Open Collections will undergo maintenance on Thursday, July 24th, 2025. The site will not be available from 8:00 AM - 9:00 AM PST and performance may be impacted from 9:00 AM - 12:00 PM PST.

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Finite configurations in sparse sets Chan, Vincent

Abstract

We prove a result which adds to the study of continuous analogues of Szemerédi-type problems. Let E ⊆ ℝⁿ be a Lebesgue-null set of Hausdorff dimension α, k, m be integers satisfying a suitable relationship, and {B₁,…, Bk} be n × (m − n) matrices. We prove that if the set of matrices Bi are non-degenerate in a particular sense, α is sufficiently close to n, and if E supports a probability measure satisfying certain dimensionality and Fourier decay conditions, then E contains a k-point configuration of the form {x + B₁y,…,x + Bky}. In particular, geometric configurations such as collinear triples, triangles, and parallelograms are contained in sets satisfying the above conditions.

Item Media

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivs 2.5 Canada