UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Advances in nanopore sensing for DNA and protein analysis Jetha, Nahid Nizar


Single molecule nanopore sensing is emerging as a powerful tool for probing the properties of individual biomolecules. This is particularly true for DNA where nanopore technology is being actively developed toward ultra low-cost, high-throughput whole-genome sequencing. Most approaches to nanopore DNA sequencing require that DNA translocate a nanometer-scale pore (nanopore). Understanding and characterizing the physics of DNA translocation through nanopores is critical to the design and optimization of these methods. We sought to investigate DNA translocation dynamics and elucidate the mechanism of DNA transport through nanopores. We show that stochastic, sequence-dependent DNA-pore binding interactions play an important role in translocation and lead to subdiffusive translocation dynamics, which in the case of short DNA strands, is consistent with fractional dynamics. We characterize the sequence-dependent kinetics of DNA translocation and show that nucleotide dwell-time in the pore can potentially be used as a metric to distinguish individual nucleotides in nanopore sequencing, opening up new avenues by which to optimize nanopore sequencing technology. While development of nanopore DNA sequencing has largely dominated nanopore applications, other applications including nanopore protein analysis are of great interest as a means to explore protein conformational dynamics and structure at the single molecule level. We present methods by which to capture and trap proteins in nanopores (via asymmetric salt concentration) and analyze their complex dynamics (via Hidden Markov Model signal processing), resolving two important challenges associated with nanopore sensing of proteins. We apply these methods to characterize the kinetics and dynamics of the prion protein in a nanopore (a protein whose conversion into a misfolded isoform is responsible for the pathogenesis of prion diseases in humans and animals) as a first step towards understanding the relationship between prion protein conformational dynamics and conversion in disease. Moreover, we demonstrate the potential of nanopore technology for highly-sensitive, real-time protein and small molecule detection based on single molecule kinetics with potential application in medical diagnostics. Our methods enable studies of the long timescale conformational motions of proteins known to be critically important to protein function, at the single molecule level, making nanopore sensing a new tool for studying protein dynamics.

Item Media

Item Citations and Data


Attribution-NonCommercial-NoDerivs 2.5 Canada