- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Applications of inverse problems in fluids and imaging
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Applications of inverse problems in fluids and imaging Gregson, James
Abstract
Three applications of inverse problems relating to fluid imaging and image deblurring are presented. The first two, tomographic reconstruction of dye concentration fields from multi-view video and deblurring of photographs, are addressed by a stochastic optimization scheme that allows a wide variety of priors to be incorporated into the reconstruction process within a straightforward framework. The third, estimation of fluid velocities from volumetric dye concentration fields, highlights a previously unexplored connection between fluid simulation and proximal algorithms from convex optimization. This connection allows several classical imaging inverse problems to be investigated in the context of fluids, including optical flow, denoising and deconvolution. The connection also allows inverse problems to be incorporated into fluid simulation for the purposes of physically-based regularization of optical flow and for stylistic modifications of fluid captures. Through both methods and all three applications the importance of incorporating domain-specific priors into inverse problems for fluids and imaging is highlighted.
Item Metadata
Title |
Applications of inverse problems in fluids and imaging
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2015
|
Description |
Three applications of inverse problems relating to fluid imaging and image deblurring are presented. The first two, tomographic reconstruction of dye concentration fields from multi-view video and deblurring of photographs, are addressed by a stochastic optimization scheme that allows a wide variety of priors to be incorporated into the reconstruction process within a straightforward framework. The third, estimation of fluid velocities from volumetric dye concentration fields, highlights a previously unexplored connection between fluid simulation and proximal algorithms from convex optimization. This connection allows several classical imaging inverse problems to be investigated in the context of fluids, including optical flow, denoising and deconvolution. The connection also allows inverse problems to be incorporated into fluid simulation for the purposes of physically-based regularization of optical flow and for stylistic modifications of fluid captures. Through both methods and all three applications the importance of incorporating domain-specific priors into inverse problems for fluids and imaging is highlighted.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2015-07-16
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivs 2.5 Canada
|
DOI |
10.14288/1.0166394
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2015-09
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivs 2.5 Canada