- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Gravitational collapse and black hole formation in...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Gravitational collapse and black hole formation in a braneworld Wang, Daoyan
Abstract
In this thesis we present the first numerical study of gravitational collapse in braneworld within the framework of the single brane model by Randall-Sundrum (RSII). We directly show that the evolutions of sufficiently strong initial data configurations result in black holes (BHs) with finite extension into the bulk. The extension changes from sphere to pancake (or cigar, as seen from a different perspective) as the size of BH increases. We find preliminary evidences that BHs of the same size generated from distinct initial data profiles are geometrically indistinguishable. As such, a no-hair theorem of BH (uniqueness of BH solution) is suggested to hold in the RSII spacetimes studied in this thesis—these spacetimes are axisymmetric without angular momentum and non-gravitational charges. In particular, the BHs we obtained as the results of the dynamical system, are consistent with the ones previously obtained from a static vacuum system by Figueras and Wiseman. We also obtained some results in closed form without numerical computation such as the equality of ADM mass of the brane with the total mass of the braneworld. The calculation within the braneworld requires advances in the formalism of numerical relativity (NR). The regularity problem in previous numerical calculations in axisymmetric (and spherically symmetric) spacetimes, is actually associated with neither coordinate systems nor the machine pre- cision. The numerical calculation is regular in any coordinates, provided the fundamental variables (used in numerical calculations) are regular, and their asymptotic behaviours at the vicinity of the axis (or origin) are compatible with the finite difference scheme. The generalized harmonic (GH) formalism and the BSSN formalism for general relativity are developed to make them suitable for calculations in non-Cartesian coordinates under non-flat background. A conformal function of the metric is included into the GH formalism to simulate the braneworld.
Item Metadata
Title |
Gravitational collapse and black hole formation in a braneworld
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2015
|
Description |
In this thesis we present the first numerical study of gravitational collapse in braneworld within the framework of the single brane model by Randall-Sundrum (RSII). We directly show that the evolutions of sufficiently strong initial data configurations result in black holes (BHs) with finite extension into the bulk. The extension changes from sphere to pancake (or cigar, as seen from a different perspective) as the size of BH increases. We find preliminary evidences that BHs of the same size generated from distinct initial data profiles are geometrically indistinguishable. As such, a no-hair theorem of BH (uniqueness of BH solution) is suggested to hold in the RSII spacetimes studied in this thesis—these spacetimes are axisymmetric without angular momentum and non-gravitational charges. In particular, the BHs we obtained as the results of the dynamical system, are consistent with the ones previously obtained from a static vacuum system by Figueras and Wiseman. We also obtained some results in closed form without numerical computation such as the equality of ADM mass of the brane with the total mass of the braneworld.
The calculation within the braneworld requires advances in the formalism of numerical relativity (NR). The regularity problem in previous numerical calculations in axisymmetric (and spherically symmetric) spacetimes, is actually associated with neither coordinate systems nor the machine pre- cision. The numerical calculation is regular in any coordinates, provided the fundamental variables (used in numerical calculations) are regular, and their asymptotic behaviours at the vicinity of the axis (or origin) are compatible with the finite difference scheme. The generalized harmonic (GH) formalism and the BSSN formalism for general relativity are developed to make them suitable for calculations in non-Cartesian coordinates under non-flat background. A conformal function of the metric is included into the GH formalism to simulate the braneworld.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2015-04-15
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivs 2.5 Canada
|
DOI |
10.14288/1.0166210
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2015-05
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivs 2.5 Canada