with Gk, D(V) is a equipped with a Frobenius action ¢ which commutes
with the residual action G /Hg = I'k. This make D(V) a (¢,I')-module over Ak (resp. Bg).

On the other hand, if V is a Z,-representation (resp. a p-adic representation) of Gk, then (A ®a,
D(V))?=! (resp. (B®a, D(V))?!) is canonically isomorphic to V as a representation of Gg. In other
words, V is determined by the (¢,I")-module D(V).

Theorem 4.3.2. (Fontaine) The correspondence
Vi— D(V) = (A®g, V)"

is an equivalence of ® categories from the category of Z,-representations (resp. p-adic representation) of

Gk to the category of étale (@,T')-module over Ak (resp. Bg), and its inverse functor is

D+—— V(D)= (A®4,D)?~".
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Chapter 5

(¢,I')-modules and Galois cohomology

5.1 The complex Cy (K,V)

Let K be an finite extension of Q,, such that I'x is isomorphic to Z,, (i.e. contains Q,(u,) if p > 3 or three
quadratic ramified extensions of QQ; if p = 2). Let y be a generator of I'x. If V is a Z,-representation or
p-adic representation of Gk and f : D(V) — D(V) is a Z,-linear map which commutes with action of T,

we denote by Cy y(K,V) the complex
0——D(V)——DV)®D(V) ——D(V) ——0
where the maps D(V) to D(V) & D(V) and D(V) @ D(V) to D(V) are respectively given by

x= ((f=Dx,(y—1)x) and (a,b)— (y—1a—(f—1)b

we denote Z'(Cyo(K,V)) (resp. B'(Cyo(K,V)), resp. H'(Cry(K,V)) = %) the i-th cocycles
(resp. coboundaries, resp. cohomology) of the complex Cy,(K,V).

The cohomology groups of the complex Cy (K,V) can be canonically and functorially identified with
the Galois cohomology group H(K,V) (c.f. [14]). The following proposition gives the case of H'.

Let Ax = Z,[[I'k]] the complete group algebra of I'x. Since I'x acts continuously on D(V'), we can
view D(V) as a Ag-module. On the other hand, Ik is pro-cyclic, if 7y is a generator of I'y and Y is
any element of [k, then the element % of Frac(Ak) is indeed in Ag. Moreover, the Gk action factors

through I'x on D(V), so the expression %y makes sense if y € D(V), o € Gk and 7 is a generator of I'.
Proposition 5.1.1.

i) If (x,y) € Z'(Cyy(K,V)) and b € A®z,V is a solution of (p — 1)b = x, then G +— cxy(0) = %y—

(o — 1)bis a cocycle of Gk with values in V.

24



ii) The map which sends (x,y) € Z'(Cy (K, V)) to the class of cxy in H' (K, V) induces an isomorphism
loy of H (Cy4(K,V)) to H'(K,V).

Proof. 1Tt clear that 0 — ¢, (0) is a cocycle by definition. On the other hand, we have

o—1
(@ —1)(cry(0) = ﬁ((q’ —1y)—=(6-1)x=0

since (y—1)x = (¢ —1)y. Hence ¢,(0) € (A®gz, V)?=! = V. This proves (i).

To prove (ii), suppose the image of ¢, , in H '(K,V) is zero, there exist z € V such that

o—1

We deduce that b+ 7 is stable by Hg and therefore belongs to D(V'). Take 6 = ¥, we have y = (y—1)(b+2z)
and hence x = (¢ — 1)(b+z), which implies (x,y) € B'(Cy ,(K,V)) and the injectivity of 1 , follows.

To prove the surjectivity, let c € H'(K,V) and V' an extension of Z, by V corresponding to c. That is,
an exact sequence

0 Vv 1’4 z, 0

such that e € V' sends to 1 € Z,, and 6(e) = e + c5, where 6 — ¢5 is the cocycle of Gk represents c.
Applying functor D, we get

0——D(V) D(V') — D(Z,) ——0,

let ¢ € D(V’) be an element maps to 1 € Z, = D(Z,,) and let x,y be elements of D(V) defined by x =
(¢ —1)eandy = (y—1)e. Since yand ¢ commute, (x,y) is belongs to Z!(Cy 4(K,V)). On the other hand,
b=e¢—ec A®gz,V satisfies (¢ —1)b = x, so we have

o—1 ~
cey(0) = ﬁy— (c—1)b=(c—1)(e—b)=(0—1)e=c;.
From this, we deduce the surjectivity of 14 y. O

If ¥ is another generator of Ik, then ;';_11 € Frac(T'k) is indeed a unit in I'x and the diagram

Coy(K,V):0 D(V) D(V)&D(V) D(V) 0
N
Coy(K,V):0 D(V) D(V)®D(V) D(V) 0

is commutative. It hence induces via cohomology an isomorphism 1y, from H!(Cy (K, V)) to H'(Cy v (K, V)).

Since we assume Ik is torsion free, we have x(y) € 1 + pZ, for y € Ik, then there exists k > 1
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kg % ) . 0(n) — k :
such that log,(x(T")) € p*Z;, and we’ll write log, () = log,(x(¥))/p". The following lemma shows that
logg(y) 1,y does not depend on the choice of generator y of I'.

Lemma 5.1.2. If yand Y are two generators of Uk, then the isomorphisms 10gg(}/)l¢ﬁy and logg(}/ Mgy ©
lyy from H'(Cy,(K,V)) to H' (K,V) are equal.

Proof. 1f (x,y) € Z'(Cy y(K,V)). Let b (resp. b') be element of A @z, V verifies (¢ — 1)b = x (resp.

0 0
(¢~ 1)t/ = 21 x). Since 22V 15 (7)

71
lyy (x,y) — logg(y)l%y(x,y) as 0 +— (0 — 1)c, where

€ Z,[[I'k]], we can write the cocycle associates to logg(}/ Jlgyo

log) () B log) (7)
Y—1 y—1

= ( )y — (logy ()b — log;,(7)b)
and the relation (¢ — 1)y = (y— 1)x implies (¢ — 1)c = 0, hence ¢ € V and the cocycle is indeed a

coboundary, which leads to the conclusion. O

5.2 The operator v

To calculate H' (Cy,y(K,V)) we have to understand the group D(V)?=! and %. The problem is that the

group % is too complicated to write down. To solve this difficulty, we introduce the left inverse of ¢.
The field B is an extension of degree p of ¢(B), which allows up to define the operator y : B — B by

the formula y(x) = %(p_1 (Trg; o) (x)). More explicitly, one can verify that {1,[e], ..., [e]?~'} is a basis

of A over ¢(A) (hence B over ¢(B)) so we have
w(Y [e]'o(x)=x x€B and w(e(x)=x xeB.
i=0

The operator y commute with the action of Gx and y(A) C A.
Since y commutes with the action of G, if V is a Z ,-representation or a p-adic representation of G,
the module D(V') inherit the action of y and commute with I'x. That is, the unique map y : D(V) — D(V)
with
y(p(a)x) = ay(x), ylap(a)) = yla)x
ifac Ag,xeD(V).

Proposition 5.2.1. IfV is a Z,-representation or a p-adic representation of Gk, then y— 1 is invertible
on D(V)¥=0,

Proof. See [14]. O]
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Lemma 5.2.2. We have a commutative diagram of complexes

Coy(K,V):0 D(V) D(V)®D(V) D(V) 0
Jid J(—Wd) Jw
Cyy(K,V):0 D(V) D(V)®D(V) D(V) 0

which induces an isomorphism 1 from H' (Cy (K, V)) to H'(Cy (K, V)).
Proof. The commutativity of the diagram follows from definition. Since y is surjective, the cokernel
complex is 0. The kernel complex is

0——0——D(V)¥= L1> D(V)V=0 ——0,

which has no cohomology by proposition 5.2.1. U

Notation 5.2.3. We denote 1,y the isomorphism from H'! (Cy ,(K,V)) to H' (K, V') obtained by composite
L,y (see proposition 5.1.1) and 1~! (see lemma 5.2.2).

Remark 5.2.4. The same proof as lemma 5.1.2 shows that logg(}/)ll,,,y does not depend on the generator

Y of FK.
Lemma 5.2.5. The map which sends (x,y) € Z'(Cy y(K,V)) to the image of x in % induces an exact
sequence
=1 D(V)\I
0—— DV —— HY(Cy (K, V) — (B8) ™ ——0

Proof. X € Vf( 1) is fixed by I’k if and only if there exists (x,y) € Z'(Cy (K, V)) whose image in LV),(VI) is
equal to X. The kernel of the map is the sum of B! (Cy 4(K,V)) and the set X of elements of the form (0, )
where y € D(V)¥=!. One observes that X NB'(Cy ,(K,V)) is constituted by couples of the form (0,y)

where y € (y—1)D(V)¥=1, O

Remark 5.2.6. By [14], one can show that the Herr complex Cy ,(K,V) indeed computes the Galois
cohomology groups H'(K,V), hence we have

o HY(K,V)=D(V)¥=lr=l ~ p(v)o=lr=1,

o HA(K,V)~ 20

e H(K,V)=0ifi>2.

Similar to the case of ¢, the modules D(V)¥=! and ( ) can be interpreted naturally as Iwasawa

algebra. Moreover, the module % is ”small” compared to ﬁ, thus we can write H'(K,V) mainly

as the submodule D(V)¥Y=". More precisely, we have the following proposition which is proved in the

subsequent two subsections.

27



Proposition 5.2.7. If'V is a Z,-representation (resp. a p-adic representation) of G, then
i) D(V)¥=!is compact (resp. locally compact) and generates the Ag-module (Bg-vector space) D(V).
i) % is a free Z,-module of finite rank (resp. a finite dimensional Q,-vector space).

Remark 5.2.8. Since the p-adic representation case can be deduced from the Z,-representation case by

tensoring with Q,, we only need to treat the Z,-representation case.

5.3 The compactness of D(V)¥=!

The goal of this paragraph is to prove the following lemma. In particular, when n =0 and N = 40 is

equivalent to the compactness of D(V)¥=!.

Lemma 5.3.1. If V is a Z,-representation of Gk, x € D(V) and N € NU {40}, the set of solutions
y€D(V)/pNTID(V) of the equation (y — 1)y = x is compact.

Let AEP be the subring Z,[[7]] of Ag,, and let A = AEP[[ "+, then A is a compact subring of Ag,

Pl

such that elements of A can be written as x = Y,z x,@" where (x,),cz is a sequence in Z, such that we
have v, (x,) > —# ifn<0.

If x € Ag,, let w,(x) € N be the smallest integer k such that x belongs to n kA + p"“AQP. If x is
fixed, the sequence {wy,(x) },eN is increasing and we have

Wwa(x+y) < sup(wn(x), wa(y))

wi(xy) < iilj}gn(wz' () +w; () < wa(x) +wa(y)

wa(@(x)) < pwy(x)

the first two inequalities follow from the fact that A is a ring and the third one holds because %7;) is an

unit in A (This is the reason for working with A instead of Agp by defining the map w,,) and such that
xen kA +p"1 Ay, implies @(x) € o(m) A +p" M Ag, = kA +p" Ay,

Lemma 5.3.2.
i) Ifk €N, then y(n*) € Ay and y(n~*) € n*A
i) w(A) CA.

Proof. ii) follows from i) and the definition of A. Since ¢(7) = (1 + x)? — 1 is a monic polynomial of

degree p in 7 and [e]' = (1+ 7)" is a monic polynomial of degree i in 7, hence {[€]'@(7)/ }o<i<p—1 jen
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. . | # 0
forms a basis of polynomials in 7. Moreover, y([e]'@(7)/) = _ 7 , we thus deduce that y(7¥) €
n i=0
A} ifk>0.1fk > 1, then

Trag, /o(ag,) (T )= Y. (1+m)E—1)7%,
=

P(o(m))
o(n)k >
conclusion follows. O

which can be written in the form

where P is a polynomial with coefficient in Z,. Thus the

Corollary 5.3.3. Ifx € Ag, and n € N, then wy (y(x)) < 1 4[] <1 4 wald)

Proof. Since % is an unit in A and y/( (P();T)k) = Y9 we have

y(m A+ " Ap)) = w(p(n) A+ p" T Ag,)) C TFA+ P A

the conclusion follows. O

If U = (aij)1<ij<a € Ma(Ag,) and n € N, we define w, (U) by w,(U) = sup; ;wy(a; ;). Similarly if
V is a Z ,-representation of Gg and if ey, ..., e, is a basis of D(V) over Ag,, we put w,(a) = sup, w,(a;) if

a= Zf’l:1 aie; € D(V). Note that w,, depends on the choice of basis ey, ..., e4.

Lemma 5.3.4. Let V be a Z,-representation of Gk, and let ey, ...,eq be a basis of D(V) over Ag, and
® = (a; j) be the matrix defined by e; = Z?:l ai jp(ei). If x,y € Ag, satisfy the equation (y — 1)y = x,

then wy(y) < sup <w,,(x), %(wn(cb) + 1)) foralln e N.

Proof. Since @(ey),...,@(eq) is a basis of D(V) over ¢(D(V)), we can write x = Y9 x;¢(e;) and y =
YL, vio(e;). We have w(y) = Y%, w(y;)e; and the equation y(y) —y = x translates to a system of equa-

tions

d
yi=—xi+ Y aijy(y) 1<j<d
=1

One gets the inequalities

wa(ys) < sup <w,, (), sup (wa(aij) +wn<w<y,->>>) < sup (wn (), wa (@) + W"p@) + 1)

for 1 <i <d, which gives us the inequality

() < sup (). (@)+ 220 1)

and the conclusion follows. O
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We now deduce lemma 5.3.1. If n € NU{+eo}, let X,, be the set of solutions of the equation (v — 1)y =
xin D(V)/p"™'D(V). We want to show that X,, is compact. If n € N, let r,, = sup(w,(x), %(wn (®)+1)).
The set X, is closed (since y — 1 is continuous). By the previous lemma, the image of (7~"7A)? is compact
since A is. If N is finite, it suffices to take n = N to conclude. If N = +oo, the map from x € X, .. to the
sequence of its images modulo p"*! allows us to identify X ., with the closed subset of compact set

[1.en X, and the conclusion follows.

5.4 The module %

Lemma 5.4.1. Let V be a Z,-representation of Gk. Then the module 13/(72/1) has no nonzero p-divisible

element.

Proof. Letxbe a p-divisible element of %. For each n € N, there exist elements y,, z, of D(V) such that

x=p"yn+ (¥ —1)z,. If we fix m € N and if n > m+ 1, then z, is a solution of the equation y(z) —z = x

m+1

mod p . Since the set of solutions is compact due to lemma 5.3.1, there exists a subsequence of {z, },en

which converges modulo p™ for all m and we have a limit Z in D(V'). By passing to the limit, we obtain
D(V)

x=(y—1)zand hence x =0 in 7= O

Lemma 5.4.2. If V is a F-representation of Gg and x € mg ® V, where my, is the maximal ideal of E,

then the series ¥, *% " (x) and ¥/~ " (x) converges in mg ®V and we have

(v- 1>(§;<pn<x>) — () and <w—1>(§<p"<x>) —x

Proof. Ifey,...,eq is a basis of V over F, and x = x1e + ... + x,¢4 € mg ®V, there exists r > 0 such that
if vg(x;) > rfor 1 <i<d implies that vg(@"(x;)) > p"r tends to +o0 and hence we have ¢"(x) tends to
0 as n tends to +oo. We thus deduce the convergence of the series. These formulas are the consequences

of the fact that y is a left inverse of ¢. O

Lemma 5.4.3.

i) LetV be a ¥ ,-representation of Gk, then % is a finite dimensional ¥ ,-vector space.

ii) There exists a open subgroup of I'x which acts trivially on %.

Proof. Let M = (mg ® V)H, which is a lattice of D(V) fixed by ¢. If x € M, the sereis ¥/~ ¢"(x)
converges in M, and by the previous lemma, we have x = (y — 1)(¥,7> ¢"(x)), which proves that (y —
1)D(V) contains M.

Since  is continuous, there exists ¢ € N such that w(M) C 7~°M and since w(n~Pkx) = n*x, we

have y(n~P*"M) C m=%=°M. We deduce that if n > b = [Z5]+1, then y =0 in % and ¥ — 1 is
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ﬂ.fnﬁ»lM n.fbM D(V)

bijective on ——57*. Since D(V) = UN "M, which implies the natural map from y—1 0y is an
isomorphism. "

To prove i), it suffices to note that (y — 1)M contained in M, which implies that % is a quotient of
7;21;/1 . To prove ii), we note that I'x fixes M and hence 7*M for all k € Z and the action of 'k is continuous
on D(V) and M is closed in D(V), there exists an open subgroup of 'y acts trivially on 7;11‘1’[ since the
module is endowed with discrete topology. O
Corollary 5.4.4. IfV is a Z,-representation of G, then % is a Z,-module of finite type.

Proof. % / p% = (p?v(/‘i)l) = Dl(‘,vf f’ lisa F,-vector space of finite type by the preceding lemma, to-
gether with lemma 5.4.1, we get the conclusion. 0

Hence we deduce ii) of proposition 5.2.7 and it remains to prove that D(V)¥=! generate D(V). We
will need the following lemma.

Lemma 5.4.5. Let V be a F -representation of Gx and X be a sub-F ,-vector space of D(V)¥=" of finite

codimension. Then X contains a basis of D(V) over Ek.

Proof. Let M = (mg®V)H& as above. Note that by lemma 5.4.2, if x € M¥=0, then the series ¥/, ¢" (x)
converges in D(V) to an element of D(V)¥=!. We denote it by eul(x). Let ey, ...,es be a basis of M over
Ef. Let r the codimension of X in D(V)¥=!. If 1 <i<d and j > 1, let z; ; = eul(e@(n/e;)). If i and
n > 1 are fixed, the {z; j}n<j<nir form a set of r+ 1 elements in D(V)¥=! and since X is of codimension
rin D(V)¥=!, we can find elements {Cll(jlj)}()g j<r of F,, such that f;,, = ¥/, al(f’j)zi, j+n belongs to X. Let
Bin=1"Y)0 “5,’,1/) n/. We have lim,,+«(€9(B;x)) " fin = @(e;), which implies that the determinant of
fins - fan in the basis @(ey), ..., ¢(ez) is nonzero if n > 0 and we have fj ,,..., fz,, form a basis of D(V')
over Eg if n is large enough. The lemma follows. O

Corollary 5.4.6. IV is a Z,-representation of Gk, then D(V)¥=" generates the Ax-module D(V).

Proof. The snake lemma shows that the cokernel of the injective map D(V)¥Y=! /pD(V)¥=! to D(V /p)¥~!
is identified with the p-torsion part of D(V)/(y —1). In particular, it is of finite dimension over F,,. By
the preceeding lemma, we have D(V)¥=!/pD(V)¥=! contains a basis of D(V/p) over Eg, which lifts to
a basis in D(V)¥=! that generates D(V) over Ag. O
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Chapter 6

Iwasawa theory and p-adic representations

6.1 Iwasawa cohomology

Recall that if n € N, we denote by K,, the field K(¢() = K(i,»). On the other hand, if n > 1 (resp. n > 2
if p = 2), the group I'k, is isomorphic to Z,. We choose a generator y; of I'x, and put §, = }/I[KN Kilif >1
(if p = 2, we can start from n = 2), this makes 7, a generator of I'g, .

Let V be a p-adic representation of Gg. The Iwasawa cohomology groups wa (K,V) are defined by

H{,(K,V)=Q,®z, Hj,(K,T) where T is any Gg-stable lattice of V and where

Hi (K.T)=lim H'(K,T)

COI‘K"+1 /Kn

Each of the cohomology group H'(K,T) is a Z,[T'x/T'k,]-module, and H] (K, T) is then endowed with
the structure of a Ag-module. Roughly speaking, theses cohomology groups are where Euler systems live
(at least locally).

If V is a Z,-representation or a p-adic representation of Gg, we endow Ag ®z, V with the natural
diagonal action of Gg. If we consider Ag ®gz,V as the space of measures of I'x with values in V (see

section ??), the measure o (i) is the map sends a continuous map f : I'x — V to the element

| s@otw) =o( | flexm ey

Ik

If V is a Z ,-representation or a p-adic representation of Gx and k € Z, we denote by V (k) the twist of
V by the k-th power of the cyclotomic character and if x € V, we denote x(k) its image in V (k).

If u € H"(K,Agx ®z,V) and if T — iy, 5, is a continuous m-cocycle represents f, then T —
(ry, 2 (X)* 1y, 7, (k) is a m-cocycle of Gg with values in V (k) whose class (Jry, x(x)*u) (k) in H™(K,,V (k))
does not depend on the choice of cocycle representing u.

Shapiro’s lemma allows us to replace the projective limit in the definition of H{!,(K,V) by a group
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cohomology.

Proposition 6.1.1. LetV be a Z,-representation or a p-adic representation of Gx.If m € N and k € Z, the
map which sends i to (..., [x. x(x)*u(k),...) is an isomorphism from H'(K,.T'x ®z, V) to Hi,(K,V (k)).
In particular, if k € Z, the cohomology groups H{\ (K,V) and H;,(K,V (k)) are isomorphic.

Proof. The case of Q, follows from the case of Z, by tensoring withQ,. If M is a Gg,-module, we
denote Ind§ M the set of continuous maps from G to M satisfying a(hx) = ha(x) if h € Gx,. The module
IndllgnM is provided with a continuous action of Gg, the image ga of a by g € G, is given by the formula
(ga)(x) = a(xg). If M is a Gx module, and a € Ind§ M, the map sends x € Gx to x~!(a(x)) is constant
modulo G, and the map Ind§ M — Z,[Gal(K,/K)] @M a YcGal(k,/k) X' (ax)8,-1 is an isomorphism
of Gg-modules. By Shapiro’s lemma, we have a canonical isomorphism from H'(K,Z,[Gal(K,/K)| @ M)
to H'(K,,M). On the other hand, the corestriction map from H'(K,,M) to H'(K,,M) is derived from
the previous isomorphosm and the natural map from Z,[Gal(K,+/K)] to Z,|Gal(K,/K)]. we thus obtain
a natural map
H'(K, Ak M) — limH' (K, (A/ @,) ©M) ~ [im H'(K,,, M).

It remains to show that this map is an isomorphism.

Surjectivity is a obvious. To prove injectivity, it suffices to verify that the map from H' (K, Ax ® M) to
H'(K,A/(®,,p")®M) is injective. Since Ag = @AK/(wn,p”), it suffices to show that H'(K, (A/®,, p") ®
M) satifies the Mittag-Leffler condition (c.f. [15] ), which is obvious since the group is finite. ]

By lemma 5.2.5, the map 1y 4, identifies D(y‘j)_WIZI with a subgroup of H!(K,,V) if Tk, is torsion

(
free, we thus obtain a map hy  : D(V)¥=! — H'(K,,V). Explicitly, if y € D(V)¥=!, then (¢ — 1)y €
D(V)¥=" and since 7, — 1 is invertible on D(V)¥=0, there exists x, € D(V)¥=0 satisfying (¥, — 1)x, =
(@ —1)y (e. (x4,y) € Zé,% (K4, V)). On the other hand, lemma 5.1.2 implies that the image ty,(y) and
logg(y,,)lq,% (x4,y) in H'(K,,V) does not depend on the choice of 7.

By lemma 6.2.1 below, we have cork, ., /k, © i . v = hy, . On the other hand, if Ik, is no longer

torsion free, we define h}q.v by the relation corg,  /x, © h}{n+ V= h}(n,v- Thus we associate every element
in D(V)¥=! to a collection of Galois cohomology classes h}q,.v (v) € H'(K,,V) for n > 1. The main result

of this section is:
Theorem 6.1.2. (Fontaine) Let V be a Z,-representation or a p-adic representation of Gg.
i) Ify e D(V)V=1, then (....hg y(v),...) € H\(K,V).

ii) The map Log{‘,*(l) :D(V)V=! — H[ (K,V) defined by previous paragraph is an isomorphism.

6.2 Corestriction and (¢,I")-modules

i) of theorem 6.1.2 is a consequence of the following lemma.
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Lemma 6.2.1. Ifn > 1, let

Tyt H' (Cp, (K V)) = H' (Cpy,, (Ku-1,V))

be the map induced by (x,y) € Z' (Cyp .y, (Kn,V)) to (Yy —-x,y) € ZY(Cqp 4, ,(Ku_1,V)). Then the diagram

Ty
Hl (C(Pv}/n (Kn,V)) *71> H] (C(P%—l (Kl’l*hv))

J{l‘ﬂﬁ’n qu"ynl

COFK”/KH

H'(K,,V) ———— 5 H'(K,_1,V)

is commutative.

Proof. Recall that if G is a group, M is a G-module and H a subgroup of finite index of G, the core-
striction map cor : H'(H,N) — H'(G,M) can be written in the following way: let X C G is a system of
representatives of G/H and, if g € G, let 7, is the permutation of X defined by 7,(x)H = gxH if x € X. If
c € H'(H,M) and h — ¢}, is a cocycle which represents c, then

g§— Z Tg(x) (Crg(x)*lgx)

xeX

is a cocycle of G with values in M whose class in H'(G, M) does not depend on the choice of X and is
equal to cor(c).

If N is a G-submodule of M such that the image of ¢ in H! (H,N) is trivial (i.e. there exists b € N such
that we have ¢, = (h—1)b for all h € H), then cor(c) is the class of the cocycle g — (g — 1) (X ex xD).
we take X =

In particular, we put G = Gg H = Gk, and, if ¥, is a lift of ¥, in Gk

n—17 n—1°
{1,%,1,...,?;7:11}, Take N = Frac(Zp[[GK,H]]) ®Zﬁ[[GKn_1” (A ®Zp V). If (x,y) c 7! (C¢77(K"’V)) and
if b€ A®T, the cocycle ¢y, is given by the formula ¢, ,(7) = (T — 1)c, where ¢ = ﬁ —beN. It

n

follows that corg, /k, (1., (x,y)) is represented by the cocycle

p—1
T%(G*I)(Z%AC) (o —1)( *Z%lb

i=0 Vn 1= i3

and since »
% 1~ Yo—1
—1)( b) = —1)b n- u X,
Z?nl lz(,)%l((‘l’ )b) = }’nl—l Yn71—1

we see that this cocycle is just t¢y, , (Ty,.(x,y)), and the conclusion follows. O
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Remark 6.2.2. One can also hide the explicit calculation by noting that, if n > 1, the diagram

Coy(Kn,V) 10 D(V) D(V)&D(V) D(V) 0
j fyf"mw }'d
Cop i (Ki,V) 20 D(V) D(V)®D(V) D(V) 0

is commutative and functorial on V and induces a homomorphism of cohomology group from H*(K,, ")

to H*(K,—1,-) which coincides with with the corestriction map at * = 0 and hence is corestriction map.

6.3 Interpretation of D(V)¥Y=! and ( ) in Iwasawa theory

We now turn to the proof of ii) of theorem 6.1.2. Lemma 6.2.1 implies that the map (1y .y, )neN induces an
isomorphism from the projective limit of H'(Cy ,,(Ky,V)) with respect to the map Ty, to H}\, (K,V). On
the other hand, lemma 5.2.5, implies by passing to the projective limit, that we have an exact sequence:

. D(v)v=! .
0 Jim (y)fl imH' (Cyy, Ky, V)) — lim( 1,,(7 T

The projective limit of D(Vi)wl:l is take with respect to the natural maps induced by the identity on D(V)¥~!

and that of ( by >)7’"*1 with respect to the map

'}’n-i—l_l, D(V) 1=1 D(V) Yao-1=1
e T L

Hence ii) of theorem 6.1.2 holds by the following proposition:
Proposition 6.3.1. IfV isa Zp-representation of Gk, then

i) The natural map from D(V)¥=" to L is an isomorphism.

ii) L

Proof. 1) Let (x,)neN € @% The compactness of D(V)¥=! [c.f. proposition 5.2.7 i)] implies
D(V)
Y=

?’n —

that the sequence x,, admits an accumulation point x € D(V)‘V ! and the image of x in hm is by

construction (x,),en. The natural map from D(V)¥=! to L is hence surjective.

By the compactness of D(V)¥=! and the fact that if x € D(V), then (7, — 1)x tends to 0 when n tends to
+o0 implies that if U is open in D(V') fixed by T, then there exist nyy € N such that (y, — 1)D(V)¥=! C U
if n > ny. This implies that (,cn (% — 1)(D(V)¥=!) = {0} and we prove the injectivity.

ii) % is a free Z,-module of finite rank [c.f. proposition 5.2.7 ii)], the sequence (%)7’":1 is

stationary since it is increasing. One can deduce the fact that there exists ny € N such that % is
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multiplication by p on (%)7’":1 if n > ng, which proves the statement since % has no p-divisible

element [c.f. lemma 5.4.1]. ]

Remark 6.3.2. We have H*(K,,V) = H*(Cyy,(K,,V)) = %. We deduce that if V is a Z,-

representation, then leW (K,V) is the projective limit of % since % is a Z,-module of finite
type on which I'x acts continuously by ii) of lemma 5.4.3, the natural map from % to the projective
limit of % is an isomorphism, this proves that % is identified with HZ, (K, V).
By the above proposition, one can summarize the above results as follows:

Corollary 6.3.3. The complex of Q, ®z, Ax-modules

1y

0——D(V) D(V) 0

computes the Iwasawa cohomology of V. i.e. HL (K,V)=D(V)'"V and HZ,(K,V) = iﬁ

There is a natural projection map pry. v : H{ (K,V) — H'(K,,V) and when i = 1 it is of course equal

to the composition of:
1

h
HL (K,V) —— D(V)¥=! 25 HY(K,,V).
The Hj,(K,V) have been studied in detail by Perrin-Riou, who proved the following
Proposition 6.3.4. IfV is a p-adic representation of Gk, then

i) The torsion submodule of H\,,(K,V) is a Q, ®z, Ag-module isomorphic to V¥ and H (K,V)/V*¥
is a free Q, ®z, Ag-module whose rank is [K : Qpldimq,V.

ii) HZ (K,V) is isomorphic to V(—1) as Q, @z, Ax-module. In particular, it is torsion.
iii) H},(K,V)=0wheni+#1,2.

Proof. See [18, 3.2.1]. U
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Chapter 7

De Rham representations and

overconvergent representations

7.1 De Rham representations and crystalline representations

Recall AT = W(E™), the ring of Witt vectors with coefficients in E*. We define the homomorphism
0:AT — Oc, by
0(Y p'lul) =} 'y
k>0 k>0
One can show that this is a surjective map and ker(6 : A+ — Oc,) is generated by 0 = /¢! (m).

We can extend 0 to a homomorphism from Bt = KJF[%] to C,, and we denote by BjR the ring
li%mBJr /(ker )", thus 6 can be extended by continuity to a homomorphism from B to C,,. This ma]ies
B(J{R a discrete valuation ring with maximal ideal ker 6 and residue field C,. The action of Gq, on At
extends by continuity to an action of Gg, on Bgy. The series log[e] = ¥,/ %ﬂ" converges in B to
an element which we denote by #, which is a generator of ker 6 with a Gq, action defined by o (¢) = x (o)t
where 6 € Gq,. This element can be viewed as a p-adic analogue of 27i.

We put Bgr = B:{R [t~ ! ], this makes Bgg a field with filtration defined by Fil'Bgr = tiBIR. This filtration
is stable by the action of Gg.

Let K be a finite extension of Q, and V be a p-adic representation of Gx. We say that V is de Rham if
it is Bgr-admissible, which is equivalent to the assertion that K-vector space Dar (V) = (Bar ®q, V)Gx is
of dimension d = dimg, (V). On the other hand, Dgg (V') is endowed with a filtration induced by Bqr. We
have Fil'Dgr(V) = Dgr(V) if i < 0 and Fil'Dgg (V) = {0} if i > 0.

The ring B:’ris is defined by

B*

o" ~_ . .
t= {Z n—v | a, € BT is a sequence converging to 0},

n>0
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and B = Bjris[%]. The ring Beyis is a subring of Byr stable under Gq, containing ¢ and the action of ¢
+

on B* is extended by continuity to an action of B_;.

In particular, we have ¢(t) = pt.

We say V is crystalline if it is B5-admissible, which is equivalent to the assertion that F = KN QZ’ -
vector space Deis (V) = (Bers ® V) K is of dimension d = dimq, (V). The action of ¢ on B;s commutes
with the action of Ggq,, which endows Dy;is(V) a natural semi-linear action of ¢. i.e ¢(fd) = ¢(f)¢(d)
where f € F and d € Di5(V).

We have (Bgr ®q, V)6 = Dgr(V) = K @F Desis(V), thus the crystalline representation is de Rham
and K ®F Dyis(V) is a filtered K-vector space. Hence if V is de Rham (resp. crystalline) and k € Z, so is

V (k), and we have Dgr (V (k)) =t *Dgr (V) (resp. Deris(V (k) = t *Deris (V).

7.2 Overconvergent elements

Every element x of B can be written uniquely in the form ¥~ .. p*[xi], where x; is an element of E and
the series converges in B;{R if and only if the series ) ;s o pkxlgo) converges in C,, which is equivalent
to k+ Vg (x;) tends to 4oo as k tends to +oo. More generally, if n € N, ¢7"(x) converges if and only if
k+ p~"vg(x) tends to +oo as k tends to +oo.

For r > 0, we set

~ ~ . pr
B' = B| I k= +oo}.
{xe |kivaE(x")+p—1 oo}

This makes B"" into an intermediate ring between B* and B. We denote Bf = Urzofiw, which is a subfield
of B with action of G and ¢@. On the other hand, we have a well-defined injective map ¢~ " : Bim — B:{R,
where r, = p"1(p—1).

We denote AT = BT NA, that is, the subring of elements x = Y0 PE ] of A such that vg (x) + pp%]k
tends to 4o as k tends to 4-co. We have B' = K”’[%].

By putting B" = BN B, A™" = ANA™ and B'" = BNB'", we define a subring BT of B fixed by
¢ and Gq,, and if r € R, subrings A" and BT of B are fixed by Gq,- By construction, e "(B™") is
naturally identified with a subring of BIR. Finally, if K is a finite extension of Q,, we set B;( = (B")Hk,
A" = (AT")Hx and B = (B )Hk,

Let ek be the ramification index of K., over F,, and F’ C K., be the maximal unramified extension of
Q, contained in K... Let T be a uniformizer of Ex = kp/((x)) and Px € Eps be a minimal polynomial
of Tx and 6 = vg (F’(ﬁk)). Choose Px € Apr such that its image modulo p is Px. By Hensel’s lemma,
there exists a unique g € Ak such that Px(7x) = 0 and g = Tx modulo p. In particular, if K = F’, one
can take mg = 7.

The terminology “overconvergent” can be explained by the following proposition:

Proposition 7.2.1. If r > r(K), then the map f — f(ng) from B to B;(’r is an isomorphism, where 2,
is the set of power series f(T) = Yyez axT* such that ay is a bounded sequence of elements of F', and
such that f(T) is holomorphic on the p-adic annulus {p~"/* < ||T|| < 1}.
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Proof. See lemma I1.2.2 [5]. O

Proposition 7.2.2. If K is a finite extension of Q,, then B;r( is an extension of BI),, of degree [Bx : Bg,| =
(Koo : Q,(1p=)] and there exists a(K) € N such that if n > a(K), then (p*"(BL"r”) C Ky[[t]], where r, =
P p—1).

Proof. 1In the case K is unramified over Q,, one can follow proposition 7.2.1 i) using the fact that K, [[r]]

is closed in B(J{R and the formula

o "(m) =9 "([e] - 1) =[e" "]~ 1=e"exp(t/p") — 1 € Ky[[1]].

For the general case, by remark 4.1.2, there exists @ = (w(n>)nEN € grll Ok, such that ®™ is a uniformizer
of Uk, if n is large enough and then Tx = 1x(®) is a uniformizer of Ex such that it is totally ramified of
degree ex over Epr. Let P(X) = X + @, 1 X*~! +... +dp € Em[X] be the minimal polynimial of g
over Ef and let 6 = vg (T’/(ﬁK)). If0<i<eg—1,leta; € Op[[n]] C Ar whose reduction modulo p is
@; and let P(X) = X +a,, 1 X¢ "' + ...+ ayp € Ar[X]. By Hensel’s lemma, the equation P(X) = 0 has a

unique solution g in Ax whose reduction modulo p is Tx and we can write it in the form

1o
nx = [Tx]+ Y p'lod], (7.1)

i=1

where ¢; are elements of E verifying vg(a;) > —id. In particular, mg € A;(’r if p%lr > §, hence we have
A;r = A;"r[ﬂK] if %r > 6. Thus it suffices to prove it when n large enough, then g, = ¢ " (7x) €
K [[r]].

Let P, (resp. Q) be the polynomial obtained by the map 6 o ¢ " (resp. ¢ ") applied on the coefficients
of P, which is a polynomial with coefficients in O, (resp. F,[[t]]) with 0(7k ) (resp. Tk ,) as a root. On
the other hand, by definition of 1x (c.f. 4.1.2), we have v,,(a)<”) — ﬁ%)) > % if n large enough and formula

(7.1) shows that v, (6 (7 ») —ﬁgf)) >(1— %) Then we have vp(Pn(a)(”))) > % if n large enough and

1 0 1
/ _ /(7 V)
Vp(Pr(0™) = EVE(P (Tx)) = P < 2
if n large enough. By Hensel’s lemma, the equation P,(X) = 0 has a unique solution in C,, close to o™
and hence belongs to O, since ®™ and the coefficients of P, do. We deduce that 6 (g ,) belongs to K,,.
By using Hensel’s lemma again, one can show that Q, has a unique solution in Bj; whose image by 6 is
0(mk ») and thus belongs to K [[]]. O

We endow By, with the differential operator d defined by continuity and the derivation d7 = 1 + 7.

We therefore have d = [s]dd—n = % (Note that ¢ Bp,). The derivation can be extended uniquely to a

maximal unramified extension of Bp  in B, hence by continuity to a derivation d from B to B.
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Lemma 7.2.3. If K is a finite extension of Q,, there exists m(K) € Z such that, if n > m(K) and x in B}f('r”,
then

i) dxe By
ii) 97"(dx) = p"d(9~"(x)).

Proof. If K = Q,, explicit calculation using proposition 7.2.1 i), shows that we can take m(K) = 1. For

the general case, let o be a generator of BL over BI);, and P be its minimal polynomial. The identity,

0=3(P(a)) = P'()dct + IP(0x),

where dP is the polynomial obtained by applying d on the coefficients of P, shows that da = — i{g((g)) €

(K)

BIL It is then possible to take m(K) any integer such that B;(’m contains da and .

For ii), it suffices to note that "o d is p"d o ¢ " are two derivations of B_,Z’r” coincides on Bg’:” by
9 "0d([e]) = 9" ([e]) = " exp(p 1)

—n ﬂd n —n n —n
pldoo"([e]) =p E(S()GXP(P 1) =™ exp(p"t).

7.3 Overconvergent representations

Definition 7.3.1. If V is a p-adic representation of Gk, we set
D'(V)=(B'®q, V)™ and D (V)= B ®q, V)"

We have dimB; D' (V) < dimq,V and we say that V is overconvergent if equality holds, which is equivalent

to the assertion that D(V) has a basis over Bx made up of elements of D7(V').
Proposition 7.3.2.

i) Every p-adic representation of G is overconvergent.
ii) There exists r(V) such that D(V)¥=" c D"V)(v).

iii) IfV is overconvergent and n € N, then ¥, — 1 admits a an continuous inverse on D' (V)"’ZO. Moreover,

there exists ny(V') such that if n > ny(V), then

(= 1) (D (V)¥0) € D ()0

Proof. 1), iii) see [5]. ii) follows from lemma 5.3.4. ]
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Chapter 8

Explicit reciprocity laws and de Rham
Representation

8.1 The Bloch-Kato exponential map and its dual

Let K be a finite extension of Q, and V a p-adic representation of Gx. We have the fundamental exact

sequence

0 Q, B! Bar/B —— 0

cris

(c.f. [9, proposition III 3.5]). Tensoring this exact sequence with V and taking the invariants under the

action of Gk, we obtain:

0 VO DcriS(V)(p:1 — ((BdR/BgR) ®V)GK — Hel (K,V) ——0

where we denote H (K, V) the kernel of the natural map from H' (K,V) to H'(K,B?>.' © V). We call the

cris

isomorphism induced by the connecting homomorphism

Dr(V)
Fil’Dyg (V) + Degis (V) 9=1

eXpyy : — HNK,V)CcH'(K,V)

the Bloch-Kato exponential of V over K and we denote its inverse by

Dgr(V)
Fil’Dgr (V) + Deyis (V) =1

logg v :Hel (K,V) —
the Bloch-Kato logarithm of V' over K. Moreover, if V is de Rham and k > 0, then expg y ) is an

isomorphism from Dy (V (k)) to H'(K,V (k)).
The choice of ¢ gives an isomorphism from Dgr(Q,(1)) =¢7'K to K. If V is a p-representation of
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Gk, the couple [, ]p,, (v) is defined by the composition of maps

Trg,
Dgr (V) @ Dar(V*(1)) 2 Dgr(V @ V*(1)) —— Dar(Qy(1)) 2K —5 Q.
This composition is non-degenerate, hence Dgr (V*(1)) can be naturally identified with the dual of Dgg (V).
Similarly, via the cup product

H'(K,V)x H'(K.V*(1)) = H*(K.Qy(1)) = Qp,

H'(K,V*(1)) is naturally identified with the dual of H!(K, V). This allows us to view the map eXPk (1)
as the transpose of the map expg y«(1) : Dar (V*(1)) — H'(K,V*(1)) as a map from H' (K, V) to Dgr(V),
whose image is contained in Fil®(Dgr(V)). If V is de Rham and k > 0, the map exp}yv*(
isomorphism from H' (K,V (—k)) to Dgr (V (—k)).

If x € K. and n € N, then pi,,,Ter /K, (x) does not depend on the choice of integer m > n+ 1 such that

1+k) 1S an

x is belongs to K,,. We denote T, the above Q,-linear map from K., to K,,. If n > 1 and x € K,,, then
T,(x) = p~"x. We have
Ty =Trg,jx,0Tn ifn>m.

We also denote by T, the map from K..((r)) to K,((r)) defined by T, (L% axt*) = L% To(ay)t*.
Proposition 8.1.1.

i) K(()) is dense in Bgll’{ and T, can be extended to a Q,-linear map from Bfﬁ to K,((1)).

ii) If F € BX, then lim, e p"T,(F) = F.
Proof. See [9], proposition V.4.5. O

Let V be a de Rham representation of G, we have Bgr ®q, V = Bgr @x Dgr (V) and H HK,BRroV)=

H'(K,Bir @Dgr(V)) = H' (K,Bgr) ® Dgr (V). Since K = H'(K,Bgr) via x — xUlog x. We thus get an

isomorphism
Der(V) — H'(K,Br®V); x—xUlogy

Proposition 8.1.2. IfV is a de Rham representation, the map x € Dgr(V) to a cocycle T — xlog (1) €
Dar(V) C Bar ®V induces an isomorphism from Dgr(V) to H' (K, Bgr ® V) and the map eXpy. ;) is the
composition of the inverse of the above isomorphism and the natural map from H' (K, V) to H' (K,Bgr ®
V).

Proof. See [16] proposition 1.4. of chapter II. O

We define the map pry, : Bz’{ — K,((t)) by the formula prg (x) = ﬁTer /K, (%) if x € Koo and
m > n such that x € K, and there exists a'(K) > 1 such that one has p"T, = prg_if n > d/(K). From (ii)

of proposition 8.1.1, we can show that lim,,, ;. prg x = xif x € Bgll’{
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If V is a de Rham representation, the natural map from Bglﬁ( @k Dgr(V) to (Bar ®q, V)Hx is an isomor-
phism and we can extend the map T, and prg, for n € N by linearity to B ® @k Dgr (V). On the other hand,
if F € K.((t)) ®Dgr(V), we can write F uniquely as the form Y ., t¢ dk, where dj, € K. @ Dgr(V). We
denote dy (g (F) the element t*dy of K.. @ Dar (V (—k)).

Proposition 8.1.3. Let V be a p-adic representation of Gg and n,m € N be two integers. If c € H' (K, V (—k)),
there exists a cocycle T+ c; on Uk, with values in (Bgr @ V(—k)) & which has the same image as c in
H'(K,;,Bar @ V(—k)). Moreover, if V is de Rham. then

1 )) CV)

eXP’(/*(Hk)(C) = av(—k) OPrkm(W
14

for all y € Tk, such that log,(x (7)) # 0

Proof. Since H'(K..,Bgr ® V) is zero (c.f. [9] theorem IV.3.1), the inflation map from H'!(Tx,, (Bgr ®
V)Hx) to H' (K, Bgr ® V) is an isomorphism, hence we have the existance of coycle T+ c¢;. On the other
hand, if V is de Rham, the map 7 > dy(_) oprg, (cz) is a cocycle on Ik, with values in Dgr(V(—))
which I'g,

implies 7~ c; is a coboundary, hence d = 0. One cae deduce that dy () oprg ( og, x ( )cy) € Dgr(V(—k))

acts trivially. It is of the form 7+ dlog, x(7), where d € Dar (V (— k)) and if ¢ is zero, which

does not depend on y € 'y such that () # 0 and the choice of cocycle T — ¢ representing ¢, which

m

provides us a natural map from H'(K,V (—k)) to Dar(V(—k)) coincides with exp}. (1% DY proposition
8.1.2. O

8.2 Explicit reciprocity law

Let V be a de Rham representation of Gg and let n(V') > ni (V) be the smallest integer satisfies r,y) > ry
(c.f. proposition 7.3.2). If u € H (K,V), then Exp;‘,*(])(u) € D(V)¥=!. On the other hand, D(V)¥=! C
D"V (V). If n > n(V), we can view (p*"(Expé}*(l)(u)) as an element in Bgr ® V. Since (p*”(Epr‘,*(l) (n))

is an element of Bqr ® V fixed by Hg, we can consider its image under 7j,,.
Theorem 8.2.1. Let V be a de Rham representation and m € N.

i) If n > sup(m,n(V)) and u € H.,(K,V), then Ti(@ ™" (Expy. (1) (1)) is an element in Ku((1)) @k
Dyr (V) independent of n, we denote it by EXpy. (1) ,, (u).

i) If p € HL,(K,V), then

EXPV* ZeXPV 1+k) / x(x
kel

iii) There exists m(V) > n(V) such that ifm > m(V) and p € H (K,V), then

Expy- (1), (1) = p~ "¢ " (Expy. 1) (1))-
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Remark 8.2.2.

i) The image of H'(K,,,V (—k)) by €XPy- (1.4 is contained in Fil’Dyg (V(—k)) = Fil’ (t*Dgr (V)) which
is zero if k < 0. Hence the series in ii) converges in Bgr @ Dgr (V).

ii) We have a map u € H}, (K,V) Jre, x*u € H'(Gg,,V (k)), thus expi‘,(Hk)(ern X *u) € t*K, @k
Dgr(V).

iii) Forn > n(V), we have ¢ "(D""*(V)) C K,((t)) @ Dgr (V).

Proof. Giventhat T, = Trg_ /K, © T if r <mandif L; C L, are two finite extension of K, then the diagram

eXPy=(1)

H! (Lz, V) — L ® DdR(V)
JcorLz/L1 Try, /1, Qid

| eXPy=(1)
H (Ll,V) — L ®DdR(V)

is commutative. Thus, to prove i) and ii), it suffices to prove them for m large enough. We can therefore
m log,, (X (¥n))
suppose that m > n(V)+1, pry, = p"T,, and logg(ym) = Og”T.
Denote y the element Expy,. (1) in D(V)¥=!andif i € Z, denote y(i) the image of y in D(V (i))¥=! =
D(V)¥=! (same as set but differerent as Galois module by twist ¥’). By construction of Expy.(;) (indeed
its inverse), [p. % (x)~*u is represented by the cocycle

-+ ¢ = o8l () (7—y(~0)— (0= 1b),

where b € A®YV is a solution of the equation (¢ — 1)b = (¥, — 1)1 ((¢ — 1)y)(—k)).

By definition of n(V), we have y € D™ (V) € D1 (V) and (¢ — 1)y € D' (V), which implies
that (%, —1)~'(¢ — 1)y(—k) € DT"»+1(V) by proposition 7.3.2, and the same argument as lemma 5.3.4
implies that b € A™"» @ V. Since we suppose that n > sup(m,n(V)), we have ¢~"(b) and ¢ "(y) are both
in Bj, ®V and ¢; = ¢~ "(c};) is a cocycle with values in Bgr @ V which differs from the coycle

log, x(Ym) 0 —1

O ce= y(—k
o = =L T 07 ()

by a coboundary ¢ > log”p%

(Bgr ® V)H& which allows us to use proposition 8.1.3 to calculate it and we obtain

(o —1)@™"(b). Since y is fixed by Hk, the cocycle ¢ — ¢ has values in

* - 1 1 -n
EXPy+(1+k) (/FKMX(X) kﬂ) = logpmav(fk) (PTK,,, (cy)) = p—mc?‘/(,k) (PTK,,,(‘P ™))

and since p%Per =Ty and Ty (x) = Yyez, 0y (—i) (Tm(x)) if x € (Bar @ V)¥, we deduce i) and ii).
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To prove iii), it suffices to show that if m is large enough, then (p*’”(Expé*(l)(u)) € Kn((t)) ®k
Dgr (V). We need the following lemma:

Lemma 8.2.3. Let d be an integer > 1. If U € GLd(Bg]lf) and there exists n € N such that U~'y(U) €
GL4(Ky((1))), then there exists m € N such that U € GLy(Ky,((2))).

Proof. LetA=U""y(U).If m>n,let U, = prg (U). Using the fact that pry_is K,((t))-linear if m > n,
we obtain, by applying pry to the identity UA = y(U), the relation U,,A = y(Uy,). On the other hand,
since lim,,— 4+ U, = U, there exists m > n such that U, is invertible. Subtract A by the above identity,
We have UU,,! is fixed by v and therefore belongs to GL;(K). We hence deduce that U belongs to
GL4(Kn((1)))- O

Let ey, ...,eq be a basis of D™») (V) over B;r”(v) which contains D(V)¥=! and f,..., f; a basis of
Dgr(V) over K. Let A = (a;;) € GLy(B}), B = (b;j) € GLy(B}) and if m > n(V), Ct") = (cl('j)) €
GLd(Bgl{ ) the matrices defined by

d
’)/(ei) = Z ai jej, (p(ei) = Z bi’jej and (p_m(ei) = Z Cl(:q;)f]
=1 =

The relation Yo @ = @ ™o yand ¢ = ¢~ (") o @ is translated to
,},(C(m)) _ C(m)(p—m(A) and C(m) — C(m+1)(p—(m+1)(c—1)

since fi,..., fz is fixed by y. There exists ng > n(V) such that A and B belongs to GL,,;(By"0 ). Since there
exists mg € N such that (p*m(B;(’r’”) € Kp|[t]], if m > mo. By above relations and lemma 8.2.3, there exists
m(V) > sup(ng,mo) = my such that C"") € GLy(K,,)((t))), which implies that C") € GLy (K, v((1)))
for m > m(V) by second relation. Since x € D(V)¥=! is of the form Zﬁizlxiei where x € B""n) and
@ "(B")) C K,,[[t] if m > m(V) by the choice of m(V), we have the inclusion ¢ "(D(V)¥=!) C
Kn((1)) @k Dgr(V) if m > m(V). This proves iii). O

8.3 Connection with the Perrin-Riou’s logarithm

Our Goal in this paragraph is to compare Exp’{,*(l) and Perrin-Riou’s logarithm constructed in [9]. Let us

recall the construction of logarithm map.

Proposition 8.3.1. Let V be a de Rham representation. Let W be the finite dimensional Q ,-vector space
UneN(Bé’}? ®@V)9n. Let u € H}, (K, V) such that Jr, M€ H!(K,V) for alln € N and T — U; a contin-
uous cocycle representing |. Finally, if n > 0, let ¢, be the unique element of (ngl ®V) /W verifying
(1=1)cn = [g, U forall T € G,
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i) The sequence p"c, converges in (Bfml ®V)/W to an element of (Bg”m1 ®V)Ck /W denoted by
Logy (1).

ii) If n € N, then

d
d Logv Z expv (14K) / x
keN
Proof. See [9, Theorem VI.3.1 and Theorem VII.1.1]. L]

Remark 8.3.2.

i) There exists ko € N such that the condition [ u € H, (K, V) for all n € N holds automatically if we
replace V by V (k) for k > ko.

i1) The operator % annihilates K., ® Dgr (V) and hence W, which explains why we don’t need to pass to

quotient W in formula (ii).
The connection between Log,, and Exp;k,*( 1 in the case V is de Rham is given by:

Theorem 8.3.3. Let V be a de Rham representation of Gg. There exists m(V) > n(V) such that if m >
m(V) and i € H\,(K,V) such that [ p € H}(K,,V) for all n €N, then
—m =M * d
P " (Expy.y (1) =1 (Tn(Logy (1))
Proof. Given ii) of proposition 8.3.1, it follows immediately by theorem 8.2.1. 0

Remark 8.3.4. It is possible that the theorem is empty, that is there exists no nonzero element in HIIW (K,V)
satisfying the assumptions in proposition 8.3.1, but as we noted above, if we replace V by V (k) for k > 0,

then the assumptions of the theorem is verified for all elements of H},, (K, V).
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Chapter 9

The Q,(1) representation and Coleman’s

power series

9.1 The module D(Z,(1))¥=!
The module Z,(1) is just Z,, with the action of Gq, defined by g € Gq,, x € Z,(1), g(x) = x(g)x. We

shall study the exponential map
Expg, P Hyy (Qp, Zy(1)) = D(Z,(1)¥ .

Note that D(Z,(1)) = (AR Z,(1))"e = Ay, (1), with usual actions of ¢ and y, and for y € T, y(f(7)) =
x(NF(1+7)*") — 1), for all f(rr) € Ag,(1).

Proposition 9.1.1. (Ap )V='=Z, -1 (AEP)V’ZI.

Proof. Note that we have l//(AEp) C Agp, v(3)=1and ve(y(x) > [VET(X)} ifxe Eap. These facts imply
that w — 1 is bijective on Eq, /ﬁflEap and hence it is also bijective on Ag,/ JE_IAEP. Thus y(x) =x

implies x € TFIAEP' O

9.2 Kummer theory

We define the Kummer map « : K* — H'(K,Q,(1)) as follows: For a € K*, we choose x any element in
E satisfying x(¥) =, then 7 — (1 — T)(%(])) is a 1-cocycle on Gk with values in Q, (1) whose image
in H'(K,Q,(1)) is defined to be k(a).

Recall that € = (1,&(V),...) € E(JSF’ e) £ 1. Let F, = Q,(¢™) and &, : F} — H'(F,,Q,(1)) be the

Kummer maps defined above. Since corg,,  /r, © Ky+1 = K, ©NE, | /5, which induces a map

K:limFE — HIIW(vaQp(l))'
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We have
Hiy(Qp, Zy(1)) = Z,p - k(m) ® k(lim T, ).

9.3 Multiplicative representatives

Recall that B is a purely inseparable extension of degree p of ¢(B) (totally ramified since residual
extension is purely inseparable). Define the multiplicative map N : B — B by the formula N(x) =
@ ' (Ng/o(p)(x)). This is an multiplicative analogue of .

Lemma 9.3.1. Ifx € E* and U, denote the sety € A whose reduction modulo p is x, then N is a contractible

map of U, for the p-adic topology.

Proof. Note that N induces the identity on E and thus fixes U,. On the other hand, if y = 1 mod p*, we
have

NO) =149 '"Trg/pm(y—1) =14+ py(y—1) mod p*,

which implies in particular that N(y) — 1 € p**'A. We deduce that if y,y, two elements of U, verifying
y1 —y2 € p*A, then N(y;) —=N(y2) = N(yz)(N(yz’lyl) —1) € p* 1A, which proves the lemma. O

Corollary 9.3.2.
i) If x € E, there exists an unique element X € A whose image modulo p is x and N(%) = .
ii) If x and y are two elements in E, the xy = 3.

Proof. 1) follows from the above lemma if x # 0 and completeness of U, for the p-adic topology. On the
other hand, N(p*A) C pPXA, this proves that 0 is the only element of y in pA satisfying N(y) = y. Thus

we prove the uniqueness. ii) follows from the uniqueness in i). O

Remark 9.3.3. There are two multiplicative maps from E to A, namely the map x — X and the Techmuller

map [x]. We have £ # [x] unless x € F),.

Lemma 9.34. Let K be a finite extension of Q, and d = [Bg : Bg,| = [Kw : Q, ()] If n(K) is the
smallest integer n > 2 such that there exist ey, ...,eq € AZ™ such that @(ey),...,9(eq) form a basis of
K;(’r"“ over K(S’r)"“ and if n > n(K), then N(K};r”“) c AL,

P
Proof. By definition of n(K), if n > n(K) and x € Aj(’r”“, we can write x in the form x = Y | x;¢(e;)
where x; € Ag:"“. On the other hand, we can write x; in the form x; = Z;:& x; j[€]/ where x; j =
¢(y([e]/x;)) and corollary 5.3.3 and proposition 7.2.1 show that we have x; ; € qo(A(I);”) We hence
deduce that the coordinate y; = Y% | x; j¢(e;) of x in basis 1,[€],...,[€]?~! of B over ¢(B) belongs to to
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Aj(’r”*' Ne(B) = (p(A;(’r”). On the other hand, Ng (g is the determinant of the multiplication by x in B

considered as a vector space of dimension p over ¢(B), therefore the determinant of the matrix

yo o [€Pyp—1 o [€)Pwn
i Y0 ' :
' : €]Pyp—1
Yp—1 Yp-2 e Yo

We deduce that Ng (g belongs to (p(A;(’r") Together with the relation N = ¢! o Ng /p(B)» WE complete
the proof. O

Corollary 9.3.5. Ifx c E}, then % € A};’r"(m. Moreover, if K is a unramified extension over Q, and x € E},
then £ € A}, = Ak ﬂAJép = Ok||7]].

Proof. Letv e Al whose image in Ex is x and let n > n(K) such that v € A;gr". Let (v)ren the sequence
of elements in Ak defined by vo = v and vy = N(v_;) if K > 1. By lemma 9.3.1, the sequence tends to £
in Ag as k tends to +oo. On the other hand, lemma 9.3.4, implies that v; € AL for k € N and since A"
is relatively compact in A}L(’r”“ , which implies that £ € AT"*+! and the result follows by using lemma 9.3.4
by descending A;f(’r"“ to AI(J"(K).

In the case where K is unramified over Q,, the reduction modulo p induces a surjection from A} to
E/ and since A}, is a closed subring of Ak fixed by N, a similar argument shows that v € A} implies that

£eAf. O

9.4 Generalized Coleman’s power series

Let us recall the construction of the classical Coleman’s power series.

Proposition 9.4.1. Let F be a finite unramified extension of Q,. If u = (u("))neN is an element of the
projective limit IHB Or. of OF. with respect to the norm map, there exists a unique power series Col,(T)
in Op([T))* such that we have Col? " (¢ — 1) = u™ for all n € N.

Proof. See [8]. L]

Lemma 9.4.2. If K is a finite extension of Q, and n > n(K), then the diagram

Torn1 N Torn
AK AK

(p(nJrl)J J((pn

NKn+l /Kn

Kot [[1]] = Ka[[r]
is commutative.
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Proof. By definition, Ng¢(g) (resp. Nk . /k, ( @~ ("1 (x))) is the determinant of the multiplication by x
(resp. @~ "1 (x)) over B (resp. K, 1[[t]]) considered as a ¢(B)-vector space (resp. K,|[[t]]-module) and
the commutativity of the diagram follows from the fact ¢("*1 is a ring homomorphism and ¢ " oN =

(pf("+l) ONB/(p(B)- O

Denote the map 6, the homorphism 6 o ¢" where 6 : Bjg — C, and ¢~ : B — Bgr.

Lemma 9.4.3. Ifu= (u") ¢ lim O, and n > n(K), then 9,1(11(/(7)) =ul,
Proof. By the preceeding lemma, (9,1(11(/(;))),12,,( k) belongs to lim O, . On the other hand, since [tk (u)]—
1x(u) € A" A pA, which implies that if n > n(K), then v, (8, ([tx ()] — (15 (1)) > 1 — s and

since V,, (6, ([t (u)] —u™) > % if n large enough, we show that (Gn(u(/(\bt))@n(,{) has same image as u in

E/ (c.f. proposition 4.1.1), so it is equal. O

Proposition 9.4.4. Let K be a finite extension of Qp, F = KN Q)" and ex = [Kes : Fic].
i) If ex = 1 and u € lim O, then 1y (u) = Col, ()
ii) When eg > 2, there exist Laurent series fo,- - , fe,—1 € ﬁp((T)) converges in the annulus 0 < v,(x) <
—1

i such that, ifn > n(K), then (u')*s + £ (%)~ 1))k 4 £ (€ — 1) =0,

Iio\of By corollary 9.3.5, lK( )EAfifue lim O, In particular, there exists f € ﬁp[[ ]] such that
1x(u) = f(x). On the other hand, by applying lemma 9.4.3 to the map 6,,, we obtain u") = f® " (") — 1),
which shows f = Col, by the characterlzatlon of Col,.

ii) By corollary 9.3.5, lK( ) € AI "® " On the other hand, A ") is of dimension e over A
(by the definition of n(K)); so we can find elements fo, e fe—] € AF " such that we have l;</(\)€K +
O

——ex—1

fo11x(u) R + fo = 0, by lemma 9.4.3, we obtain the result.

9.5 The map Logg (1) and EXPEP
Lemma 9.5.1. [fu € E, the sequence ((p*"(llg/(;)))pn converges to g (u)] in A and B

Proof. Since lK/(u\) € A™® with image 1x(u) in E, it can be written in the form [tx ()] + X, p¥[xi],
where x; are elements of E satisfying Vg (x;) > —kp"K). We have the formula v, = (p*"(lK/(;)) =
[ (u)? "]+ X PR ? "] and the congruence vﬁn = [lK( )] mod p"™'A, thus it converges in A.

Let o an element in E* verifying vg(at) = 21, thus ([ ]) tends to 0 in B as i tends to +eo. If
n > n(K) + 1, the above formula shows that v, belongs to the subring A (c.f. section 5.4) of Bj; of
elements of the form y = Y7 y;( [ a]) where y; are elements in A and we have v,, — [1x(1)? "] € ﬁA. We

deduce that v2 tends to [1x(u)] in A and a fortiori in B O

Proposition 9.5.2. Let K be a finite extension of Q, and u € IHE Ok .
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i) Logq,(1)(x(u)) =1~ log[tk (u)]

ii) Ifn > n(K), then T,(Logq, 1) (k(u))) =1~ log ¢ " (1x (u).

-1 —
iii) Expq, (k(u)) = 1x(u) Jik(u), where 0 is the derivation (1+ )AL (see 7.2).

Proof. By construction of the Kummer map, if u, is any element in E* satisfying ug,o) =u™ then 7 —

(1— ‘c)(logtﬂ(l)) is a 1-cocycle on Gk, with values in Q,(1) whose image in H!(K,,Q,(1)) is equal to
K, (1). Since we suppose that u") € O , we have log[u,] € Beris and %(1) € Bg? ®Qp(1), proving

that ,(u™) € H}(K,,Q,(1)). Hence we deduce the formula

Logg, (1) (K(«)) = lim p”lOg[un](l):t_l lim log([un]"").

n——+oo t n——+oo

Finally, we have v, (0 ([tx (1) "]) — 0([uy])) > % if n large enough, therefore [u,]”" tends to [1x(u)] as n
tends to 0. We complete 1).
By i) and lemma 9.5.1, we have
Tu(Logg, 1) (<(w) = ¢! lim T, (p"log(g™ " (ix(x)))).

—

On the other hand, if m > n, we have T, = Trg (19)/,[1) © Tm and sicne ¢~ (1x(u))) € Ky[[t]] and the
restriction of T,, on K,,[[t]] is multiplication by p~”, we obtain the formula

—

T, (Logg, (1) (k) =t~ Lim Try, 1/k, 1) (log(@ ™ (1 (1))))

m—y—+-oo
—_—

=t~' lim log(N,,111/k, 1) (@~ " (1k (1))

m——+oo

and this completes ii) by using lemma 9.4.2.

Note that 7! is a generator of Dgr (Q,(1)). ii) and theorem 8.3.3 implies that if n is large enough, we

have
d —_—
7 (Bxpi, () =1 (125 (6 oz (x(a)
¢~ (1 (u))
:(p_”(L?\(u)_I&K/(;)) by lemma 7.2.3 ,
which completes iii). 0
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9.6 Cyclotomic units and Coates-Wiles homomorphisms
Example 9.6.1. Let K =Q,,,V =Q,(1) and u = (%)nzl € lim &y, . Then its Coleman’s power series
P n

is Col,(T) = L. By iii) of proposition 9.5.2, we have Expg, (k(u)) = (aéfﬁl“((TT)) )(7) = % On the other

hand, since ]

o m) = (ler] - 1) = eWexp(t/p)—1’

by iii) of theorem 8.2.1, we have

X, (k(0) = Trr 0,07 (1)
1 1
PR IRETIOP)
(e - T )
l—exp(t) 1—exp(t/p)

t

(o)t

~+oo
_ _ kK _

Thus by ii) of theorem 8.2.1,

0 if£<0

(1-p ™1 -0y ifk>1

CXP:),;(H/()*(/FF x M r(p) =
! (k—1)!

Example 9.6.2. Let K =Q,,V =Q,(1) and u = (M)nzl € @ﬁ*ﬂ, where a € Z. Then its Coleman’s

gp1171
power series is Col,(T) = % By iii) of proposition 9.5.2, we have Expg, (k(u)) = (accoff]”((TT)) ) () =
% — # On the other hand, since
o7 (W) = (ler] 1) =
eWexp(r/p) — 1
by iii) of theorem 8.2.1, we have
* 1 —1 *
Expo, s (K1) = Trri g, ¢ (Expg, (K (1))
1 a 1
—a— 14— -
p CP_IZ,Cfl Cexpat/p_ 1 Cexpt/p
—1 1 1 t t
=a — 1 + 7( a _ a /p o + /p )
t “1—exp(at) 1—exp(at/p) 1—exp(t) 1—exp(t/p)

_+oo ) (—t)k_l
= L0 e R
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Thus by ii) of theorem 8.2.1,

0 if£<0

@ -1 —p M- ik >1

expi, 14t (| ) =
&—1)!

Example 9.6.3. Let K = Q,({s), V = Q,(1) and € be a Dirichlet character of conductor d > 1 prime to

| e ' (b) ; *
p- Setu = (m meodd W)n21 S Lﬂ'lﬁ o then we have

—1 e ()

C01u<T) - G(E_l) bn%;jd Cdb(l +T) 1

and thus
-1 e 1(b)

G(e™!) it Gh(1+m) — 1

Expl, (k()) =
Hence we have,

Expgy, &, (k()) =p~ ' Trg, k9" (Expgy, (k (1))

—1

1 -1
b

G £ ()

1
CoPzexp(t/p) -1

=p —
(e7!) P=T¢41 bmodd

-t -1 L, 1
_G(e—l)bn%dg (b)<1—C§’eXP(I) ! 1—Cf/peXP(t/p)>
€(b) exp(br) £(b)exp(br/p)

_ EW)expiot)
_brgad 1 —exp(dt) pep) 1 —exp(dt/p)

+oo
zkg(l —e(p)p )L(1 —k.€) (k—1)!

and thus
0 ifk<0

(1—e(p)p ™ L1 —ke) = ifk>1

CXP:)}S(Hk)(/FK x M r(p) =
! (k—1)!

This allow us to define a homomorphism CW;, from H}, (K, V) to K, @ Dgr (V) by putting

CWin () = 9(Tx, (Logy (11)))-

for each n € N and k € Z, the homomorphism is a generalization of Coates-Wiles homomorphism and we

have the following theorem by proposition 8.3.1.

Theorem 9.6.4. If u € H., (K,V), ifn € Nand k € Z, then

CWi (1) = —exp’( o x(x) ).
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Remark 9.6.5. The map
lim 0, ,) > Hi Qe Qp(1)) = Qe > expiy ([ 27 5(40)
£

is just the classical Coates-Wiles homomorphism ([7] section 2.6).
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Chapter 10

(¢,I')-modules and differential equations

10.1 The rings B,,x and Brlg

The ring B}, is defined by
B! . {Z an | a, € B is a sequence converges to 0},
n>0
and Byax = BmaX[ |. Tt is closely related to Bgs but tends to be more amenable. One could replace ® by

any generator of ker(0) in A*. The ring Bax injects canonically into Bgr and, in particular, it is endowed
with the induced Galois action and filtration, as well as with a continuous Frobenius ¢, extending the map
Q: B* — B*. Note that ¢ deos not extend continuously to Bgr. We set B:’ =N 00" (Bhay)-

We call a representation V of Gk is crystalline if it is ch—admlss1ble, which is equivalent to By«-

admissible or BJr [ ]-admissible (because N, ¢"(B 0" (BL.,) and the periods of crystalline

mdx)
representations 11ve in finite dimensional F-vector subspaces of Bnax, stable by ¢ and so in fact in

N 0@" (Bihae [1]); that is, the F-vector space

1
Deris (V) = (Beris ®q, V)GK = (Bmax ©®Q, V) (Br+1g[ ] ®q, V>GK

is of dimension d = dimq, (V). Then Dc;is(V) is endowed with a Frobenius ¢ induced by that of Biax
and (Bgr ®q, V)6 = Dgr(V) = K @F Deiis(V) so that a crystalline representation is also de Rham and
K ®Fp Deis(V) is a filtered K-vector space.

If V is a p-adic representation, we say V is Hodge-Tate, with Hodge Tate weights 1, ..., k4, if we have
a decomposition C, ®q, V = @d 1Cp(hj). We say that V is positive if its Hodge-Tate weights are all
negative. By using the map 6 : BdR — C,, it is easy to see that a de Rham representation is Hodge-Tate
and that the Hodge-Tate weights of V are those integers & such that Fil’hDdR(V) % Fil’h“DdR(V).
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10.2 The structure of D(T)¥=!

Recall in section 4, we introduced (¢,T")-modules and their relation with Galois representations. Let us
now set K = F' (i.e. we are working in an unramified extension of Q,). We say that a p-adic representation
V of Gp is of finite height if D(V') has a basis over By made up of elements of D (V) = (Bt ®q, V).
A result of [10, proposition I11.2] shows that V is of finite height if and only if D(V') has a sub-Bj:-module
which is free of rank d, and stable by ¢. Let us recall the main result of [10, theorem 1] regarding

crystalline representation of Gr:
Theorem 10.2.1. IfV is a crystalline representation of G, then'V is of finite height.

Let V be a crystalline representation of Gy and let T denote a G stable lattice of V. The following
proposition is proved in [2, proposition II.1.1]

Proposition 10.2.2. If T is a lattice in a positive crystalline representation V, then there exists a unique
sub-A}-module N(T) of DT (T), which satisfies the following conditions:

1. N(T) is an free A}--module of rank d = dimgq,V;

2. the action of Tr preserves N(T') and is trivial on N(T) /aN(T);

3. there exists an integer r > 0 such that t"D" (T) C N(T).

Moreover, N(T) is stable by @, and the B -module N(V) = B} @ A N(T) is the unique sub-Bf:-module
of D (V) satisfying the corresponding conditions.

The Aj:-module N(7') is called the Wach module associated to 7.

Notice that N(7T(—1)) = N(T) ® e_;. When V is no longer positive, we can therefore define N(7')
as T "N(T (—h)) ®e,, for h large enough so that V (—h) is positive. Using the results of [2, III.4], one can
show that:

Proposition 10.2.3. If T is a lattice in a crystalline representation V of Gr, whose Hodge-Tate weights
are in [a;b), then N(T) is the unique sub-A}:-module of D" (T)[1/x] which is free of rank d, stable by T'r
with the action of T'r being trivial on N(T)/aN(T) and such that N(T)[1 /7] = D™ (T)[1/x].

Finally, we have @(n?N(R)) C °N(T) and n°N(T)/¢* (n’) is killed by ¢"~¢, where ¢ = @(®). The
construction T +— N(T) gives a bijection between Wach modules over A}: which are lattices in N(V) and

Galois lattices T in V.
Indeed D(V)¥=! is not very far from being included in N(V):

Theorem 10.2.4. If'V is a crystalline representation of Gp, whose Hodge-Tate weights are in [a;b], then
D(V)¥=! C n%"IN(V). In addition, if V has no quotient isomorphic to Qp(a), then actually D(V)¥=! C
TN(V).

Proof. See [1, Theorem A.3]. O
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10.3 p-adic representations and differential equations

In this paragraph, we recall some of the results of [3], which allow us to recover Dis(V) from the (¢,I)-
module associated to V. Let 77,7 be the set of power series f(T) = Y ez a;T* such that ay is a sequence
(not necessarily bounded) of elements of F’, and such that f(7T') is holomorphic on the p-adic annulus
{pi/e < 7| <1).

For r > r(K) (c.f. proposition 7.2.1), define Brlg « as the set of f(mg) where f(T) € #,". Obviously,
BT " C B x and the second ring is the completion of the first one for the natural Fréchet topology. If V' is

rig,
a p-adic representation, let

DQ‘;( ) BTg K ®BJ” DTJ(V) and Drlg( ) - (BrTig)HK ®B;f< D? (V)
One of the main technical tools of [3] is the construction of a large ring ﬁjig, which contains ﬁgg and
B'. This ring is a bridge between p-adic Hodge theory and the thoery of (¢,I")-modules.

As a consequence of the above two inclusions, we have:

1

Deris (V) C <BLg[ Jq, V)% and D;g<v>[;1c<ﬁng[ J®q, V)

One of the main result of [3] is:

Theorem 10.3.1. If V is a p-adic representation of G then Des(V) = (D). (V )[A)TE. IfV is positive,

rig
then Deyis (V) = D, (V)T%,

Proof. See [3, theorem 3.6]. O]

Note that BT o oK is the completion of BT " for the ring’s natural Fréchet topology and that B! x 1s the

rig,
union of the BT - k- Similarly, there is a natural Fréchet topology on B BT " is the completion of B for
that topology and BT = Ur>0BT . Actually, one can show that B:lrg legr for any r and there is an exact
sequence

0——B* —— B[ @B — B} ——0

which one can take as providing a definition of E:Igr
Recall that if n > 0 and r,, = p"~!(p — 1), then there is a well-defined injective map ¢ " : Bir — B+R
(c.f. section 7.2), and the map extends to an injective map ¢~ " : L S B (see [3, corollary 2.13]).

rig
Let B:lrg - be the set of £(r) where f(T) = Yy=oaxT* with a; € F, and such that f(T) is holomorphic
on the p-adic open unit disk. Set Drlg (V)= B:lrg F OB DT (V). One can show the following refinement of

theorem 10.3.1:

Proposition 10.3.2. We have Deis (V) = (D5, (V)[1/1])"F and if V is positive then Deis (V) = D, (V)1

Indeed if N(V) is the Wach module associated to V, then N(V) C DT (V) when V is positive and it is

shown in [1, I1.2] that under that hypothesis, D¢s(V) = (B:lrg F OBt N(V)Ir
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10.4 The Fontaine isomorphism revisited

The purpose of this section is to recall the constructions in section 5.2 and extend them a little bit. Let V
be a p-adic representation of Gg. Recall in section 5.2, we constructed a map hk , : D(V)¥=! — HY(K,V)
such that when I' is torsion free, it gives rise to an exact sequence:

D(V)

_, K
0——DV)E— —5 HY(K,V) — (5 ——0

We shall extend /iy, to a map hy y, : D;rig(V)"’:l — HY(K,V).

Lemma 10.4.1. If r is large enough and vy € I'x then

1—y:DLI(V)¥=0 = DI (v)¥=0

is an isomorphism

Proof. We first show that 1 — 7 is injective. By theorem 10.3.1, an element in the kernel of 1 — y would
be in Deis(V) and therefore in Degis(V)Y=0, which is obviously 0.

To prove surjectivity. Recall that by iii) of proposition 7.3.2, if r is large enough and y € I'g thern
1—y: D" (V)¥=0 = D" (V)¥=0 is an isomorphism whose inverse is uniformly continuous for the Fréchet
topology of D" (V).

In order to show the surjectivity of 1 — y it is therefore enough to show that D™ (V)¥=? is dense in

Dji’gr(V)"’:O for the Fréchet topology. For r large enough, D" (V) has a basis in ¢(D""/?(V)) so that

DY (V)¥=0 (B} )¥Y=0. o(D"/P(V))
DLI(V)Y =B )V (D7 (V).

The fact that D" (V)¥=" is dense in Dji’g(V)V’ZO for the Fréchet topology will therefore follow from the
density of (B};r)"’zo in (ﬁzlgr V0. The last statement follows from the facts that by definition B}L(’r/ s
dense in filgr/lf and that

L\ Y= —1rayi ) nir = —1ro1i amatsr
B WO = el pBY'") and (Bl )V =l [elipBLD).

Lemma 10.4.2. The following maps are all surjective and the kernel is Q,

1_('0:1}%_)1?7 1—(p:]§:{g—>l~3:{g and 1—(p:I~SLg%I§Lg
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Proof. Since B:g C B, and B C Br'lg it is enough to show that (leg) =Q,. Ifxe (lASJT )?=!, then

[3, proposition 3.2] shows that actually x € (B:lrg)“’ ! and therefore x € (B;’g)"’ =Bl =Q, by
[9, proposition III 3.5].

The surjectivity of 1 — ¢ : B:l'g — BJr results from the surjectivity of 1 — ¢ on the first two spaces
since by [3, lemma 2.18], one can write @ € B:r aso=o"+o witha' € B+ and = € B.

The surjectivity of 1 — ¢ : B BJr follows from the facts that 1 — ¢ : Bm‘lx — B, is surjective
([9, proposition IIT 3.1]) and that Brlg = ﬂn 0@ (Bhax)-

The surjectivity of 1 — ¢ : B — B’ follows from the facts that 1 — Q: B — B is surjective (it is
surjective on A as can be seen by reducing modulo p and using the fact that Eis algebraically closed) and
that if B € B is such that (1 — @)B € B, then § € B,

If x =Y % pllx] € A, let us set wi(x) = inf;<; Vg (x;) € RU{+oo}. The definition of B shows that
x € BT if and only if limy_, e wi(x) + I%k = +oo. A short computation shows that wy (@ (x)) = pw(x)
and that wi (x+y) > inf(wg(x), wi(y)) with equality if wi(x) # wi(y).

It is then clear that

k:—|—00

: pr : p(r/p)
1 1— ——k=Ho= 1
Jim wi(( <P)X)+p_1 + Jim w(x) + P
and so if x € A is such that (1—@)xe B then x € B*/? and likewise for x € B by multiplication by a

suitable power of p. This shows the second fact. O

Proposition 10.4.3. Ify € Djig(V)"’ U and Tk is torsion free, there exists b € leg ®q, V such that (y—
1)(¢ —1)b = (¢ — 1)y and the formula

hey) = logh(n)lo > Ty~ (o= 1))

then defines a map h}(_y Djlg(V)IIE;I + H' (K, V) which does not depend either on the choice of generator
y of Tk or on the particular solution b, and ify € D(V)¥=! C Djig(V)"’Zl, then h}gv(y) coincides with the

cocycle constructed in section 5.2,

Proof. Our construction closely follows section 5.2; to simplify the notations, we may assume that
logg(}/) = 1. The fact that h}( v 1s independent of the choice of yis same as lemma 5.1.2.
e ©q, V. Ify D] (V)¥=!, then (¢ — 1)y e D} (V)¥=0.
By lemme 10.4.1, there exists x € Dzig(V)"’ O such that (y—1)x = (¢ — 1)y. By lemma 10.4.2, there exists
b€ Bl @q,V such that (¢ — 1)b =

Recall that we define h}gv(y) € H'(K,V) by the formula:

Let us start by showing the existence of b € B!

v )(@) = Ty (= )b



Notice that, a priori, hg y (v) € H' (K B[, ®q, V), but

rig
(0= iy 1)(0) == (p=y= (6= 1)(p~ b
o—1
:ﬁ(}/— x—(o—1)x
=0,

so that Ay (v)(0) € (Bjig)“":1 ®q, V = V. In addition, two different choices of b differ by an element of

(]§T )e=1 ®q, V =V, and therefore give rise to two cohomologous cocycles.

rig
It is clear that if y € D(V)¥=! C D;g(V)"’Zl, then h}gv coincide with the cocycle constructed in

section 5.2, as can be seen by their identical construction, and it is immediate that if y € (y— 1)Dji g(V),

then Ay (v) = 0. O

Lemma 10.4.4. We have corg, ik, © h}(n%v = h}(mv'

Proof. Same as lemma 6.2.1. O

10.5 Iwasawa algebra and power series

Given a finite unramified extension F of Q,,, denote by A(I'r) (resp. A(T'}.) where I'k. = Gal(F../Fy)) the
Iwasawa algebra Z,[[['r]] (resp. Z,[[}]]).
Let
€ ={f € Q,[A][[X]] | fconvergs on the open unit disk},

and define 77 (I'r) to be the set of f(y— 1) with f(X) € 5 and 7y a topological generator of I. We may
identify A(T'r) ® Q, with the subring of .7°(I'r) consisting of power series with bounded coefficients.
Note that 7 (I') may be identified with the continuous dual of the space of locally analytic functions on
I'r, with multiplication corresponding to convolution, implying that its definition is independent of the
choice of generator ¥r (c.f. section 1.2).

The action of T'r on ng,Q,, gives an isomorphism of 7 (I'r) with (B:.l“g’ QP)WZO via the Mellin trans-
form [20, corollary B.2.8]

. +
M : A () —>(Brig:Qp

fly=1)=f(y—1)(n+1).

¥=

In particular, A(I'r) corresponds to (Agp)“’zo under 9. Similarly, we define 5#(I'y) as the subring of
(T'r) defined by power series over Q,,, rather than Q,[A]. Then, 7 (I'}.) (resp. A(T'})) corresponds to
(1+ ﬂ)(p(B;i’ngp) (resp. (1+ n)(p(Aap)) under 9.
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10.6 Iwasawa algebras and differential equations

By [3, proposition 2.24], we have maps ¢ " : leg'” — BJr whose restriction to BJr oF satisfies @~ (B;’g r) C
F,[[f]] and which can be characterized by the fact that & maps to ) exp(r/p") —

Recall if z € F,((t)) ®F Deris(V'), we denote the constant coefficient of z by 8v( ) € F, ®p Deiis (V).

Lemma 10.6.1. Ify € (B, ;[1/1] @ Desis(V))¥Y=", then for any m > n > 0, the element

pimTrFm/FnaV«pim(y)) S Dcris<v)

does not depend on m and we have

p v (07"(y)) ifn=>1

p "Trg, /5, 0v (07" (y) = L .
(1-p o "av(y) ifn=0

Proof. Recall thatif y =t~y /% a7k € Bng #[1/t] @F Deris (V), then

o "(y) =p"t™! Z o~ (ax) (8™ exp(t/p™) — 1),
and that by the definition of y, y(y) = y means that:

Zy C(14+T)-1).
P o=

The lemma then follows from the fact that if m > 2, then the conjugates of £ under Gal(F,,/ F,,_;) are
the £, where {? = 1, while if m = 1, then the conjugates of &(!) under Gal(F; /F) are the {, where
{P=1butf #1. O

Recall that since F is an unramified extension of Q,,, I'r ~ Z and that T'r, = Gal(F./F,) is the set of
elements y € I'r such that y(y) € 1+ p"Z,,.

The Iwasawa algebra of I'r is Ag, = Z,[[['r]] = Z,[Ar] @z, Z,[[T's]], and we set 7 (T'r) = Q,[Ar] @q,
(L)) where 7 (T')) is the set of f(y— 1) with y € T’k and where £(X) € Q,[[X]] is convergent on the
p-adic open unit disk. We define V; € 57 (I'r) by

log(y)

Vi=——— |,
" log, (x(7))
We will also use the operator Vo /(% — 1), where ¥, is a topological generator of I'}.. It is defined by the

formula _
Vo _ log(¥%:) _ 1 (1—y)""
Ww—1 log,(x(m)(m—1) log,(x(m)) 5 i
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or equivalently by
Vo . n—1 1

= lim .
Ya—1 nerpn—1 ’}/n_llogp(X(n))
It is easy to see that Vo /(7y, — 1) acts on F,, by l/logp(x(yn)).

The algebra 7 (I'r) acts on B;iLg F

and one can easily check that

d d
Vi =t —i=log(l4+m)d —i, where d= (l—i—ﬂ)%.

In particular, VoB . C tB

fig.F fg F and if i > 1, then

Vi_io---0Vy C tiBr+ig.F'

Lemma 10.6.2. [fn > 1, then Vo/(y, — 1)(B., ,)¥=° C (t/(p”(n))(B:irg’F)"’:O so that if i > 1, then

rig,F
Vo ot \w=0 L Nipt+  \w=0
Vlhflo"'ovlom(Brig,F) C ((pn(ﬂ)) (Brig7F) :

Proof. Since V; =t-d/dt — i, the second claim follows easily from the first one. By the standard proper-
ties of p-adic holomorphic functions, what we need to do is to show that if x € (Bjig F)"’:O, then

Vo
'}/n_l

x(e™—-1)=0

forallm>n+1.
On the other hand, up to a scalar factor, one has form > n-+1:

Vo

- -x(e — 1) = Trg, jpx(e™ — 1),

which can be seen from the fact that

= 1m . .
Yo—1  nmelpn—1%—1 log,(x(n))

VO li T]—l 1

On the other hand, the fact y(x) = 0 implies that for every m > 2, Tr, , £, x(¢/™ —1) = 0. This completes
the proof. O

Finally, let us point out that the actions of any element of #’(I'r) and ¢ commute. Since ¢(r) = pt,
we also see that d o @ = p@ o d.
We will henceforth assume that log, (¥ (7)) = p", and in addition Vo /(% — 1) acts on F;, by p~".
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10.7 Bloch-Kato’s exponential maps: Three explicit reciprocity formulas

In this section, we explain the results of Berger in [1] on explicit reciprocity formulas when V is a crys-
talline representation of an unramified field.

Recall Hy = Gal(Q,/K.), let Ag be the torsion subgroup of I'x = Gk /Hg = Gal(K../K) and let
Ik = Gal(K../K(t)), so that Tx ~ Ag x T Let Tx = Z,[[Tx]] and 2 (I'x) = Q,[Ak] ®q, # (T'k)
where (L)) is the set of f(y; — 1) with y; € Tk, and where f(T) € Q,[[T]] is a power series which
converges on the p-adic unit disk.

When F is an unramified extension of and V is a crystalline representation of G, Perrin-Riou has
constructed in [18] a period map Qv , which interpolates the expry ;) as k runs over the positive integers.
It is crucial ingredient in the construction of p-adic L-funtions, and is a vast generalization of Coleman’s
isomorphism.

The main result of [18] is the construction, for a crystalline representation of V of G of a family of

maps (parameterized by i € Z):
Qi (H(TF) @9, Deris(V))*~° — A (Tr) @, Hyy (F.V) VI,

whose main property is that they interpolate Bloch-Kato’s exponential map. More precisely, if 4, j > 0,

then the diagram:

Qv () h

(A (Tr) @, Deris (V ()= ————— 5 (Tr) @r, Hyy, (F,V())/V ()1
En,V(_/)J/ lPan,w./)
(h+j—1)Ixexp} v/
F, @p Ders (V) LI (B, V().

is commutative where A and E are two maps whose definition is rather technical (see section 10.9 for a
precise definition).

Using the inverse of Perrin-Riou’s map, one can then associate to an Euler system a p-adic L-function.
For example, if one starts with V = Q,,(1), then Perrin-Riou’s map is the inverse of the Coleman isomor-
phism and one recovers Kubota-Leopoldt p-adic L-functions (See section 11.2).

The goal of this section is to give formulas for exp y, exp;’v* (1) and Qy, in terms of the (¢,I')-

module associated to V.

10.8 The Bloch-Kato’s exponential map and its dual revisited

Recall in section 8.1, we defined the Bloch-Kato’s exponential map and its dual. The goal of this paragraph
is to compute Bloch-Kato’s exponential map and its dual in terms of the (¢,I")-module of V. Let & > 1 be
an integer such that FilthcriS(V) =Dgis(V).
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Recall that we have seen that Deis(V) = (D} g[1 /t])'F and by [2, I1.3], there is an isomorphism

rlgF[l/t] QF DCUS(V) rlgF[l/t} QF D::g( )

Ifye B:g r ®F Deris(V), then the fact that Filthcris(V) = D5 (V) implies by result of [2, I1.3] that
thy e Dng( ), so that if

d
y= Z)ﬁ' ®dl € (Bngp ®F Dcrls(v))WZIa
i=0

then

d
Viero--Vo(y) = Y "'y ®d; € D (V)Y =1,

One can apply the operator h}?n,v to Vj—j0---Vy(y), then we have:

Theorem 10.8.1. Ify € (B ra.F OF Deis(V))¥=!, then

expg, v (p " (97"(y))) ifn>1

hpy (Vi1 0---Vo(y) = (1) (A= 1)! o ‘
eXPF,v(U*P ¢ )ov(y)) ifn=0
Proof. Because the diagram

EXPE, 1V

Fn+1 QF Dcris(V) Hl(Fn_H,V)

Trp +1/Fn®sz( JcorF 1/

eXPr,
Fy @Deris (V) ¥ H'(F,,V)

is commutative, it is enough to prove the theorem under the assumption that I'; is torsion free. Let us
set yp = Vj—j o-+-0Vo(y). Since we are assuming for simplicity that x (1) = p”, the cocycle A, , (v;) is

defined by:
G J—

T —
where b, j, is a solution of the equation (¥, — 1)(@ —1)b, , = (¢ — 1)y;. In lemma 10.6.2 above, we prove
that

by On)(@) = 2y (0= by

VijonoVio 1t D (Bl C (M)"(B;&F)W—O.
It is then clear that if one sets
Znjy = Vp-10--0 Vo (¢ — 1)y,
; 1
then
0 € (i) Ber)? @ Das(V) € 97 (2D (V)Y =0 C DL (V)"
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Let ¢ = ¢(m) /. By lemma 10.8.2 below, there exists an element b, ;, € ¢" ! ("B

g ¥,V such
that

(0 — 0" (") (0" (7")bus) = ¢" (7" )20,

50 that (1 — )b,y = zu With by, € 9"~ (B, ® Q.

If we set w,, = Vj_jo---0 %y, then wy, ; and by, € Bmax ®q, V and the cocycle thmV (yn) is then
given by the formula /2y,  (v4)(0) = (6 — 1) (W — bpi)- Now (@ — 1)byjy = 2 and (@ — 1)y j = Zu
as well, so that wy, , — by, € BY! ®q,V.

We can also write

By 01)(@) = (6= 1)(@" (wap) — 9" (b))

Since we know that b, ;, € @" ! (17")Bf, ®q, V, we have 9" (b, ;) € Bjz ®q, V.
The definition of Bloch-Kato exponential gives rise to the following construction: if x € Dgr(V) and
xeBiu ®q, V is such that x — X € Bjy ®q, V then expy  (x) is the class of the coclycle g — g(¥) —X.
The theorem therefore follows from the fact that:

@ " (Wan) = (=1)" (A= 1)!p™"d (97" (v) € Bir g, V.

since we already know that ¢ "(b,;,) € B, ®q, V.

In order to show this, first notice that

o "(y) —av(@"(y)) € tF[[t]] ®F Deris (V).
We can therefore write
Vo
Y. —1

and a simple recurrence shows that

¢ ") =p (9 "() +1n

Vijo--- e === 1)p " (07" () +1'z;,

(@]
1—7
with z; € F[[t]] ®F Deris(V). By taking i = h, we see that
@ " (Was) — (1) N (h=1)1p " (97" (y)) € Bir Dq, V,
Since we choose / such that "D (V) C BIR ®q, V. O

Lemma 10.8.2. Ifa € B, the there exists B e ﬁ;{g such that

rig’

(-9 '(d"))B =0
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Proof. By [3, proposition 2.19], the ring B* is dense in Big for the Fréchet topology. Hence, if o0 € leg,
then there exists o € B* such that @ — ap = ¢"(7")a; with o € B:{g.

The map @ — "' (¢") : B — B™ is surjective because ¢ — 9"~ (¢") : AT — AT is surjective, as can
be seen by reducing modulo p and using the fact that E is algebraically closed and that E* is its ring of
integers.

One can therefore write g = (¢ — "' (¢")) Bo. Finally by lemma 10.4.2, there exists § € ﬁ:{g such

that ot = (@ — 1)B1, so that ¢" (") oy = (¢ — @" ' (¢")) ("' (z")By). 0
Theorem 10.8.3. Ify € (Djlg(V)) Vandy € D:I”g( )[1/1] (so that in particulary € (B, g r1/1] RFDeris(V)) V=),

then

TH(e)  fn]
X hl — p
X -1 (kv ) (I=p~le Hav(y) ifn=0

Proof. Since the following diagram

eXpp  yx (1)
Hl(Fn+1,V) mr Fn+1 ®Dcris(v)
Coan-%-]/FﬂJ( J/TrF+l/Fn®ld
exp*n. %
H'(F,,V) 2 B @ Deis(V)

is commutative, we only need to prove the theorem when I'% is torsion free by lemma 10.8.1. We then
have (assuming that y(7,) = p" for simplicity) :

By (3)(0) =

where (%, —1)(@ —1)b = (¢ — 1)y. Recall that ﬁr = U,>oB"". Since b € B ®q, V, there exists m > 0

rig* rig
such that b € Bngr’" ®q, V and that the map ¢~ embeds legr’" into B, Jr- We can then write
o—1 _ =
' (y)(o) = L ") = (e -1 "(b),
n

and ¢~ (b) € Bjy ®q, V. In addition, " (y) € Fu((t)) ®F Deris(V) and ¥, — 1 is invertible on t*E, ®r
D.;is(V) for every k # 0 This shows that the cocycle h}fn,v is cohomologous in H' (F,,, B4z ®qQ, V) to

o—1 _
(v (™" (¥)))
Yn —1
which is itself cohomologous (since 7}, — 1 is invertible on F,;rF'”/ Fn :O) to

G_
Yn_

0 5 T (e, 0 (97 "(0)) = 0 5 pog, (2(G)) " Tag 1, (07" 0)).
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It follows from this and proposition 8.1.2 and lemma 10.6.1 that

plov(e"(y)  ifn>1

* 1 —m —m
expr, v-(1) (g, v () = p~ " Ttg, /5, 0v (9" (v) = '
(1=p~lo Hov(y) ifn=0.

10.9 Perrin-Riou’s big exponential map

By using the results of the previous paragraphs, we can give a uniform formula for the image of an element

y € (B, p @F Deris(V)¥=" in H' (F,,V (j)) under the composition of the following maps:

1

V;,_q0---0V, h W V(i
S (VDY = HY V()

(V)¥~! ——D]

¥
D rig

=1
(ngf QF Dcris (V)) v rig

Here ¢; is a basis of Q, () such that e; ; = e; ® ¢ so that if V is a p-adic representation, then we have

compatible isomorphisms of Q,-vector spaces V — V() given by v = v®e;.

Theorem 10.9.1. Ify € (B;’i’gf @F Deris (V) Y=Y, and h > 1 is an integer such that Fil "Dis (V) = Degis (V),

then for all j with h+ j > 1, we have :

Iy vy (Vae1 0 Vo(y) @ej) =(= 1) (h+ j— 1)1
eXmeV(j) (p_”av(J)(qo_"(a_]y®t_Je])) lfn Z 1
eXPF,V(j)((l_P_l(P_l)aV(j)(a_jy@)t_jej)) ifn=0

while if h+ j < 0, then we have:

expr, y-(1_ ) (w (V10 Vo(y) @¢))) =
1 p "oy (@ (dy@ie))) fn>1
Ch=i | (1 =p o™ ayy(0 y@ile))  ifn=0
Proof. 1If h+ j > 1, then we have the following commutative diagram:

®e;

D (V)¥~! D (Vi)Y

Vhlo-vOVOT thJr.i]O---OVO

—1 7@t e . -1
(B;iLg,F QF Dcris(V))W / (Br+ig,F ®F Dcris(V(J>))w .

and the theorem is then a straightforward consequence of theorem 10.8.1 applied to 0 /y @t Je;, h+ j
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and V().
On the other hand, if 2+ j <0, and I'}; is torsion free, then theorem 10.8.3 shows that

eXPF, V(1)) (hllffn,v(j)(vhfl o-oVo(y)®ej)) =p "oy (@ " (V100 Vo(y) @e;)))

in Dgis(V (), and a short computation involving Taylor series shows that

P (j(@ " (Vior0--0Vo(y)®e))) = (—h— ) p™"dy(j) (9 (9 Ty@1 ey)).

Finally, to get the case n = 0, one just needs to use the corresponding statement of theorem 10.8.3 or

equivalently corestrict. O

Remark 10.9.2. The notation 0~/ is not injective on B:irg.F (it is surjective by integration) but it can be

checked that it leads to no ambiguity in the formulas above.

We will now use the above result to give a construction of Perrin-Riou’s exponential map. If f €
@Deris(V'), we define A(f) to be the image of &7_ 0% (£)(0) in &_;(Deris(V)) /(1 — p* @) (k). There

is then an exact sequence of Q, ®z » Arp-modules (cf [18, section 2.2]):

+
Brig,F

p—— = 17
0 — B o Deris (V)7 — (B @Deis (V) V=" —5

rig,F
- A Diis(V
(Bjig?F)w O @r Deris (V) = @, T C_r“p(qu (k) — 0.
If fe ((B:i’g’ )V @p Deris (V)27 then by the above exact sequence there exists
ye (B:irg,F ® Deris (V) V!

such that f = (1 — @)y, and since V,_j o~V kills @Z;étchris(V)‘P:pfk we see that Vj,_jo--- Vo (y) does
not depend upon the choice of such y unless Dcris(V)‘P:Vh #0.

—h

Definition 10.9.3. Let 2 > 1 be an integer such that Fil "D (V) =Dyqyis (V) and such that Dy (V) =7~ =
0. One deduces from the above construction a well-defined map

_ A=0 —
Qv : (B )Y ™ r Deris(V))* ™ = D (V) V!

given by Qy () = Vj_10---Vo(y), where y € (B

rig,F ®Deris(V))¥=! is such that f = (1 —@)y.
If Deyis (V)?=7 " # 0 then we get a map

- A=0 _ —oh
Qup: ((B:i_g,F)W O®F Dcris(v)) _>D;'i—g(v)w 1/VGF X

68



Theorem 10.9.4. IfV is a crystalline representation and h > 1 is such that we have FiI*thris(V) =
Dyis(V), then the map

= A=0 =
Qv (B )Y " ®rDeris(V))™ = D, (V)V=! Ve

which takes f € (B}

ng,F)w:O @F Deris(V)20 10 V)1 0--- Vo ((1 — @)~ f) is well defined and coincides

with Perrin-Riou’s exponential map.

Proof. The map Qy, is well defined because as we seen above the kernel of 1 — ¢ is killed by V,,_; o
++-0 Vg, except for "Deyis (V)= ", which is mapped to copies of Q »(h) € VA,

The fact that Qy , coincides with Perrin-Riou’s exponential map follows directly from theorem 10.9.1
above applied to those j’s for which 2+ j > 1, and the fact that by [18, theorem 3.2.3], the Qy are
uniquely determined by the requirement that they satisfy the following diagram for 4, j > 0:

Qo
(A(T) @q, Ders(V(j))A=0 ——2

En‘V(j)J( J{Pan,V(j)
(h+j—1)expg, v ;)

Fn®FDcris(V) Hl(Fn,V(]))

A (Tr) ®r, (Hyy (F,V (7)/V (7))

Here Z, y(j(g) =p "(p® ®)"(f)(e™ — 1) where f is such that
(1-9)f =g(y—1)(1+7) € (B ©F Deris(V)) ¥~

and the ¢ on the left of @ ® ¢ is the Frobenius on B:i’g‘ 7 While the @ on the right is the Frobenius on
Dcris (V)
Note that by theorem 6.1.2, we have an isomorphism D(V)¥=! ~ H]\ (F,V) and therefore we get a

map ' (L'r) @4, HY, (F,V) — Djig(V)"’zl. On the other hand, there is a map

<%(FF) ®Qp Desis (V(.})) — (B+

rig,F QF DcriS(V))W:O

which sends ¥ f;(y—1)®d; to Y. fi(y— 1)(1 + 7) ® d;. These two maps allow us to compare the diagram
above with the formulas given by theorem 10.9.1. O

Remark 10.9.5. By the above remarks, if V is a crystalline representation and / > 1 is such that Fil "Dy, (V) =
D¢is(V) and Q, (k) ¢ V, then the map

_ A=0 -
QV,/Z : ((B:irgyF)w 0 ®F DcriS(V)) — D} (V)w :

rig

which takes f € (B, »)¥="®F Deris (V)= to Vjp_y 0--- Vo ((1— @) 7' ) is well defined, without having

to kill the Ap-torsion of H (F,V).
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Remark 10.9.6. It is clear from theorem 10.9.1 that we have:
Qv_’h(x) RKej= Qv(j)7h+j(8jx®t_jej) and Vo ijh(x) = QV,h—H (x)

and following Perrin-Riou, one can use these formulas to extend the definition of Qy, to all 1 € Z by
tensoring all 7 (I'r)-modules with the field of fractions of 7 (I'r)

10.10 The explicit reciprocity formula

Recall we have a map 7 (I'r) — (B;i’g Q,

)¥=0 which sends f(y—1) to f(y—1)(14 x), and that this
map is a bijection and whose inverse is the Mellin transform, and that if g(x) € (B:irg Qp)"’:O, then g(7) =
M(g)(1+m). If f,g e (BrTig.,Q,,)W:O then we define f* g by the formula DU(f « g) = M(f)M(g). Let
[—1] € T'r be the element such that x([—1]) = —1, and let 1 be the involution of I'z which sends yto y~!.
The operator ¢/ on (B:irngp)"’:O corresponds to Tw; on ' (Tw; is defined by Tw ;(y) = x(¥/)y). We will
make use of the facts that 109/ = d Vo1 and [-1]0d/ = (—1)/d/ o [-1].

If V is a crystalline representation, then the natural maps

TrF/Qp

Dcris(v) QF Dcris(v*(l)) — Dcris(Qp(l)) —_— Qp

allow us to define a perfect pairing [, -]y : Deris (V) X Deris(V*(1)) which we extend by linearity to

[ v (B ®Deris (V)Y x (Bl 7 @ Do (VS (1)) — (B g )™

by the formula [f(7) @ d),g(w) @da]y = (fxg)(m)[d1,da]y.
We can also define a semi-linear pairing (with respect to 1)

(v :DE V)V DE (V)Y - (B

A
rig rig rig,Q,

by the formula

oy =tim Y (0 bl y (00)) gy (02)) - 71+ )
tely /T

where the pairing (-, )5, v is given by the cup product:
() B (B V) x HY (VY (1) B2 (FL Qp(1) 2 Q)

The pairing (-,-)y satisfies the relation (y1x1, px2)v = 711(92){x1,Xx2)v, where 71,7 € I'r. Perrin-Riou’s
explicit reciprocity formula is then:

Theorem 10.10.1. Ifx; € (BI&F ®F Deris (V)Y and x, € (BI&F ®F Deris(V*(1)))¥Y=0, then for every h,
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we have
(—1)h<QV,h(X1)a [—1] ‘QV*(l),ph(xz»v = —[x1,1(x2)]v.

Proof. By the theory of p-adic interpolation, it is enough to prove that if x; = (1 — @)y; with y; €
(Bl ®F Deris (V))¥=" and y2 € (B, » @F Deris(V*(1)))¥=", then for all j > 0;

(077 (= 1) Qv (x1), [=1] Qv+ (1) 1-n(x2))y ) (0) = —(9 w1, 1(x2)]y ) (0).

The above formula is equivalent to:

(1) ()" gy (5 Quyas (0@ e ) ey jy Qv ja—n j (@2 @ e ) ry ;)
=[0y(j) (@ x1®1 7 e;), Oy (1-j)(d x2 @1 e_ )]y (j)-

By combining theorems 10.9.1 and 10.9.4 with remark 10.9.6, we see that for j > 0:
h}’«‘,V(j)QV(j),thj(aijxl ®1le;) = (‘Uhﬂ*l@XPF,v(j)((thj— DI(1=p o )y (0 Iy @1 ey)),

and that

hllf,V*(l—j)'QV*(l—j),l—h—j(asz ®tle_;)

=(expry-(1-y) (=D (1 =p o )o@y @tle))).
Using the fact that by definition, if x € D¢;is(V(j)) and y € H'(F,V (j)) then
[x, exp;v*(l—j)y]V(j) = <eXpF,V(j)x7y>F7V(j)7
we see that
(Bhy Qv (s (@ X1 @1 e), hE ey Quei- i (07X ®te ) pyy) (10.1)

= (-1 —P71¢71)3V(j)(¢7jYI ®t e;), (1 —Pfl‘Pfl)av*(lfj)(ajyz ®fjeai)]v(j)-

It is easy to see that under [ , ], the adjoint of (1 — p~'@~') is 1 — ¢ and that if x; = (1 — @)y;, then

aV(j)(aijxl ®t Te;) =(1- (P)av(j)(aij)’I ®t ej),
aV*(lfj)(anZ ®fjeai) =(1- (P)aV*(lfj)(anZ ®’je</),

So that (10.1) implies (1), and this proves the theorem. O
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Chapter 11
Perrin-Riou’s big regulator map

Let F' be a finite unramified extension over Q, and V' a continuous p-adic representation of G, which is
crystalline with Hodge-Tate weights > 0 and with no quotient isomorphic to the trivial representation. In

[19], Perrin-Riou construct a big logarithm map
XI};‘F/ : HIIW(FaV) — <%(FF) ®Q,, Dcris(V)

which interpolates the values of Bloch-Kato’s dual exponential and logarithm maps for V (), j € Z, over
each F,,.
In this section, we follow [17, Appendix B] to adapt Berger’s explicit formulas to construct Perrin-

Riou’s big logarithm and use it to calculate Kubota-Leopoldt p-adic L-function.

11.1 Perrin-Riou’s big logarithm map

Let V be a positive crystalline representation of Gal(Fi./F) and x € 7 (I'r) @, HL,(F,V). We write x;

for the image of x in H}\, (F,V(—j)), and x;, for the image of x; in H'(F,,V(—j)). If we identify x with

its image in D(V)¥=!, then x; corresponds to the elementx®e_; € D(V)¥='®e_; =D(V(—j))¥=.
Since V is positive, we may interpret x as an element of the module (B:i’g’ #[1/1] @ Deis (V) V=1

We shall assume:

x € (B, r @ N(V)V=' C (B, o [1/1] @F Deris (V) ¥~ (11.1)

The condition is satisfied if V has no quotient isomorphoic to Q,, (c.f. theorem 10.2.4).

d

Recall in section 7.2, we define 9 to be the differential operator (1+ )L (or £) on B}

g, F and we

have a map
aV o (P_n : B:i_gf[l/t} ®F DcriS(V) — Fn ®F Dcris<V>

which sends 7¥ @ d to the constant coefficient of (&, exp(t/p") — 1)¥® ¢ "(d) € F,((t)) ®F Deris (V).
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For m € Z, define I'*(m) to be the leading term of Taylor series expansion of I'(x) at x = m; thus

J! itn>0
" (m) = (—1)~i-!
ey itn<—1
Proposition 11.1.1. Define
1 Ty (@ (dIxtie_; ifn>1
Rin() = L 4P N~ i) if

Il =p e Ny (dx@tie))  ifn=0

Then we have
expjrmv*(l_j)(xjﬁ) ifj=0

Rjn(x) =
logr v(—j)(*xjn) ifj<-—1

Proof. This result is essentially a minor variation on thoerem 10.9.1. The case j > 0 is immediate from

theorem 10.8.1 applied with V replaced by V(—j) and x by x ® e_;, using the formula

—n 1 —n(3Jj j
I (- (@ (X®€fj))=ﬁ3V<—j>(‘P (x@tlej)).

For the formula for j < —1, we choose & such that Fil "D (V) = De;is(V). The element d/x®t/e_;

lies in (B:i’g’F ®F Deris(V(—4)))¥=!. Applying theorem 10.8.1 with V4 and x replaced by V(—j), h — j,

and d/x®1 /e, we see that
T+ DRja(x) =T7(j —h+1)logg, v [(Voo -0 Vi1x)j].
For x € 7 (T'r) ®a, HL,(F,V), we have
(er)j,n =(j- r)xj,n,

so se have
(Voo oV 1x)ju=)J—1)(—h+1)xja

as require. O

For o a finite order character on I'r of conductor n, we denote
Go)= ) (o).

the Gauss sum of .
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Proposition 11.1.2. If x is as above, and .f‘; F(x) is the unique element of 7 (U'r) QF Deyis (V) such that
Ly (x)-(14-7) = (1 — Q)x, then for any j € Z we have

(1-9)dy(—j) (@ "(x@1e_;)) = ZEr () () @ 1Ve_,

while for any finite order character ® of T'r of conductor n > 1, we have

(X 00) o) a0 @ rare ) =Glole (AP 0 ) el

celp /T

Proof. 'We note that

7

oy (@x@tle ) =Tw)(L" (x) e,

so it suffices to prove the result for j = 0. Suppose we have x = ¥ v 7t* where v; € Deyis(V). Then
>0

I (@7"(x) =Y o7 () (& — D"

k>0

On the other hand,

M@ "(1—)x) =Y 07" ) (& — D = Y 0" "(ve) (1 — DE.

k>0 k>0

Applying the operator e, = Y. ®(0)0o, we have forn > 1
GEely /T

ew (9 "(x)) = en-dv (9" ((1 - 9)x)),

since e, is zero on F,_((t)).

However, since the map dy o ¢ " is a homomorphism of I'-modules, we have

eo- (7" ((1-@)x) =ea- (9" (L' (x)- (1+7)))
=0 "(Ly" (x)) - eadr (9" (1+))
=G(0)p™"(Z" (x)(@)).

This completes the proof of the proposition for j = 0. 0

Definition 11.1.3. Let x € HIIW(F ,V) If 1 is any continuous character of I'r, denote by x;, the image of x
in HL(F,V(n~")). If n > 0, denote by xy, , the image of x, in H'(F,,V(n~1)).

Thus Xyin
tions of G (with no restriction on Hodge-Tate weights):

= Xj, in the previous notation. The next lemma is valid for arbitrary de Rham representa-
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Lemma 11.1.4. For any finite-order character ® factoring through U /"%, with values in a finite exten-

sion E |F, we have

Z w(G)_leXP;,,v*(l)(XO,n)o = eXPg, y (o 1)+(1) (¥0.0)
GGFF/F}

and

Z w(G)_l IOgF,,,v(xO.,n)cF = IOan,v(wfl)(xw,O)
oel'/T,

where we identify Dgr(V (0~ ') = (E @F F, @F Deris (V)1 =€,

Proof. This follows from the compatibility of the maps exp* and log with the corestriction maps (c.f.

Theorem 10.8.1 and 10.8.3). O
Combining the three results above, we obtain:

Theorem 11.1.5. Let j € Z and let x satisfy (11.1). Let 1 be a continuous character of Ur of the form

x’ @, where @ is a finite-order character of conductor n.

i) If j >0, we have

r . (1—pj<P)(1—P1j<Pl)l(eXPEv(n‘)*(l)(Xn,o)@jé’j) ifn=0
Lyt (x)(n) = jx

G(a))*lpn(1+j) ¢" <exp;v(nl)*(l>(xn’0) ®lj€j> ifn>1.
ii) If j < —1, we have
(—1)-1 | (=ple)i—p e (10gF,v(nl)(Xn,o)®fj€j) ifn=0
Ly (x)(n) = = X _ _

In both cases, we assume that (1 —p~'=J@~") is invertible on D5 (V) when n = x/.

11.2 Cyclotomic units and Kubota-Leopoldt p-adic L-functions

The relation between Coleman’s power series and the Perrin-Riou’s big logarithm map is given by the

following diagram:

lim 07, : Hy,(F,Z,(1))
Coll
OF[[x]]* gIEQ[J(l)

(lﬁ)logl

Op|[A)]V=0 ————— H#(T) ®q, Deris(F,Qp(1))
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If we identify Dcyis(F,Q,(1)) with F via the basis vector 1! ® e, then the bottom map sends f €
Op[[7]]¥=° to Vo - M~ 1(f), where V = log X( 77 for any non-identity element y € I'y and 90U is the Mellin
transform defined in section 10.5. Thus the image of the bottom map is precisely Vo - Ag, (I') C 77 (T);

and if we define
hr(u) = Vo' L, (K(u) € A (D),

then we have
Mhr(u)) = (1 — %)logCOIM(u).

By the calculation in section 9.6, we can use theorem 11.1.5 to calculate the Kubota-Leopoldt p-adic

L-functions.

Example 11.2.1. (Kubota-Leopoldt p-adic zeta-function) Let K = Q,,, V = Q,(1) and

Cp" -
:( Cpn )n>l GL Qp M)

Then by the calculation in section 9.6, we have
k kpo—1y 4y (1 -r'e) * —k
he(u)(x") =x"(Vy ) k! (l—p_—l_k(p_]) €XPqQ,,v+(1-)) (ur0) @1t ey
k—1

1 1—pk
%k' (1 Ep_lp_kq:p)_l) <(1 -p ¢ —k)(kt_ 01 ®f_k€k>
=(1

—p k!

and for w a finite order character of I" of conductor n, we have

he () (' ©) =2 (Vo) -k - G(@) ' p M gr (CXPap,v(nl)*(l)(”n,O) ®lk€k>
1 =1
=—k!-G(w) ' "o p " TEG(@)L(1 — k, 0) — @1t Fe
k (k—1)!
=L(1—k @)}

Example 11.2.2. (Kubota-Leopoldt p-adic L-function) Let K = Q,({;), V = Q,(1) and € is a Dirichlet
1_5i%m

character of conductor d > 1 prime to p. Set u = (m Yo<a<a—1€(a)” e 1)n>1 Then by calcula-
- - "
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tion in section 9.6, we have

_ 1-p . _
e = (V) b S (epr,m,,-) (110) 1 kek>

_pk k—1
%k‘ 0 (l_li(;p_)l)_l <(1—8(p)p_k)L(1—k,8)(kt_l)!®t_kek>
=(1

—e(p)pF"HL( =k, &)t

and for w a finite order character of I" of conductor n, we have
he () (240) =24 (Vo) - k- Glo) ' p" 1 H) g (expamvml)*(]) (ttn0) ®zkek)

1 tk_l
=kl G(w) ' p1+h g (p("“)kG(co)L(l —k, we)m ®tkek>

=L(1 —k, we)r ™!
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