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Abstract

We prove a result which adds to the study of continuous analogues of

Szemerédi-type problems. Let E ⊆ Rn be a Lebesgue-null set of Haus-

dorff dimension α, k,m be integers satisfying a suitable relationship, and

{B1, . . . , Bk} be n × (m − n) matrices. We prove that if the set of matri-

ces Bi are non-degenerate in a particular sense, α is sufficiently close to n,

and if E supports a probability measure satisfying certain dimensionality

and Fourier decay conditions, then E contains a k-point configuration of

the form {x + B1y, . . . , x + Bky}. In particular, geometric configurations

such as collinear triples, triangles, and parallelograms are contained in sets

satisfying the above conditions.
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Chapter 1

Introduction

1.1 History

Erdős [9] once made the following conjecture: for any infinite set of real

numbers F , there exists a set E of positive measure which does not contain

any non-trivial affine copies of F . This is an example of a larger class of

problems, measuring a set from a geometrical point of view: one would

like to determine conditions on a set E which will guarantee the existence

of certain configurations in E, or in the negative direction, will ensure the

absence of these configurations. The precise meaning of this will vary, as will

the ambient space for E. For instance, we may have another fixed set F in

consideration, and ask if there is a geometrically similar copy of F contained

in E; or we may ask if E contains various geometric shapes or sets of points

which satisfy some set of linear equations. The solution to Erdős’ problem

is still unknown in general, however there are many similar problems that

have been solved.

In the special case when F ⊆ R consists of a decreasing sequence xn

converging to 0 such that lim inf xi+1/xi = 1 (that is, a slowly decaying

sequence), Falconer [12] shows there exists a closed set E ⊆ R of positive

measure which does not contain any affine copies of F , using a Cantor-like

construction. In fact, his construction is much stronger; his set E misses all

but finitely many entries of any affine copy of F . It is worth noting that if
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the sequence decays geometrically fast, such as {2−i}, the result is unknown.

Bourgain [6] proves that for any infinite set S ⊆ R, there exists a set

E ⊆ R3 of positive measure which does not contain any affine copies of

F = S × S × S ⊆ R3, using a probabilistic method. His proof of this

result also yields that for any infinite sets S1, S2, S3 ⊆ R, there exists a

set E ⊆ R3 of positive measure which does not contain any affine copies of

F = S1 + S2 + S3, where + refers to the usual set addition.

For more results concerning the case when F is a sequence, see Arias

de Reyna [1] and Miller [34], where they construct sets E of second Baire

category; Borwein and Ditor [5], which examines the related problem when

‘affine’ is replaced with ‘translated’; Komjáth [29], a generalization of Bor-

wein and Ditor’s result; Bourgain [6] , which considers the case when F is

certain cross products or sum sets; and Kolountzakis [28], which gives a neg-

ative result concerning almost all affine copies (in Lebesgue measure sense)

rather than all copies.

We will focus on the case when the configuration is finite. Although

the continuous case is of primary interest, the discrete case offers some rich

history and motivation for the analogous results.

1.1.1 Discrete case

In the case when the ambient space is the positive integers N, a simple

configuration to consider is an arithmetic progression {x, x+ y, . . . , x+ (k−
1)y} where y 6= 0, called a k-term arithmetic progression. In 1936, Erdős

and Turán [11] made the following conjecture related to sets containing

arithmetic progressions.

Conjecture 1.1. Let k ≥ 3 be an integer and 0 < δ ≤ 1. If N is suffi-

ciently large depending on k and δ, then every subset A of {1, 2, . . . , N} of

cardinality at least δN contains a k-term arithmetic progression.

This notion of the set A containing a proportion of {1, 2, . . . , N} leads

us to consider the density of a set relative to the natural numbers. To be
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precise, define the upper asymptotic density of a set A ⊆ N to be the quantity

δ∗(A) = lim sup
N→∞

#(A ∩ {1, . . . , N})
N

,

where #S denotes the number of elements of S ⊆ N. A seemingly weaker

but equivalent statement to Conjecture 1.1 is as follows:

Conjecture 1.2. Let E ⊆ N be an arbitrary set with

δ∗(E) > 0. (1.1)

Then E contains a k-term arithmetic progression for any integer k ≥ 3.

The simplest case of k = 3 was proved by Roth [35] in 1953. Later,

Szemerédi [38] proved the case k = 4, and then completed the conjecture

by proving the result for any k ≥ 4 in 1975 [39] in a combinatorial manner.

Furstenberg [14] applied ergodic theory to provide a second proof of the case

k ≥ 4, and Gowers [16] used harmonic analysis and introduced higher order

Fourier analysis to prove this case. Furstenberg and Katznelson [15] proved

a multidimensional variant of Szemerédi’s Theorem.

A set can fail to have 3-term arithmetic progressions even if (1.1) fails

just barely; Salem and Spencer [37] showed that for large N , there exists a

subset A ⊆ {1, 2, . . . , N} of cardinality about N1−c/ log logN which contains

no 3-term arithmetic progressions, and Behrend [2] improved on this with

a power of 1− c/
√
N in place of 1− c/ log logN on N . However, there are

cases when (1.1) fails for the set E, yet E still contains k-term arithmetic

progressions, so long as E is sufficiently random in some sense. The prime

numbers P have an upper asymptotic density of 0, yet Roth/Szemerédi-

type results still apply. Define the relative upper asymptotic density of a set

A ⊆ N relative to a set B ⊆ N with A ⊆ B to be the quantity

δ∗B(A) = lim sup
N→∞

#(A ∩ {1, . . . , N})
#(B ∩ {1, . . . , N})

.

The analogous result is:
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Theorem 1.3. Let E ⊆ P be an arbitrary set with

δ∗P(E) > 0. (1.2)

Then E contains k-term arithmetic progression for any integer k ≥ 3.

Green [18] proved the case k = 3, then with Tao [19] proved the gen-

eral case k ≥ 3. A multidimensional variant of this result was proven by

Tao and Ziegler [41] using a weighted version of the Furstenberg correspon-

dence principle, and also by Cook, Magyar, and Titichetrakun [8] based on

a hypergraph approach.

In a similar vein, certain random sets probabilistically have 3-term arith-

metic progressions even with 0 upper asymptotic density, as in the following

theorem proved by Kohayakawa,  Luczak, and Rödl [27].

Theorem 1.4. For integers 1 ≤ M ≤ n, let R(n,M) be the probability

space consisting of M -element subsets of {1, . . . , n} equipped with the uni-

form measure. Let 0 < δ ≤ 1. There exists a constant C = C(δ) such that

if C
√
n ≤M ≤ n, then with probability tending to 1 as n→∞, the random

set R ∈ R(n,M) has the property that any subset of R of cardinality at least

δ(#R) contains k-term arithmetic progression.

We shall see that these results provide motivation for some of the results

in the continuous case.

1.1.2 Continuous case

A first step is to see how the measure theoretic size of E ⊆ Rn determines if

it contains particular configurations; we will use |E| to denote the Lebesgue

measure of E.

Definition 1.5. (a) We say ψ : Rn → Rn is a similarity map if there exists

c > 0 such that |ψ(x)− ψ(y)| = c|x− y| for every x, y ∈ Rn.

(b) We say E ⊆ Rn contains a similar copy of F ⊆ Rn if there exists a

similarity map ψ such that ψ(F ) ⊆ E.

4



It is a consequence of the Lebesgue density theorem that a set of positive

measure contains a similar copy of every finite set. We may ask if the

converse is true, that is, if a set E contains a copy of every finite set, must we

have |E| > 0? Erdős and Kakutani [10] showed the answer to this is negative,

by constructing a compact (and perfect), measure 0 set which contains a

similar copy of every finite set. Certainly not every set of measure 0 has this

property, but what condition on E would ensure various configurations? To

answer this, we require some way of distinguishing between sets of measure

0. In this case, we can explore how the dimensional size of a set will affect

its capacity to contain or avoid configurations. There are several ways of

defining dimension, of particular use is Hausdorff dimension.

Definition 1.6. If U ⊆ Rn is a non-empty set, we define its diameter to be

diam(Ui) = sup{|x− y| : x, y ∈ U}.

We say that the countable collection {Ui} is a δ-cover for E ⊆ Rn if E ⊆⋃
i Ui and diam(Ui) ≤ δ.

Suppose E ⊆ Rn and s > 0. For δ > 0 we define

Hsδ(E) = inf

{ ∞∑
i=1

diam(Ui)
s : {Ui} is a δ-cover of E

}
.

We define the s-dimensional Hausdorff measure of E to be

Hs(E) = lim
δ→0
Hsδ(E);

clearly the limit exists. Finally, we define the Hausdorff dimension of E to

be

dimH(E) = inf{s : Hs(E) = 0} = sup{s : Hs(E) =∞}.

Suppose F consists of three points, a triangle. Since any similar copy of a

triangle preserves its angles, one question that arises is how large Hausdorff

dimension can a set in Rn (n ≥ 2) have if it avoids three points forming a

particular angle θ. For ease, we say E ⊆ Rn contains the angle θ if there
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exist distinct points x, y, z ∈ E such that the angle between the vectors y−x
and z − x is θ, and write ∠θ ∈ E. Define

C(n, θ) = sup{s : ∃E ⊆ Rn compact with dimH(E) = s,∠θ /∈ E}.

Harangi, Keleti, Kiss, Maga, Máthé, Mattila, and Strenner [20] give upper

bounds on C(n, θ) (which they show is tight for θ = 0, π), and Máthé [32]

provides lower bounds. Their results are summarized below.

θ lower bound on C(n, θ) upper bound on C(n, θ)

0, π n− 1 n− 1

π/2 n/2 b(n+ 1)/2c
cos2 θ ∈ Q n/4 n− 1

other θ n/8 n− 1

Table 1.1: Summary of results on bounds for C(n, θ)

Also explored by Harangi et al [20] is the question of how large Haus-

dorff dimension a set can have if it avoids not just the angle α, but a δ-

neighborhood of α.

If we instead fix the configuration, a simple case to consider is, like in

the discrete case, a 3-term arithmetic progression. The following theorem

gives a stronger result:

Theorem 1.7 (Keleti [25]). There exists a compact set in R with Hausdorff

dimension 1 which does not contain any “one-dimensional parallelogram”

{x, x+ y, x+ z, x+ y + z}, with y, z 6= 0.

Keleti’s proof involves a Cantor-like construction: Start with the interval

[0, 1] and on the mth step, each interval remaining is split into 6m intervals

of length 1/(6m−1m!), and every sixth interval is selected, but a shift is

introduced on some of the intervals in order to avoid parallelograms. It can

be seen to be of full dimension via the mass distribution principle (cf. [13]

4.6). One consequence of Keleti’s result is that full dimension of a set E

in R does not guarantee existence of 3-term arithemetic progressions in E,

seen by taking y = z.
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As in the discrete case, where even with 0 upper density certain types

of sets can be guaranteed to contain 3-term arithmetic progressions, there

are cases where measure 0 sets must contain a 3-term arithmetic progres-

sion.  Laba and Pramanik [30] show that essentially with sufficient Fourier

dimension, E does contain 3-term arithemetic progressions. To make this

precise:

Theorem 1.8 ( Laba, Pramanik [30]). Suppose E ⊆ [0, 1] is a closed set

which supports a probability measure µ with the following properties:

(i) µ([x, x+ ε]) ≤ C1ε
α for all 0 < ε ≤ 1,

(ii) |µ̂(ξ)| ≤ C2|ξ|−β/2 for all ξ 6= 0,

2/3 < β ≤ 1. If α is close enough to 1 (depending on C1, C2, and β), then

E contains a 3-term arithmetic progression.

In the prequel, µ̂(ξ) =
∫
e−2πix·ξdµ(x). The first condition is related

to Hausdorff dimension. Indeed, Frostman’s Lemma (see [33]) says that if

E ⊆ Rn is compact, then

dimH(E) = sup{α ≥ 0 : ∃µ ∈M(E) with µ(B(x, ε)) ≤ Cεα},

where M(E) is the set of probability measures supported on E. Then

condition (i) implies that E has Hausdorff dimension of at least α. The

second condition is related to the Fourier dimension, defined as

dimF (E) = sup{β ∈ [0, n] : ∃µ ∈M(E)

with |µ̂(ξ)| ≤ C(1 + |ξ|)−β/2 ∀ξ ∈ Rn}.
(1.3)

This means (ii) implies that E has Fourier dimension of at least β. It is

thus useful to discuss the relationship between the Hausdorff dimension and

Fourier dimension.

It can be shown (see [33]) that

dimH(E) = sup

{
s ≥ 0 : ∃µ ∈M(E) with

∫
|x|s−n|µ̂(x)|2 dx <∞

}
.
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Notice
∫
|x|s−n|µ̂(x)|2 dx < ∞ implies |µ̂(x)| < |x|−s/2 for “most” x with

large norm, but this does not necessarily hold for all x. Comparing with

(1.3), we see that dimF (E) ≤ dimH(E) for all E ⊆ Rn. Strict inequality is

possible, as the following example illustrates.

Example 1.9. It is well-known that the middle thirds Cantor set has Haus-

dorff dimension of log 2/ log 3. Let µ be the standard Cantor measure, the

restriction of Hs to the Cantor set where s = log 2/ log 3. Then the Fourier

transform is given by

µ̂(x) =

∞∏
j=1

cos(3−jx),

and so µ̂(3`π) 6→ 0 as `→∞. In general, it is also true that the Cantor set

supports no non-zero Radon measure whose Fourier transform would tend

to 0 at infinity [23], so has Fourier dimension 0.

When equality occurs for a set E, E is said to be a Salem set ; the

spheres Sn−1 in Rn are simple examples of Salem sets with dimension n−1.

Deterministic Salem sets of non-integral dimension are uncommon, some

constructions are due to Kahane [21] and Kaufman [24]. Salem [36] con-

structed random Salem sets, and Kahane [22] has shown that Salem sets

are abound as random sets. In particular, if E ⊆ Rn is compact with

dimH(E) = α < n/2, then the image of E under n-dimensional brownian

motion is almost surely a Salem set of dimension 2α. Further probabbilistic

constructions of Salem sets can be found in [3], [4], and [30].

In this sense, condition (ii) above relates to a “randomness” condition,

which is an analogue of Theorems 1.3 and 1.4. It should be mentioned

that although Salem sets are related to the two conditions, the concepts

are not equivalent—conditions (i) and (ii) do not necessitate equality in

Hausdorff and Fourier dimension, although we need to have some control

over the constants C1, C2.  Laba and Pramanik modify Salem’s construction

to produce explicit constants in the estimates. Keleti improved upon the

result that full dimension does not guarantee 3 term arithmetic progressions

in the following.
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Theorem 1.10 (Keleti [26]). For a given distinct triple of points {x, y, z},
there exists a compact set in R with Hausdorff dimension 1 which does not

contain any similar copy of {x, y, z}.

The method of proof is similar to the ideas from [25]. Another way to

extend Theorem 1.7 is in the ambient dimension:

Theorem 1.11 (Maga [31]). There exists a compact set in Rn with Haus-

dorff dimension n which does not contain any parallelogram {x, x + y, x +

z, x+ y + z}, with y, z 6= 0.

This construction is the exact analogue of the construction from Theorem

1.7, using cubes instead of intervals. In the same paper, Maga also extends

Theorem 1.10.

Theorem 1.12 (Maga [31]). For distinct points x, y, z ∈ R2, there exists a

compact set in R2 with Hausdorff dimension 2 which does not contain any

similar copy of {x, y, z}.

Maga [31] posed the following question:

Question 1.13. If E ⊆ R2 is compact with dimH(E) = 2, must E contain

the vertices of an isosceles triangle?

The previous results and question will motivate our present result, which

requires some technical definitions to set up.

1.2 Notation and definitions

Throughout this document, norms of functions are used which may require

special attention to details. We shall use ‖f‖Lpx to denote the Lp norm of f

in the x variable, in case f depends on multiple variables, ‖f‖Lp(E) to denote

the Lp norm of f on the space E, in case specifying the space is necessary,

and ‖f‖p for the Lp norm when the context is clear.

Many estimates are made via inequalities where we are unconcerned

about constants as a multiplier. We thus use f . g to mean f ≤ Cg where

C is a constant, and f & g to mean f ≥ Cg where C is a constant.

We now develop some notation specific to the main result.

9



Definition 1.14. Fix integers n ≥ 2, k ≥ 3 and m ≥ n. Suppose B1, . . . , Bk

are n× (m− n) matrices.

(a) We say E contains a k-point B-configuration if there exists x ∈ Rn and

y ∈ Rm−n \ {0} such that {x+Bjy}kj=1 ⊆ E.

(b) Given any finite collection of subspaces V1, . . . , Vq ⊆ Rm−n such that

dim(Vi) < m − n, we say that E contains a non-trivial k-point B-

configuration with respect to (V1, . . . , Vq) if there exists x ∈ Rn and

y ∈ Rm−n \
⋃q
i=1 Vi such that {x+Bjy}kj=1 ⊆ E.

For both of these definitions, we will drop the k from the notation if there is

no confusion.

Let A1, . . . , Ak be n ×m matrices. For any set of distinct indices J =

{j1, . . . , js} ⊆ {1, . . . , k}, define the ns×m matrix AJ by

AtJ = (Atj1 · · · A
t
js),

where At denotes the transpose of A. We shall use A = A{1,...,k}.
Let r be the unique positive integer such that

n(r − 1) < nk −m ≤ nr. (1.4)

If we have nk −m components and account for r − 1 groups of size n, we

are left with nk−m−n(r−1). This quantity is useful in the main theorem,

and bulky to repeatedly use. We shall denote

n′ = nk −m− n(r − 1). (1.5)

Notice if nk−m is a multiple of n, then n′ = n, and in general, 0 < n′ ≤ n.

Definition 1.15. We say that {A1, . . . , Ak} is non-degenerate if for any

J ⊆ {1, . . . , k} with #(J) = k − r and any j ∈ {1, . . . , k} \ J , the m ×m
matrix

(AtJ Ãj
t
)

is non-singular for any choice of (n− n′)×m submatrix Ãj of Aj.

10



1.3 The main result

We use dxe to denote the smallest integer larger than x.

Theorem 1.16. Suppose

n

⌈
k + 1

2

⌉
≤ m < nk (1.6)

and
2(nk −m)

k
< β < n. (1.7)

Let {B1, . . . , Bk} be a collection of n × (m − n) matrices such that Aj =

(In×n Bj) is non-degenerate in the sense of Definition 1.15, where In×n is

the n × n identity matrix. Then for any constant C, there exists a positive

number ε0 = ε0(C, n, k,m,B) � 1 with the following property. Suppose the

set E ⊆ Rn with |E| = 0 supports a positive, finite, Radon measure µ with

the two conditions:

(a) (ball condition) sup x∈E
0<r<1

µ(B(x;r))
rα ≤ C,

(b) (Fourier decay) supξ∈Rn |µ̂(ξ)|(1 + |ξ|)β/2 ≤ C.

If n− ε0 < α < n, then:

(i) E contains a k-point B-configuration in the sense of Definition 1.14

(a).

(ii) Moreover, for any finite collection of subspaces V1, . . . , Vq ⊆ Rm−n with

dim(Vi) < m−n, E contains a non-trivial k-point B-configuration with

respect to (V1, . . . , Vq) in the sense of Definition 1.14 (b).

This can be viewed as a multidimensional analogue of [30]. The existence

and constructions of measures on R that satisfy (a), (b) are discussed in

detail in [30]. In higher dimensions, it should be possible to generalize the

construction in [30, Section 6] to produce examples in Rn; alternatively, it

is easy to check that if µ = µ̃(dr) × σ(dω) is a product measure in radial

coordinates (r, ω), where µ̃ is a Salem measure on [0, 1] as in [30, Section

6] and σ is the Lebesgue measure on Sn−1, then µ satisfies the conditions

(a), (b) of Theorem 1.16.
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1.4 Examples

Motivated by the discussion in Section 1.1.2, we provide some examples of

geometric configurations which are covered by Theorem 1.16; proofs and

further discussion will be contained in Chapter 5.

Corollary 1.17. Let a, b, c be three distinct collinear points in Rn. Suppose

that E ⊂ Rn satisfies the assumptions of Theorem 1.16 with ε0 sufficiently

small depending on a, b, c, C. Then E must contain three distinct points

x, y, z that form a similar image of the triple a, b, c.

This result includes 3-term arithmetic progressions, so can be viewed

as an extension of Theorem 1.8 to higher dimensions. It should be noted

that their proof would also work for any fixed 3-point configuration, the

1-dimensional version of Corollary 1.17. For nonlinear triples, Theorem 1.16

does not seem to cover general triangles in dimensions n ≥ 3, but there is a

positive result for the plane.

Corollary 1.18. Let a, b, c be three distinct points in R2. Suppose that

E ⊂ R2 satisfies the assumptions of Theorem 1.16 with ε0 sufficiently small

depending on a, b, c, C. Then E must contain three distinct points x, y, z

such that the triangle 4xyz is a similar copy of the triangle 4abc.

Compare this to the results of Harangi, Keleti, Kiss, Maga, Máthé, Mat-

tila, and Strenner as summarized in Table 1.1. Corollary 1.18 shows that

if θ is given, then any E ⊆ R2 as in Theorem 1.16 must not only contain

the angle θ, but in fact θ can be realized as the angle of an isosceles tri-

angle with vertices in E (or any other pre-determined shape); this answers,

in part, Question 1.13. Note that Maga’s result described in Theorem 1.12

shows the result is false without the assumption of Fourier decay.

For larger configurations, we first consider parallelograms.

Corollary 1.19. Suppose that E ⊂ Rn satisfies the assumptions of The-

orem 1.16, with ε0 sufficiently small depending on C. Then E contains a

parallelogram {x, x+y, x+z, x+y+z}, where the four points are all distinct

and x, y, z ∈ Rn.
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Recall Theorem 1.11 by Maga, which shows the result is false without

the assumption of Fourier decay.

We end with a polynomial example.

Corollary 1.20. Let a1, . . . , a6 be distinct numbers, all greater than 1. Sup-

pose that E ⊂ R3 satisfies the assumptions of Theorem 1.16, with ε0 small

enough depending on C and ai. Then E contains a configuration of the form

x, x+B2y, x+B3y, x+B4y, (1.8)

for some x ∈ R3 and y ∈ R6 with Biy 6= 0 for i = 2, 3, 4, where

B2 =

 1 . . . 1

a1 . . . a6

a2
1 . . . a2

6

 , B3 =

a
3
1 . . . a3

6

a4
1 . . . a4

6

a5
1 . . . a5

6

 , B4 =

a
6
1 . . . a6

6

a7
1 . . . a7

6

a8
1 . . . a8

6

 .

This is a non-trivial result in the following sense. Since Vandermonde

matrices are non-singular, the set of 6 vectors
1

a1

...

a5
1

 , . . . ,


1

a6

...

a5
6


forms a basis for R6. It follows that if a, b, c ∈ E, there is a unique y ∈ R6

such that b = a+ B2y and c = a+ B3y. This also determines uniquely the

point a + B4y, which might or might not be in E. Our result asserts that,

under the conditions of Corollary 1.20, we may choose x and y so that in

fact all 4 points in (1.8) lie in E.
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Chapter 2

A multilinear form for

counting configurations

We will consider the following multilinear form, initially defined for fj ∈
C∞c (Rn), the smooth functions on Rn with compact support:

Λ(f1, . . . , fk) =

∫
Rm

k∏
j=1

fj(Aj~x) d~x. (2.1)

If fj = f for all j, we write Λ(f) instead of Λ(f, . . . , f). Clearly if Λ(f) 6= 0,

then the support of f contains configurations of the form {Aj~x : 1 ≤ j ≤ k}
for a set of ~x of positive measure. We will later rewrite Λ(f1, . . . , fk) in a

form that will allow us to extend it to measures, not just functions, then

show that it is suitable for counting configurations in sparse sets.

2.1 Fourier-analytic representation of the
multilinear form

It turns out that working with the Fourier transforms of fj allows for good

estimates on Λ. Recall the Fourier transform of a function f ∈ C∞c (Rn)

is defined by f̂(ξ) =
∫
Rn e

−2πix·ξf(x) dx. The following result provides a

means to make use of the Fourier transform in Λ.

14



Proposition 2.1. For fj ∈ C∞c (Rn), Λ(f1, . . . , fk) defined in (2.1) admits

the representation

Λ(f1, . . . , fk) = C

∫
S

k∏
j=1

f̂j(ξj) dσ(ξ1, · · · , ξk),

where σ is the Lebesgue measure on the subspace

S =

ξ = (ξ1, . . . , ξk) ∈ (Rn)k :
k∑
j=1

Atjξj = ~0

 (2.2)

and C = C(A) is a constant only depending on the matrices Aj.

We will require a sort of approximate identity result to prove this propo-

sition. For a p× d (p ≤ d) matrix P of full rank p, define

V = {ξ ∈ Rd : Pξ = 0} = N (P ),

the null space of P , and let v = dim(V ) = d− p.

Definition 2.2. Fix an orthonormal basis {~α1, . . . , ~αv} of V . The surface

measure dσ on V is defined as follows:

∫
V
F dσ =

∫
Rv
F

 v∑
j=1

xj~αj

 dx1 · · · dxv

for every F ∈ Cc(Rd).

Note that this definition is independent of the choice of basis. In-

deed, if {~β1, . . . , ~βv} is another orthonormal basis of V , then the mapping

(x1, . . . , xv) 7→ (y1, . . . , yv) given by
∑
xj~αj =

∑
yj ~βj is a linear isome-

try, hence given by an orthogonal matrix which has determinant 1. Then

d~x = d~y and hence

∫
Rv
F

 v∑
j=1

xj~αj

 dx1 · · · dxv =

∫
Rv
F

 v∑
j=1

yj ~βj

 dy1 · · · dyv.
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Lemma 2.3. For any g ∈ Cc(Rd) and any Ψ ∈ S(Rp) with Ψ(0) 6= 0,

lim
ε→0+

∫
Rd
g(y1, y2)

1

εp
Ψ̂
(y2

ε

)
dy1dy2 = Ψ(0)

∫
Rd−p

g(y1, 0) dy1.

Here, y = (y1, y2) ∈ Rd, with y1 ∈ Rd−p and y2 ∈ Rp.

Proof. Fix κ > 0. Our goal is to show∣∣∣∣∫
Rd
g(y1, y2)

1

εp
Ψ̂
(y2

ε

)
dy1dy2 −Ψ(0)

∫
Rd−p

g(y1, 0) dy1

∣∣∣∣ < κ

for all ε > 0 sufficiently small. Then for every ε > 0, we have by definition

of Ψ(0)∣∣∣∣∫
Rd
g(y1, y2)

1

εp
Ψ̂
(y2

ε

)
dy1dy2 −Ψ(0)

∫
Rd−p

g(y1, 0) dy1

∣∣∣∣
=

∣∣∣∣∫
Rd
g(y1, y2)

1

εp
Ψ̂
(y2

ε

)
dy1dy2 −

∫
Rp

∫
Rd−p

g(y1, 0)
1

εp
Ψ̂
(y2

ε

)
dy1dy2

∣∣∣∣
≤
∫∫
|g(y1, y2)− g(y1, 0)| 1

εp

∣∣∣Ψ̂(y2

ε

)∣∣∣ dy1dy2.

We now partition our region of integration into where |y2| is small and where

it is large. By uniform continuity of g on its compact support K, we may

choose η > 0 sufficiently small so that

sup
y1∈K

|g(y1, y2)− g(y1, 0)| < κ

2|Ψ(0)|
(2.3)

if |y2| ≤ η. On this region,∫∫
|y2|≤η

|g(y1, y2)− g(y1, 0)| 1
εp

∣∣∣Ψ̂(y2

ε

)∣∣∣ dy1dy2

<

∫∫
κ

2|Ψ(0)|
1

εp

∣∣∣Ψ̂(y2

ε

)∣∣∣ dy1dy2 =
κ

2
.

Since Ψ̂ is integrable, we can make the tail integral as small as we would
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like. In particular, there exists ε > 0 sufficiently small relative to η so that∫
|y2|>η/ε

|Ψ̂(y2)| dy2 <
κ

4‖g‖∞diam(K)
. (2.4)

Then for this ε,∫∫
|y2|>η,y∈K

|g(y1, y2)− g(y1, 0)| 1
εp

∣∣∣Ψ̂(y2

ε

)∣∣∣ dy1dy2

≤ 2‖g‖∞diam(K)

∫
|y2|>η/ε

|Ψ̂(y2)| dy2 <
κ

2
.

As this inequality holds for every κ > 0, the result follows.

Proposition 2.4. For any P as above, there exists a constant CP > 0 with

the property that for any Φ ∈ S(Rp) with Φ(0) = 1, the limit

lim
ε→0+

∫
Rd
F (ξ)

1

εp
Φ̂

(
Pξ

ε

)
dξ

exists and equals CP
∫
V F dσ.

Proof. Fix Φ ∈ S(Rp) with Φ(0) = 1. Let {~α1, . . . , ~αv} be an orthonormal

basis of V . Extend this to an orthonormal basis of Rd, say

{~α1, . . . , ~αv, ~αv+1, . . . , ~αd}.

Given any function H ∈ Cc(Rd), we define GH : Rd → R as follows:

GH(x1, . . . , xd) = H

 d∑
j=1

xj~αj

 .

Notice GH ∈ Cc(Rd) as well. Then by definition,

∫
V
F dσ =

∫
Rv
F

 v∑
j=1

xj~αj

 dx1 · · · dxv

=

∫
Rv
GF (x1, . . . , xv, 0, . . . , 0) dx1 · · · dxv.
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By Lemma 2.3 with g = GF , y1 = (x1, . . . , xv), and y2 = (xv+1, . . . , xd), we

have ∫
V
F dσ

=
1

Ψ(0)
lim
ε→0+

∫
Rd
GF (x1, . . . , xv, xv+1, . . . , xd)

1

εp
Ψ̂
(xd+1

ε
, . . . ,

xd
ε

)
d~x,

for any Ψ ∈ S(Rd) with Ψ(0) 6= 0, where ~x = (x1, . . . , xd). By the definition

of GF , this gives∫
V
F dσ =

1

Ψ(0)
lim
ε→0+

∫
Rd
F (ξ)

1

εp
Ψ̂
(xv+1

ε
, . . . ,

xd
ε

)
d~x, (2.5)

for any Ψ ∈ S(Rd) with Ψ(0) 6= 0, where we denote ξ =
∑d

j=1 xj~αd. Now,

let Q be the p× p matrix defined by

Q


xv+1

...

xd

 =

d∑
j=v+1

xjP~αj .

Since P is of full rank and acting on basis vectors, Q is non-singular. Recall

V = {ξ : Pξ = 0} and {~α1, . . . , ~αv} is a basis for V , so P~αj = 0 for 1 ≤ j ≤
v. Then

xv+1

...

xd

 = Q−1
d∑

j=v+1

xjP~αj = Q−1
d∑
j=1

xjP~αj = Q−1Pξ. (2.6)

Define Ψ ∈ S(Rd) by

Ψ̂(ξ) = Φ̂(Qξ).

Then by (2.5) and (2.6),∫
V
F dσ =

1

Ψ(0)
lim
ε→0+

∫
Rd
F (ξ)

1

εp
Ψ̂

(
Q−1Pξ

ε

)
d~x
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=
1

Ψ(0)
lim
ε→0+

∫
Rd
F (ξ)

1

εp
Φ̂

(
Pξ

ε

)
d~x.

Finally,

Ψ(0) =

∫
Rp

Ψ̂(ξ) dξ

=

∫
Rp

Φ̂(Qξ) dξ

=
1

|Q|

∫
Rp

Φ̂(ξ) dξ

=
1

|Q|
Φ(0) =

1

|Q|

and so the result follows with CP = |Q|. Note that Q is also independent of

the choice of basis, and is a function only of P .

We are now in a position to prove Proposition 2.1.

Proof of Proposition 2.1. For Φ ∈ S(Rm) with Φ(0) = 1, the dominated

convergence theorem gives

Λ(f1, . . . , fk) = lim
ε→0+

∫
Rm

 k∏
j=1

fj(Aj~x)

Φ(~xε) d~x.

Applying the Fourier inversion formula in Rn, g(y) =
∫
Rn e

2πiy·ξ ĝ(ξ) dξ, we

get

Λ(f1, . . . , fk)

= lim
ε→0+

∫
Rm

k∏
j=1

[∫
Rn
e2πiAj~x·ξj f̂j(ξj) dξj

]
Φ(~xε) d~x

= lim
ε→0+

∫
~ξ=(ξ1,...,ξk)∈(Rn)k

k∏
j=1

f̂j(ξj)

[∫
Rm

e2πi~x·Atξ Φ(~xε) d~x

]
d~ξ

= lim
ε→0+

∫
~ξ∈(Rn)k

k∏
j=1

f̂j(ξj)
1

εp
Φ̂

(
Atξ
ε

)
d~ξ
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= CAt

∫
S

k∏
j=1

f̂j(ξj) dσ(ξ),

for some constant CAt . This last step follows from Proposition 2.4, with

p = m, d = nk, V = S, P = At, and F =
∏
f̂j .

Proposition 2.5. Let g ∈ S(Rm), fj ∈ C∞c (Rn). Then the integral

Θ(g; f1, . . . , fk) :=

∫
Rm

g(~x)
k∏
j=1

fj(Aj~x) d~x

is absolutely convergent, and admits the representation

Θ(g; f1, . . . , fk) =

∫
(Rn)k

ĝ(−At~ξ)
k∏
j=1

f̂j(~ξj) d~ξ.

Proof. By Fourier inversion,

Θ(g; f1, . . . , fk) =

∫
Rm

g(~x)

k∏
j=1

[∫
Rn
e2πiAj~x·~ξj f̂j(~ξj) d~ξj

]
d~x,

which is absolutely convergent since f̂j , g ∈ S(Rm). Then by Fubini’s The-

orem,

Θ(g; f1, . . . , fk) =

∫
(Rn)k

k∏
j=1

f̂j(~ξj)

[∫
Rm

g(x)e2πi~x·At~ξ d~x

]
d~ξ

=

∫
(Rn)k

ĝ(−At~ξ)
k∏
j=1

f̂j(~ξj) d~ξ,

where the last line follows by the definition of the Fourier transform.
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2.2 Extension of the multilinear form to
measures

With S as in (2.2), denote S⊥ = {τ ∈ (Rn)k : τ · ξ = 0 for all ξ ∈ S} and

fix a τ ∈ S⊥. We will use the variable

η = (η1, . . . , ηk) = ξ + τ = (ξ1, . . . , ξk) + (τ1, . . . , τk) ∈ S + τ, (2.7)

where ξ ∈ S, and ηj , ξj , τj ∈ Rn. Define

Λ∗τ (g1, . . . , gk) =

∫
S+τ

k∏
j=1

gj(ηj) dσ(η), (2.8)

initially defined for gj ∈ Cc(Rn) so that the integral is absolutely convergent.

If gj = g for all j, we write Λ∗τ (g) instead of Λ∗τ (g, . . . , g). We will use Λ∗ in

place of Λ∗0. Our next proposition shows that we may extend this multilinear

form to continuous functions with appropriate decay.

In applications, gj will be µ̂, with µ as in Theorem 1.16. While defining

the multilinear form Λ for measures requires only the use of Λ∗0 (so that the

integration is on S as in Proposition 2.1), the proof of our main result will

rely crucially on estimates on Λ∗τ uniform in τ .

Proposition 2.6. Let {A1, . . . , Ak} be a non-degenerate collection of n×m
matrices in the sense of Definition 1.15. Assume that nk/2 < m < nk and

g1, . . . , gk : Rn → C are continuous functions satisfying

|gj(κ)| ≤M(1 + |κ|)−β/2, κ ∈ Rn, (2.9)

for some β > 2(nk −m)/k. Then the integral defining Λ∗τ = Λ∗τ (g1, . . . , gk)

is absolutely convergent for every τ ∈ S⊥. Indeed,

sup
τ∈S⊥

Λ∗τ (|g1|, . . . , |gk|) ≤ C

where C depends only on n, k,m,M , and A.

Since S + τ for τ ∈ S⊥ includes all possible translates of S, Proposition
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2.6 gives a uniform upper bound on the integral of
∏
gj over all affine copies

of S.

The proof of this proposition is based on a lemma which requires some

additional notation. Let 0a×b denote the a × b matrix consisting of 0’s .

Let In×n denote the n × n identity matrix . Define the nk × n matrix Ej

(1 ≤ j ≤ k) by

Etj = (0n×n · · · In×n · · · 0n×n),

where In×n is in the jth block. For any ~ε = (ε1, . . . , εn) ∈ {0, 1}n, we

denote In×n(~ε) = diag(ε1, . . . , εn). For a subset J ′ ⊆ {1, . . . , n} and index

j ∈ {1, . . . , k}, define the nk × n matrix

Ej(J
′)t = (0n×n · · · In×n(~ε) · · · 0n×n),

where In×n(~ε) is in the jth block and εi = 1 if and only if i ∈ J ′. Finally,

for ξ ∈ S we define

ξj(J
′) = Ej(J

′)ξ.

Lemma 2.7. Let {A1, . . . , Ak} be a non-degenerate collection of n × m

matrices in the sense of Definition 1.15. Let J = {j1, . . . , jr} ⊆ {1, . . . , k}
and J ′ ⊆ {1, . . . , n} be collections of distinct indices with #(J ′) = n′, defined

by (1.5). Then the projection of (ξj1 , . . . , ξjr−1 , ξjr(J
′)) on S is a coordinate

system on S as defined in (2.2). In particular, there exists a constant C =

C(J, J ′, j,A) such that dσ(ξ) = C dξj1 · · · dξjr−1dξjr(J
′), where σ(ξ) is the

Lebesgue measure on S.

Proof. It suffices to prove

S′ = {ξ ∈ S : ξj1 = ξj2 = · · · = ξjr−1 = ξjr(J
′) = 0}

has dimension 0.

We will examine S′ = {ξ ∈ S : ξ1 = ξ2 = · · · = ξr−1 = ξr(J
′) = 0}; the
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other cases are similar. S′ is the subspace defined by ξ ∈ (Rn)k satisfying

At1 At2 · · · Atr−1 Atr Atr+1 · · · Atk
In×n 0 · · · 0 0 0 · · · 0

0 In×n · · · 0 0 0 · · · 0
...

...
. . .

...
...

...
...

0 0 · · · In×n 0 0 · · · 0

0 0 · · · 0 In×n(~1− ~ε) 0 · · · 0


ξ = 0,

where εi = 1 if and only if i 6∈ J ′, and ~1 = (1, . . . , 1). For dimS′ = 0, we

need the kernel of the above (m+ nr)× nk matrix to have dimension 0, so

we need the rank of said matrix to be nk. Notice In×n is of rank n and we

have r − 1 of these, and In×n(~1− ~ε) has rank n′ = nk −m− n(r − 1), so it

suffices for

rank
(

(Ar(~ε))
t Atr+1 · · · Atk

)
= nk − n(r − 1)− n′ = m.

A similar condition holds if we examine S′ = {ξ ∈ S : ξi1 = ξi2 = · · · =

ξir−1 = ξir(J
′) = 0} in general, and upon taking the transpose we arrive at

the sufficient condition

rank

(
AI

Aik−(r−1)
(~ε)

)
= m (2.10)

for I = {i1, . . . , ik−r} ⊆ {1, . . . , k} a set of distinct indices, and ~ε ·~1 = n−n′.
Notice this means the matrix is of full rank. (2.10) follows from the non-

degeneracy assumption in Definition 1.15.

Proof of Proposition 2.6. Fix τ ∈ S⊥. We use Symk to denote the sym-

metric group on k elements. For a permutation θ ∈ Symk, we define the

region

Ωθ = {η ∈ S + τ : |ηθ(1)| ≤ |ηθ(2)| ≤ · · · ≤ |ηθ(k)|}
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so that

S + τ =
⋃

θ∈Symk

Ωθ.

For simplicity and without loss of generality, we will examine the case of

θ = id, the identity permutation, and write Ωid as Ω; the other cases are

analogous. It then suffices to show the convergence of the integral

I =

∫
Ω

k∏
j=1

|gj(ηj)| dσ .
∫

Ω

k∏
j=1

(1 + |ηj |)−β/2 dσ.

Let L =
∏r−1
j=1(1 + |ηj |)−β/2. By Hölder’s inequality over k − (r − 1)

terms,

I .
∫

Ω

k∏
j=1

(1 + |ηj |)−β/2 dσ

=

∫
Ω
L

k∏
i=r

(1 + |ηi|)−β/2 dσ

=

∫
Ω

k∏
i=r

[
L1/(k−(r−1))(1 + |ηi|)−β/2

]
dσ

≤
k∏
i=r

∫
S+τ

|η1|≤···≤|ηr−1|≤|ηi|
L(1 + |ηi|)−

β
2 (k−(r−1)) dσ

1/(k−(r−1))

≤
∫

S+τ
|η1|≤···≤|ηr|

r−1∏
j=1

(1 + |ηj |)−β/2(1 + |ηr|)−
β
2 (k−(r−1)) dσ.

In the last inequality, we see that for each i, the integral is the same with

a different dummy variable, so we collect the terms under the single index

i = r. Recalling our decomposition of η into ξ and τ as per (2.7) and since

τ is fixed, we arrive at

I .
∫

S
|ξ1+τ1|≤···≤|ξr+τr|

r−1∏
j=1

(1 + |ξj + τj |)−β/2(1 + |ξr + τr|)−
β
2 (k−(r−1)) dσ(ξ).
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Suppose ηr = (ηr,1, . . . , ηr,n), and for any permutation π ∈ Symn, let

ηπr = (ηr,π(1), . . . , ηr,π(n′)).

As in the beginning of this section, we may partition our current region of

integration into a finite number of regions of the form {|ηr,π(1)| ≥ · · · ≥
|ηr,π(n)|} for π ∈ Symn. Then |ηr| ≤ n|ηr,π(1)|, so that |ηr| ≈ |ηπr |.

By Lemma 2.7, dσ(ξ) = C dξ1 · · · dξr−1dξ
π
r , hence

I .
∫

S
|ξ1+τ1|≤···≤|ξr+τr|

r−1∏
j=1

(1 + |ξj + τj |)−β/2

· (1 + |ξπr + τπr |)
−β2 (k−(r−1)) dξ1 · · · dξr−1dξ

π
r

.
∫
Rn′

r−1∏
j=1

∫
ξj+τj∈Rn

|ξj+τj |≤|ξπr +τπr |

(1 + |ξj + τj |)−β/2 dξj


· (1 + |ξπr + τπr |)

−β2 (k−(r−1)) dξπr .

Translating ξj by τj ,

I .
∫
Rn′

r−1∏
j=1

∫
ξj∈Rn
|ξj |≤|ξπr |

(1 + |ξj |)−β/2 dξj

 (1 + |ξπr |)
−β2 (k−(r−1)) dξπr

.
∫
Rn′

[∫ |ξπr |
0

(1 + ρ)−β/2+n dρ

]r−1

(1 + |ξπr |)
−β2 (k−(r−1)) dξπr

.
∫
Rn′

(1 + |ξπr |)
(n−β/2)(r−1)−β2 (k−(r−1)) dξπr

=

∫
Rn′

(1 + |ξπr |)n(r−1)−βk/2 dξπr ,

where the Jacobian in making the spherical change of coordinates ρ = |ξj |
above is independent of τj . This last expression is finite (with a bound

independent of τ) when

βk/2− n(r − 1) > n′ = nk −m− n(r − 1),
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which holds since 2(nk −m)/k < β < n and m > nk/2.

2.3 Counting geometric configurations in sparse
sets

In this section, we will show that the multilinear form Λ∗ defined in (2.8)

is effective in counting non-trivial configurations supported on appropriate

sparse sets.

Proposition 2.8. Suppose nk/2 < m < nk and 2(nk−m)/k < β < n. Let

{A1, . . . , Ak} be a collection of n ×m matrices that are non-degenerate in

the sense of Definition 1.15. Let µ be a positive, finite, Radon measure µ

with

sup
ξ∈Rn

|µ̂(ξ)|(1 + |ξ|)β/2 ≤ C. (2.11)

Then there exists a non-negative, finite, Radon measure ν = ν(µ) on [0, 1]m

such that

(a) ν(Rm) = Λ∗(µ̂).

(b) supp ν ⊆ {x ∈ Rm : A1x, . . . , Akx ∈ suppµ}.

(c) For any subspace V ⊆ Rm with dimV < m, ν(V ) = 0.

2.3.1 Existence of candidate ν

Fix a non-negative φ ∈ S(Rm) with
∫
φ = 1 and let φε(y) = ε−nφ(ε−1y).

Let µε = µ ∗ φε. Notice φ̂ ∈ S(Rm) since φ ∈ S(Rm), so

|µ̂ε(ξ)| = |µ̂(ξ)φ̂(εξ)| ≤ C(1 + |ξ|)−β/2 (2.12)

with C = ‖φ̂‖∞ independent of ε. Furthermore, φ̂(εξ)→ φ̂(0) =
∫
φ = 1 as

ε→ 0, hence

µ̂ε(ξ)→ µ̂(ξ) pointwise as ε→ 0. (2.13)

We prove that the multilinear form Λ∗τ satisfies a weak continuity property,

in the following sense:
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Lemma 2.9. Λ∗τ (µ̂ε)→ Λ∗τ (µ̂) as ε→ 0 for every fixed τ ∈ S⊥.

Proof. Fix τ ∈ S⊥. By definition,

Λ∗τ (µ̂ε) =

∫
S+τ

k∏
j=1

µ̂ε(ξj) dξ.

By (2.12), |µ̂ε(η)| ≤ C(1 + |η|)−β/2 =: g(η) uniformly in ε, so

k∏
j=1

|µ̂ε(ξj)| ≤ C
k∏
j=1

g(ξj).

By Proposition 2.6, Λ∗τ (g) is finite, so by (2.13) and the dominated conver-

gence theorem,

Λ∗τ (µ̂ε)→ Λ∗τ (µ̂).

For F ∈ C([0, 1]m) such that F̂ ∈ S(Rm), define the linear functional ν

by

〈ν, F 〉 = lim
ε→0

∫
Rm

F (~x)
k∏
j=1

µε(Aj~x) d~x. (2.14)

We will prove in Lemma 2.10 below that the limit exists and extends as a

bounded linear functional on C([0, 1]). Clearly, 〈ν, F 〉 ≥ 0 if F ≥ 0. By

the Riesz representation theorem, there exists a non-negative, finite, Radon

measure ν that identifies this linear functional; namely 〈ν, F 〉 =
∫
F dν.

Lemma 2.10. There exists a non-negative, bounded, linear functional ν on

C([0, 1]), that is,

|〈ν, F 〉| ≤ C‖F‖∞ (2.15)

for some positive constant C independent of F ∈ C([0, 1]), which agrees with

(2.14) if F̂ ∈ S(Rm).
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Proof. Assume the limit (2.14) exists for F ∈ C([0, 1]), F̂ ∈ S(Rm). Then

|〈ν, F 〉| ≤ lim
ε→0

∫
Rm
|F (~x)|

k∏
j=1

µε(Aj~x) d~x

≤ ‖F‖∞ lim
ε→0

Λ(µε)

= ‖F‖∞ lim
ε→0

Λ∗(µ̂ε)

≤ C‖F‖∞,

where the last line follows by Proposition 2.6, with a constant C independent

of ε. Thus, (2.15) holds.

It remains to prove that 〈ν, F 〉 is well-defined. We will prove this by

showing that the limit in (2.14) exists for F ∈ C([0, 1]m) with F̂ ∈ S(Rm)

and use density arguments to extend the functional to all of C([0, 1]m).

Applying Proposition 2.5 with g = F , f1 = . . . = fk = µε, we obtain

〈ν, F 〉 = lim
ε→0

Θ(F ;µε, . . . , µε) = lim
ε→0

∫
Rnk

F̂ (−Atξ)
k∏
j=1

µ̂ε(ξj) dξ. (2.16)

By (2.13),

F̂ (−Atξ)
k∏
j=1

µ̂ε(ξj)→ F̂ (−Atξ)
k∏
j=1

µ̂(ξj)

pointwise, and by (2.12),∣∣∣∣∣∣F̂ (−Atξ)
k∏
j=1

µ̂ε(ξj)

∣∣∣∣∣∣ ≤ C|F̂ (−Atξ)|
k∏
j=1

(1 + |ξj |)−β/2.

Existence of the limit in (2.16) will follow from the dominated convergence

theorem, if we prove |F̂ (Atξ)|
∏k
j=1(1 + |ξj |)−β/2 ∈ L1(Rnk). To this end,

let g(t) = (1 + |t|)β/2 for t ∈ Rn. Then

∫
Rnk
|F̂ (Atξ)|

k∏
j=1

(1 + |ξj |)−β/2 dξ =

∫
Rm
|F̂ (κ)|

∫
Atξ=κ

k∏
j=1

g(ξj) dσ(ξ)dκ
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=

∫
Rm
|F̂ (κ)|Λ∗τ(κ)(g) dκ

≤ C
∫
Rm
|F̂ (κ)| dκ <∞.

Here τ(κ) is the unique vector in S⊥ such that {Atξ = κ} = S + τ(κ). We

have used Proposition 2.6 to bound Λ∗τ(κ) in the last displayed inequality

above, and used the fact that F̂ ∈ S(Rm) to deduce that F̂ ∈ L1(Rm). By

the dominated convergence theorem, the limit in (2.14) exists.

To extend ν to all of C([0, 1]m), fix F ∈ C([0, 1]m). Extend F to

F̃ ∈ Cc(Rm) so that F = F̃ on [0, 1]m. We will reuse F to mean F̃ for con-

venience. Get a sequence of functions Fn ∈ C∞([0, 1]m) with F̂n ∈ S(Rm)

such that ‖F − Fn‖∞ → 0. By the preceding proof,

|〈ν, Fn − Fm〉| ≤ C‖Fn − Fm‖∞ → 0

as n,m→∞ since Fn is Cauchy in supremum norm. Thus the sequence of

scalars 〈ν, Fn〉 is Cauchy and hence converges. Define

〈ν, F 〉 = lim
n→∞

〈ν, Fn〉.

Clearly,

|〈ν, F 〉| = lim
n→∞

|〈ν, Fn〉| ≤ C lim
n→∞

‖Fn‖∞ = C‖F‖∞.

The proof of Lemma 2.10 yields the following corollary which will be

used later in the sequel:

Corollary 2.11. For F ∈ C([0, 1]m) with F̂ ∈ S(Rm),

〈ν, F 〉 =

∫
Rnk

F̂ (−Atξ)
k∏
j=1

µ̂(ξj) dξ.

29



2.3.2 Proof of Proposition 2.8.(a)

Proof. We have

ν(Rm) = 〈ν, 1〉 = lim
ε→0

∫
Rm

k∏
j=1

µε(Ajx) dx = lim
ε→0

Λ(µε) = lim
ε→0

Λ∗(µ̂ε) = Λ∗(µ̂)

by Lemma 2.9, with τ = 0.

2.3.3 Proof of Proposition 2.8.(b)

Proof. Define

X := {x ∈ Rm : A1x, . . . , Akx ∈ suppµ}.

Since suppµ is closed, X is closed. Let F be any continuous function on Rm

with suppF disjoint from X, then dist (suppF,X) > 0. In order to prove

that ν is supported on X, we aim to show that 〈ν, F 〉 = 0. To this end, let

us define

XN := {~x ∈ Rm : dist (Aj~x, supp (µ)) ≤ 1/N for every 1 ≤ j ≤ k}

=
k⋂
j=1

{~x ∈ Rm : dist (Aj~x, supp (µ)) ≤ 1/N}.

Then X ⊆ XN for every N , and X =
⋂∞
N=1XN . Furthermore,

Xc
N =

k⋃
j=1

{~x ∈ Rm : dist (Aj~x, supp (µ)) > 1/N}

is an open set for every N ≥ 1, with

supp (F ) ⊆ Xc =
∞⋃
N=1

Xc
N .

Introducing a smooth partition of unity subordinate to {Xc
N}N , we can write

F =
∑

N FN where each FN ∈ C∞c (Rm) with supp (FN ) ⊆ Xc
N . Note that
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since supp (F ) is a compact subset of Xc, it follows from the definition of a

partition of unity that the infinite sum above is in fact a finite sum, so there

is no issue of convergence.

Let µ
Aj
ε (~x) := µε(Aj~x). To compute

〈ν, FN 〉 = lim
ε→0

∫
Rm

FN (~x)
k∏
j=1

µε(Aj~x) d~x

= lim
ε→0

∫
Rm

FN (~x)
k∏
j=1

µ
Aj
ε (~x) d~x

for a fixed N ≥ 1, we observe that

supp (µ
Aj
ε ) ⊆ {~x ∈ Rm : dist (Aj~x, supp (µ)) ≤ ε}

⊆ {~x ∈ Rm : dist (Aj~x, supp (µ)) ≤ 1/N}

if ε ≤ 1/N . Thus the product
∏k
j=1 µ

Aj
ε (~x) is supported on XN , whereas

FN is supported on Xc
N . This implies

∫
Rm

FN (~x)

k∏
j=1

µ
Aj
ε (~x) d~x = 0

for all ε ≤ 1/N , so that 〈ν, FN 〉 = 0 for every N ≥ 1. Therefore, 〈ν, F 〉 = 0

as claimed.

2.3.4 Proof of Proposition 2.8.(c)

Proof. It suffices to prove the proposition for dimV = v = m − 1, since

smaller subspaces have even less measure. Let PV denote the projection

onto V . Fix v0 ∈ V and define

Vδ,γ = {x ∈ Rm : |v0 − PV x| ≤ γ,dist (x, V ) = |PV ⊥x| ≤ δ}.
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It suffices to prove ν(Vδ,∞)→ 0 as δ → 0. If φδ is any smooth function with

φδ =

1 on Vδ,1,

0 on Rm \ Vδ,2,
(2.17)

then ν(Vδ,∞) ≤
∫
φδ dν = 〈ν, φδ〉, so we aim to show that 〈ν, φδ〉 → 0 as

δ → 0.

Fix bases {a1, . . . , am−1} and {b} for V and V ⊥ respectively, such that

{a1, . . . , am−1, b} forms an orthonormal basis of Rm. Thus, for any x ∈ Rm,

there is a unique decomposition

x = u+ w, with u =

m−1∑
j=1

ajaj ∈ V,w = bb ∈ V ⊥,

where ~a = (a1, . . . , am−1)t ∈ Rm−1, b ∈ R.

(2.18)

Without loss of generality, we may assume φδ as in (2.17) to be variable-

separated as

φδ(x) = φV (~a)φV ⊥(δ−1b), (2.19)

where φV ∈ C∞c (Rm−1) is supported on {~a : |
∑m−1

j=1 ajaj − v0| ≤ 2} and

φV ⊥ ∈ C∞c (R) is supported on {b : |b| ≤ 2}.
By Corollary 2.11,

〈ν, φδ〉 =

∫
Rnk

φ̂δ(−Atξ)
k∏
j=1

µ̂(ξj) dξ. (2.20)

We will show that this integral tends to 0 as δ → 0. The estimation of this

integral relies on an orthogonal decomposition of Rnk into specific subspaces,

which we now describe. Let

W = {ξ ∈ Rnk : Atξ · x = 0 for all x ∈ V }. (2.21)

Then S is clearly a subspace of W , as Atξ = 0 if ξ ∈ S. It is also not difficult

to see that dimW = nk − v = nk − (m − 1). The proof of this has been
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relegated to Lemma 2.12 below. A consequence of this fact is that

dimW ∩ S⊥ = 1 (2.22)

since S is (nk −m)-dimensional. Now write ξ ∈ Rnk as

ξ = ζ + η + λ, where ζ ∈ S, η ∈W ∩ S⊥, λ ∈W⊥,

so that dξ = dσS+η+λ(ξ) dη dλ. Here dσS+η+λ denotes the surface measure

on S + η + λ, as defined in Definition 2.2. We will soon show, in Lemmas

2.13 and 2.14 below, that the two factors of the integrand in (2.20) obey the

size estimates: ∣∣∣∣∣∣
k∏
j=1

µ̂(ξj)

∣∣∣∣∣∣ . (1 + |At(η + λ) · b|)−εG(ξ), (2.23)

and

|φ̂δ(−Atξ)| ≤ δCM (1 + |λ|)−M (1 + δ|At(η + λ) · b|)−M (2.24)

for any M ≥ 1. Here, G(ξ) =
∏k
j=1 g(ξj), where g(ξj) = (1 + |ξj |)−β/2+ε

and ε > 0 is chosen sufficiently small so that

β − 2ε > 2(nk −m)/k. (2.25)

Notice this is possible since β > 2(nk −m)/k.

Assuming (2.23) and (2.24) temporarily, the estimation of (2.20) pro-

ceeds as follows.

|〈ν, φδ〉| ≤
∫
Rnk

∣∣∣∣∣∣φ̂δ(−Atξ)
k∏
j=1

µ̂(ξj)

∣∣∣∣∣∣ dξ
.
∫
W⊥

[∫
W∩S⊥

[∫
S+η+λ

G(ξ) dσS+η+λ(ξ)

]
J(η, λ) dη

]
(1 + |λ|)−M dλ,
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where

J(η, λ) = δCM (1 + |At(η + λ) · b|)−ε(1 + δ|At(η + λ) · b|)−M .

We claim that ∫
S+η+λ

G(ξ) dσ(ξ) ≤ C (2.26)

and

sup
λ∈W⊥

∫
W∩S⊥

J(η, λ) dη ≤ CMδε/2. (2.27)

These two estimates yield, for M ≥ dim(W⊥) + 1,

|〈ν, φδ〉| . CMδ
ε/2

∫
W⊥

(1 + |λ|)−M dλ

. CMδ
ε/2 → 0

as δ → 0, as required.

It remains to establish the estimates in (2.26) and (2.27). For the former,

we observe that the left hand side of the inequality is Λ∗η+λ(g), so the desired

conclusion follows from Proposition 2.6 and our choice (2.25) of ε.

To prove (2.27), we recall (2.22) so we may parametrize η = sw0 for

some fixed unit vector w0 ∈ W ∩ S⊥ \ {0}, with dη = ds. To confirm that

J(η, λ) has decay in η, we need to verify that Atw0 · b 6= 0. Indeed, if

Atw0 · b = 0, then Atw0 ∈ V since b ∈ V ⊥. Since w0 also lies in W given

by (2.21), this implies Atw0 · Atw0 = 0, so that Atw0 = 0. But the last

equation says w0 ∈ S, whereas w0 ∈ S⊥ by assumption. This forces w0 = 0,

a contradiction as w0 is a unit vector.

We now set c0 := Atw0 · b which is nonzero by the discussion in the

preceding paragraph. Making a linear change of variable t = sc0 + Atλ · b,

with Jacobian ds = dt/c0, we proceed to estimate the integral in (2.27) by

partitioning the region of integration as follows,∫
W∩S⊥

J(η, λ) dη
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= δCM

∫
R

(1 + |t|)−ε(1 + δ|t|)−M dt

c0

= δCM

∫
|t|≤δ−1/2

(1 + |t|)−ε(1 + δ|t|)−M dt

+ δCM

∫
|t|>δ−1/2

(1 + |t|)−ε(1 + δ|t|)−M dt

. δCM

∫
|t|≤δ−1/2

1 dt+ δε/2δCM

∫
|t|>δ−1/2

(1 + δ|t|)−M dt

. δ1/2CM + δε/2δCM

∫
R

(1 + δ|η|)−M dη

≈ δ1/2CM + δε/2CM . δε/2CM .

This completes the proof of (2.27) and hence the proof of the proposition.

Now we prove the three lemmas required earlier for this proof.

Lemma 2.12. Define W as in (2.21). Then dimW = nk−v = nk−(m−1).

Proof. As before, let PV denote the projection onto V . By (2.21),

W = {ξ ∈ Rnk : Atξ · x = 0 for all x ∈ V }

= {ξ ∈ Rnk : Atξ · PV x = 0 for all x ∈ Rm}

= {ξ ∈ Rnk : P tV Atξ · x = 0 for all x ∈ Rm}

= {ξ ∈ Rnk : P tV Atξ = 0}

= N (P tV At).

Writing Rm as V ⊕V ⊥, the dimension of A(V ) must be equal to dimV = m−
1 as A is of full rank and hence an isomorphism from Rm to the range of A.

Then APV is an isomorphism from V to the range of APV , so rank(P tV At) =

dim(V ) = m− 1, and thus dimW = nk − (m− 1).

Lemma 2.13. With µ, ξ, η, λ, β defined as in the proof of Proposition 2.8(c),

we have ∣∣∣∣∣∣
k∏
j=1

µ̂(ξj)

∣∣∣∣∣∣ . (1 + |At(η + λ) · b|)−ε
k∏
j=1

(1 + |ξj |)−β/2+ε,
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for any ε > 0.

Proof. The decay condition (2.11) on µ̂ gives∣∣∣∣∣∣
k∏
j=1

µ̂(ξj)

∣∣∣∣∣∣ ≤ C
k∏
j=1

(1 + |ξj |)−ε
k∏
j=1

(1 + |ξj |)−β/2+ε,

for any ε > 0. We have

|η + λ| ≤ |ξ| ≤ k max
1≤j≤k

|ξj |,

and by Cauchy-Schwarz

|At(η + λ) · b| = |(η + λ) · Ab| ≤ |η + λ||Ab|.

Since Ab is fixed, |At(η + λ) · b| . |η + λ|, and so∣∣∣∣∣∣
k∏
j=1

µ̂(ξj)

∣∣∣∣∣∣ . (1 + |η + λ|)−ε
k∏
j=1

(1 + |ξj |)−β/2+ε

. (1 + |At(η + λ) · b|)−ε
k∏
j=1

(1 + |ξj |)−β/2+ε.

Lemma 2.14. With φδ, ξ, ζ, η, λ, β defined as in the proof of Proposition

2.8(c), we have

|φ̂δ(−Atξ)| ≤ δCM (1 + |λ|)−M (1 + δ|At(η + λ) · b|)−M ,

for any M ∈ R.

Proof. Since ζ ∈ S implies Atζ = 0, we have

φ̂δ(−Atξ) = φ̂δ(−At(ζ + η + λ))

= φ̂δ(−At(η + λ))
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=

∫∫
φV (~a)φV ⊥(δ−1b)e2πiAt(η+λ)·(u+w) du dw.

By definition, η ∈W and u ∈ V give Atη · u = 0, and so

φ̂δ(−Atξ) =

[∫
V
φV (~a)e2πiAtλ·A0~a du

] [∫
V ⊥

φV ⊥(δ−1)e2πibAt(η+λ)·bb dw

]
=

[∫
Rm−1

φV (~a)e2πiAt0Atλ·~a d~a

] [∫
R
φV ⊥(δ−1b)e2πibAt(η+λ)·b db

]
,

where we have used u =
∑m−1

i=1 aiai = A0~a for some matrix A0, w = bb, and

du dw = da db.

The first factor is by definition φ̂V (−At0Atλ). Since φ̂V ∈ S(Rm−1), for

every M ∈ R we have

|φ̂V (−At0Atλ)| ≤ CM (1 + |At0Atλ|)−M .

We claim |At0Atλ| & |λ| for all λ ∈ W⊥. Since At0At is linear, it suffices to

prove At0Atλ 6= 0 for any λ ∈ W⊥. If λ ∈ W⊥, then by definition of W⊥

there exists x ∈ V \ {0} such that (Atλ, x) 6= 0. Then x = A0~a for some

~a 6= 0, so

(At0Atλ,~a) = (Atλ,At0~a) 6= 0,

and hence At0Atλ 6= 0. Then for every M ∈ R,

|φ̂V (−At0Atλ)| ≤ CM (1 + |λ|)−M .

The second factor is, upon scaling, δφ̂V ⊥(−δAt(η + λ) · b). As φ̂V ⊥ ∈
S(R), for every M ∈ R we have

|δφ̂V ⊥(−δAt(η + λ) · b)| ≤ δ(1 + δ|At(η + λ) · b|)−M ,

completing the proof.
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Chapter 3

Estimates in the absolutely

continuous case

In this chapter, we prove a quantitative lower bound on Λ(µ1) in the case

when µ1 is absolutely continuous with bounded density. This provides a

measure of control on the main term of the decomposition of Λ(µ) for a

general measure µ. We we will restrict to the case when Aj is of the form

Aj = (In×n Bj), where Bj are n × (m − n) matrices, for reasons that will

become clear in Section 3.5. Set x ∈ Rn and y ∈ Rm−n, so that our configu-

rations are of the form {x+B1y, . . . , x+Bky}. With r defined as in (1.4),

we will also assume k − 1 ≥ 2r, or equivalently, nd(k + 1)/2e ≤ m, the first

inequality of condition (1.6) of the main result.

Proposition 3.1. For every δ,M > 0, there exists a constant c(δ,M) > 0

with the following property: for every function f : [0, 1]n → R, 0 ≤ f ≤ M ,∫
f ≥ δ, we have Λ(f) ≥ c(δ,M).

We will proceed as in the proof of Varnavides’ Theorem given in [40].

The strategy will be to decompose f = g + b into a “good” function g

which is the major contribution and a “bad” function b whose contribution

is negligible. This will be made precise in the following section.
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3.1 Preliminaries

Proposition 3.2. Let f be as in Proposition 3.1. Suppose f = g + b where

‖g‖∞, ‖b‖∞ ≤M ; ‖g‖1, ‖b‖1 = δ.

Then

Λ(f) = Λ(g) +O(C(M, δ)‖b̂‖∞).

Proof. We use the decomposition f = g+ b and the linearity of Λ to decom-

pose Λ(f) into 2k pieces. The main piece will be Λ(g) and the remaining

pieces which constitute the error term have at least one copy of b. By the

hypothesis and Hölder’s inequality,

‖g‖22, ‖b‖22 ≤Mδ.

We will apply Lemma 3.3 below to estimate each of the 2k − 1 summands

in the error term, arriving at an upper bound of (2k − 1)‖b̂‖∞(Mδ)r.

We now prove the lemma required for the previous proposition.

Lemma 3.3. Let fj be as in Proposition 3.1. Assume moreover that k−1 ≥
2r and ‖fj‖1 ≤ 1 for 1 ≤ j ≤ k. Then

|Λ(f1, . . . , fk)| ≤M‖f̂k‖∞‖fr‖
1/2
1 ‖f2r‖1/21

2r−1∏
j=1
j 6=r

‖f̂j‖2.

We have a similar bound for permutations of f1, . . . , fk.

Proof. Let us recall the Fourier representation of Λ from Proposition 2.1,

which gives

|Λ(f1, . . . , fk)| ≤
∫
S

k∏
j=1

|f̂j(ξj)| dσ(ξ).

Since ‖f̂j‖∞ ≤ ‖fj‖1 ≤ 1 for each j, reducing the number of factors in the

product that appears in the last integrand only makes the integral larger.

We use the hypothesis k − 1 ≥ 2r to drop (k − 1 − 2r) of these factors
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and split the remaining 2r into two groups and apply the Cauchy-Schwarz

inequality. Executing these steps leads to

|Λ(f1, . . . , fk)|

≤
∫
S

k∏
j=1

|f̂j(ξj)| dσ(ξ)

≤ ‖f̂k‖∞
∫
S

r∏
j=1

|f̂j(ξj)|
2r∏

j=r+1

|f̂j(ξj)| dσ(ξ)

≤ ‖f̂k‖∞

∫
S

r∏
j=1

|f̂j(ξj)|2 dσ(ξ)

1/2 2r∏
j=r+1

|f̂j(ξj)|2 dσ(ξ)

1/2

.

Both of the above integrals are estimated in the same way; we will focus only

on the first. If ξj = (ξj,1, . . . , ξj,n), let ξ′j = (ξj,1, . . . , ξj,n′) with n′ as defined

in Definition 1.5; notice this is the same as ξid
j as defined in Proposition 2.6.

By Lemma 3.4 below, ‖f̂r‖2L2
ξ′r
≤M‖fr‖1, and so by Lemma 2.7,

∫
S

r∏
j=1

|f̂j(ξj)|2 dσ(ξ)

=

∫
S

r∏
j=1

|f̂j(ξj)|2 dξ′rdξ1 · · · dξr−1

≤
∫
Rn(r−1)

M‖fr‖1
r−1∏
j=1

|f̂j(ξj)|2 dξ1 · · · dξr−1

= M‖fr‖1
r−1∏
j=1

‖f̂j‖22.

The result follows.

Lemma 3.4. Let 1 ≤ j ≤ k. If ξj = (ξj,1, . . . , ξj,n), we denote ξ′j =

(ξj,1, . . . , ξj,n′) and ξ′′j = (ξj,n′+1, . . . , ξj,k). Suppose

(a) |fj | ≤M ,
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(b) supp fj ⊆ [0, 1]n.

Then

‖f̂j‖2L2
ξ′
≤M‖fj‖1

uniformly for all ξ′′j .

Proof. Fix ξ′′j , and let F (x′, ξ′′j ) =
∫
fj(x

′, x′′)e−2πiξ′′j ·x′′ dx′′, where x′, x′′ are

the dual variables to ξ′j , ξ
′′
j respectively. Then (a) and (b) give |F (x′, ξ′′j )| ≤

M for all x′ so that

‖F‖∞ ≤M.

We calculate

‖F‖L1
x′

=

∫
|F (x′, ξ′′j )| dx′ ≤

∫∫
|fj(x′, x′′)| dx′dx′′ = ‖fj‖1.

By Hölder’s inequality,

‖F‖2L2
x′
≤ ‖F‖∞ ‖F‖L1

x′
≤M‖fj‖1.

Now,

f̂j(ξ
′
j , ξ
′′
j ) =

∫
F (x′, ξ′′j )e−2πiξ′j ·x′ dx′,

which is the Fourier transform of F in x′. Therefore by Plancherel’s theorem

in the x′ variables,

‖f̂j‖2L2
ξ′
j

= ‖F‖2L2
x′
≤M‖fj‖1.

Before moving on, we shall prove an approximation identity that is useful

in the following sections.

Lemma 3.5. Suppose ‖fj‖∞, ‖gj‖∞ ≤ C and ‖fj−gj‖p ≤ κ for 1 ≤ j ≤ R,

for some 1 ≤ p ≤ ∞. Then∥∥∥∥∥∥
R∏
j=1

fj −
R∏
j=1

gj

∥∥∥∥∥∥
p

≤ RCR−1κ.

41



Proof. ∥∥∥∥∥∥
R∏
j=1

fj −
R∏
j=1

gj

∥∥∥∥∥∥
p

≤

∥∥∥∥∥∥f1 ·
R∏
j=2

fj − g1 ·
R∏
j=2

fj

∥∥∥∥∥∥
p

+

∥∥∥∥∥∥g1 · f2 ·
R∏
j=3

fj − g1 · g2 ·
R∏
j=3

fj

∥∥∥∥∥∥
p

+ · · ·+

∥∥∥∥∥∥
R−1∏
j=1

gj · fR −
R−1∏
j=1

gj · gR

∥∥∥∥∥∥
p

≤

 R∏
j=2

‖fj‖∞

 ‖f1 − g1‖p

+ ‖g1‖∞

 R∏
j=3

‖fj‖∞

 ‖f2 − g2‖p

+ · · ·+

R−1∏
j=1

‖gj‖∞

 ‖fR − gR‖p
≤ RCR−1κ.

3.2 Almost periodic functions

In light of Proposition 3.2, our next goal will be to identify a large class of

“good” functions g for which we can bound Λ(g) from below. It turns out

that almost periodic functions, defined analogously to [40], can be used for

this purpose.

Definition 3.6. 1. A character is a function χ : [0, 1]n → C of the form

χ(x) = e2πiv·x for some v ∈ Zn.

2. If K ∈ N, then a K-quasiperiodic function is a function f of the form∑K
`=1 c`χ` where each χ` are characters (not necessarily distinct), and

c` are scalars with |c`| ≤ 1.
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3. If σ > 0, then f : [0, 1]n → C is (σ,K)-almost periodic if there exists

a K-quasiperiodic function fQP such that ‖f − fQP ‖L2([0,1]n) ≤ σ. We

call fQP a K-quasiperiodic function approximating f within σ.

Lemma 3.7. Let K ∈ N, M > 0, 0 < δ < 1, and

0 < σ ≤ δk

4kMk−1
. (3.1)

Then there exists c(K, δ,M) > 0 such that for any non-negative (σ,K)-

almost periodic function f bounded by M and obeying
∫
f ≥ δ,

Λ(f) ≥ c(K, δ,M).

Proof. Our goal is to bound Λ(f) from below by a multiple of ‖f‖k1, which

is known to be at least as large as δk. We will achieve this by approximating

each factor in the integral defining Λ by f , on a reasonably large set with

acceptable error terms.

To this end, let fQP be a K-quasiperiodic function approximating f

within σ, say fQP (x) =
∑K

`=1 c`e
2πiv`·x and ‖f − fQP ‖2 ≤ σ. Let ε > 0 be a

small constant to be fixed later, and define

Cε = {y ∈ Rm−n :
∣∣∣∣∣∣Atjv` · y∣∣∣∣∣∣ ≤ ε, for all 1 ≤ j ≤ k, 1 ≤ ` ≤ K}, (3.2)

where |||t||| denotes the distance of t ∈ R to the nearest integer. A pigeonhole

argument gives that

|Cε| ≥ c(ε,K) > 0 (3.3)

for some c(ε,K) possibly dependent on k, m and n but independent of f .

This non-trivial result will be shown in Corollary 3.9 following this proof.

Let T a be the shift map T af(x) := f(x + a). For y ∈ Cε and any

x ∈ [0, 1]n,

|TBjyfQP (x)− fQP (x)| =

∣∣∣∣∣
K∑
`=1

c`e
2πiv`·x(1− e2πiv`·Ajy)

∣∣∣∣∣
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≤
K∑
`=1

|1− e2πiAtjv`·y|

≤
K∑
`=1

|Atjv` · y|

≤ Kε. (3.4)

The bound above leads to the following estimate:

‖TBjyf − f‖L1
x
≤ ‖TBjyf − TBjyfQP ‖L2

x
+ ‖TBjyfQP − fQP ‖L∞x

+ ‖fQP − f‖L2
x

= 2‖fQP − f‖L2
x

+ ‖TBjyfQP − fQP ‖L∞x
≤ 2σ +Kε

≤ δk

2kMk−1
+Kε.

In the sequence of inequalities above, we have used Hölder’s inequality in

the first step, triangle inequality in the second step, norm-invariance of the

shift operator in the third step, and (3.4) in the last step.

We now choose ε = δk/(4kMk−1), so that

‖TBjyf − f‖L1
x
≤ 3δk

4kMk−1
. (3.5)

For every 1 ≤ j ≤ k, the bound ‖TBjyf‖L∞x = ‖f‖∞ ≤ M holds trivially,

so by Lemma 3.5 with C = M , fj = f , gj = TBjyf , R = k, p = 1, and

κ = (3δk)/(4kMk−1), we have∥∥∥∥∥∥
k∏
j=1

TBjyf − fk
∥∥∥∥∥∥
L1
x

≤ kMk−1 3δk

4kMk−1
=

3δk

4

using (3.5). On the other hand, the bounded non-negativity of f , the hy-

pothesis
∫
f ≥ δ, and Hölder’s inequality lead to

‖fk‖1 ≥ ‖f‖k1 ≥ δk,
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and so for y ∈ Cε,∥∥∥∥∥∥
k∏
j=1

TBjyf

∥∥∥∥∥∥
L1
x

≥
∥∥∥fk∥∥∥

1
−

∥∥∥∥∥∥
k∏
j=1

TBjyf − fk
∥∥∥∥∥∥
L1
x

≥ δk

4
. (3.6)

We now combine 3.3, the positivity of f and the above to obtain

Λ(f) =

∫
Rm−n

∫
Rn

k∏
j=1

fj(x+Bjy) dx dy

=

∫
Rm−n

∥∥∥∥∥∥
k∏
j=1

TBjyf

∥∥∥∥∥∥
L1
x

dy

≥
∫
Cε

∥∥∥∥∥∥
k∏
j=1

TBjyf

∥∥∥∥∥∥
L1
x

dy

≥ δkc(ε,K)/4

= c(K, δ,M).

Lemma 3.8. Given 0 < ε < 1 and any integer K ≥ 1, there exists a positive

constant c′(ε,K) such that

|{t ∈ [0, 1] : |||tv`||| ≤ ε for all 1 ≤ ` ≤ K}| ≥ c′(ε,K),

for any choice of v1, . . . , vK ∈ Z.

Proof. Clearly it suffices to prove the lemma for the case when ε ≤ 1. Let N

be the unique integer that N−1 < ε ≤ (N −1)−1, and consider the partition

of the unit cube [0, 1]K into NK disjoint cubes of side length N−1. That is,

the vertices of the cubes are at points of the form N−1ZK mod 1. Define

XQ = {t ∈ [0, 1] : (tv1, . . . , tvK) mod 1 ∈ Q}.
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Then since |[0, 1]| = 1, there must exist a cube Q such that

|XQ| ≥
1

NK
≥
(ε

2

)K
,

where we have used that ε ≤ (n− 1)−1. For t ∈ XQ,

(tv1, . . . , tvK) mod 1 ∈ Q−Q ⊆ [−n−1, n−1]K ⊆ [−ε, ε]K ,

and so |||tv`||| ≤ ε for every 1 ≤ ` ≤ K. Notice

|XQ −XQ| ≥ |XQ| ≥
(ε

2

)K
,

and so by symmetry

|{t ∈ [0, 1] : |||tv`||| ≤ ε for all 1 ≤ ` ≤ K}| ≥ 1

2

(ε
2

)K
.

Corollary 3.9. Given 0 < ε < 1, and integers k,K,m, n ∈ N, m > n, there

exists a positive constant c depending on all of these quantities, for which

the set

Cε = {y ∈ Rm−n :
∣∣∣∣∣∣Atjv` · y∣∣∣∣∣∣ ≤ ε, for all 1 ≤ j ≤ k, 1 ≤ ` ≤ K}.

defined as in Lemma 3.7 obeys the size estimate

|Cε| ≥ c

for any choice of matrices {Aj} and vectors {v`}.

Proof. Let Atjv`(i) denote the ith component of Atjv`. Let

Di = {yi ∈ [0, 1] :
∣∣∣∣∣∣Atjv`(i)yi∣∣∣∣∣∣ ≤ ε/(m− n) for all 1 ≤ j ≤ k, 1 ≤ ` ≤ K}.

By Lemma 3.8,

|Di| ≥ c′(ε/(m− n),K)k
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for 1 ≤ i ≤ m− n. If y = (y1, . . . , ym−n) ∈
∏m−n
i=1 Di, then

∣∣∣∣∣∣Atjv` · y∣∣∣∣∣∣ =

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
m−n∑
i=1

Atjv`(i)yi

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ ≤ (m− n)

ε

m− n
= ε,

and so

Cε ⊇ D1 × · · ·Dm−n.

Therefore,

|Cε| ≥ c′(ε/(m− n),K)k(m−n) = c(ε,K).

3.3 Ubiquity of almost periodic functions

To make use of Lemma 3.7, we will approximate a general function f by an

almost periodic function. In the following sequence of lemmas, we construct

an increasingly larger family of σ-algebras with the property that any func-

tion measurable with respect to these will be almost periodic. We do this by

an iterative random mechanism, the building block of which is summarized

in the next result.

Lemma 3.10. Let 0 < ε � 1 and let χ be a character. Viewing C as

R2, partition the complex plane C =
⋃
Q∈Qε Q into squares of side-length ε

with corners lying in the lattice εZ2. For ω ∈ [0, 1]2, define Bε,χ,ω to be the

σ-algebra generated by the atoms

{χ−1(Q+ εω) : Q ∈ Qε}.

There exists ω such that

1. ‖χ− E(χ|Bε,χ,ω)‖∞ ≤ Cε.

2. For every σ > 0 and M < 0, there exists K = K(σ, ε,M) such

that every function f which is measurable with respect to Bε,χ,ω with

‖f‖∞ ≤M is (σ,K)-almost periodic.
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Proof. (1) follows from definition of Bε,χ,ω, for any ω.

To prove (2), it suffices to prove: for each integer ` > `0 for some suf-

ficiently large `0, there exists a set Ω` ⊆ [0, 1]2, |Ω`| > 1 − C2−`ε with the

following property. For ω ∈ Ω`, there exists K = K(σ, ε,M) such that every

function f which is measurable with respect to Bε,χ,ω with ‖f‖∞ ≤ M is

(σ,K)-almost periodic, for σ = 2−`.

Indeed, taking Ω =
⋂
`>`0

Ω`, we have

|Ω| > 1− C
∑
`>`0

2−`ε ≥ 1− C2−`0ε

and so we may find ω ∈ Ω. Then if σ > 0, get ` > `0 with 2−` ≤ σ, and by

the above, there exists K = K(2−`, ε,M) such that every function f which

is measurable with respect to Bε,χ,ω with ‖f‖∞ ≤ M is (2−`,K)-almost

periodic. Thus, we fix σ = 2−`.

Let N be the number of atoms of Bε,χ,ω. Recall that the atoms are of

the form χ−1(Q + εω) for Q ∈ Qε. Since the image of χ lies in the unit

circle S1, the preimage of (Q + εω) under χ is non-empty if and only if

(Q + εω) ∩ S1 6= ∅. Since diam(Q + εω) =
√

2ε, this holds if and only if

(Q+ εω) lies in the (
√

2ε)-thickened unit circle,

S1
[
√

2ε]
= {x ∈ C : dist (x,S1) ≤

√
2ε}.

It is easy to calculate |S1
[
√

2ε]
| = π4

√
2ε and |Q+ εω| = ε2 for every Q ∈ Qε,

so since the squares Q+ εω are disjoint,

N ≤
|S1√

2ε
|

|Q+ εω|
=
π4
√

2

ε
.

In particular, Bε,χ,ω has at most Cε−1 atoms; we use this fact to reduce the

proof of Lemma 3.10 to a simpler form. Namely, it suffices to prove that for

f an indicator function of one of those atoms, say

f(x) = fQ,ω(x) := 1χ−1(Q+εω)(x) = 1Q(χ(x)− εω),
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there exists a C(σ, ε)-quasiperiodic function gQ,ω such that ‖fQ,ω−gQ,ω‖2 ≤
C−1σε with probability 1− Cσε−1. (Here and below, C(σ, ε) will denote a

constant which may change from line to line, but always depends only on

M,σ, ε, in particular remains independent of f .) Indeed, if this were the

case, then any measurable f may be written as

f(x) =
∑
i∈I

cifQi,ω(x)

where fQi,ω(c) = 1Qi(χ(x)− εω)(x), Qi ∈ Qε are distinct, and #I ≤ Cε−1.

Notice ‖f‖∞ ≤ M and the fact that fQi,ω have disjoint support means

|ci| ≤ M for i ∈ I. Letting gQi,ω be a C(σ/M, ε)-quasiperiodic function

approximating fQi,ω to within C−1M−1σε, we have that g =
∑

i∈I cigQi,ω

is C(σ, ε)-quasiperiodic (repeating gQi,ω at most M times if necessary) and

‖f − g‖2 ≤
∑
i∈I
|ci| · ‖fQi,ω − gQi,ω‖2 ≤ σ.

Thus we restrict to the case when f is the indicator function of one of

those atoms, which we denote fω for ease.

f(x) = fω(x) := 1Q(χ(x)− εω).

Let 0 ≤ h ≤ 1 be a continuous function on [−2, 2]2 which is a good L2-

approximation for 1Q; precisely,

‖1Q − h‖2L2([−2,2]2) <
σ3ε3

10CM2
. (3.7)

By the Weierstrass Approximation Theorem, there exists a polynomial P

such that

‖h− P‖L∞([−2,2]2) <

(
σ3ε3

10CM2

)1/2

. (3.8)

Let hω(x) := h(χ(x) − εω), and gω(x) = P (χ(x) − εω); notice gω can be

written as a linear combination of at most C(σ, ε) characters, with coeffi-

cients at most C(σ, ε). Repeating characters if necessary, we may reduce the
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coefficients to be less than 1 and so gω is C(σ, ε)-quasiperiodic. It should

also be noted that ‖gω‖∞ ≤ ||gω − hω||∞ + ||hω||∞ ≤ 2.

It remains to show ‖fω − gω‖2 ≤ C−1M−1σε with probability at least

1− Cσε−1. Define

F (ω) = ‖fω − gω‖22 =

∫
[0,1]n

|fω(x)− gω(x)|2 dx.

By an application of Cauchy-Schwarz inequality on the integrand, combined

with (3.7) and Tonelli’s Theorem, we obtain

‖F‖L1
ω

=

∫
[0,1]2

∫
[0,1]n

|fω(x)− gω(x)|2 dx dω

≤ 2

∫
[0,1]2

∫
[0,1]n

[
|fω(x)− hω(x)|2 + |hω(x)− gω(x)|2

]
dx dω

<
σ3ε3

2CM2
+

∫
[0,1]n

∫
[0,1]2

|hω(x)− gω(x)|2 dω dx

<
σ3ε3

2CM2
+

∫
[0,1]n

∫
[0,1]2

|h(χ(x)− εω)− P (χ(x)− εω)|2 dω dx.

Using the change of variables ω′ = χ(x) − εω for fixed x ∈ [0, 1]n, we have

dω′ = ε2 dω. Notice ω′ belongs to [0, ε]2 shifted by χ(x), so is contained in

[−2, 2]2. By (3.8),

‖F‖1 ≤
σ3ε3

2CM2
+

∫
[0,1]n

∫
ω′∈[−2,2]2

|h(ω′)− P (ω′)|2 dω′

ε2
dx

≤ σ3ε3

2CM2
+

∫
[0,1]n

∫
ω′∈[−2,2]2

|h(ω′)− P (ω′)|2 dω′

ε2
dx

=
σ3ε3

2CM2
+

∫
[0,1]n

1

ε2
‖h− P‖2L2([−2,2]2) dx

≤ σ3ε3

2CM2
+

∫
[0,1]n

1

ε2

(
σ3ε3

10CM2

)
dx

<
1

ε2

(
σ3ε3

CM2

)
.
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By Markov’s inequality,

|{ω ∈ [0, 1]2 : ‖fω − gω‖22 > C−2M−2σ2ε2}|

= |{ω ∈ [0, 1]2 : F (ω) > C−2M−2σ2ε2}|

≤ C2M2‖F‖1
σ2ε2

≤
C2M2 1

ε2

(
σ3ε3

CM2

)
σ2ε2

= Cσε−1.

Thus,

|{ω ∈ [0, 1]2 : ‖fω − gω‖22 ≤ C−1M−1σε}| ≥ 1− Cσε−1,

as required.

The above proof also gives the following result.

Corollary 3.11. Let 0 < ε� 1 and let χ be a character. Then the σ-algebra

Bε,χ,ω described in the statement of Lemma 3.10 can be chosen to have the

additional property that for every atom χ−1(Q + εω), Q ∈ Qε, there exists

a K-quasiperiodic function gQ,ω that obeys ‖gQ,ω(·) − 1Q(χ(·) − εω)‖2 < σ

for every σ > 0, and in addition ‖gQ,ω‖∞ ≤ 2.

We can concatenate the σ-algebras from Lemma 3.10. If B1, . . . ,BR are

σ-algebras, denote by B1 ∨ · · · ∨ BR the smallest σ-algebra which contains

all of them.

Corollary 3.12. Let 0 < ε1, . . . , εR � 1 and let χ1, . . . , χR be characters.

Let Bε1,χ1 , . . . ,BεR,χR be the σ-algebras arising from Lemma 3.10. Then for

every σ > 0, there exists K = K(R, σ, ε1, . . . , εR) such that every function

f which is measurable with respect to Bε1,χ1 ∨ · · · ∨ BεR,χR with ‖f‖∞ ≤ M

is (σ,K)-almost periodic.

Proof. Since there are at most C(R, ε1, . . . , εR) atoms in Bε1,χ1∨· · ·∨BεR,χR ,

it suffices to prove the claim in the case when f is the indicator func-

tion of a single atom. Then f is the product of R indicator functions

f1, . . . , fR, where fj is the indicator function of an atom from Bεj ,χj . Let gj

be a K(σ/(R2R−1), εj)-quasiperiodic function approximating fj to within
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σ/(R2R−1) as provided in Corollary 3.12; notice ‖gj‖∞ ≤ 2. Then g =
∏
gj

is a K-quasiperiodic function where K =
∏
K(σ/(R2R−1), εj) depends

only on R, σ, ε1, . . . , εR. Finally, by Lemma 3.5 with C = 2, p = 2, and

κ = σ/(R2R−1), we have ∥∥∥∥∥∥
R∏
j=1

fj −
R∏
j=1

gj

∥∥∥∥∥∥
2

≤ σ.

3.4 Proof of Proposition 3.1.

We will need two more auxiliary results, analogous to [40, Lemma 2.10 and

2.11].

Lemma 3.13. Let b be a function bounded by M with ‖b̂‖∞ ≥ σ > 0. Then

there exists 0 < ε� σ, a character χ, and an associated σ-algebra Bε,χ (as

defined earlier in this section) such that

‖E(b|Bε,χ)‖2 ≥ C−1σ.

Proof. Since ‖b̂‖∞ ≥ σ, there exists a character χ such that∣∣∣∣∣
∫

[0,1]n
b(x)χ(x) dx

∣∣∣∣∣ ≥ σ

2
. (3.9)

On the other hand, the σ-algebra Bε,χ is generated by the atoms {χ−1(Q+

εω);Q ∈ Qε} for some ω in the unit square. On each atom, χ can vary by

at most Cε, hence

‖χ− E(χ|Bε,χ)‖∞ ≤ Cε. (3.10)

Since b is bounded by M , (3.9) and (3.10) yield∫
[0,1]n

b(x)E(χ|Bε,χ)(x) dx ≥ σ

2
−MCε.
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Conditional expectation being self-adjoint, the inequality above may be

rewritten as ∫
[0,1]n

E(b|Bε,χ)(x)χ(x) dx ≥ σ

2
−MCε.

Recalling that χ is bounded above by 1, the desired result now follows by

choosing ε sufficiently small relative to σ and M , and applying Cauchy-

Schwarz inequality to the integral on the left.

Lemma 3.14. Let F : R+×R+ → R+ be an arbitrary function, let 0 < δ ≤
1, and let f ≥ 0 be a function bounded by M with

∫
f ≥ δ. Let σ satisfy

(3.1). Then there exists a K with 0 < K ≤ C(F, δ) and a decomposition

f = g + b where g ≥ 0 is a bounded (σ,K)-almost periodic function with∫
g ≥ δ, and b obeys the bound

‖b̂‖∞ ≤ F (δ,K). (3.11)

The proof of Lemma 3.14 is exactly identical to [40, 2.11].

Proof of Proposition 3.0.8. Let F : R+ × R+ → R+ be a function to be

chosen later. Decompose f = g + b as in Lemma 3.14. By Lemma 3.7,

Λ(g) ≥ c(K, δ,M).

By Proposition 3.2, (3.11), and the above inequality,

Λ(f) ≥ c(K, δ,M) +O(C(M, δ)F (δ,K)).

By choosing F sufficiently small and since K ≤ C(F, δ), we get

Λ(f) ≥ c(δ,M)

as required.
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3.5 Quantitative Szemerédi bounds fail for
general A

At the beginning of this chapter, we restricted to the case when Aj is of the

form Aj = (In×n Bj) where Bj are n × (m − n) matrices. The reason for

this is that generic Ai will not provide a lower bound on Λ when
∫
f = δ,

even when satisfying the non-degeneracy condition.

In the case n = 2, k = 3,m = 4, consider the function f = 1B((0,1),δ), the

indicator of the ball centered at (0, 1) with radius δ ≤ 1/3. Define

A1 =

(
1 0 0 0

0 1 0 0

)
,

A2 =

(
0 0 1 0

0 0 0 1

)
,

A3 =

(
0 1 1 0

1 0 0 1

)
.

It is clear that (2.10) holds for these matrices. In the integral defining

Λ, we consider the conditions for ~x = (x1, . . . , x4) to be in the support of∏3
i=1 f(Ai~x). The first term of the product gives f(A1~x) = f(x1, x2), and

so in particular, |x2 − 1| < δ which implies

|x2| > 1− δ. (3.12)

Similarly, considering the second term yields in particular

|x3| < δ, (3.13)

while the third term gives

|x2 + x3| < δ. (3.14)

On the other hand, (3.12) and (3.13) give

|x2 + x3| ≥ |x2| − |x3| > 1− 2δ ≥ δ.
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Then the support of
∏4
i=1 f(Ai~x) is empty, and Λ = 0.
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Chapter 4

Proof of the main result

The preceding section gave a quantitative lower bound on the Λ quantity

in the case of absolutely continuous measures with bounded density. This

suggests the strategy of decomposing the measure µ as µ = µ1 + µ2 where

µ1 is absolutely continuous with bounded density, and µ2 gives negligible

contribution. In light of the Fourier form of Λ, the key property of µ2 here

will be having good bounds on the Fourier transform.

Let φ ∈ S(Rn) be a non-negative function supported on B(0, 1) with∫
φ = 1. For any positive integer N , define φN (x) = Nnφ(Nx). Let N � 1

be a large constant to be determined later, and let

µ1(x) = µ ∗ φN (x).

Clearly, µ1 ≥ 0 is a C∞ function of compact support with
∫
dµ1 = 1. Since

φN is supported on B(0, N−1),

|µ1(x)| ≤
∫
B(x,N−1)

|φN (x− y)| dµ(y)

=

∫
B(x,N−1)

Nn|φ(N(x− y))| dµ(y)

≤ CNnµ(B(x,N−1))

≤ CNn−α

56



where the last inequality follows by the ball condition (a). Then |µ1(x)| ≤
M = Ce if N = e1/(n−α), which tends to infinity as α→ n−.

Focusing now on µ2, we will prove that

∣∣µ̂2(ξ)
∣∣ . N−

εβ
2 (1 + |ξ|)−

β
2

(1−ε) (4.1)

for some constant ε > 0 to be chosen later. Since
∫
φ = 1 and φ ∈ S(Rn),

|1− φ̂(ξ)| = |φ̂(0)− φ̂(ξ)| =
∣∣∣∣∫ 1

0

d

dt
φ̂(tξ) dt

∣∣∣∣ ≤ ∫ 1

0
|ξ · ∇φ̂| dt ≤ C|ξ|.

In particular, defining µ2 = µ− µ1 we have

|µ̂2(ξ)| . |µ̂(ξ)|min(1, |ξ|N−1).

Notice if |ξ| ≥ N , then

|µ̂2(ξ)| ≤ |µ̂(ξ)|

. (1 + |ξ|)−β/2

= (1 + |ξ|)−εβ/2(1 + |ξ|)−β/2(1−ε)

. N−εβ/2(1 + |ξ|)−β/2(1−ε).

On the other hand, if |ξ| < N , then we still have

|µ̂2(ξ)| ≤ |µ̂(ξ)|

. (1 + |ξ|)−β/2|ξ|N−1

= (1 + |ξ|)−β/2|ξ|εβ/2|ξ|1−εβ/2N−1

. N−εβ/2(1 + |ξ|)−β/2(1−ε).

Now, decompose

Λ∗(µ̂) = Λ∗(µ̂1) + Λ(µ̂2, µ̂1, . . . , µ̂1) + · · ·+ Λ(µ̂2).

By Proposition 3.1, Λ∗(µ̂1) = Λ(µ1) > c(δ,M). It remains to show the
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Λ∗ quantities containing at least one copy of µ2 are negligible relative to

c(δ, Ce). These quantities can be written as Λ∗(g1, . . . , gk) where for each

1 ≤ j ≤ k, gj is either µ̂1 or µ̂2 and at least one gj is µ̂2. Without loss of

generality, suppose g1 = µ̂2, so that

|g1(η1)| . N−εβ/2(1 + |ηj |)−β/2(1−ε)

by the above estimate on µ̂2. For j ≥ 2, we have

|gj(ηj)| . (1 + |ηj |)−β/2(1−ε)

by the above estimate on µ̂2 and the general Fourier decay condition (b) on

µ. Then

Λ∗(g1, . . . , gk) =

∫
S

k∏
j=1

gj(ηj) dσ

≤ N−εβ/2
∫
S

k∏
j=1

(1 + |ηj |)−β/2(1−ε) dσ.

Since β > 2(nk − m)/k, we may choose ε > 0 so that β′ = β(1 − ε) >

2(nk − m)/k. Then by Proposition 2.6 with β′ in place of β, the integral

above is bounded by a constant independent of N . Then we may choose N

sufficiently large that Λ∗(g1, . . . , gk) ≤ 2−kc(δ,M), and so

Λ∗(µ̂) ≥ 2−kc(δ,M).

The result follows by Proposition 2.8.
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Chapter 5

Examples

For a fixed choice of n ≥ 1 and k ≥ 3, let m be a multiple of n that satisfies

(1.6). Non-degeneracy in the sense of Definition 1.15 in this case will be the

condition

rank


Ai1

...

Aim/n

 = rank


In×n Bi1

...
...

In×n Bim/n

 = m,

for i1, . . . , im/n ∈ {1, . . . , k} distinct. Reducing,

rank


In×n Bi1

0n×n Bi2 −Bi1
...

...

0n×n Bm/n −Bi1

 = m.

Since In×n is of rank n, it suffices for

rank


Bi2 −Bi1

...

Bim/n −Bi1

 = m− n, (5.1)

for i1, . . . , im/n ∈ {1, . . . , k} distinct. Notice that while it is necessary to

check (5.1) for every choice of m/n indices i1, . . . , im/n, we do not need to
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check for permutations of the indices—any permutation suffices.

Example 5.1 (Triangles). We now prove the claim in Corollary 1.18 that

if a, b, c are three distinct points in the plane, then any set E ⊂ R2 obeying

the assumptions of Theorem 1.16 with ε0 small enough (depending on C

and on a, b, c) must contain a similar copy of the triangle 4abc. Note that

our proof allows for degenerate triangles where a, b, c are collinear.

Let θ be the angle between the line segments ab and ac, measured

counter-clockwise, and let λ = |c−a|
|b−a| . Permuting the points a, b, c if nec-

essary, we may assume without loss of generality that θ ∈ (0, π]. Then it

suffices to prove that E contains a configuration of the form

x, x+ y, x+ λyθ, (5.2)

where yθ is the vector y rotated by an angle θ counter-clockwise, for some

x, y ∈ R2 with y 6= 0.

Fix n = 2, k = 3, and m = 4. Let B1 = 02×2, By (5.1), non-degeneracy

means that

rank(Bj) = 2, rank
(
B3 −B2

)
= 2,

for j = 2, 3. With θ ∈ (0, π] and λ > 0 as above, let

B2 =

(
1 0

0 1

)
, B3 =

(
λ cos θ −λ sin θ

λ sin θ λ cos θ

)
.

It is easy to check that non-degeneracy holds, and this collection of matrices

corresponds to configurations of the form (5.2). Letting V = {0}, Theorem

1.16 asserts that any set E ⊂ R2 obeying its assumptions with ε0 small

enough must contain such a configuration, non-degenerate in the sense that

y 6= 0. This proves Corollary 1.18.

Example 5.2 (Collinear triples). We prove that if a, b, c are three distinct

collinear points in Rn, then any set E ⊂ Rn obeying the assumptions of

Theorem 1.16 with ε0 small enough (depending on C and on a, b, c) must

contain a non-degenerate similar copy of {a, b, c}.
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Without loss of generality, suppose |c − a| > |b − a| Let λ = |c−a|
|b−a| > 1.

Then it suffices to prove that E contains a configuration of the form

x, x+ y, x+ λy, (5.3)

for some x, y ∈ Rn with y 6= 0.

Fix a positive integer n, k = 3, and m = 2n. Let B1 = 0n×n, B2 = In×n,

B3 = λIn×n. Similarly to Example 5.1, this system of matrices produces

configurations of the form (5.3), and the non-degeneracy condition (5.1)

becomes

rank(Bj) = n, rank
(
B3 −B2

)
= n,

for j = 2, 3, which is easy to check for Bj as above. Applying Theorem 1.16

with V = {0} as before, we get the desired conclusion.

Example 5.3 (Parallelograms). We now prove Corollary 1.19, by proving

a more general result.

Corollary 5.4. Suppose that E ⊂ Rn satisfies the assumptions of Theorem

1.16, with ε0 sufficiently small depending on C. Then E contains a config-

uration of the form {x, x+ y1, . . . , x+ yk−2, x+ y1 + · · ·+ yk−2}, where the

k points are all distinct and x, y1, . . . , yk−2 ∈ Rn.

Note that there is no relationship imposed on k and n. Geometrically,

such configurations can be viewed as corresponding to k of the vertices of

a (k − 2)-parallelotope sitting in n dimensions; an “origin” vertex, (k − 2)

“generator” vertices, and the vertex diagonal from the origin vertex. In

particular, parallelograms are the special case when k = 4.

Proof. Fix n ≥ 1, k ≥ 4, and m = (k − 1)n. Let

B1 =
(

0n×n 0n×n 0n×n · · · 0n×n

)
,

B2 =
(
In×n 0n×n 0n×n · · · 0n×n

)
,

B3 =
(

0n×n In×n 0n×n · · · 0n×n

)
,

...
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Bk−1 =
(

0n×n 0n×n 0n×n · · · In×n

)
,

Bk = B2 +B3 + · · ·+Bk−1

=
(
In×n In×n In×n · · · In×n

)
.

(5.1) tells us non-degeneracy will be the condition

rank


Bi1

Bi2
...

Bik−2

 = (k − 2)n, rank


B2 −Bk
B3 −Bk

...

Bk−1 −Bk

 = (k − 2)n

for i1, i2, . . . , ik−2 ∈ {2, 3, 4, . . . , k} distinct.

If i1, i2, . . . , ik−2 ∈ {2, 3, 4, . . . , k − 1}, then by rearranging,

rank


Bi1

Bi2
...

Bik−2

 = rank


In×n 0n×n · · · 0n×n

0n×n In×n · · · 0n×n
...

...
. . .

...

0n×n 0n×n · · · In×n

 = (k − 2)n.

If one of the indices is k, say ik−2 = k, then replacing Bik−2
with Bik−2

−
(Bi1 +· · ·+Bik−3

) reduces the matrix to the previous case as rank is invariant

under elementary row operations. Finally, it is easy to see that

rank


B2 −Bk
B3 −Bk

...

Bk−1 −Bk

 = rank


0n×n In×n · · · In×n

In×n 0n×n · · · In×n
...

...
. . .

...

In×n In×n · · · 0n×n

 = (k − 2)n.

In this example, we may consider degeneracy to be the case where two

or more points coincide; the exceptional subspaces are then of the form

{yi1,j1 = yi2,j2}, 1 ≤ i1, i2 ≤ k − 1, 1 ≤ j1, j2 ≤ n, of which there are finitely

many. The result follows by Theorem 1.16.
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Example 5.5 (Polynomial configurations). Finally, we prove Corollary

1.20. We will in fact prove a stronger statement, namely that the result

in Corollary 1.20 holds in Rn for all n ≥ 3, with (1.8) replaced by 4-point

configurations defined below in Corollary 5.6.

As in Example 5.3, fix n ≥ 1, k = 4, and m = 3n, and let B1 = 0n×2n.

We will use a Vandermonde-style matrix for the remaining Bi. To make the

notation less cumbersome, for a function

g : N× N→ R

(i, j) 7→ g(i, j),

we denote by (g(i, j))a×b the a × b matrix whose entry in the ith row and

jth column is given by g(i, j).

Corollary 5.6. Let a1, . . . , a2n > 1 be distinct real numbers, and let η +

1, d ∈ N. Consider the following matrices:

B2 = (a
η+(i−1)d
j )n×2n,

B3 = (a
η+(n+i−1)d
j )n×2n,

B4 = (a
η+(2n+i−1)d
j )n×2n.

Suppose that E ⊂ Rn obeys the assumptions of Theorem 1.16, with ε0 small

enough depending on C and ai. Then E contains a configuration of the form

x, x+B2y, x+B3y, x+B4y (5.4)

for some x ∈ Rn and y ∈ R2n with Biy 6= 0 for i = 2, 3, 4.

The proof of Corollary 5.6 will rely on two short lemmas.

Lemma 5.7. Suppose 0 ≤ η1 < η2 < . . . < ηt are integers. Then for any

choice of constants c1, c2, . . . , ct that are not all zero, the polynomial

P (x) =
t∑
i=1

cix
ηi
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has fewer than t distinct positive roots.

Proof. We prove this with induction. For t = 1, it is clear that c1x
η1 cannot

have a positive root since c1 6= 0, so the base case is satisfied. We make the

inductive hypothesis that the lemma holds for t, and check t + 1. Suppose

to the contrary that there exist constants c1, c2, . . . , ct+1, not all zero, such

that the polynomial

P (x) =
t+1∑
i=1

cix
ηi

has at least t+ 1 distinct positive roots. But then

x−η1P (x) = c1 + c2x
η2−η1 + · · ·+ ct+1x

ηt+1−η1 ,

so by Rolle’s Theorem, the following polynomial has at least t distinct pos-

itive roots:

P1(x) :=
d

dx
(x−η1P (x))

= c2(η2 − η1)xη2−η1−1 + c3(η3 − η1)xη3−η1−1 + · · ·

+ ct+1(ηt+1 − η1)xηt+1−η1−1

=
t∑
i=1

ci+1(ηi+1 − η1)xηi+1−η1−1

Since ηi were strictly increasing integers, ci+1(ηi+1 − η1) are not all zero,

and ηi+1 − η1 − 1 ≥ 0 are strictly increasing integers. This contradicts the

induction hypothesis and completes the proof.

Lemma 5.8. If

A = (aηij )t×s

where a1, a2, . . . , as are distinct, positive real numbers and 0 ≤ η1 < η2 <

. . . < ηt are integers, then A has full rank.

Proof. Without loss of generality, t ≤ s. It suffices to show the following

submatrix has full rank:

At = (aηij )t×t.
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This holds if and only if detAt 6= 0. If to the contrary detAt = 0, then we can

find constants c1, c2, . . . , ct that are not all zero such that
∑t

i ciRi = ~0, where

Ri is the ith row of At; considering the kth position this says
∑t

i=1 cia
ηi
j = 0

for 1 ≤ j ≤ t. That is, the polynomial

P (x) =
t∑
i=1

cix
ηi

has at least the t distinct positive roots x = aj for 1 ≤ j ≤ t. This contradicts

Lemma 5.7, so we must have detAt 6= 0 and hence A has full rank.

Proof of Corollary 5.6. By Lemma 5.8,

rank

(
Bi1

Bi2

)
= 2n

for i1, i2 ∈ {2, 3, 4} distinct. It remains to check

rank

(
B2 −B4

B3 −B4

)
= rank

(
(a
η+(i−1)d
j − aη+(2n+i−1)d

j )n×2n

(a
η+(n+i−1)d
j − aη+(2n+i−1)d

j )n×2n

)
= 2n. (5.5)

For constants c1, . . . , c2n, consider the polynomial

Qc1,...,c2n(x) = c1(xη − xη+2nd) + c2(xη+d − xη+(2n+1)d) + · · ·

+ cn(xη+(n−1)d − xη+(3n−1)d) + cn+1(xη+nd − xη+2nd)

+ · · ·+ c2n(xη+(2n−1)d − xη+(3n−1)d)

(5.6)

If (5.5) fails to hold, then as in the proof of Lemma 5.8, there are

constants c1, . . . , c2n not all 0 whose corresponding polynomial Q(x) :=

Qc1,...,c2n(x) has at least the 2n distinct roots a1, . . . , a2n, all of which are

larger than 1. We may simplify Q(x) as

Q(x) = c1x
η(1− x2nd) + c2x

η+d(1− x2nd) + · · ·+ cnx
η+(n−1)d(1− x2nd)
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+ cn+1x
η+nd(1− xnd) + · · ·+ c2nx

η+(2n−1)d(1− xnd)

= (1− xnd)[c1x
η(1 + xnd) + c2x

η+d(1 + xnd) + · · ·

+ cnx
η+(n−1)d(1 + xnd) + cn+1x

η+nd + · · ·+ c2nx
η+(2n−1)d]

= (1− xnd)P (x),

where

P (x) = c1x
η + c2x

η+d + · · ·+ cnx
η+(n−1)d

+ (c1 + cn+1)xη+nd + · · ·+ (cn + c2n)xη+(2n−1)d.

The roots of Q(x) which are larger than 1 coincide with the roots of P (x).

Notice that not all of the coefficients of P (x) are 0, since not all of c1, . . . , c2n

are 0. Then by Lemma 5.7, P (x) has fewer than 2n positive roots, a contra-

diction. Thus, (5.5) holds and {A1, . . . , Ak} is non-degenerate. The result

follows by applying Theorem 1.16, with Vi = {y ∈ R2n : Biy = 0} for

i = 2, 3, 4.

It should be noted that a nearly identical proof will work for general k.

If k is of the form 2` or 2`+ 1 for ` ∈ N, then m = (`+ 1)n and the matrices

are populated as before, using distinct real numbers a1, . . . , a`n > 1. The

proof of the analogue of (5.5) relies on a polynomial similar to that in (5.6),

and uses the fact that 1− xnd divides 1− xand for any a ∈ N.
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Chapter 6

Conclusion

6.1 Overview of the results

Many interesting results have been produced which are related to Sze-

merédi’s theorem of k-term arithmetic progressions in sets of positive density

in the integers. In Section 1.1.1, we discussed a few of the motivating re-

sults in the discrete case. This was followed by some continuous analogues in

the Euclidean setting of Szemerédi-type problems. Of particular note was

Theorem 1.8 on 3-term arithmetic progressions in subsets of R, of which

this thesis can be seen to be an extension via Theorem 1.16, in terms of

dimension and included patterns.

Similar to [30], a Fourier-analytic representation of the Λ multilinear

form was proved in Proposition 2.1. This form allowed us to use Fourier

decay to control the size of Λ as well as provide a way to use Λ with measures.

This extension of Λ to measures, Λ∗, was the main result of Section 2.2.

Proposition 2.8 showed that Λ∗(µ̂) > 0 is the necessary bound to prove

existence of the appropriate patterns.

The key idea behind proving positivity of Λ∗(µ̂) was decomposing µ as

µ = µ1 + µ2, where µ1 is absolutely continuous with bounded density, and

µ2 is singular but obeys good Fourier bounds. The portion involving only

µ1 is handled by a quantitative lower bound given by Proposition 3.1, using

a similar method as used by Tao in [40] to prove Varnavides’ Theorem.
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The other portions were shown to be relatively negligible in Chapter 4, to

complete the proof.

Chapter 5 contained several examples of geometric configurations cov-

ered by the main result. Of interest are the instances where negative results

have been proved in the absence of the Fourier decay condition. In partic-

ular, Example 5.1 shows a similar copy of a specific triangle is contained in

sets satisfying the assumptions of Theorem 1.16; Maga’s result (Theorem

1.12) shows that this is not the case if the Fourier decay condition is not

satisfied. Likewise, Example 5.3 shows existence of parallelograms in sets

satisfying the assumptions of Theorem 1.16, while Maga (Theorem 1.11)

indicates this is false without Fourier decay. Finally, Example 5.2 provides

a multidimensional generalization of  Laba and Pramanik’s result (Theorem

1.8).

6.2 Possible directions for future research

In this section, we will discuss possible directions for future research, inher-

ently touching upon some of the the limitations of the research.

6.2.1 Non-degeneracy

We begin by recalling our notion of non-degeneracy for a set of appropriately-

sized matrices as given in Definition 1.15. Although such a constraint on the

Aj allows us to use ξj as a basis for S as in Lemma 2.7, it is not necessarily

a requirement for the result to hold. We thus ask what happens in the case

that non-degeneracy fails.

Question 6.1. Suppose {A1, . . . , Ak} is a collection of degenerate matrices.

Is it necessarily true that the result of Theorem 1.16 fails?

6.2.2 Valid range of m

Along the lines of examining the hypotheses of Theorem 1.16, recall the

restriction placed on the variables n,m, k given by (1.6). In particular, we

required m ≥ n d(k + 1)/2e, which was needed for the estimate made in
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Lemma 3.3 to produce suitable bounds on |Λ(f1, . . . , fk)|. Prior to this

point, we needed only that m > nk/2 in order to prove the integrand in

Λ was absolutely convergent in Proposition 2.6, which is strictly weaker for

n ≥ 2 and k even or n ≥ 3 and k odd.

Question 6.2. Can Theorem 1.16 hold with the weaker condition nk/2 <

m < nk instead of (1.6)?

It is worth noting that in proving Proposition 2.6, we made use of the

fact that

|gj(ηj)| . (1 + |ηj |)−β/2, ηj ∈ Rn.

If |ηj | & |η| for all j, then the integrand in Λ has good decay as |η| → ∞:∣∣∣∣∣∣
k∏
j=1

gj(ηj)

∣∣∣∣∣∣ . (1 + |η|)−kβ/2,

so that the integral is convergent whenever kβ/2 > nk −m. This holds for

β sufficiently close to n if kn/2 > nk−m, or equivalently, m > nk/2. Thus,

this is the best range of m we could hope for, using the method outlined in

the previous chapters.

6.2.3 Linear configurations

Even having a lower bound of nk/2 for m precludes some nice geometric

configurations in the theory. In general, m can be viewed as the number of

“free variables” over which we have no control. Recall in Example 5.3 that

the set-up for parallelograms in R2 was n = 2, k = 4, and m = 3 · 2 = 6.

The free variables correspond to a starting point x ∈ R2, and two other

arbitrary points x+ y, x+ z ∈ R2 for a total of 6 entries. The fourth point

is determined by the other three, via x + y + z. Another simple geometric

configuration would be a square in R2, which has 2 · 2 = 4 free variables.

Given

x, x+

(
y1

y2

)
,
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where x ∈ R2 and y1, y2 ∈ R, a square is generated by the following vertices:

x, x+

(
y1

y2

)
, x+

(
−y2

y1

)
, x+

(
y1 − y2

y1 + y2

)
.

Unfortunately, m > nk/2 is not satisfied in this case, and so Theorem 1.16

fails regardless of the answer to Question 6.2.

A similar issue occurs when we attempt to get all the vertices of a general

parallelotope, rather than just the generator vertices and the diagonal vertex

as described in the discussion following Corollary 5.4. Here, a p-parallelotope

in Rn would be given by a general n ≥ 1, k = 2p, and m = (p + 1)n. Note

that m > nk/2 fails if p ≥ 3.

Another nice, geometric configuration which cannot be covered are co-

linear k-tuples for k ≥ 4, since m = 2n in this case. In particular, 4-term

arithmetic progressions will not satisfy the conditions of the theorem. As

mentioned in the introduction, Gowers utilized higher order Fourier analysis

to handle longer arithmetic progressions in the integers, which also appears

in the work of Green and Tao [19] in showing primes contain arithmetic

progressions of arbitrary length. Gowers and Wolf [17] show more recently

that this notion can provide results involving more general configurations as

well. This leads to the following questions.

Question 6.3. Could higher order Fourier analysis be utilized in place of

linear Fourier analysis to provide better bounds on m? In particular, can

k-term arithmetic progressions be included in this theory?

Question 6.4. If the answer to the previous question is yes, can such a

theory also include geometric configurations such as squares (in R2) and

parallelotopes (in Rn)?

6.2.4 Non-linear configurations

Finally, we note that the analysis involved in proving Theorem 1.16 relied

on linear configurations. Two simple, non-linear configurations are patterns

of the form {x, x+ y, x+ y2} and regular polytopes.
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Question 6.5. Is there a version of Theorem 1.16 which applies to a pattern

of the form {x, x+ y, x+ y2}?

Question 6.6. Is there a version of Theorem 1.16 which applies to regular

polytopes?
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