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Abstract

In this thesis we present the first numerical study of gravitational collapse in braneworld within

the framework of the single brane model by Randall-Sundrum (RSII). We directly show that the

evolutions of sufficiently strong initial data configurations result in black holes (BHs) with finite

extension into the bulk. The extension changes from sphere to pancake (or cigar, as seen from a

different perspective) as the size of BH increases. We find preliminary evidences that BHs of the

same size generated from distinct initial data profiles are geometrically indistinguishable. As such,

a no-hair theorem of BH (uniqueness of BH solution) is suggested to hold in the RSII spacetimes

studied in this thesis—these spacetimes are axisymmetric without angular momentum and non-

gravitational charges. In particular, the BHs we obtained as the results of the dynamical system,

are consistent with the ones previously obtained from a static vacuum system by Figueras and

Wiseman. We also obtained some results in closed form without numerical computation such as

the equality of ADM mass of the brane with the total mass of the braneworld.

The calculation within the braneworld requires advances in the formalism of numerical relativity

(NR). The regularity problem in previous numerical calculations in axisymmetric (and spherically

symmetric) spacetimes, is actually associated with neither coordinate systems nor the machine pre-

cision. The numerical calculation is regular in any coordinates, provided the fundamental variables

(used in numerical calculations) are regular, and their asymptotic behaviours at the vicinity of the

axis (or origin) are compatible with the finite difference scheme. The generalized harmonic (GH)

formalism and the BSSN formalism for general relativity are developed to make them suitable for

calculations in non-Cartesian coordinates under non-flat background. A conformal function of the

metric is included into the GH formalism to simulate the braneworld.
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Preface

Chapter 1 is the introduction and nothing in the chapter is original work. The author rederived

the formulae in the literature while keeping d (the dimension of spacetime) and ǫ (the sign to

characterize spacelike or timelike foliation of spacetime) general.

All the works in the rest chapters (Chap. 2, 3, 4 and 5), except for the works properly cited,

are original. Within these:

— A significant part of the work regarding initial data (presented in Chap. 4) was conducted

in the collaboration with Evgeny Sorkin. Specifically, Evgeny proposed “direct method”

(defined in the chapter), taught the author to calculate the total energy in general relativity

following [87], and proposed to study the mass-area relation.

— Eq. (5.34), the form of the relation among the circumstances of black holes, was proposed

by Toby Wiseman.

— All the remaining works were carried out by the author, with the guidance of Matthew W.

Choptuik and William G. Unruh.
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same as those in Baumgarte-Shapiro [34] (therefore the same as those in Wald [32]). The sign of

extrinsic curvature is the same as Baumgarte-Shapiro [34] (therefore the opposite of Wald [32]).

GR General Relativity
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FDA Finite Difference Approximation

GH Generalized Harmonic

RSII Randall-Sundrum braneworld model II (the single brane model)
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D the covariant derivative associated with γ

D the covariant derivative associated with h

d the dimension of the whole spacetime

Metric signature (−,+,+,+,+)

α lapse function

βµ shift function

xii



Notations and Abbreviations

Christoffel symbols Γα
βγ =

1

2
gαµ (gµβ,γ + gµγ,β − gβγ,µ),where ,µ ≡ ∂µ

Riemann Tensor Rγ
µαβ defined via ∇α∇βv

γ −∇β∇αv
γ = Rγ

µαβ v
µ, ∀ vector field vµ

nµ unit normal vector of t = const hypersurface

Kµν ≡ −γ α
µ γ β

ν ∇αnβ, extrinsic curvature of t = const hypersurface

nν unit normal vector of the brane

Kµν ≡ −h α
µ h β

ν ∇αnβ , extrinsic curvature of the brane
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Chapter 1

Introduction

1.1 Overview

Our observable universe is 3+1 dimensional. The exploration on the possibility of the existence

of extra dimensions can trace back to the work by Kaluza and Klein in 1920s [1, 2], where they

tried to unify electromagnetism with gravity by using the metric tensor in five dimensional (5D)

spacetime in which our universe was a 3+1 dimensional hypersurface. The basic idea of braneworld

scenarios is that our observable universe could be a 3+1 dimensional hypersurface (the brane)

embedded in a higher dimensional spacetime (the bulk). Only gravity can propagate freely into

the bulk while all the matters are confined onto the brane. Among all the braneworld models, the

single brane model constructed by Randall and Sundrum (also known as RSII) [3], is remarkable for

its simplicity. It assumes one extra dimension with infinite size, a negative cosmological constant

Λ in the bulk, tension λ on brane which makes the brane a gravitating object, and Z2 symmetry of

the bulk with respect to the brane. λ is set to a value such that general relativity (GR) is recovered

on the brane at low energies [4]. However, the high energy behaviour, where the dynamics could

be rather different from GR, is not understood as clearly.

Black holes (BHs), among others, are objects that can illustrate the high energy behaviour. BHs

are predicted by GR, and there is strong observational evidence for their existence [5], therefore

RSII needs to reproduce BHs in order to be a viable physical theory. In the absence of matter, there

exist a particular class of solutions in RSII constructed from vacuum solutions of four dimensional

(4D) GR using the construction method in [6]. These solutions are called black strings when

the corresponding 4D solutions are black holes. However, the black strings are unstable due

to the Gregrory-Laflamme instability [7, 8]. In fact, Lehner-Pretorius [69] showed that certain

type of black string (which is different from the black string in braneworld) evolves into a series

of 3D spherical BHs connected by black strings and the black strings continue to evolve in the

same pattern, which yields a self-similar configuration. Within finite asymptotic time, a naked

singularity is created, which violates the cosmic censorship hypothesis. Besides, the Kretschmann
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1.1. Overview

scalar RµναβR
µναβ (where Rµναβ is the Riemann tensor) diverges at the AdS horizon [6], which

means the black string (in RSII) solution itself has pathology. Therefore, black strings can not be

formed via natural processes such as gravitational collapse.

What is the bulk counterpart of the 4D black hole? Noticing that the instability is most severe

at the AdS horizon where black strings might “pinch off”, Chamblin-Hawking-Reall [6] proposed

that BH with finite extension into the bulk was a stable state and was actually the end state of

gravitational collapse. The investigation on this proposal started from studying one aspect of this

proposal: the existence of such black objects. Tanaka [9] and Emparan et al. [10] conjectured, via

holography, that static black holes with radii much greater than the AdS length, can not exist in

RSII. Fitzpatrick et al. [11] and Gregory et al. [12] then argued that such a conjecture may not

be justified since the arguments in [9, 10] did not take into account the strongly coupled nature of

the holographic theory.

Several other groups investigated this proposal using numerical techniques and tried to find

specific solutions describing the BHs. As a first step, Shiromizu-Shibata [13] studied time sym-

metric initial datasets for the Einstein’s equations, demanding that the data contained apparent

horizons, so that subsequent evolution would presumably settle down to black holes. Kudoh-

Tanaka-Nakamura [14] carried out calculations on static BHs in the braneworld, finding solutions

with finite extension into the bulk, but only for radii that were small compared to the AdS ra-

dius. Subsequent work by Kudoh [15] showed that corresponding solutions could also be found in

the 6D braneworld, and that the horizon sizes could be larger than the AdS radius in that case.

Further numerical calculations in 5D by Tanahashi-Tanaka [16] found time symmetric initial data

with large apparent horizons. In 2008, Yoshino [17] repeated the calculation done in [14], using

a more accurate numerical scheme, and argued that due to certain systematic errors exhibited by

the solutions—and hence presumably affecting the previous computations—there was no evidence

that BHs with finite extension into the bulk could exist at all (i.e. not even small ones). In 2011,

Kleihaus et al [19] also claimed the same.

Finally, the debate was settled by the remarkable work carried out by Figueras-Wiseman [20] in

2011. Via perturbing AdS/CFT solution (which itself was also numerically constructed [21]), they

obtained static black holes with a range of sizes, including ones large compared to the AdS scale.

Recently (2014), Figueras presented an improved calculation [22] which obtained black holes with

much wider range, thus presumably black holes can be of any size. In 2012, large BHs were also

obtained by Abdolrahimi et al [24] using a different method, and there was preliminary evidence

that their solution was the same as the Figueras-Wiseman solution.
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1.1. Overview

Without proving the stability and uniqueness of the solution however, it is not clear whether the

Figueras-Wiseman BHs can be formed via natural processes such as gravitational collapse. More

generally, despite the success on the statics side, the full dynamics of RSII—a more important and

interesting aspect—remains poorly understood, especially in the high energy regime. The answers

to fundamental questions, such as the end state of gravitational collapse, or the interaction between

the brane and bulk, remain unknown or vague.

The main goal of this thesis work is to study the full dynamics in RSII via numerical calculation.

Specifically, we will study the dynamical process of black hole formation as a result of gravitational

collapse of massless scalar field (which lives only on the brane). To our knowledge, there is no

previous calculations of the full dynamics of (any) braneworld scenario. The study is crucial to

understand the dynamics of braneworld models. Technically, as it turns out, the study deepens

our understanding and also extends the formalism of numerical relativity.

The calculation in the braneworld is significantly more difficult than that in GR. The confine-

ment of matter to the brane and the interaction between the brane and the bulk due to brane

content including matter and brane tension, are the roots of the difficulties [25]. Gravitational col-

lapse inevitably produces energies high enough to make the interaction between the brane and the

bulk significant. This rules out any attempts to solve the problem using brane content only. Due

to this interaction, the brane equations are not closed, thus the dynamics of the whole spacetime

(including both the brane and the bulk) needs to be studied.

Here we successfully performed a numerical study, and we directly show that the results of

the gravitational collapse of sufficiently strong initial configurations are BHs with finite extension

into the bulk. The extension changes from sphere to pancake (or cigar, seen from a different

perspective) as the size increases. There are indications that BHs with the same size produced

from different initial data, have the same shape, which means the details of initial data are lost in

the resulting BHs. Therefore a no-hair theorem (uniqueness of BH) is suggested to hold also for

BHs in the RSII spacetimes that are studied in this thesis. In particular, the BHs we obtained as

the results of dynamical systems, are consistent with the ones previously obtained from a static

problem by Figueras-Wiseman [20]. Please refer to Fig. 1.1 for a preview.

There are gaps between the existing knowledge in numerical relativity and the knowledge needed

for the numerical calculation of braneworlds. We developed some of these to make our numerical

calculation possible. With these developments, we solved the regularity problem in numerical

relativity (the irregularity associated with simulations in axisymmetric or spherically symmetric

spacetime which appeared in previous numerical relativity calculations) by studying it from a
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1.1. Overview

different perspective than previous works did. Our work deepens the understanding of the problem,

and can potentially completely solve the problem. We generalized evolution formalisms (generalized

harmonic and BSSN) of GR to make them suitable for simulations in non-Cartesian coordinate

under non-flat background. A conformal function of the metric is included in the formalism to

simulate the braneworld. The constraint violations found in the braneworld calculations, are cured

by imposing the constraints at the brane.
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Figure 1.1: The area of bulk apparent horizon as a function of the areal radius of the horizon
on the brane. The coupling strength of the brane tension is proportional to 1/ℓ (where ℓ is the
AdS length), which is invisible to the BHs whose sizes (the areal radii on the brane) are much
smaller than ℓ. Therefore small BHs behave as 5D Schwarzschild. When the size is much larger
than ℓ, the asymptotic relation is that of the corresponding black string. Our data obtained from
the evolutionary system, is consistent with the data obtained by Figueras-Wiseman [20] from a
static system.

1.1.1 Overview of Our Approach

The system is formulated as an initial value problem (IVP), with Einstein’s equations in the

bulk as the governing equation. The brane content, including brane tension and the matter, is

imposed via Israel’s junction conditions [26], which serve as parts of the boundary conditions of

the IVP. The matter on the brane evolves as ordinary 4D matter (which only “feels” the 4D metric

on the brane).

Given that calculations of this sort (or even published attempts) do not exist, and due to the

prohibitive computational cost of performing the calculations in the fully 5D context, we restrict
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1.1. Overview

ourselves to spherical symmetry on the brane, which makes the system axisymmetric in the bulk

(i.e. functions depend on two spatial dimensions plus time).

Even with this significant simplification, we are faced with a challenging task, not least since

there are several features of the problem that have not been addressed, or fully resolved, in previous

numerical relativity studies. Apriori, there are the following challenges

(1) The numerical treatment of delta-function (distributional) matter

(2) The numerical treatment of a brane with tension

(3) Regularity issues induced by axisymmetry

(4) Appropriate evolution schemes for use in non-Cartesian coordinate systems, and under non-flat

backgrounds

(5) Properly incorporating the AdS boundary conditions

(6) Higher dimensional numerical relativity

Among the features mentioned above, some are more challenging and cause more severe prob-

lems than others, and could be made into good projects by themselves. In fact, Oliver Rinne’s

PhD thesis (at University of Cambridge, 2005) [71] was on regularity issues in axisymmetry. He

studied a specific formalism (Z(2+1)+1 system) for axisymmetric system. On the other hand,

what we are going to present in this thesis is a “direction change” of the study on this topic.

We will conjecture that the regularity problems are caused by the the fundamental variables used

in numerical simulations, rather than coordinates. We further developed a few general methods

to produce formalisms that yield regular results. Hans Bantilan’s PhD thesis (at Princeton Uni-

versity, 2013) [68] was on the AdS spacetime in 5D, where lightlike signals can propagate to the

spatial infinity and come back to its departure location within a finite proper time as measured

by a timelike observer. In this thesis, by employing the formalisms we developed to simulate

braneworld spacetime (in Chap. 3), there are no issues associated with the higher dimensions. The

spacetime of the braneworld is asymptotically a part of the Poincaré patch of the AdS spacetime

whose causal structure is similar to that of Minkowski spacetime. Therefore Cauchy surfaces exist

in the spacetime (so that Cauchy problem is well-defined), and the above mentioned problem as-

sociated with lightlike signals will not occour. There will be complications related to the Killing

horizons of the Poincare patch, however, such as a timelike curve of finite length can reach the

Killing horizons. Please refer to Sec. 1.4 for more details about AdS spacetime, the Poincaré patch

and the background of the RSII braneworld.

5



1.1. Overview

During the investigation, we encountered peculiar properties and challenges which were not

anticipated. In solving for time symmetric initial data, in most situations the problem can reduce

to solving the Hamiltonian constraint for one unknown variable. In RSII, however, there have to be

at least two unknown variables in the initial data to make Israel’s boundary conditions consistent;

normally the shift and lapse functions can be arbitrarily specified utilizing the gauge freedom

in choosing coordinates, while they have to satisfy certain conditions in the braneworld due to

Israel’s boundary conditions. In most situations, the constraint violation problem in free evolution

schemes, such as the generalized harmonic formalism and BSSN formalism, can be considered

solved by constraint damping method [58, 61–63]. However, the same method does not control the

severe violation at the brane of the braneworld. We found that we could solve the violation by

properly imposing the constraints at the brane boundary.

Therefore we add the following two additinal problems to the feature list

(7) Peculiar properties in initial data problem

(8) Constraint violation in braneworld

In the following chapters, we will show how we solve these challenges and achieve the simulation

of the dynamical process of black hole formation as the result of gravitational collapse on the brane.

The thesis is divided into three parts. In the remaining sections of Chap. 1, we will introduce the

braneworld in more detail plus some basic aspects of numerical computation. The second part

is devoted to develop the machinery to perform simulations and to extract physical informations

in the braneworld. This part consists of Chap. 2 and Chap. 3. Chap. 2 develops the conceptual

aspects, such as the smoothness of apparent horizon across the brane, the relation between brane

horizons and bulk horizons, the coordinate gauge at the brane, and energy aspects of braneworld.

In Chap. 3, our approach to the regularity problem will be presented. We also show how evolution

schemes of GR, such as the generalized harmonic formalism, can be developed and generalized in

non-Cartesian coordinate under non-flat asymptotic spacetime background, to be made suitable

for simulations in the braneworld. The final part is the numerical simulation. Initial data is

obtained in Chap. 4, which also provides numerical results to support the discussion on energy

aspects in Chap. 2. In Chap. 5, we show how the constraint violations are solved, and also show

the simulation per se, and the physical results. Other than Chap. 1, all the works in this thesis,

except for the ones properly cited, are original.
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1.2. Spacetime Foliation and the Decomposition of Einstein’s Equations

1.2 Spacetime Foliation and the Decomposition of

Einstein’s Equations

In this section, we will introduce the notations and conventions in the context of the (d−1)+1

decomposition formalism of general relativity (GR), and Israel’s junction conditions, which are

needed to introduce the braneworld. Here d is the dimension of the whole spacetime. Metric

signature is (−,+, . . . ,+), which is the same as that in [29, 32, 34, 36].

The (d−1)+1 decomposition of Einstein’s equations, is a generalization of the 3+1 formalism

of GR [34, 36]. We start with a (d − 1) dimensional hypersurface Σ embedded in d dimensional

spacetime M . Σ can be thought as the brane in braneworld, or a “time”= constant hypersurface

in an evolutionary problem. I.e. the formalism introduced in this section applies to both cases.

Especially, the parameter t in this section, is not reserved for “time”.

Σ divides M into two parts M±. Please refer to Fig. 1.2.

Σ
n+

n−

M+

M−

Figure 1.2: The embedding of a hypersurface in a higher dimensional spacetime. The whole
spacetime M is composed of M+ (the half sphere) and M− (the plane with a big hole in the
middle to fit M+). The intersection of M+ and M− is hypersurface Σ (the circle). n± are unit
normal vectors of Σ, as seen in M±. The convention is that n+ points into M+, and n− points
out of M−. Note: (i) the extrinsic curvature of Σ in M+ can be different from that in M−. For
example, in this figure Σ is a curved line in M−, but a straight line in M+; (ii) In general n+ 6= n−

(but a few authors incorrectly assumed n+ = n− when deriving junction conditions). For example,
in the figure n+ is not defined inM− and n− is not defined inM+. Another example is n− = −n+

in Randall-Sundrum braneworlds.

Generally Σ can be a hypersurface within a hypersurface family that locally foliates the space-

time. Let us use parameter t to characterize the foliation, where t = constant is a specific hy-

persurface (Σt) within the family. t (M+) > t (M−) is the convention we adopt. Let n± be unit

normal vectors of Σ, as seen in M±. The convention is that the direction of n± is the same as the

increasing direction of t. Therefore n+ points intoM+, and n− points out ofM−. The super-index
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± is omitted whenever we express anything that is valid for both signs. nα is normalized as

nαnα = ǫ, (1.1)

where ǫ is +1 when Σ is the brane in the braneworld and −1 when Σ is a “time”=constant

hypersurface. In terms of t, the normal vector nµ is

nµ = ǫ α∇µt, (1.2)

where α ≡
(√

ǫ∇µt∇µt
)−1

is the lapse function. ∇ is the covariant derivative associated with the

metric gµν . The greek index µ, ν = 0, . . . (d− 1), where 0 is the time coordinate. Define

mµ ≡ αnµ, (1.3)

which satisfies mµ∇µt = 1.

The decomposition of Einstein’s equations is expressed in terms of the following quantities.

The induced metric on Σ

γµν ≡ gµν − ǫ nµnν . (1.4)

The extrinsic curvature is defined as

Kµν ≡ −γ α
µ γ β

ν ∇αnβ = −γ α
µ ∇αnν . (1.5)

Note the geometrical meaning: the extrinsic curvature is defined as the “change rate” of the normal

vector nα along the hypersurface, as seen in the bulk (M±). Since the intrinsic observer on Σ can

not even “feel” nα, the extrinsic curvature characterizes the extrinsic nature of the embedding. 1

The definition of Riemann tensor is the same as that in [29, 32, 34, 36], which is defined via an

arbitrary vector field vµ

∇α∇βv
γ −∇β∇αv

γ = Rγ
µαβ v

µ. (1.6)

We also adopt the same sign convention of Christoffel symbols as that in [29, 32, 34, 36]

Γα
βγ =

1

2
gαµ (gµβ,γ + gµγ,β − gβγ,µ) , (1.7)

1The extrinsic curvature can also be obtained as the measure of the deviation of the geodesics in Σ and M ,
produced by the same vector lying within Σ. Please refer to section 2.3.3 and appendix B for the study from this
perspective.
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where ,µ ≡ ∂µ.

1.2.1 The Decomposition of Einstein’s Equations

Repeating the Gauss-Codazzi-Ricci decomposition [29, 32, 34, 36] while keeping d and ǫ general,

the Einstein tensor Gµν ≡ Rµν − 1
2gµνR is decomposed as

(d)Gµνn
µnν =

1

2

(

−ǫ · (d−1)R+K2 −KµνK
µν
)

; (1.8)

(d)Gµνn
νγµα = DαK −DµK

µ
α; (1.9)

(d)Gµνγ
µ
αγ

ν
β =

ǫ

α
(LmKαβ − γαβLmK) + (d−1)Gαβ

+ ǫ

(

2KαµK
µ
β −KKαβ +

1

2
γαβ

(

K2 +KµνK
µν
)

)

+
1

α
(γαβD

µDµα−DαDβα) , (1.10)

where D is the covariant derivative associated with the hypersurace metric γµν . Lm is the Lie

derivative with respect to mµ. The super-indices (d) and (d−1) are here to characterize dimension.

For example, (d−1)Gµν and (d−1)R are the intrinsic Einstein tensor and the intrinsic Ricci scalar of

Σ.

Imposing Einstein’s equations in the d dimensional spacetime (which relates the geometry with

matter via matter’s stress tensor Tµν)

(d)Gµν = kdTµν , (1.11)

we obtain Hamiltonian constraint, momentum constraint and evolution equation

kd ρ =
1

2

(

−ǫ(d−1)R+K2 −KµνK
µν
)

; (1.12)

ǫ kd Sα = DαK −DµK
µ
α; (1.13)

kd Sαβ =
ǫ

α
(LmKαβ − γαβLmK) + (d−1)Gαβ

+ ǫ

(

2KαµK
µ
β −KKαβ +

1

2
γαβ

(

K2 +KµνK
µν
)

)

+
1

α
((γαβD

µDµα−DαDβα) , (1.14)

where kd = 8πGd andGd is Newton’s constant in d dimension. We have defined ρ ≡ Tµνn
µnν , Sα ≡

ǫ Tµνn
νγµα, Sαβ ≡ Tµνγ

µ
αγ

ν
β , which yield the following decompostion: Tµν = ρnµnν + nµSν +

9
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Sµnν + Sµν . Taking trace gives T = S + ǫρ, where S ≡ Sµνγ
µν .

The evolution equation (1.14) can be equivalently expressed as [34, 36]

LmKαβ = ǫDαDβα+ α

[

−ǫ (d−1)Rαβ +KKαβ − 2KαµK
µ
β + ǫ kd

(

Sαβ − γαβ
S + ǫρ

d− 2

)]

. (1.15)

The definition equation of extrinsic curvature (1.5), can be equivalently expressed as

Lmγαβ = −2αKαβ. (1.16)

(1.15) or (1.14), together with (1.16) form a complete set of evolution equations [34, 36] using γµν

and Kµν as fundamental variables. This formalism is called ADM-York formalism of GR.

1.2.2 Israel’s Junction Conditions

In classical electromagnetism, there are situations where electric charges are highly concentrated

on two dimensional surfaces such as the interfaces of different materials. The distribution of the

electric charges is then singular in the 3D space. The electric fields appear to be discontinuous

across the singular layers, and the relation relating the discontinuities of the electric fields with

the singular distributions of the electric charges, is called a junction condition.

Similarly, in GR, if the stress tensor is highly concentrated on Σ, it will cause discontinuities.

The discontinuities are described by Israel’s junction conditions.

Israel’s first junction condition [26] states that the intrinsic geometry of the hypersurface is well

defined. i.e. the induced metric of Σ obtained from M+ agrees with the induced metric obtained

from M−

[̂γµν ]̂ = 0, (1.17)

where the notation [̂â] ≡ a+ − a−.

Integrating (1.14) over an infinitesimal layer across Σ, we get Israel’s second junction condition

[26]

kd Sµν = ǫ
(

[̂Kµν ]̂− γµν [̂K ]̂
)

or [̂Kµν ]̂ = ǫkd

(

Sµν − γµν
S

d− 2

)

, (1.18)

where Sµν is the singular part of the projected energy-momentum tensor on Σ defined as

Sµν ≡
∫ 0+

0−
Sµνdl, (1.19)

where dl ≡ dt (∂t)
µ
nµ = αdt is the proper length/time across Σ, and l is (arbitrarily) set to be
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l = 0 at Σ.

Integrating (1.12) and (1.13) gives

Sµ ≡
∫ 0+

0−
Sµdl = 0; ̺ ≡

∫ 0+

0−
ρdl = 0, (1.20)

which is because the right hand sides (RHSs) of (1.12) and (1.13), as well as the non-Lm terms on

the RHS of (1.14), are all well-defined and finite on both sides of the hypersurface.

Eq. (1.13) and (1.18) give

DµS
µ
ν = −[̂Sν ]̂, (1.21)

which is the singular matter’s conservation law on Σ.

Because of the identity [̂a2̂] = [̂â]{̂a}̂, where {̂a}̂ ≡ a+ + a−, eq. (1.12) gives

kd [̂ρ̂] =
1
2

(

[̂K ]̂{̂K }̂ − [̂Kµν ]̂{̂Kµν }̂
)

. Combining with (1.18), we have

[̂ρ̂] =
ǫ

2

(

S

2− d
{̂K }̂ −

(

Sµν − γµν
S

d− 2

)

{̂Kµν }̂
)

= − ǫ

2
Sµν {̂Kµν }̂. (1.22)

Eq. (1.21) and (1.22) are constraint/conservation of the singular matter.

1.2.3 Coordinate Description

A coordinate system is needed to perform numerical relativity. A coordinate system using t as

a coordinate, can be constructed as the following. On each Σt, a coordinate system xi is assigned

and xi is set to be differentiable across Σt. Here the Latin index i runs from 1 to (d − 1). (t, xi)

is then a coordinate system.

Since (∂t)
µ ∇µt = 1 = mµ∇µt, the shift function βµ ≡ (∂t)

µ − mµ is perpendicular to ∇µt,

therefore in the tangent space of Σt. The evolution equations can be written in coordinate system

by using Lmµ = L(∂t)
µ −Lβµ , where L(∂t)

µ is simply ∂t in the coordinate system in which t serves

as one of the coordinate [31]. In general βµ = βi (∂i)
µ and γµν = γij

(

dxi
)

µ

(

dxj
)

ν
. They can

be further reduced to βi and γij in this coordinate system by using (∂i)
µ = (0, 0, ..., 1, ..., 0) and

(dxi)µ = (0, 0, ..., 1, ..., 0), where only the i-th position is 1. An infinitesimal vector pointing from

(t, xi) to (t+ dt, xi + dxi) is then dt (∂t)
µ
+ dxi (∂i)

µ
, and its length is derived as

ds2 =
(

ǫ α2 + βiβ
i
)

dt2 + 2βidtdx
i + γijdx

idxj , (1.23)

where βi ≡ γijβ
j .
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1.3 Randall-Sundrum Braneworld II (RSII)

In this section we will introduce the single brane model by Randall-Sundrum (RSII). We will

first introduce the results regarding the general ideas of braneworld (there is one extra dimension,

and matter is confined on the brane), then introduce the setup that is unique in RSII.

From now on, both the brane and “time”=constant hypersurface will be discussed. Therefore

we use different notations to distinguish between them. We will use Kµν , nν , hµν , Dµ,
(d−1)Gµν ,

(d−1)Rµν to denote the extrinsic curvature, unit normal vector, induced metric, covariant deriva-

tive, Einstein tensor, Ricci tensor of the brane (therefore nµn
µ = 1), and use Kµν , nµ, γµν ,

Dµ,
(d−1)Gµν ,

(d−1)Rµν to denote the corresponding quantities of the “time”=const hypersurfaces

(therefore nµn
µ = −1). Especially, the parameter t is reserved for “time”=const hypersurfaces.

1.3.1 Formalism for General Braneworld

A class of braneworlds are defined as a five dimensional spacetime where the matter is trapped

on a (3+1) dimensional brane Σ, but gravity can propagate freely into the bulk. Since the brane

Σ is our observed universe, we would expect that the induced equations on the brane become

Einstein’s equations at a certain limit. Using Gauss’ equations and the d-dimensional Einstein’s

equations, one gets [4]

(d−1)Gαβ =
d− 3

d− 2
kd

{

Tµνh
µ
αh

ν
β + hαβ

(

Tµνn
µ
n

ν +
T

1− d

)}

+
(

KKαβ −KαγKh
β

)

− 1

2
hαβ

(

K2 −KµνKµν

)

− Eαβ , (1.24)

where Tαβ is the stress tensor in d dimensional spacetime, and T is the trace. Eµν is defined as

Eµν ≡ (d)Cαβγδ n
α
n

γhβµh
δ
ν . (1.25)

(d)Cµνγδ is the Weyl tensor defined by the following relation [4]

(d)Rµνγδ =
(d)Cµνγδ +

2

d− 2

(

gµ[γ
(d)Rδ]ν − gν[γ

(d)Rδ]µ

)

− 2

(d− 1)(d− 2)
(d)R gµ[γgδ]ν , (1.26)

where we used the notation A[αβ] ≡ 1
2 (Aαβ −Aβα).

From (1.24) one sees that the matter content Tµν needs to be specified. The extrinsic curvature

and the projection of the Weyl tensor need to be addressed.
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1.3. Randall-Sundrum Braneworld II (RSII)

1.3.2 Randall-Sundrum Braneworld II

In RSII, the size of the extra dimension is infinite. The bulk is empty except for a negative

cosmological constant. Therefore the stress tensor is

Tαβ = −Λgαβ + Sαβδ(l), (1.27)

where Λ is the cosmological constant in the bulk, l is the proper length discussed in section 1.2.2.

The brane is located at l = 0. In general, l is only defined in a neighbourhood of the brane. The

brane content is

Sαβ = −λhαβ + ταβ , (1.28)

where ταβ is the stress energy tensor of matter on brane, and λ is the tension of the brane, which

is required for the consistency of the theory (see below).

There is a Z2 symmetry with respect to the brane [3] in Randall-Sundrum braneworlds, so that

n

− = −n+. Z2 symmetry is mirror symmetry followed by an identification operation: a spacetime

M with Z2 symmetry can be obtained by taking a piece of spacetime with a boundary, then

generating its image by parity transformation with respect to the boundary, and then gluing these

two pieces together by identifying the piece with its image (i.e. identifying point p with its image

as the same point, for all p ∈M). In another word, Randall-Sundrum braneworlds are “one-sided”

spacetimes. This point will be made clearer in Sec. 1.3.4. As a consequence of n− = −n+, one

can obtain K+
αβ = −K−

αβ . Israel’s second junction condition (1.18) is then reduced to

K+
αβ = −K−

αβ =
1

2
kd

(

Sαβ − hαβ
S

d− 2

)

=
1

2
kd

(

λ
hαβ
d− 2

+ ταβ − hαβ
τ

d− 2

)

. (1.29)

This equation relates Kαβ with the matter distribution on the brane, which can eliminate the

extrinsic curvatures in (1.24). The Eαβ term in (1.24) is related to the geometry of the bulk and

can not be eliminated easily. However, as analysed in [4], this term is only important at high

energy regime.

Now, (1.24) can be evaluated on either side of the brane, which may be realized by performing

the evaluation at l 6= 0 and then taking l → 0, because it does not make sense to do calculation

exactly on the brane due to the delta-functions. One bonus relation obtained from this procedure

is [̂Eαβ ]̂ = 0, which is a consequence of the Z2 symmetry. The Einstein tensor on the brane is

therefore [4]

(d−1)Gαβ = −Λd−1hαβ + kd−1ταβ + k2dπαβ − E±
αβ , (1.30)

13



1.3. Randall-Sundrum Braneworld II (RSII)

where

Λd−1 = (d− 3)kd

(

1

8(d− 2)
λ2kd +

1

d− 1
Λ

)

, (1.31)

kd−1 = k2dλ
d− 3

4(d− 2)
, (1.32)

παβ =
2τταβ − hαβτ

2

8(d− 2)
+

1

8

(

hαβτµντ
µν − 2ταγτ

γ
β

)

. (1.33)

This recovers Einstein’s equations on brane at low energy regime since Eµν is also negligible in

the low energy regime [4]. However, the behaviour could be quite different from GR at high energy

scheme. Furthermore, due to the interaction between the brane and the bulk, the equations on

the brane do not form a close system. Therefore the attempts to solve the dynamics by evolving

only the brane content, is ruled out.

1.3.3 Parameter Setting

In order to let kd−1 have the correct sign, (1.32) requires that [4]

λ > 0. (1.34)

According to (1.31), Λd−1, the equivalent cosmological constant on the brane, can achieve any

value by tuning the value of λ. In the case Λd−1 is taken to be zero, (1.31) yields

λ =
2(d− 2)

ℓ
√
kd

, (1.35)

where ℓ is the AdS radius in the bulk, which relates to Λ as

ℓ =

√

− (d− 1)(d− 2)

2Λ
. (1.36)

Eq. (1.32) and eq. (1.35) imply

Gd−1 =

√

(d− 3)2 · 2πGd

ℓ
Gd, (1.37)

where Gn ≡ kn/8π is Newton’s gravitational constant in n dimension. This relation clearly shows

that ℓ is related to the relation between the Newton’s constant on the brane with that in the

bulk. In the theory of RSII, ℓ is a freely adjustable parameter, whose value can be determined by

14



1.3. Randall-Sundrum Braneworld II (RSII)

experiments. Taking d = 5, (1.37) reduces to G4 = G5 ·
√
8πG5/ℓ. Choosing the unit k5 = ℓ = 1,

this equation implies k4 = 1.

1.3.4 Vacuum Solution

There are a class of solutions when matter is absent [6, 42–44]

ds2 = e−2|y|/ℓ (hµνdx
µdxν) + dy2, (1.38)

where y ∈ (−∞,∞) is the extra-dimension and the brane is located at y = 0. xµ is the coordinate

in the 4D section. hµν does not depend on y, and can be any 4D vacuum solution of GR [6].

Define z ≡ ℓey/ℓ when y ≥ 0, and z ≡ ℓe−y/ℓ when y ≤ 0. In coordinate space, this is a two-to-one

mapping which maps ±y to z = ℓ exp(|y|/ℓ) ∈ [ℓ,∞). However, this “two-to-one” feature is only

superficial, because the (xµ, y) and (xµ,−y) are actually the same physical points, according to

the Z2 symmetry. Under coordinates (xµ, z), (1.38) is changed into

ds2 =
ℓ2

z2
[

(hµνdx
µdxν) + dz2

]

, (1.39)

where z ≥ ℓ covers the whole physical spacetime, and the brane is located at z = ℓ.

The simplest case is to let hµν be 4D Minkowski spacetime. The corresponding 5D space is a

part of the Poincaré patch of AdS (Anti-de Sitter) space, and can be regarded as the counter part

of Minkowski spacetime in the braneworld (see Sec. 1.4). hµν can also take black hole solutions,

and the corresponding solutions in the braneworld are called black strings.

1.3.5 Matter in RSII

Because of the specific form of the RS braneworld II, equation (1.21) and (1.22) now reduce to

DµS
µ
ν = 0; (1.40)

0 = 0, (1.41)

where D is the covariant derivatives associated with hµν . Eq. (1.40) is important since it is the

conservation law of the matter on brane. Since the tension part λhµν satisfies the conservation

law, then eq. (1.40) requires that the matter part ταβ must satisfy the conservation law. This is

consistent with equation of motion of matter on brane, which takes its form in 4D GR since matter

is strictly trapped on the brane and can not directly “feel” the extra dimension.
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We will study the gravitational collapse of massless scalar field on the brane. For massless

scalar field (denoted by Φ), the conservation law is equivalent to its equation of motion

DµDµΦ = 0. (1.42)

The matter’s energy momentum tensor is

τµν = DµΦDνΦ− 1

2
hµν(h

αβDαΦDβΦ). (1.43)

1.4 The Global Structures of AdS Spacetime and the

Poincaré Patch

As discussed in Sec. 1.3.4, in the context of the braneworld, the counter part of the Minkowski

spacetime is

ds2 =
ℓ2

z2

(

− dt2 + dr2 + r2
(

dθ2 + sin2 θdφ2
)

+ dz2
)

, where z ≥ ℓ. (1.44)

The spacetime with this metric and z ≥ 0, is a Poincaré patch [75–77] of the AdS spacetime with

AdS radius ℓ. In this section we will discuss the global structure of AdS spacetime and its Poincaré

patch. The discussion is necessary for us to examine whether the RSII braneworld can be defined

as an initial value problem, and whether event horizon can be defined. These two aspects are going

to be discussed in Sec. 2.3.1.

1.4.1 AdS Spacetime and the Poincaré Patch

The d dimensional homogeneous isotropic spacetime satisfying Einstein’s equations with a

positive (or negative) cosmological constant, is called a de Sitter (or Anti-de Sitter) spacetime,

and is denoted as dSd (or AdSd). In this section, we focus on the Anti-de Sitter spacetime. As

discussed in [75–77], AdSd is a hyperboloid of radius ℓ

−X2
0 −X2

1 +

d−1
∑

i=1

Y 2
i = −ℓ2, (1.45)

16



1.4. The Global Structures of AdS Spacetime and the Poincaré Patch

embedded in the flat spacetime expanded by (X0, X1, Y1, ..., Yd−1) whose metric is

ds2 = −dX2
0 − dX2

1 +

d−1
∑

i=1

dY 2
i . (1.46)

One coordinate system of the AdS spacetime is defined as

X0 = ℓ secχ cosT, (1.47)

X1 = ℓ secχ sinT, (1.48)

Yi = ℓ ωi tanχ, for i = 1, ..., d− 1. (1.49)

Here ωi satisfy
d−1
∑

i=1

ω2
i = 1.

i.e. they form a (d− 2) dimensional unit sphere in (d− 1) dimensional Euclidean space. Under this

coordinate system, the AdS spacetime is

ds2 =
ℓ2

cos2 χ

(

−dT 2 + dχ2 + sin2 χdΩ2
d−2

)

, (1.50)

where dΩ2
d−2 stands for the line element on a (d−2) dimensional unit sphere in (d−1) dimensional

Euclidean space. Eq. (1.50) with χ ∈ [0, π/2) and T ∈ (−∞,∞) defines the whole AdS spacetime,

and is therefore a global cover of the AdS spacetime [75–77]. 2

Alternatively, another coordinate system is

X0 =
ℓ

2z

(

d−2
∑

i=1

x2i − t2 + z2 + 1

)

, (1.51)

X1 =
ℓ t

z
, (1.52)

Y1 =
ℓ

2z

(

d−2
∑

i=1

x2i − t2 + z2 − 1

)

, (1.53)

Yi+1 =
ℓ xi
z
, for i = 1, ..., d− 2. (1.54)

The range of the variables are z ∈ (0,∞), t ∈ (−∞,∞). x1, x2, ..., xd−2 form a (d− 2) dimensional

2In eq. (1.47) and (1.48), T is periodic with the period 2π, therefore there exist closed timelike curves. The
global AdS spacetime is to unfold these closed curves by removing the identification of T with T + 2π.
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Euclidean space. The metric of the AdS spacetime is now

ds2 =
ℓ2

z2

(

−dt2 + dz2 +
d−2
∑

i=1

dx2i

)

. (1.55)

Expressing the space expanded by xi’s under spherical coordinates, this metric is

ds2 =
ℓ2

z2
(

−dt2 + dz2 + dr2 + r2dΩ2
d−3

)

, (1.56)

where dΩ2
d−3 stands for the line element on a (d − 3) dimensional unit sphere in (d − 2) dimen-

sional Euclidean space. This spacetime is called a Poincaré patch of the AdS spacetime, and the

coordinates (1.55) or (1.56) are called Poincaré coordinates. 3

1.4.2 The Penrose Diagram of the AdS2 Spacetime

In this section we mainly focus on the causal structure of the spacetimes, which can be con-

veniently studied via the tool known as the Penrose diagram. For simplicity, let us start with

AdS2—the 2D AdS spacetime. The metric of the global cover is

ds2 =
ℓ2

cos2 χ

(

−dT 2 + dχ2
)

, (1.57)

and the ranges of the two variables are T ∈ (−∞,∞) and χ ∈ (−π/2, π/2). 4 The Penrose diagram

is shown in Fig. 1.3(a), where the T = const and χ = const curves are simply horizontal and vertical

lines. Eq. (1.57) shows that the null curves are straight lines with the slope dT/dχ = ±1 (e.g. the

orange lines in the figure).

An interesting feature of the AdS spacetime is that the lightlike signals can propagate to spatial

infinities (χ = ±π/2), and then come back to its departure location within a finite proper time

(measured at the departure location). Or precisely speaking, there exist closed causal curves with

finite proper length, which connect “local” regions with spatial infinities. As an example, let us

consider a lightlike signal departing at point A in Fig. 1.3(a) and propagating along the orange

line AB to point B (spatial infinity). It then propagates back from B to C along the orange line

BC. For an observer sitting at χ = 0, its proper time lapses π, which is finite. On the other hand,

3(1.56) remains unchanged by the scaling: (t, z, r) → (ct, cz, cr) where c is an arbitrary positive constant, and
it can be either dimensionful or dimensionless. In particular, when taking c = 1/ℓ, the (t, z, r) can be regarded as
parameters with length dimension measured by unit ℓ. In this section (Sec. 1.4) these coordinates will be treated
as dimensionless parameters since it is easier to relate to the global cover. In all the other parts of the thesis, we
will treat them as parameters with length dimension measured by unit ℓ.

4Or equivalently but more closely to relate to (1.50) and higher dimensional AdS spacetime, we can also take
χ ∈ [0, π/2) with ψ = 0, π, where ψ is to parametrize ω1 in (1.49) as ω1 = cosψ.
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the proper distance from the observer to χ = π/2 in a T = const hypersurface is

∫ π/2

0

1

cosχ
dχ = 2 arctanh

[

tan
(χ

2

)]∣

∣

∣

π/2

0
= 2 arctanh(1) = ∞. (1.58)

Actually the lengths of all the spacelike curves connecting a point at χ = π/2 with a point at

χ 6= π/2 are infinite. i.e. χ = π/2 is truly a spatial infinity. For higher dimensional AdS spacetimes

with d > 2, the above analysis is also valid.

The metric of the Poincaré patch under the Poincaré coordinates is now

ds2 =
ℓ2

z2
(

−dt2 + dz2
)

, (1.59)

where t ∈ (−∞,+∞) and z ∈ (0,+∞). To get the Penrose diagram of the Poincaré patch, we

relate the coordinates (T, χ, ...) with the coordinates (t, z, r, ...) by the equality of eq. (1.47∼1.49)

and eq. (1.51∼1.54). The coordinates (T, χ, ...) can then be expressed in terms of (t, z, r, ...). i.e. for

every (t, z, r, ...), there is a corresponding (T, χ, ...), which is a point on the Penrose diagram of the

global AdS spacetime. The Penrose diagram of the Poincaré patch, is then a subset of the Penrose

diagram of the global AdS spacetime. The Penrose diagram for the Poincaré patch is obtained as

Fig. 1.3(b,c). In the figures, the blue lines are t = const, and the black lines are z = const. For

the Penrose diagram, the boundary is divided into

(1) Point i0 represents z = ∞, the spatial infinity.

(2) Point i+ represents t = +∞, the future timelike infinity.

(3) Point i− represents t = −∞, the past timelike infinity.

(4) The line j+z represents the future Poincaré horizon (see, e.g. [39]), which is a Killing horizon

associated with the Killing vector ∂t. As explained below in Sec. 1.4.3, this boundary can be

reached by timelike curves of finite proper length, therefore these are not infinities. However, if

the future oriented null curves are parametrized by the Killing parameter t, the null curves will

end at this boundary when taking t→ ∞. For example, the curve defined by (t, z) = (t, t+1)

is a null curve. When t→ +∞, this curve ends at j+z . i.e. this boundary appears to be infinity

as measured by the Killing parameter t. In this sense, this boundary is an analogy of the null

infinity of Minkowski spacetime [32]. We will put the word “infinity” into double quotes if it

is not a true infinity but appears to be infinity as measured by t.

(5) Similarly, j−z is the past Poincaré horizon.
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(6) z = 0 (which is also χ = −π/2), the conformal boundary (see, e.g. [40]) of the Poincaré patch,

which is a part of the timelike spatial infinity of the global cover.

Χ = 0 Χ = Π � 2Χ =-Π � 2

T = 0

T = Π

T =-Π

A

C

B
O

(a)

i 0

i+

i-

z = 0
z = 1

t = 0

jz
+

jz
-

(b)

OA

B

C

DE

F

G

Χ = 0 Χ = Π � 2Χ =-Π � 2

T = Π

T =-Π

H

I

(c)

Figure 1.3: Penrose diagrams of AdS2 and its Poincaré patch. (a) is the Penrose diagram of the
whole AdS2. The T = const lines are horizontal, and χ = const lines are vertical. The range of
the two variables are T ∈ (−∞,∞) and χ ∈ (−π/2, π/2). Lightlike curves are locally straight lines
with slope dT/dχ = ±1. (b) is the Penrose diagram of the Poincaré patch, while (c) emphasizes
that it is embedded into the global AdS spacetime.

Fig. 1.3(b,c) show that in the Poincaré patch there still exist lightlike signals going to spatial

infinity (at the conformal boundary) and coming back whose trajactory can be connected by a

timelike curve with finite proper time. e.g. the trajectory C → A→ B in Fig. 1.3(c) is connected

by the purple line BC whose proper time is finite.

1.4.3 The Infinities of the Poincaré Patch

In the last subsection, we show that at the i0, i± and j±z , at least one of t = ∞ and z = ∞ is

taken. Now we examine whether these are “true” infinities, by evaluating the proper lengths. The

proper length of the t = 0 curve is

∫ ∞

0

dz

z
=

∫ 1

0

dz

z
+

∫ ∞

1

dz

z
, (1.60)
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where both terms on the right hand side are +∞. Actually the lengths of all the spacelike curves

connecting a point at z = ∞ with a point at z 6= ∞ are infinite. Thus i0 is a true spatial infinity.

Similarly, i± are true timelike infinities.

For the Poincaré horizons which appear to be null “infinities” measured in terms of the Killing

parameter t, it is easier to perform the calculation under (T, χ) coordinates. One can see that

the proper time of FG—a curve connecting the past Poincaré horizon with the future Poincaré

horizon as shown in Fig. 1.3(c)—is finite, which also means the lightlike signal propagating along

F → O → G enters from the past Poincaré horizon and escapes via the future Poincaré horizon,

within a finite proper time measured by an observer (whose world-line is FG). This means the

information or entities in the space can “vanish” within a finite time. Also, the proper length of

spacelike curve ED is finite. Therefore j±z are not true infinities.

On the other hand, however, the Poincaré patch (1.55) has a timelike Killing vector ∂t, and

j±z (the Poincaré horizons [39]) are the Killing horizons associated with this Killing vector. In the

literature, z = ∞ is often referred as AdS horizon [6]. When approaching j±z , the time parameter

associated with the Killing vector (which is t) approaches infinity. An observer whose world-line

is the integral curve of the Killing vector (i.e. his spatial coordinates of the Poincaré coordinates

remain constants), is called a Killing observer. For a Killing observer, his proper time takes

(−∞,∞). j+z is the future boundary of the spacetime region that can possibly be observed by any

Killing observer, and j−z is the past boundary of the spacetime region that can possibly be affected

by any Killing observer.

1.4.4 The Poincaré Patch of AdS3

AdS2 catches the most important features of the more general AdSd. Also, AdSd has a transla-

tional symmetry in the space expanded by xi’s. Therefore, any finite xi’s can be brought to xi = 0

using this symmetry, where the above discussions regarding AdS2 still apply. On the other hand,

however, the behaviour by “turning on” the space expanded by xi’s, might introduce some new

features, because the xi can take infinities. Therefore AdS3 is a better model for the more general

AdSd with d ≥ 3.

For AdS3, the metric of the global cover is

ds2 =
ℓ2

cos2 χ

(

−dT 2 + dχ2 + sin2 χdψ2
)

, (1.61)
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where χ ∈ [0, π/2), ψ ∈ [0, 2π) and T ∈ (−∞,∞). The metric of the Poincaré patch is

ds2 =
ℓ2

z2
(

−dt2 + dz2 + dr2
)

, (1.62)

where z ∈ (0,∞), t ∈ (−∞,∞) and r ∈ (−∞,∞). 5 Eq. (1.47-1.49) and eq. (1.51-1.54) now reads

X0 = ℓ secχ cosT =
ℓ

2z

(

d−2
∑

i=1

x2i − t2 + z2 + 1

)

, (1.63)

X1 = ℓ secχ sinT =
ℓ t

z
, (1.64)

Y1 = ℓ ω1 tanχ = ℓ cosψ tanχ =
ℓ

2z

(

d−2
∑

i=1

x2i − t2 + z2 − 1

)

, (1.65)

Y2 = ℓ ω2 tanχ = ℓ sinψ tanχ =
ℓ r

z
, (1.66)

where we have parametrized ωi’s by ω1 = cosψ and ω2 = sinψ.

The Penrose diagram of the global cover is a cylinder, where the radius of the cylinder is χ, the

angle is ψ and the vertical axis is T . Similar to AdS2, the Penrose diagram of the Poincaré patch

can be embedded into that of the global cover. Expressing (T, χ, ψ) by (t, z, r) via eq. (1.63-1.66),

and then plotting in terms of (t, z, r), gives the Penrose diagram of the Poincaré patch embedded in

the Penrose diagram of the global cover. Please refer to Fig. 1.4. Fig. 1.4(a) is the Penrose diagram

of AdS3 and the Penrose diagram of its Poincaré patch with some special lines. The vertical black

line is the line of (χ, ψ) = (π/2, π) which represents (t, z, r) = (t, 0, 0) with t ∈ (−∞,∞). The other

two straight lines (which are half blue half black), correspond to the null “infinities” for r = const

hypersurfaces. These three lines and the plane surrounded by them, form the Penrose digram of

the Poincaré patch of the AdS2 discussed in Sec. 1.4.2. The three vertices of this triangle are i0

and i± which represent the spatial infinity and timelike infinities, respectively. The boundary of

AdS3 is divided into (see Fig. 1.4)

(1) i0, point (T, χ, ψ) = (0, π/2, 0), the spatial infinity of z = ∞ and r = ±∞.

(2) i+, point (T, χ, ψ) = (π, π/2, π), the future timelike infinity.

(3) i−, point (T, χ, ψ) = (−π, π/2, π), the past timelike infinity.

(4) j+z , straight line described by (ψ = 0 or π, T = −χ cosψ+π/2), the future null “infinity” with

finite r.

5Again, equivalently but more closely related to higher dimensional spacetime, we can also take r ∈ [0,∞) with
θ = 0, π where ω3 is parametrized as ω3 = cos θ.
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(5) j−z , straight line described by (ψ = 0 or π, T = χ cosψ − π/2), the past null “infinity” with

finite r.

The subscript z is to label the fact that the null “infinities” are within the t − z plane (since

r = const). Similarly, the two crossing lines (half red half black) on the surface of the cylinder, are

the null infinities for z = const surfaces, and are denoted as j±r , which are true infinities. i.e.

(6) j+r , straight line on the side surface of the cylinder described by (χ = π/2, T = ±ψ with

T ≥ 0), the future null infinity with finite z.

(7) j−r , straight line on the side surface of the cylinder described by (χ = π/2, T = ±ψ with

T ≤ 0), the past null infinity with finite z.

(8) z = 0, the wedge portion of the side surface of the cylinder, the conformal boundary of the

Poincaré patch, which is a part of the spatial infinity (χ = π/2) of the global cover.

The side surface of the cylinder corresonds to χ = π/2. Its gray portion (on Fig. 1.4(a)) is the

z = 0 hypersurface in the Poincaré patch. Unfolding the cylinder along ψ = 0, we get Fig. 1.4(b).

The figure shows that the two crossing lines on the surface of the cylinder are actually straight

lines with slope dT/dψ = ±1, which are null curves: taking χ = π/2, eq. (1.61) implies straight

lines with dT/dψ = ±1 are null. Fig. 1.4(c) emphasizes the null “infinities” of the Poincaré patch.

We take null curves parametrized by the Killing parameter t, and these null curves end at the null

“infinities” when t → ∞. The orange lines are null curves with finite r, which end at j+z . The

green lines are null curves with finite z, which end at j+r (and start from j−r ). At j±r (or j±z ), z (or

r) is finite. On the other hand, the purple lines are null curves which end at the surface where all

of t, r and z are infinite. Therefore these null “infinities” with all of t, r and z approaching their

infinities are denoted as

(9) j+rz, the future null “infinity” with infinite r and infinite z.

(10) j−rz, the past null “infinity” with infinite r and infinite z.

Within these null “infinities”, j±z are not true infinities, as discussed above for AdS2. Similarly,

j±rz are not true infinities either. On the other hand, i0, i± and j±r are located at the surface of

the cylinder (where χ = π/2), and are true infinities. The boundaries that can be reached by null

curves are defined as the future/past Poincaré horizons [39]

j± ≡ j±r
⋃

j±z
⋃

j±rz. (1.67)
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j± are the upper/lower boundary surfaces of the Penrose diagram (of the Poincaré patch). The

expression for these two surfaces can be obtained as follows [78]. Using eq. (1.63-1.66), (t, z, r) can

be expressed in terms of (T, χ, ψ) as [78]

t =
sinT

cosT − sinχ cosψ
, (1.68)

z =
cosχ

cosT − sinχ cosψ
, (1.69)

r =
sinχ sinψ

cosT − sinχ cosψ
. (1.70)

Because z = ∞ at j±, the equation for surfaces j± is described by requiring the denominator of

(1.69) to be zero, which is

cosT − sinχ cosψ = 0. (1.71)

The upper/lower surfaces of Fig. 1.4(a,c) are generated using this equation. The upper surface is

confirmed to be the future null “infinity” by Fig. 1.4(c) where the future null curves end at the

upper surface. By the time reversal symmetry of the spacetime, the lower surface is also confirmed

to be the past null “infinity”.

Now we prove that the Poincaré horizons described by (1.71) are indeed the Killing horizons

for Killing vector ∂t. We define

f ≡ cosT − sinχ cosψ, (1.72)

then the Poincaré horizons are described by f = 0. For these hypersurfaces to be the Killing

horizons, we need to prove [38] (1) the Killing vectors ∂t are orthogonal to these hypersurfaces;

(2) the Killing vectors are null on these hypersurfaces.

In general, the hypersurfaces described by f = const is orthogonal to the vector field ∂αf . ∂αf

is evaluated as

∂αf = (− sinT,− cosχ cosψ, sinχ sinψ), (1.73)

under the coordinates (T, χ, ψ). A direct evaluation shows that ∂αf become null at the hypersur-

faces specified by f = 0. On the other hand, a long but otherwise direct calculation shows that at

the hypersurfaces specified by f = 0

(∂t)
α
=
(

sinT/ cos2 χ
)

· ∂αf. (1.74)

i.e. at the Poincaré horizons, ∂t is proportional to ∂αf . Therefore the two conditions for the

Poincaré horizons being Killing horizons are met.
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(a)

HΨ = 2 Π L

i 0i 0
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+jr

+

jr
-

jr
-

r= 0r= 1 r=-1

t= 0

t= 1

t=-1

(b) (c)

Figure 1.4: Penrose diagrams of AdS3 and its Poincaré patch. In (a), the cylinder is the Penrose
diagram of the whole AdS3, while the portion surrounded by the gray surfaces (with different
darkness) is the Penrose diagram for the Poincaré patch. For the notations on the diagram: i0 and
i± are for points; j±r and j±z are for lines; j±rz are for surfaces; and CB stands for the conformal
boundary which is the wedge portion of the side surface of the cylinder. Note: j±rz appearing on the
side of the vertical black line, are actually for the surfaces rather than for the vertical black line.
(b) is the conformal boundary (the z = 0 hypersurface of the Poincaré patch), which is the part of
the Penrose diagram on the side surface of the cylinder. (c) is to emphasize the null “infinities”,
where the orange lines are the null curves with finite r, the green lines are the null curves with
finite z and the purple lines are the null curves with all of t, r, z approaching their infinities. When
taking t → +∞, the orange lines end at j+z , the green lines end at j+r and the purple lines end at
j+rz.
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The upper/lower boundary surfaces have another interesting property. We can put a second

patch on top of the existing patch, by requiring that the i0 of the new patch is the i+ of the

old patch. The new patch can be regarded as a transformation from the old patch, where the

transformation is composed of the following two steps: (1) the patch is rotated by π with χ = 0 as

the rotational axis. This operation is ψ → ψ+ π. (2) the patch is moved up vertically by π, which

is T → T + π. After these two operations, eq. (1.71) remains unchanged. i.e. it also describes the

upper/lower boundaries of the new patch. Therefore, there is no gap between the two patches.

1.4.5 The RSII Braneworld and Its Structure

To get a better idea about the structure of the Poincaré patch and the brane, we show the

following hypersurfaces with one of the coordinates being constants. Fig. 1.5 shows the r = const

hypersurfaces, where the blue lines are t = const. Or in another word, these blue lines are the

integral curves of ∂z, and the black lines are that of ∂t. Fig. 1.6 shows the t = const hypersurfaces,

where the blue lines are the integral curves of ∂z, and the red lines are that of ∂r. Fig. 1.7 shows

the z = const hypersurfaces, where the red lines are the integral curves of ∂r, and the black lines

are that of ∂t. In particular, the brane in the RSII braneworld is the z = 1 hypersurface, which is

shown in Fig. 1.7(b).

The following discussion applies to general d case.

As introduced in Sec.1.3.4, the spacetime background of RSII braneworld is to take the z ≥ 1

portion of the Poincaré patch (which is called the bulk). Therefore the z = 0 boundary is eliminated

from the Penrose diagram, and the global causal structure is the same as that of Minkowski

spacetime.

In fact, any z = z0 (where the constant z0 ∈ (0,∞)) can serve as the brane, because the

extrinsic curvature of the z = z0 hypersurface can be calculated as Kµν = hµν , which satisfies

the Israel’s junction condition (1.29) applied to the vacuum case. Here hµν is the reduced metric

on the hypersurface, and the extrinsic curvature is calculated based on the unit normal vector of

the hypersurface, nµ, pointing into the bulk (larger z direction). Within the AdS spacetime, the

z = z0 hypersurfaces are not geodesic surfaces (in the sense that the extrinsic curvatures of the

hypersurfaces do not vanish, see Sec. 2.3.3), but are surfaces with constant acceleration, in the

sense that every freely moving massive particle within a z = z0 surface has a constant acceleration

as measured by the co-moving inertial observer in the AdS spacetime. Let d be the dimension of

the AdS spacetime, and let vµ be the d-velocity of a massive particle freely moving within a z = z0

hypersurface. The path of the particle is then described by the timelike geodesics generated by the
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tangent vector vµ based on the intrinsic metric of the z = z0 hypersurface, which is vαDαv
µ = 0,

where D is the covariant derivative associated with hµν . Let uµ be the d-velocity of an observer,

then the acceleration of the particle observed by this observer is

aµ = uα∇α (vµ − uµ) . (1.75)

If the observer is an inertial observer in the AdS spacetime, his trajectory is then described by

a timelike geodesics as uα∇αu
µ = 0. Furthermore, if the observer’s instant velocity is vµ, he is

a co-moving inertial observer. The acceleration of the massive particle moving along a timelike

geodesics in the z = z0 hypersurface, as measured by a co-moving observer in the AdS spacetime,

is then vα∇αv
µ, which is described by eq. (2.27) (see Sec. 2.3.4)

vα∇αv
µ = n

µvαvβKαβ = n

µvαvβhαβ = −nµ. (1.76)

This acceleration is a constant vector (as measured by the comoving inertial observer in the AdS

spacetime) pointing out of the bulk.

(a) (b) (c)

Figure 1.5: r = const hypersurfaces, where (a) is r = 0, which is the AdS2 diagram. (b) is r = −1
and (c) is r = −8. The blue lines are the integral curves of ∂z, and the black lines are that of ∂t.
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(a) (b) (c)

Figure 1.6: t = const hypersurfaces, where (a) is t = 0. (b) is t = 2 and (c) is t = 8. The blue
lines are the integral curves of ∂z , and the red lines are that of ∂r.

(a) (b) (c)

Figure 1.7: z = const hypersurfaces, where (a) is z = 0, which is opened as Fig. 1.4(b). (b) is
z = 1, which is the brane in the RSII braneworld. (c) is z = 7. The red lines are the integral
curves of ∂r, and the black lines are that of ∂t.
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1.5 Evolution Schemes

There exist various formalisms of GR, among which only the ones that are strongly hyperbolic

(refer to, for example [34]), can be used as a well-defined formalism of an initial value problem.

In this section we only (very) briefly sketch the generalized harmonic formalism since further

developments will be present in the next chapter with more details.

The generalized harmonic (GH) formalism [61] uses the gauge source functions

Hα ≃ ∇β∇βx
α = −Γα

µνg
µν ≡ −Γα, (1.77)

as fundamental variables. The notation ≃ means the equation is a constraint relation. Einstein’s

equations can now be written as

−1

2
gαβgµν,αβ − gαβ(,µgν)β,α −H(µ,ν) +HβΓ

β
µν − Γα

νβΓ
β
µα = kd

(

Tµν − 1

d− 2
gµνT

)

. (1.78)

A coordinate gauge choice can now be realized via specifying the Hµ’s. As long as Hµ does not

include derivative of metric functions, the principal part of the above equation − 1
2g

αβgµν,αβ is

manifestly strongly hyperbolic.

Both the generalized harmonic formalism and the BSSN formalism [34, 45, 46] are widely used

in the literature, yet none of them is sufficient to simulate braneworld and we have to develop

them further. In this thesis, the generalized harmonic formalism will be employed to evolve the

branewrold spacetime. Thus we put the introduction and the development of the BSSN formalism

to appendix A.

1.6 Numerical Methods

The equations of motion of gravitational theory are non-linearly coupled partial differential

equations (PDEs). Due to the non-linearity and the complexity, it is not very realistic to study

the full dynamics in closed form, especially the behaviour at high energy regime where the fields

are so strong that perturbation methods do not apply. We here use a numerical approach. In this

section we introduce finite difference approximation (FDA) methods to solve the PDEs. The focus

is on the various tests to distinguish numerical solutions from numerical artifacts.
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1.6. Numerical Methods

1.6.1 Finite Difference Approximation

To demonstrate the concepts in a less abstract way, let us consider the following model problem,

which is non-linear wave equation in flat 3+1 dimension spacetime under axisymmetry with source

term f (which does not depend on the wave function Φ). This model problem includes a few

features that are important for numerical calculation in braneworlds. The equation is assumed to

be (−∂tt + ∂xx + ∂yy + ∂zz)Φ + Φ2 = f in Cartesian coordinates, or

(

−∂tt + ∂ρρ +
1

ρ
∂ρ + ∂zz

)

Φ+ Φ2 = f, (1.79)

in cylindrical coordinates (t, ρ, φ, z) that are adapted to the axisymmetry. Therefore the axisym-

metry implies ∂φΦ = 0, which has been applied in (1.79). Let us assume the spatial domain is

ρ ∈ [0, ρmax], z ∈ [0, zmax].

The whole domain, both spatial and temporal, is divided into discrete grids (or meshes). In

principle this division can be arbitrary, as long as the grid/mesh elements are small. The meaning

of “small” is going to be clear by the discussion in section 1.6.2. To be more specific and to honor

simplicity, here let us employ uniform grid. Therefore the spatial domain can be

ρi = (i− 1)∆ρ, i = 1, 2, ..., nρ where ∆ρ =
ρmax

nρ − 1
; (1.80)

zj = (j − 1)∆z, j = 1, 2, ..., nz where ∆z =
zmax

nz − 1
. (1.81)

For simplicity, let us choose ∆ρ = ∆z = h. The time domain is also discretized and the time

interval between two subsequent discretized time levels can be expressed as ∆t. ∆t/h is called the

Courant factor.

We use notation

Φn
i,j ≡ Φ(tn, ρi, zj) ≡ Φ

(

(n− 1)∆t, (i − 1)∆ρ, (j − 1)∆z
)

, (1.82)

and similar notation for function f . We replace the differential operators by their FDA operators
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with second order accuracy:

∂ρρΦ →
Φn

i+1,j − 2Φn
i,j +Φn

i−1,j

h2
, (1.83a)

∂ρΦ →
Φn

i+1,j − Φn
i−1,j

2h
, (1.83b)

∂zzΦ →
Φn

i,j+1 − 2Φn
i,j +Φn

i,j−1

h2
, (1.83c)

∂ttΦ →
Φn+1

i,j − 2Φn
i,j +Φn−1

i,j

(λh)2
. (1.83d)

The FDA operators are obtained by Taylor expansions such as

Φn
i+1,j = Φn

i,j + hΦ,ρ +
h2

2!
Φ,ρρ +

h3

3!
Φ,ρρρ +

h4

4!
Φ,ρρρρ +O(h6),

which yield
Φn

i+1,j − 2Φn
i,j +Φn

i−1,j

h2
= ∂ρρΦ+

h2

12
Φ,ρρρρ +O(h4). (1.84)

The term h2

12Φ,ρρρρ + O(h4) = O(h2) is the difference between the exact operator and the FDA

operator, which is called truncation error. When h is small (so that the truncation error is not

significant), the differential operators can be replaced by their FDA counter parts. Other FDA

operators in (1.83) can be obtained similarly. The discretized PDE reads

−
Φn+1

i,j − 2Φn
i,j +Φn−1

i,j

(λh)2
+

Φn
i+1,j − 2Φn

i,j +Φn
i−1,j

h2
+

1

ρi

Φn
i+1,j − Φn

i−1,j

2h

+
Φn

i,j+1 − 2Φn
i,j +Φn

i,j−1

h2
+
(

Φn
i,j

)2
= fn

i,j. (1.85)

Now we are ready to introduce the general notations to make the discussion clearer. A set of

PDEs, such as equation (1.79), can be collectively denoted as

Lu = f, (1.86)

where L stands for differential operators and all other operations, u stands for the fundamental

variables (the unknown functions) to solve for, and f stands for the terms in the equations that

do not include u. In equation (1.79), u = Φ, and Lu = LΦ =
(

−∂tt + ∂ρρ +
1
ρ∂ρ + ∂zz

)

Φ + Φ2.

The discrete FDA operators, such as equation (1.84), can be collectively denoted as

AΦ = EΦ+ hp ·EΦ, (1.87)
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where A stands for the FDA version of the exact operator E . hp means that the approximation

level is of p-th order in h, E stands for the error operator — more specifically, hpEΦ is the error.

Using (1.87), we can discretize (1.86) as

Lhuh = fh, (1.88)

where h is to label resolution. An example of (1.88) is (1.85).

In (1.85), the approximation is of second order in h. Generally the approximation order of Lh

is p, which can be formally expressed as

Lh = L+ hpE. (1.89)

From the discussion above, one sees that the validity of FDA needs to be built upon the

following two assumptions: (1) the funtion Φ is smooth; (2) h is small, so that the truncation error

is not significant.

However, these two conditions are not sufficient to guarantee that the numerical result uh is

actually a approximation of the exact solution u. Therefore systematic test mechanisms need to

be developed to distinguish numerical solutions from numerical artifacts.

1.6.2 Tests

First, often it is neither practical nor necessary to let equation (1.88) be satisfied exactly.

Instead, (1.88) is considered to be satisfied when residual rh ≡ Lhuh − fh is sufficiently small.

Again, “small” does not have any measurable meaning yet.

Multiplying equation (1.85) by ρi, we get the following equation

−
ρi
(

Φn+1
i,j − 2Φn

i,j +Φn−1
i,j

)

(λh)2
+
ρi
(

Φn
i+1,j − 2Φn

i,j +Φn
i−1,j

)

h2
+

Φn
i+1,j − Φn

i−1,j

2h

+
ρi
(

Φn
i,j+1 − 2Φn

i,j +Φn
i,j−1

)

h2
+ ρi

(

Φn
i,j

)2
= ρif

n
i,j . (1.90)

(1.85) and (1.90) share exactly the same numerical properties, such as convergence, smoothness,

regularity, etc. But the two residuals have different numerical values. Therefore, the residual being

“small”, has no absolute meaning.

This feature can be expressed in a more abstract way as: Lu = f and g · Lu = g · f have the

same numerical properties. Here g is a non-zero, smooth function over the domain. For example g
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can be an arbitrary non-zero constant to make the residual take any value. Therefore, the absolute

value of residual does not have any meaning. So how to distinguish between a numerical solution

and a numerical artifact? And how small is the residual to be considered sufficiently small? These

questions will be answered by the following analysis.

Assume the numerical result uh that satisfies Lhuh = fh + rh is obtained, where rh is the

residual. Generically, uh is a numerical solution, if the following equation is satisfied when uh is

substituted back into equation (1.86)

lim
h→0

Luh − fh = 0. (1.91)

Let us see what it means

Luh − fh = Lhuh − hpEuh − fh = rh − hpEuh = rh +O(hp). (1.92)

Therefore (1.91) is satisfied, if rh is negligible compared to hpEuh (in this sense rh is small).

However, technically it is impossible to apply a continuous operation L to discrete function

uh, and then eq. (1.91) can only be understood formally. Instead, uh is considered a numerical

solution, if

lim
h→0

rhI = 0,

where rhI ≡ Lh
I u

h − fh,where Lh
I 6= Lh that satisfies lim

h→0
Lh
I = L. (1.93)

Since Lh
I is independent of Lh (a different discretization), rhI is called independent residual.

For the model problem, we can use the following discretization as the independent discretized

operators

∂rrΦ →
2Φn

i,j − 5Φn
i+1,j + 4Φn

i+2,j − Φn
i+3,j

h2
, (1.94a)

∂rΦ → −
3Φn

i,j − 4Φn
i+1,j +Φn

i+2,j

2h
, (1.94b)

∂zzΦ →
2Φn

i,j − 5Φn
i,j+1 + 4Φn

i,j+2 − Φn
i,j+3

h2
, (1.94c)

∂ttΦ →
2Φn

i,j − 5Φn−1
i,j + 4Φn−2

i,j − Φn−3
i,j

(λh)2
. (1.94d)

This discretization is different from (1.83), and is also of the second order accuracy.
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In general, the approximation order of Lh
I is denoted as m, therefore

Lh
I = L+ hmEI = Lh − hpE + hmEI, (1.95)

rhI = Lh
I u

h − fh = (Lh − hpE + hmEI)u
h − fh = rh − hpEuh + hmEIu

h. (1.96)

Again, here it is required that
∥

∥rh
∥

∥ is negligible compared to min
(∥

∥hpEuh
∥

∥ ,
∥

∥hmEIu
h
∥

∥

)

, therefore

the independent residual rhI converges to zero at min(p,m)-th order. Here ‖u‖ is the norm of u.

For the model problem, p = m = 2, therefore the independent residual behaves as a second

order quantity: when h decreases to h/2, the independent residual rhI decreases to r
(h/2)
I = 1

4r
h
I .

Note, the independently discretized operators Lh
I can be very different from the discretized

operators Lh used to obtain the solution. Lh
I and Lh do not need to be of the same method. For

example, one can use finite element method or spectrum method to obtain the solution, but use

FDA as independent operators to evaluate the independent residual.

1.6.3 Tests for General Relativity

For a numerical problem, often there are a certain number of equations to solve, for an equal

number of fundamental variables (the unknown functions). If the number of equations is less than

the number of unknown functions, in principle there are no unique solutions. On the other hand,

in GR, the number of equations is greater than the number of unknown functions. In this case the

redundant equations are called constraints.

As an example, in 3 + 1 formalism of GR, there are six functions γij to be solved for, by

solving the six evolutionary equations. The other four equations are the Hamiltonian constraint

and momentum constraints. Analytically, if the constraints are satisfied initially, the consistency

(Bianchi identity) guarantees them to be satisfied at all times, as long as the evolutionary equations

are satisfied during the evolution. However, numerically there are always small violations to

the constraints, and there is no guarantee the violations are controllable. Therefore, for general

relativity, the constraints need to be tested as well. i.e. in order to make sure all the components

of Einstein’s equations are satisfied, both the independent residual test and the convergence test

for constraints are needed.

Equivalently, in the case a certain formalism of GR is employed to obtain the numerical results,

the results can be substituted into another formalism of GR to produce residuals, and the residuals

should converge at the expected order. For example, one can use generalized harmonic formalism

to obtain the solution, and then substitute the solution into original Einstein’s equations to get
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residuals, and check whether the residuals converge as expected.
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Chapter 2

Characteristics in the Braneworld

Spacetime

The presence of the brane imposes interesting new physics. This chapter is devoted to develop

the formalisms to describe the following topics associated with the brane.

Israel’s junction conditions impose cusps in some metric components, which serve as boundary

conditions for these metric components. In this chapter we will discuss the boundary conditions

of the remaining metric components. We will also discuss other effects of Israel’s conditions such

as the smoothness of the apparent horizon across the brane.

The main goal of our study is to numerically simulate the process of black hole formation. The

definition of a black hole relies on the global causal structure of the spacetime. We will discuss

how a black hole can be defined in the braneworld. In the braneworld, the causal structure of

the spacetime is determined by the spacetime geometry in 5D, therefore the 4D apparent horizon

and event horizon on the brane should play no direct role in braneworlds. However, since the 4D

brane is all one can observe, we will study the 4D quantities as well, and compare them with the

results in GR to see the observable difference from GR. We will also study the relation between

the horizons on the brane and the horizons in the bulk.

Energy in GR is not a locally defined quantity since the energy “density” can be of any value

[94]. However, if the system presents asymptotic translational symmetry in time, in certain cases

quasi-local energy can be defined, such as ADM energy in asymptotically flat spacetime. A more

general formalism of energy obtained from Hamilton-Jacobi analysis [95] [87], will be directly

employed in the braneworld to obtain the total energy of the system.

There is also energy exchange between the brane and the bulk. In this chapter we will present

our preliminary study on this topic.
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2.1 Boundary Conditions at the Brane

In this section we discuss the properties and the gauge freedom in the boundary conditions at

the brane.

The vacuum solution of the braneworld is eq. (1.38)

ds2 = e−2|y|/ℓ (hµνdx
µdxν) + dy2, (2.1)

where y ∈ (−∞,∞), and the brane is located at y = 0. For the general case (non-vacuum), we

setup the coordinate system (xa, y), where y is the extra dimension. Latin indices (a, b, . . . ) are for

the coordinates on y = constant surfaces, and their values take 0, 1, 2, 3. Greek indices (µ, ν, . . . )

take 0, 1, 2, 3, 4, and are used for the coordinates of the whole spacetime. Therefore the metric is

ds2 = gabdx
adxb + 2gaydx

ady + gyydydy.

The coordinate y is set to inherit the following properties: y = 0 is where the brane is located,

and y is adapted according to the Z2 symmetry, such that the metric components:

gab(x
a,−y) = gab(x

a, y), (2.2)

gyy(x
a,−y) = gyy(x

a, y), (2.3)

and gay(x
a,−y) = −gay(xa, y). (2.4)

Under this coordinate choice, Israel’s first junction condition is simply gab|y=0+ = gab|y=0− = hab,

where hab is the intrinsic metric on the brane (expressed in the coordinates xa), induced from

the bulk metric on either sides of the brane. Israel’s second junction condition imposes conditions

on the extrinsic curvature Kab (of the brane embedding in the bulk). These conditions can be

translated into conditions on ∂gab/∂y, which will serve as the boundary conditions for gab.

gyy and gay are not related to Israel’s conditions. Rather, since the braneworld spacetimes are

“one-sided” (see Sec. 1.3.2 and Sec. 1.3.4), in general there is no generic reasons to require the

y-coordinate lines (the intersection of the xa = constant surfaces) to be perpendicular with the

y = 0 surface (the brane), which means gay
∣

∣

y=0+
6= 0. Taking y → 0 in (2.3) and (2.4), we get

gyy
∣

∣

y=0−
= gyy

∣

∣

y=0+
, (2.5)

and gay
∣

∣

y=0−
= −gay

∣

∣

y=0+
. (2.6)
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However, since gay
∣

∣

y=0+
6= 0 in general, it means gay

∣

∣

y=0
are not defined. This is because only the

induced metric on the brane and the extrinsic curvature of the brane are important, while gay are

not needed in defining the induced metric and the extrinsic curvature of the brane. Similarly, gyy

is not needed in defining the brane geometry either, which means generically gyy is not defined,

although it could be defined as gyy
∣

∣

y=0
= gyy

∣

∣

y=0−
= gyy

∣

∣

y=0+
. We have

generically, gµy are not defined on the brane.

Although generally gµy are not defined, it is convenient to choose the coordinates at the brane such

that the y-coordinate lines are perpendicular with the brane. We call this gauge as perpendicular

gauge. Under this coordinate gauge, we can then define

gay
∣

∣

y=0
= 0. (2.7)

This coordinate gauge has desirable properties such as the smoothness of apparent horizon that is

going to be in Sec. 2.2.

Note that gyy
∣

∣

y=0
is still unconstrained.

2.2 Apparent Horizon

An apparent horizon is needed to monitor the evolution of spacetime if a black hole is present

during the evolution. This section is devoted to studies on apparent horizons in braneworlds.

2.2.1 The Definition

The definition of apparent horizon can be found in standard texts [34, 35, 37]. Let nα be future

directed timelike unit vector normal to t = constant hypersurfaces. Let S denote a closed (d− 2)

dimensional spatial surface within a t = constant hypersurface, and sα is its unit normal vector

pointing towards the outgoing direction, which is within the same t = constant hypersurface. The

induced metric on S is then (not to be confused with the mα defined in (1.3))

mαβ ≡ gαβ + nαnβ − sαsβ . (2.8)
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2.2. Apparent Horizon

Let vα be an arbitrary vector field, the relative change rate in the area elements of S along vα is

[37]

Θ(v) ≡ 1√
m
Lv

√
m =

1

2
mµνLvmµν = mµν∇µvν , (2.9)

where m is the determinant of mµν . The final expression is the expansion of vα along S.

For the (d − 2) dimensional spacelike surface S, there exist two null curves orthogonal to this

surface. Let us denote the two future directed null vectors tangent to these two null curves as ±lα.

The relative change rate of the area elements of S along the null geodesics congruences produced

by ±lµ are then

Θ± ≡ mαβ∇α
±lβ . (2.10)

A trapped surface is an S whose Θ± < 0, which means the null geodesics congruences produced

by both +lµ and −lµ drag S to the surfaces with smaller area elements. An S with

Θ+ = 0 (2.11)

is called a marginally outer trapped horizon (MOTH), whose area elements stay the same under

the Lie-dragging of +lµ. The MOTH is not unique in a given spacetime since there can be other

MOTHs within a MOTH. An apparent horizon is defined as the outermost MOTH.

Now let us construct ±lα. Because timelike normal vector nα is orthogonal to the spacelike

normal vector sα, the two future directed null vectors orthogonal to S are

±lα ≡ nα ± sα, (2.12)

where +lα is outgoing and −lα is ingoing. Substituting this into (2.10), we obtain

Θ± = mαβ∇α (nβ ± sβ) = ±Dαs
α −K + sαsβKαβ , (2.13)

where Dα denotes the covariant derivative associated with γαβ , and Kαβ is the extrinsic curvature

of the t = constant hypersurface. Therefore, the follow equation is satisfied at the apparent horizon

Θ+ = Dαs
α −K + sαsβKαβ = 0. (2.14)

The above discussion shows that the definition of apparent horizon relies on the choice of

t = constant hypersurfaces. For a given spacetime, different slicing conditions can result in drasti-

cally different apparent horizons. Taking Schwarzschild spacetime as an example. In Schwarzschild
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coordinates or the isotropic coordinates, the apparent horizon coincides with the event hori-

zon, where the physical singularity is inside of the apparent horizon. On the other hand, the

Schwarzschild spacetime can be sliced in such a way that there is no apparent horizon [33].

2.2.2 Smoothness of the Horizon

Israel’s conditions impose cusps to some components of the metric. In this section we will study

whether this affects the smoothness of apparent horizon. The smoothness of an apparent horizon

can be studied via sα by asking whether sα is continuous across the brane. Rewriting Θ+ = 0 as

Dαs
α = K − sαsβKαβ, (2.15)

we then apply Gauss’ theorem (in curved space) on the t = constant hypersurface. By the same

procedure to derive the junction condition of electric field across a surface 6, we can find the junc-

tion condition for sα across the brane. If the right hand side of (2.15) is finite (by the Z2 symmetry

with respect to the brane, this condition is true if the t = constant hypersurfaces are chosen to

be perpendicular with the brane), then the integration over an infinitesimal layer across the brane

vanishes. Therefore the component of sα that is perpendicular to the brane, is continous across

the brane. This continuity of the perpendicular component, together with the Z2 symmetry with

respect to the brane, imply that the perpendicular component of sα must be zero. Therefore sα is

continuous. i.e.

the direction of an apparent horizon is continuous across the brane, if the slicing condition is

such that the t = constant hypersurfaces are perpendicular to the brane.

Under the coordinates setting in Sec. 2.1, the slicing condition is expressed as gty = 0. In

particular, the perpendicular gauge (2.7) satisfies the slicing condition.

2.2.3 Apparent Horizon on the Brane and in the Bulk

Generically the causal structure is determined by 5D geometry. However, only the brane

quantities are directly observable, therefore we study the relation between 4D and 5D quantities.

6The procedure to derive E+ − E− ∝ σ from ∇ ·E ∝ ρ, where ρ is volume charge density and σ is areal charge
density of the singular layer. E is the electric field, and E+ is the electric field on one side of the singular layer, and
E− is the electric field on the other side.
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2.3. Event Horizon

The question we try to address in this subsection is whether the apparent horizon seen on the brane

(which is calculated based on the brane geometry only), and the bulk apparent horizon (which is

calculated based on the bulk geometry), agree with each other on the brane. This can be studied

via the expansions of the outgoing null geodesics congruences on the brane and in the bulk

Θbrane =
(

hαβ + (r)nα (r)nβ − (r)sα (r)sβ
)

Dα

(

(r)nβ + (r)sβ

)

= (r)mαβ∇α

(

(r)nβ + (r)sβ

)

(a)

= (r)mαβ∇α (nβ + sβ) (b)

= (mαβ − n

α
n

β)∇α (nβ + sβ)

= Θbulk − n

α
n

β∇α(nβ + sβ). (2.16)

where (r)mαβ = hαβ + (r)nα (r)nβ − (r)sα (r)sβ is the projection operator that projects to the (d− 3)-

surface on the brane, and D is the covariant derivative associated with the brane metric hαβ .

Anything with a superscript (r) is a quantity defined only on the brane. The vector nα is the

unit normal vector that is perpendicular to the brane. Assuming perpendicular gauge (2.7), we

have sβ = (r)sβ and nβ = (r)nβ on the brane, which are used in deriving eq. (b) from eq. (a).

The difference between the two Θ’s, even at the apparent horizon where Θbulk = 0, is generally

non-zero. i.e. generally these two apparent horizons do not agree. Therefore, we will study the

relation between event horizons in the next section.

2.3 Event Horizon

2.3.1 Event Horizon in the Braneworld

In this subsection we examine whether event horizon is well-defined in the spacetime of the

RSII braneworld, and discuss how to define an evolution problem.

The global causal structure of AdS spacetime and its Poincaré patch was introduced in Sec. 1.4.

The spacetime background of RSII braneworld is to take the z ≥ 1 portion of the Poincaré patch.

Therefore the z = 0 boundary is eliminated from the Penrose diagram, and the global causal

structure is the same as that of Minkowski spacetime. In particular, similar to Minkowski space-

time, there is no signal travelling to spatial infinity and then coming back within a finite local

proper time, and Cauchy surfaces exist [6]. To discuss the Cauchy surfaces, we define the future/-

past horizons as i0
⋃

i±
⋃

j±r
⋃

j±z
⋃

j±rz (see Sec. 1.4.4). Considering a t = constant hypersurface
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(which is spacelike), any future causal curves coming from the past horizon will either go across

this hypersurface, or hit the brane and then are reflected to travel back into the bulk (due to

the Z2 symmetry with respect to the brane) which eventually go across this hypersurface. Simi-

larly, all the past causal curves of the future horizon go across this hypersurface. Therefore, any

t = constant hypersurface is a Cauchy surface, because all the developments of any past event are

captured by the surface, and all the future events can be predicted by the data on this surface. Or

more precisely, all the inextendible future causal curves of the past horizon and all the inextendible

past causal curves of the future horizon, go across the Cauchy surface [32]. Therefore, a Cauchy

problem (an initial value problem) is well-defined.

The z ≥ 1 branch has the horizons which are not true infinities. Accordingly, the definition

of event horizon is modified as below. In fact, the definition of event horizon in asymptotically

Minkowski spacetime can be directly carried over, while the only change is to replace the notion

of null infinities in the definitions by the future/past Poincaré horizons defined by eq. (1.67). The

event horizon is the boundary of the spacetime region which can not be connected to the external

world by future oriented null geodesics. i.e. the event horizon is the collection of “the points of

no return”. The “external world” needs to be defined. Similar to the case of asympototically

Minknowski spacetime, the external world is defined as the past of the future Poincaré horizon,

therefore the event horizon is the boundary of the spacetime separating the region that can be

connected to the future Poincaré horizon by future null geodesics from the region that can not.

The future Poincaré horizon, on the other hand, are defined as the “infinities” (as measured by

the Killing parameter t) of future null curves departing from the external world. i.e. there is a

circular argument in these definitions. The circle can be ended by physically identifying certain

spacetime region(s) as the external world. Therefore, as long as the external world can be physically

identified, the event horizon can be defined, and this argument applies to any spacetime (i.e. it is

not limited to the case of the Poincaré patch of the AdS spacetime).

2.3.2 Event Horizon on the Brane

The event horizon is defined in Sec. 2.3.1. In the following we will study whether the event

horizon based on the brane geometry is well-defined. The causal structure of the braneworld is

determined by the 5D geometry, rather than the 4D geometry of the brane. The null geodesics gen-

erated by the outgoing, future oriented null vectors on the bulk event horizon, form the boundary

(the event horizon) separating the spacetime region that can be connected to the future Poincaré

horizon by future oriented null geodesics, from the region that can not. Let us consider the out-
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going future oriented null vectors within the brane originated from the intersect of the bulk event

horizon and the brane. If the future oriented null geodesics generated by these null vectors will

stay on the brane forever, then these null geodesics are the boundaries separating the spacetime

regions that can be connected (by future oriented null geodesics) with the future Poincaré hori-

zon from the regions that can not. i.e. (1) these null geodesics stay on the brane forever; (2)

these null geodesics are the boundaries separating the spacetime regions that can arrive the future

Poincaré horizon from the regions that can not. i.e. these null geodesics form the event horizon

on the brane. Therefore, the key for the well-definedness of the event horizon on the brane, is

to study the relation between the null geodesics produced based on the brane geometry and the

null geodesics produced based on the bulk geometry, generated from the same null vector which

initially lies within the brane. This relation can be described by the extrinsic curvature of the

brane.

2.3.3 Extrinsic Curvature as Geodesics Deviation

This subsection (Sec. 2.3.3) is the foundation of the study on the relation of event horizons.

The work in this subsection is a “re-discovery” of the Gaussian curvature (see, e.g. [80]) and the

Gauss-Weingarten equation [81] in differential geometry.

The motivation is as follows. Let us examine how to measure the extrinsic nature of the

embedding of a hypersurface Σ into a higher dimensional spaceM . Σ is considered flatly embedded

into M , if Σ appears to be flat in M , in the sense that an arbitrary straight line as seen in Σ is

also a straight line as seen in M . Since straight lines are geodesics, the above statement can be

more precisely rephrased as: if the hypersurface is flatly embedded, an arbitrary geodesics in Σ

(consistent with the hypersurface metric γαβ) will also be a geodesics in M (consistent with the

bulk metric gαβ). For non-flat embedding, these two types of geodesics are not the same in general

7. Therefore, this motivates us to describe the extrinsic curvature as the deviation of the geodesics

defined in Σ from the geodesics defined in M for a vector initially lying on Σ. This point of view

to describe the extrinsic curvature, is referred as geodesics point of view (GEP for short).

On the other hand, the embedding described via the covariant derivative of the unit normal

vector along Σ, as what has been done in eq. (1.5), is referred as normal vector point of view (NVP

for short).

Generally if a d−C dimensional sub-manifold Σ is embedded in a d dimensional manifold M ,

7As an example, we can think of a sphere S2 : x2 + (y − 1)2 + z2 = 1 embedded in R
3. Take a vector lying on

S2 : (∂x)
µ at (0, 0, 0). The geodesics produced by it on S2 is the equator, while the geodesics produced by it in R

3

is the x-axis.
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C is called the co-dimension. In this subsection, we will prove NVP and GEP are equivalent in

the C = 1 case, in the sense that the embedding studied from GEP (shown below) will also lead

to the same definition of the extrinsic curvature as eq. (1.5), which is defined from NVP. In the

RSII braneworld, there is only one extra dimension, thus the co-dimension is C = 1. For C > 1

case, please refer to appendix B.

The basic idea is to study the two geodesics generated by an arbitrary vector Tα ∈ Σ, via

equations T βDβT
α = 0 and T β∇βT

α = 0, where D is the covariant derivative in Σ and ∇ is the

covariant derivative in M . Then we compare the two geodesics to get the difference, which can

describe the embedding nature of Σ inM . We adopt the following approach: rewrite T βDβT
α = 0

as T β∇βT
α = leftover, then the leftover is the deviation of the two geodesics. Let us denote the

unit normal vector of Σ as nα whose length square is ǫ = nαnα = ±1 where ǫ = 1 if the extra

dimension is spacelike and ǫ = −1 if the extra dimension is timelike. The reduced metric of the

hypersurface is

γαβ = gαβ − ǫ nαnβ. (2.17)

For a general tensor Tα1...αk

β1...βl
∈ Σ, the covariant derivative associated with the metric γαβ

is [34, 36]

DγT
α1...αk

β1...βl
= γα1

δ1
...γ ǫl

βl
γ ν
γ ∇νT

δ1...δk
ǫ1...ǫl . (2.18)

Therefore ∀ Tα ∈ Σ, we have

DαT
µ = γ β

α γµγ∇βT
γ , (2.19)

which tells us that the geodesics generated by Tα in Σ is just

0 = TαDαT
µ = Tαγ β

α γµγ∇βT
γ = γµγT

α∇αT
γ , (2.20)

or

γµνT
α∇αT

ν = 0. (2.21)

On the other hand, we have the following identity which can be obtained by the fact that nαT
α = 0

nµnνT
α∇αT

ν = −nµTαT ν∇αnν . (2.22)

From (2.21) and (2.22), we obtain

Tα∇αT
µ = (γµν + ǫ nµnν)T

α∇αT
ν = −ǫnµTαT β∇αnβ . (2.23)
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We can now define the deviation of the two types of geodesics equation as the right hand side of

equation (2.23). It is then clear that the deviation vanishes, if and only if

TαT β∇αnβ = 0. (2.24)

This result is for arbitrary Tα defined on Σ, and only the contraction with Tα appears in this

expression, which means we can use the following quantity to describe the embedding of Σ in M

Kαβ ≡ −γ µ
α γ ν

β ∇µnν . (2.25)

i.e. NVP and GEP are using the same quantity (Kαβ) to describe the embedding. The deviation

equation (2.23) in terms of the extrinsic curvature is now rewritten as

Tα∇αT
µ = ǫ nµTαT βKαβ, (2.26)

from which one see that the deviation is in the perpendicular direction (nµ direction).

2.3.4 The Relation between the Event Horizons

The work in this subsection (Sec. 2.3.4) was first independently carried out in [81].

For the braneworld, the 3 + 1 brane is embedded into the 4 + 1 dimensional bulk. Using the

notations in braneworld, the geodesics deviation equation (2.26) is now

vα∇αv
µ = n

µvαvβKαβ , (2.27)

where vα is the tangent vector of an arbitrary geodesics within the brane. n is the unit normal

vector of the brane, and ǫ = n

µ
nµ = 1 has been applied.

To study the event horizon relations, we focus on the case where vα is a null vector. In RSII,

Kαβ is related to brane content by Israel’s junction condition (1.29)

Kαβ =
1

2
kd

(

λ
hαβ
d− 2

+ ταβ − hαβ
τ

d− 2

)

, (2.28)

which implies the deviation of null geodesics is

vα∇αv
µ =

1

2
kdn

µvαvβταβ . (2.29)
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Therefore the deviation of the two geodesics amounts to whether vαvβταβ vanishes. Generally

the right hand side of eq. (2.29) does not vanish (otherwise it is a new energy condition for the

matter. The discussion of energy condition is beyond the scope of our project). However, in case

τµν = 0, when the matter on the brane vanishes, the two geodesics coincide. In another word,

when the matter is absent, at the intersect of the bulk event horizon and the brane, the future

oriented null geodesics that are produced by the null vectors lying in Σ, will stay on the brane

forever. Since these null geodesics are on the event horizon of the bulk, they are the boundaries

separating the spacetime regions that can be connected (by future oriented null geodesics) with

the future Poincaré horizon from the regions that can not. i.e. (1) these null geodesics stay on the

brane forever; (2) these null geodesics are the boundaries separating the spacetime regions that

can arrive the future Poincaré horizon from the regions that can not. Therefore, from the brane

point of view, they form the event horizon on the brane. i.e.

an event horizon on the brane is well-defined when there is no matter around the horizon.

For gravitational collapse processes, if the systems eventually reach the stationary states that

the matters either go into the black holes, or get bounced back and travel towards spatial infinity,

then there are no matters at the horizons and the event horizons on the brane are well-defined.

2.4 Energy in the Braneworld

In order to quantitatively describe the spacetime evolution, and gravitational interaction be-

tween the brane and the bulk, we need to introduce certain quantities, such as energy. However,

there is no local definition of energy in general relativity. Instead, there have been many attempts

to define quasilocal energy in general relativity, and many of these definitions are only well-defined

in a certain background. In this section, the definition developed by Brown and York obtained

from a Hamiltonian-Jacobi analysis of the gravitational action [95] (Hawking and Horowitz also

gave a similar derivation [87]), is applied to the braneworld.

2.4.1 Total Energy

In this subsection, we introduce the energy defined in [87, 95]. In the next subsection, we will

apply this definition to the braneworld spacetime.
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In general the action of a gravitational system is

I(g,Φ) =

∫

M

[

R

16πGd
+ Lm(g,Φ)

]

− 1

8πGd

∮

∂M

K , (2.30)

where M is the spacetime manifold, K is the extrinsic curvature of the boundary ∂M embedding

intoM . Lm is the Lagrangian for all the matter fields and the matter fields are collectively denoted

as Φ.

Let us choose the boundary ∂M = Σt1

⋃

Σt2

⋃BQ, where BQ ≡ ⋃

t∈[t1,t2]
SQ
t as shown in

Fig. 2.1. SQ
t is the closed (d − 2) dimensional spatial surface embedded in each Σt, and Q is the

single parameter to characterize the family of the enclosed (d− 2) dimensional surfaces in each Σt.

When Q → ∞, SQ
t goes to the spatial infinity boundaries. BQ is setup such that its normal unit

vector Qµ is perpendicular to nµ (so that nµ lies within BQ).

Q

SQ
t

t

Σt2

Σt1

Σt

BQ

Figure 2.1: Manifold M and its boundaries. The boundary ∂M is composed of Σt1 , Σt2 , and BQ.
On the diagram, the boundaries are shown to be the upper/lower surface of the cylinder, and the

side surface of the cylinder. Here BQ ≡
⋃

t∈[t1,t2]
SQ
t , where SQ

t is the enclosed (d− 2) dimensional
spatial surface embedded in each Σt, and Q is the single parameter to characterize the family of
the closed surfaces in each Σt. Choose BQ such that its normal unit vector Qµ is perpendicular to
nµ (so that nµ lies in BQ).

The Hamiltonian is then [87, 95]

H =

∫

Σt

(αH + βνMν) +
1

8πGd

∮

SQ
t

[

−ǫ Qµ(Kγ
µν −Kµν)βν + α · (d−2)k

]

, (2.31)

where ǫ ≡ nµn
µ = −1. (d−2)kαβ is the extrinsic curvature of SQ

t embedded in Σt, and
(d−2)k is its
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trace. H and Mν are Hamiltonian constraint and momentum constraint defined as

H ≡ −ǫ
16πGd

(

−K2 +KµνKµν + ǫ · (d−1)R+ 16πGdρ
)

, (2.32)

Mν ≡ ǫ

8πGd
Dµ(Kγ

µν −Kµν)− Sν . (2.33)

The Hamiltonian constraint H and momentum constraints M are implied by Einstein’s equations,

therefore vanish for physical configurations, and should be dropped in (2.31).

Hamiltonian (2.31) diverges in general. However, it is the physical Hamiltonian that matters

[87]. The physical Hamiltonian is H − H̄, where H̄ is the Hamiltonian of a background spacetime.

We denote background quantities by a bar ( ¯ ). The background is a static solution, then its

contribution is only

− 1

8πGd

∮

SQ
t

α (d−2)̄k,

where the integration is over a closed surface in the background spacetime that is isometric to the

SQ
t (that is the closed surface chosen in the physical spacetime).

The physical energy is the physical Hamiltonian

E = H − H̄ = lim
Q→∞

1

8πGd

∮

SQ
t

[

−ǫ Qµ(Kγ
µν −Kµν)βν + α

(

(d−2)k − (d−2)̄k
)]

, (2.34)

where the Hamiltonian constraint H and momentum constraint M are dropped, since they vanish

at physical configurations. Also, at spatial infinities where there is asymptotic time translational

symmetry, the lapse function and the shift functions go to the form of the background spacetime.

However, as proved by Shi-Tam [90], the definition does not yield a positive definite energy

except for the time symmetric case (Kµν = 0). Also, the definition is gauge dependent. Yau and

Liu [91–93] defined another formula for energy, which is gauge independent, and can be positive

definite under certain conditions. However, our initial data is time symmetric which means the

definition by Brown-York and Hawking-Horowitz is sufficient. Also, we can still use the definition

by Brown-York and Hawking-Horowitz during evolution since the energy is characterized by the

asymptotic behaviour at spatial infinities, which is not affected by finite time evolution (i.e., the

local behaviour is not able to propagate to spatial infinities within a finite time evolution).
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2.4.2 Total Energy in the Braneworld with Axisymmetry

We assume the energy (2.34) is well-defined in the braneworld. In the braneworld, the spacetime

background is

ds̄2 =
ℓ2

z̄2

(

− dt̄2 + dr̄2 + dz̄2 + r̄2
(

dθ̄2 + sin2 θ̄dφ̄2
)

)

, where z̄ ≥ ℓ. (2.35)

A bar is used to denote the quantities associated with the background. For this background, the

lapse ᾱ = 1/z̄ and the shift β̄ν = 0. Therefore, (2.34) reduces to

E = lim
Q→∞

1

8πGd

∮

SQ
t

ᾱ
(

(d−2)k − (d−2)̄k
)

, (2.36)

which will be the definition of the energy of the braneworld.

To calculate the energy, we need to set a closed surface family SQ that goes to spatial infinity

as Q → ∞. The two requirements on defining the family are: (i) SQ goes to spatial infinity as

Q → ∞, and (ii) the closed surface is smooth to a certain degree so that the extrinsic curvature

(d−2)kαβ is well-defined at any point on SQ. In our case where the system has axisymmetry

(spherical symmetry on the brane) with coordinates (t, r, θ, φ, z) adapted to the symmetry, we may

choose the closed surface as, for example, Fig. 2.2(a). Quantities Q, u and v are the parameters

for defining the closed surfaces. Please refer to the capture of the figure for the details.

Without loss of generality, the spatial metric of any t = constant slice can be

dl2 =
ℓ2

z2
[

e2A+2B
(

dr2 + dz2
)

+ e2A−2Br2
(

dθ2 + sin2 θdφ2
)]

. (2.37)

The brane is located at z = ℓ. This is the most general spatial metric for the axisymmetric

configuration because, by taking the symmetry into account, the most general form can take

dl2 =
ℓ2

z2
[

η̃rrdr
2 + η̃zzdz

2 + 2η̃rzdrdz + r2η̃θθ
(

dθ2 + sin2 θdφ2
)]

. (2.38)

For a given t = constant slice, everything only depends on r and z, therefore η̃rrdr
2 + η̃zzdz

2 +

2η̃rzdrdz can transform into a conformally flat form. Lastly, the freedom in the conformal function,

can be used to fix the brane at z = ℓ [14, 47].

To calculate the energy, we embed SQ
t into the background spacetime (2.35). In general, it is

not guaranteed that such embedding is possible for an arbitrarily chosen closed surface, although it

turns out all the closed surfaces considerred in this thesis could be embedded into the background
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r

z

(r = 0, z = 1)

(I)

(II)

Q

(III)

r

z

(r = 0, z = 1)

(a) (b)

(I)

Q

(II)

(III)

Figure 2.2: The closed surfaces to calculate total energy and energy in the bulk. Diagram (a) is
used to calculate the total energy. z = 1 is where the brane is located. The system is spherically
symmetric on the brane and r is the radius of the spherical coordinate. The closed surface is
composed of three segments: segment (I) starts at r = Q and its coordinate length (measured by
the coordinate z) is v ·Q. The length of segment (III) is u ·Q. Here u ∈ (0, 1) and v ∈ (0, 1) and
their values are fixed for a specific closed surface family. Segment (II) is an arc (a quarter of a circle
whose radius is (1−u) ·Q)) to connect these two segments smoothly. The small segment below the
brane is to show that there is another part below the brane which is related to the said part by Z2

symmetry. Note, the closed surface should goes smoothly across the brane (i.e. the closed surface
is perpendicular to the brane). In general case this perpendicular surface is not represented by
r = constant. When the coordinate gauge at the brane is taken to be perpendicular gauge (2.7)
so that grz

∣

∣

z=ℓ
= 0, this surface is represented by r = constant. Diagram (b) is to add two dashed

lines (along the brane) onto diagram (a). The use of (b) is going to be explained in Sec. 2.6.
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2.4. Energy in the Braneworld

spacetime. The embedding is a mapping from SQ
t in the physical spacetime to its image in the

background spacetime by keeping the intrinsic geometry of the closed surface. i.e. the intrinsic

geometry of the image of SQ
t in the background spacetime is the same as the intrinsic geometry

of SQ
t in the physical spacetime. There is a freedom in this mapping (which is “where we put the

image”), and we fix this freedom by naturally mapping the intersection of the closed surface with

the brane in the physical spacetime to the brane of the background spacetime

z̄|z=ℓ = ℓ. (2.39)

For a closed surface in the physical space with metric (2.38), the embedding into the background

0.2 0.4
1

1.2

1.4

1.6

B

D

C

A

r

z

(a)

0.2 0.4 0.6
1

1.2

1.4

1.6

1.8

B̄

D̄

C̄

Ā

r̄

z̄

(b)

Figure 2.3: The embedding of a closed surface. Fig. (a) is the closed surface in the physical
spacetime (2.38), and Fig. (b) shows its embedding into the background spacetime (2.35). The
freedom of the embedding is fixed by mapping A to Ā.

space (2.35) is demonstrated by Fig. 2.3. The embedding boils down into the following two condi-

tions:

(1) On the r − z plane, an point B (see Fig. 2.3) on the closed surface, represents a 2-sphere

expanded by coordinates (θ, φ), whose proper area is 4πr2η̃θθ/z
2. The area of the 2-sphere at
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2.4. Energy in the Braneworld

B̄ (the image of B in the background spacetime) is 4πr̄2/z̄2, therefore

r2

z2
η̃θθ =

r̄2

z̄2
. (2.40)

(2) C is a point on the closed surface that is infinitesimally close to B. Let us denote the coor-

dinates of B by (r, z), and denote the coordinates of C by (r + dr, z + dz). The square of

the length of the infinitesimal line is
(

η̃rrdr
2 + η̃zzdz

2 + 2η̃rzdrdz
)

/z2. Correspondingly, the

coordinates of their images (B̄ and C̄) are (r̄, z̄) and (r̄ + dr̄, z̄ + dz̄), and the square of the

length of the infinitesimal line is
(

dr̄2 + dz̄2
)

/z̄2. The equality of these two lengths reads

1

z2
(

η̃rrdr
2 + η̃zzdz

2 + 2η̃rzdrdz
)

=
1

z̄2
(

dr̄2 + dz̄2
)

. (2.41)

Here we emphasize that the infinitesimal line is taken along the closed surfaces. The condition

“along the closed surface” defines how dr and dz are related (also defines how dr̄ and dz̄ are

related).

The freedom related to “where to put the images” is fixed by mapping A (the point of the closed

surface on the brane) to Ā (the point of the closed surface on the brane).

For metric (2.37), these two conditions reduce to

r2

z2
e2A−2B =

r̄2

z̄2
, (2.42)

1

z2
e2A+2B

(

dr2 + dz2
)

=
1

z̄2
(

dr̄2 + dz̄2
)

. (2.43)

For background metric (2.35), the lapse funtion to evaluate (2.34) is ᾱ = ℓ/z̄ and the shift

function is β̄µ = 0.
∮

SQ
t

(

α · (d−2)k
)

diverges and the divergence is cancelled by the divergence in
∮

SQ
t

(

α · (d−2)̄k
)

. Noticing the ℓ2/z2 factor, we examine whether the contribution from segment (II)

and segment (III) in Fig. 2.2(a), vanishes as Q → ∞. In fact, one can show by direct calculation

that
∮

SQ
t

(

α · (d−2)k
)

from segment (II) (the arc) converges to zero as 1/Q, as long as A and B con-

verge to zero (at any rate) as Q → ∞, so does
∮

SQ
t

(

α · (d−2)̄k
)

. Therefore
∮

SQ
t
α
(

(d−2)k − (d−2)̄k
)

,

the contribution to the total energy, converge to zero at least as fast as 1/Q. The same argument

also applies to segment (III). Therefore, only the r = Q segment contributes to the total energy. Or

within the bulk, only the region r ≫ z, contributes to the total energy.
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2.4. Energy in the Braneworld

Now we complete the proof by proving the claim “
∮

SQ
t

(

α · (d−2)k
)

from segment (II) and seg-

ment (III) converges to zero as 1/Q”. The calculation on segment (III) is similar to the calculation

on segment (II). Furthermore, acually segment (III) does not need to exist to define the closed

surface, if we take u = 0. For conciseness, here we only present the calculation on segment (II)

(the arc).

The metric is (2.37), where r and z along the arc can be parametrized as r = uQ+ ρ cosχ and

z = 1 + vQ+ ρ sinχ, where ρ = (1− u)Q,χ ∈ [0, π/2]. A direct calculation gives

lim
Q→∞

∮

SQ
t

(

α · (d−2)k
)

= 8π lim
Q→∞

∫ π/2

0

dχ e2A−2B 1

z3
(ξ1 + ξ2)

= 8π lim
Q→∞

∫ π/2

0

dχ
1

z3
(ξ1 + ξ2) . (2.44)

Here ξ1 ≡ −r2 − 2rρ cosχ+ (3r2ρ sinχ)/z and it is easy to numerically check

∫ π/2

0

dχ (ξ1/z
3) ∝ 1/Q.

ξ2 ≡ r2ρ (−3A,ρ +B,ρ), and A,ρ and B,ρ converge to zero at least as fast as 1/ρ since this cor-

responds to A ∼ log ρ and B ∼ log ρ, whilst the reality is A → 0 and B → 0 when ρ → ∞.

Therefore
∫ π/2

0

dχ (ξ2/z
3)

converges to zero at least as fast as

∼
∫ π/2

0

dχ (r2/z3) ∝ 1/Q.

This completes the proof.

Another potential contribution to the total energy is the “cusp” of the closed surface across the

brane, if there is any. Within the physical spacetime, we can properly choose the closed surface

such that it crosses the brane smoothly. Under the coordinate gauge grz
∣

∣

z=ℓ
= 0, the smoothness

condition is equivalent to dr/dz
∣

∣

z=ℓ
= 0, where the derivative is taken along the trajectory of the

closed surface in the r − z plane. This condition is satisfied by the surface specified by r = Q.

Within the background spacetime, the smoothness condition is equivalent to dr̄/dz̄
∣

∣

z̄=ℓ
= 0. If we

use z as the parameter of the trajectory in the r̄ − z̄ plane of the background spacetime, we have

dr̄/dz̄ =
dr̄/dz

dz̄/dz
,
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where the derivatives are taken along the trajectory of the closed surface in the r̄ − z̄ plane of

the background spacetime. Therefore the condition dr̄/dz̄
∣

∣

z̄=ℓ
= 0 is just dr̄/dz

∣

∣

z̄=ℓ
= 0. If this

condition is met, there is no cusp (therefore no contribution to the total energy) across the brane.

In fact, since we will take Q → ∞ eventually, it is sufficient to examine whether this condition

is satisfied by only keeping the lowest order of A and B in the expressions. However, condition

dr̄/dz
∣

∣

z̄=ℓ
= 0 is generally not gauranteed. A direct calculation from eq. (2.42) and eq. (2.43)

yields

dr̄/dz
∣

∣

z̄=ℓ
≈ r · (A+A,z +B −B,z)

∣

∣

z=ℓ
, (2.45)

where ≈ means this relation is true up to the lowest order in A and B. In general, it is hard to

say whether this term vanishes. However, in the conformally flat space that we are going to study

in the next subsection (Sec. 2.4.3), the smoothness condition is indeed satisfied (see eq. (2.53)).

Furthermore, we will obtain a relation between the total energy of the whole braneworld, and the

ADM energy calculated based on the brane geometry.

2.4.3 Total Energy in Conformally Flat Space of the Braneworld

A general way to realize the embedding is to encode the two conditions (eq. (2.42) and (2.43))

into numerical methods. However, if we take into account the asymptotic behaviours of A and B

in the following special case, the embedding and the calculation of total energy can be obtained

analytically without using numerical methods.

We consider a special case by assuming B ≪ A in r ≫ z region 8. In this region, the spatial

metric reduces to

dl2 =
ℓ2

z2
e2A

(

dr2 + dz2 + dθ2 + sin2 θdφ2
)

, (2.46)

for which the Hamiltonian constraint is (under the unit ℓ = 8πG5 = 1, which implies 8πG4 = 1

via (1.37))

(∂rr + ∂zz)A+
2

z2
(

1− e2A
)

+
2A,r

r
− 2A,z

z
+ (A,z)

2 + (A,r)
2 = 0, (2.47)

and Israel’s junction condition is

A,z

∣

∣

z=ℓ
= 1− eA. (2.48)

In the r ≫ z region (which is the only region that contributes to the total energy as proved above),

8This condition was observed (i.e. a posterior result, rather than a prior assumption) in static star solutions [47].
This condition holds in a solution for small static BHs [14]. This condition is also compatible with Hamiltonian
constraint [48]. This condition will also turn out to hold in one version of our initial data (see Chap. 4).
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eq. (2.47) reduces to the following by taking only the linear term in A

(∂rr + ∂zz)A− 4A

z2
+

2A,r

r
− 2A,z

z
= 0, (2.49)

with linearized Israel’s condition as

A,z

∣

∣

z=ℓ
= −A. (2.50)

The Hamiltonian equation (2.49) subject to boundary condition (2.50) can then have an solution

with closed form

A ≈ α1

rz
, (2.51)

here we use ≈ to emphasize that this solution is only true at r ≫ z region.

Remark: this solution satisfies the linearized Hamiltonian constraint subject to the linearized

Israel’s boundary condition, and the boundary condition at r → ∞. However, there is no proof

regarding uniqueness. Therefore, we should justify (2.51) is indeed a solution via the result obtained

by numerical calculation, which is going to be carried out in Sec. 4.3.3.

In physical spacetime, the coordinates of the r = Q surface are now (z, θ, φ). We will find

the metric of the corresponding surface in the background spacetime expressed under coordinates

(z, θ, φ) as well. The two conditions of the embedding are now

r̄

z̄
=

r

z
eA; (2.52a)

(r̄′)2 + (z̄′)2

z̄2
=

e2A

z2
. (2.52b)

where r = Q is a fixed value, and ′ denotes d/dz. Eq. (2.52) is the ODE set that defines r̄(z)

and z̄(z) for fixed r, subject to the “initial” value z̄
∣

∣

z=1
= 1. By construction, the r = Q surface

in physical space and r = Q surface in background space have the same intrinsic metric, and the

coordinates of the surfaces are the same one: (z, θ, φ). It is then straightforward to carry out

(2.34). Note the shift functions are asymptotically zeros and the lapse function is asymptotically

1/z̄ for background (2.35).

The solution of the ODE set by keeping the lowest order in A is

z̄ = z · exp
[

α1(z − 1)

rz

]

; r̄ = r · exp
(α1

r

)

. (2.53)

It is then a routine work to carry out the calculation of total energy using (2.34). Here we only
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list some important intermediate results

Mtotal =
1

8πG5
lim

Q→∞

∫

SQ
t

α
(

(d−2)k − (d−2)̄k
)

=
1

8πG5
· 2 · 4π · lim

Q→∞

∫ vQ

1

dz Q α
(

(d−2)k − (d−2)̄k
)

=
1

8πG5
· 24πα1

∫ ∞

1

dz

z4
= α1/G5. (2.54)

The factor 2 in the second line is due to the Z2 symmetry with respect to the brane in RSII;

4π is from the integration over (θ, φ); Q is the determinant of the intrinsic metric of the surface:

Q = e3Ar2/z3; and we have used (d−2)k = −2z/r + 5α1/r
2, (d−2)̄k = −2z/r + 2α1/r

2; r = Q;

α = eA/z.

Also, from the expressions one see that, the result would have diverged as∼ Q, if the background

term (d−2)̄k is absent.

2.5 ADM “Mass” and Hawking “Mass” of the Brane

Due to the equivalence between mass and energy, we use these two words interchangeably.

As will be explained in Sec. 2.6, the masses calculated based on the brane geometry, are not

really energies on the brane, from braneworld point of view. Actually they play no direct roles in

braneworld, therefore we put “mass” in quotes in the title of this section. The purpose of studying

these quantities is to compare the braneworld with GR to examine whether there are observational

differences. In previous sections, the dimension of the spacetime is arbitrary. In this section, we

only consider 3+1 dimensional spacetime (the brane).

We will first introduce ADM mass and Hawking mass in Sec. 2.5.1 and Sec. 2.5.2, then we will

derive the ADM mass in the conformally flat space (2.46).

2.5.1 ADM Mass

The ADM mass is introduced in standard texts [29, 32, 36]. One way to obtain it is to use

(2.34) by setting the lapse α = 1 and the shift βµ = 0 [36]. Note the ADM mass is only defined

when the background is asymptotically flat. Applying (2.34) to a asymptotically flat spacetime,

the ADM mass reduces to [36]

MADM =
1

16πG4
lim

Q→∞

∮

SQ
t

[

D̄
iqij − D̄i

(

q̄klqkl
)]

si, (2.55)
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where qij is the spatial metric, and i, j = 1, 2, 3 is the spatial coordinate index. q̄ij is the (flat)

background metric, and D̄ is the covariant derivative associated with q̄ij . s
i is the unit normal

vector of SQ
t pointing outwards, which was denoted as Qα in (2.34).

Note, only the spatial metric is needed in the definition.

For the spherical symmetric case, the metric can always be rewritten as

dl2 = grrdr
2 + r2

(

dθ2 + sin2 θdφ2
)

, (2.56)

in spherical coordinate (r, θ, φ), where r is the areal radius. In this situation the ADM mass can

be derived to be

MADM = lim
r→∞

Madm, (2.57)

where

Madm =
r

2G4

(grr − 1)√
grr

, (2.58)

which is defined as the integrand in (2.55). In the special case of Schwarzschild metric where

grr = (1− 2mG4/r)
−1

, Madm = m/
√

1− 2mG4/r, which has r dependence. Within the horizon,

2mG4/r > 1, therefore this quantity is not well-defined within the horizon.

2.5.2 Hawking Mass

The Hawking mass is defined on two dimensional surfaces S with spherical topology, and it

characterizes the mass in the space enclosed by the surface. The Hawking mass is described in terms

of spin-coefficient formalism, for which please refer to [83, 85, 86]. In terms of spin-coefficients, the

Hawking mass is defined as

MH =

√

A
16πG2

4

(

1 +
1

2π

∮

S

ρρ′dS

)

, (2.59)

where A is the area of S. The ρ and ρ′ are two of the spin-coefficients

ρ =
1

2
√
2
mαβ∇α (nβ + sβ) =

1

2
√
2
Θ+, (2.60a)

ρ′ =
1

2
√
2
mαβ∇α (nβ − sβ) =

1

2
√
2
Θ−, (2.60b)
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where Θ± are defined in (2.13). Substituting (2.60a) and (2.60b) back into (2.59), we get

MH =

√

A
16πG2

4

(

1 +
1

16π

∮

S

Θ+Θ−dS

)

. (2.61)

At an apparent horizon Θ+ = 0, therefore the following mass-area relation holds at the apparent

horizon

MH =

√

A
16πG2

4

. (2.62)

In the case of spherical symmetric metric (2.56), the Hawking mass is calculated as

MH =
r

2G4

(

1− (grr)
−1
)

, (2.63)

where we have used

Θ+ = −Θ− =
2

r

√

(grr)
−1,

which are directly calculated by applying the definitions (2.13) to metric (2.56). However, the

calculation of Θ’s depends on the time components of the metric too. This result is only valid in

case the configuration is time symmetric (where the extrinsic curvature of t = constant hypersurface

is zero). This motivates us to give (2.63) a new notation Mh, which agrees with MH in the time

symmetric case.

In the special case of Schwarzschild metric where grr = (1− 2mG4/r)
−1

, MH = m and has no

r dependence.

2.5.3 The ADM “Mass” of the Conformally Flat Space

Let us now apply the ADM mass or Hawking mass for the conformally flat space (2.46). First

let us rewrite it in terms of the areal radius r̃, which is defined as the radius associated with the

area of the r = constant surface. Therefore

r̃ = reA. (2.64)

Rewrite (2.46) in terms of r̃, we have

dl2brane = (1 + rdA/dr)−2 dr̃2 + r̃2
(

dθ2 + sin2 θdφ2
)

, (2.65)

58



2.6. A Quest for Brane Energy

which is the spatial metric on the brane. Substitute in the asymptotic behaviour of A at z =

1, r ≫ 1: A ≈ α1/rz = α1/r, we have

dl2brane = (1− α1/r)
−2 dr̃2 + r̃2

(

dθ2 + sin2 θdφ2
)

.

Substitute this into (2.58) or (2.63), we obtain the brane ADM mass as

MbraneADM = α1/G4. (2.66)

Comparing this with eq. (2.54), we obtain a somewhat surprising result

Mtotal = (G4/G5) ·MbraneADM. (2.67)

2.6 A Quest for Brane Energy

There is energy exchange between the bulk and the brane. To quantitatively describe the

energy exchange, we need to define the energy in the bulk, and the energy on the brane. Basically

only the energy in the bulk, or the energy on the brane, is sufficient since the other can be defined

by subtraction from the total energy.

To serve as the energy of the brane, an expression should satisfy:

(1) its value is a part of the total energy. This rules out the ADM mass defined based on the

brane geometry since it is equal to the total energy for a class of space configurations. Please

refer to eq. (2.67).

(2) it is not conserved during the evolutions, because of the energy exchange between the brane

and the bulk. This requirement rules out any quasi-local definition on the brane, such as the

ADM mass and Hawking mass evaluated from brane geometry. This is because, the quasi-local

energies are defined as the limit at spatial infinities utilizing the time translational symmetry

at spatial infinities, therefore conserved.

The definition of an energy, especially that for the brane, is subtle and this section is to request

the study of energy on the brane, rather than providing a solution. The reader can skip this

section from here since the following is an attempt (that has conceptual issue) rather than a result,

although the attempt turns out to have surprisingly good features exhibiting in the simulations we

carried out.
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We would like to search the definition from the Hamiltonian-Jacobi analysis described above.

Since the energy of a certain region is defined as an integration over the boundary enclosing the

region, if this concept could be generalized (which actually can not), we can tentatively define

the energy of the bulk as the integration of (2.34) over the closed surface of Fig. 2.2(b). i.e. we

enclose it along the brane. The difference, which is the integration of (2.34) along the brane, can

be accordingly defined as the energy on the brane.

However, without going into the details, we know this tentative definition is problematic for the

following reasons. There is a sharp corner in the surface, where the extrinsic curvature is infinite

and the integration of the extrinsic curvature over the corner can be indefinite. In the background

spacetime, integrating along the brane makes sense physically. There is a requirement, however,

that the surface is embedded into the background so the intrinsic metric of the surface stays the

same, which can not be met for any non-trivial brane. Or alternatively, we keep the “embedding”

requirement, but then we have to give up the “integrating along the brane” in background spacetime

(which also means we give up the freedom fixing condition (2.39).). Also, since this is a definition

regarding an integration on the brane, which will fail when there is a physical singularity on the

brane. Therefore this definition can not be treated seriously. It is only a (very) rough description.

We hope the resulting quantity changes monotonically with the amount of the energy exchanged

between the brane and the bulk.

In the simulation (presented in Chap. 5), we will choose the brane to be the surface in the

background spacetime. i.e. we give up the requirement that the intrinsic metric of the surfaces

in physical spacetime and background spacetime are the same. (2.42) and (2.43) are the two

requirements for embedding, and we have to keep one of these to make the definition unambiguous.

Here we choose to keep (2.42) because it is simpler and also because the areal radius still makes

sense when there is a physical singularity (where condition (2.43) fails).

Considering requirement (2.42), it is natural to express the energy in terms of spherical coordi-

nate (r̃, θ, φ) with r̃ as the areal radius, where the physical metric is dl2 = gr̃r̃dr̃
2+r̃2

(

dθ2 + sin2 θdφ2
)

.

Since this definition only includes the integration on the brane, we may rewrite it as

Ebrane =
1

8πG5

∫

B

α
(

(d−2)k − (d−2)̄k
)

, (2.68)

= lim
Q→∞

1

8πG5

∫ Q

0

dr̃

∫ π

0

dθ

∫ 2π

0

dφ
√

det[q] α
(

(d−2)k − (d−2)̄k
)

. (2.69)

where r̃ = r̄ is the areal radius and r̄ is the areal radius in the background space. q is the spatial

metric of the brane (in physical spacetime) and we have
√

det[q] = r̃2 sin θ
√
gr̃r̃. B stands for the
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spatial part of brane manifold (in physical spacetime). Please note it is G5 (rather than G4) in

the expression, and α is the lapse in 5D restricted on the brane, rather than the lapse function

calculated from brane geometry. (d−2)k is the extrinsic curvature of the 3-brane embedded in 4D

spatial bulk. Note a crucial feature of this energy is that, it is an integration over B, and its

meaning is the energy over B. i.e. it might be possible to think of energy density, which is actually

(spatial) coordinate independent on the brane. Noticing the second requirement of the energy on

the brane (that the definition should not be semi-local), this definition might have captured a key

feature.
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Chapter 3

Axisymmetric Spacetime with

Non-Flat Background

The cost of numerical computation increases dramatically with the number of dimensions. This

is usually called the curse of dimensionality. To date, it is impractical to directly perform numerical

calculations in 4 + 1 dimension at a reasonable resolution, or study problems with the demand of

high resolution (such as critical phenomena) in more than (effectively) 2+1 dimension. Therefore,

one of the first steps to study a physical system in higher dimensional spacetime, is to consider

the system with some kind of symmetry, such as spherical symmetry and axisymmetry, to reduce

the effective dimension.

However, in many situations, singularities, instabilities, unavoidable noises or other irregulari-

ties, arise in the numerical calculations performed under the coordinates adapted to the symmetry,

either at the origin or at the axis of the symmetry ([50] and references therein). On the other hand,

this kind of issue does not occur in the simulations of the same system performed under Cartesian

coordinates. This kind of behavior is called the regularity problem in non-Cartesian coordinates.

To make the discussion and presentation smoother, we will only mention axisymmetry below,

which also applies to spherical symmetry.

Where does the irregularity come from? Since the irregularity appears in cylindrical coordinates

or spherical coordinates rather than Cartesian coordinates, it is widely believed that the irregularity

comes from coordinate system choice ([50] and references therein). The terms involving 1/rn (where

r symbolically stands for the radius coordinate in spherical coordinates or cylindrical coordinates)

often appears in the equations, and it is widely believed that, with or without machine precision

playing a role, these terms are responsible for the irregularity [50].

What we do differently in this thesis is to make distinction between the coordinate system, and

the fundamental variables—the unknown functions to be solved for—used in simulation (which are

usually the components of tensors and pseudo-tensors), and reveal that the fundamental variables

(rather than the coordinate system, or the operators in the coordinate system) are responsible
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for irregularities. In particular, neither 1/rn-terms nor machine precision, is relevant to regularity

problem. Therefore the regular results obtained from simulations performed in Cartesian coordi-

nates, are actually due to the fact that the tensor (and pseudo-tensor) components are regular in

Cartesian coordinates, rather than the regularity of Cartesian coordinates itself. As one will see in

this chapter, actually it does not make sense to talk about the regularity of a coordinate system.

The key to avoid irregularity issue in any coordinate system, is to construct tensors (and pseudo-

tensors) in terms of regular variables that are compatible with the finite difference approximation

(FDA) scheme at the vicinity of the axis (or the origin). There are many ways to express tensors

(and pseudo-tensors) in terms of regular variables. To embody the construction, we present a

general method to construct regular variables out of Cartesian components (which play the role

of regular variables). The method can, for example, enable the generalized harmonic formalism

to be used in non-Cartesian coordinates. Then we analyze why certain other formalisms in the

literature can avoid regularity issue as well.

Utilizing the knowledge obtained in studying regularity problem, the evolution schemes such

as the generalized harmonic formalism and the BSSN formalism of GR can be rewritten under

general coordinates which overcome the irregularity issue. On the other hand, there is another

problem associated with the braneworld: the asymptotic spacetime background of braneworld is

not flat, while the existing knowledge in the literature are only for asymptotically flat spacetimes.

It is not clear how to setup the source functions (of the GH formalism) in the braneworld. The

second part of this chapter is devoted to solving the non-flat background problem.

3.1 Regularity Problem and Our Conjecture

Very often (but not always), the numerical calculations performed in cylindrical coordinates

adapted to axisymmetry, generate irregularities in the vicinity of the symmetry axis, but the same

calculations performed in Cartesian coordinates do not generate irregularities. This phenomena

is called the regularity problem. The irregularity, can appear as: (i) singularity in certain funda-

mental variables used in numerical calculations in which situation the code would crash and the

fundamental variables would not converge, or (ii) non-smoothness of certain fundamental variables,

or (iii) smooth fundamental variables which do not converge at the expected order — i.e. they can

not pass the independent residual tests.

In this section, we will first introduce the existing analysis of regularity problem, then identify

some of the existing methods that can overcome regularity problem, then we will declare a conjec-
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ture regarding the true source of the problem. We back up the conjecture by a detailed analysis

of the deviation between the numerical results and the analytical results, which reveals the second

key element to yield regular results.

3.1.1 The Existing Analysis and The Existing Solutions

Let us take a specific example as the carrier of the existing analysis: the wave equation of a

scalar field Φ in 3+1 (flat) spacetime with axisymmetry. (x, y, z) are the Cartesian coordinates,

and (ρ, φ, z) are the cylindrical coordinates. The equation of motion is

(

∇2 − ∂tt
)

Φ = (∂xx + ∂yy + ∂zz − ∂tt)Φ =

(

∂ρρ +
1

ρ
∂ρ + ∂zz − ∂tt

)

Φ, (3.1)

where we have applied the fact that the space is axisymmetric so that the φ-derivatives are zeros.

It is “obvious” that the term (1/ρ)∂ρΦ was singular and it was widely believed ([50] and references

therein) that terms like this were responsible for regularity problems.

Based on the analysis, the crucial step to cure irregularity was to modify the differential op-

erators so that terms like 1/rn did not appears. There are quite a few widely-used techniques to

cure the regularity problem. Among these techniques, a class of methods called Cartoon meth-

ods [50, 61], utilize the observation that “there is no regularity issue in Cartesian coordinates” to

modify the operators in a way so that the operators are effectively Cartesian.

x

y

Figure 3.1: The demonstration of the cartoon method. The system is axisymmetric with respect
to z axis. For stencils which involve three grid points, only three slices are needed: the y = 0 slice,
the one above it and the one below it. Note, this diagram is from [50].

The Original Cartoon Method

The original cartoon method [50] was proposed by Alcubirre et al in 1999. Here I will again use

a scalar field Φ to demonstrate the basic ideas. The physical space is three dimensional space, with
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3.1. Regularity Problem and Our Conjecture

(x, y, z) being the Cartesian coordinates, and the system is axisymmetric with respect to z axis.

Analytically, only one slice, say the y = 0 slice, is needed to include all the information because of

the axisymmetry. Numerically, the cartoon method is trying to use only y = 0 slice as well. The

method can be implemented via the following four steps.

(1) Write the code using equations expressed in Cartesian coordinates.

(2) Use only the y = 0 slice. Of course, this is impossible in Cartesian coordinates, since the

discretization of derivatives with respect to y needs more than one slices in the y direction. To

be specific, let us assume the equations consist of second order derivatives at most, and the

discretization is of the second order accuracy. In this situation, the stencil only needs three

grid points to do the finite difference approximation for the differential operators (Fig. 3.1).

However, the function values on the upper and the lower slices are not known.

(3) Obtain the function values on the upper and the lower slices by numerical interpolation con-

structed from the values within y = 0 slice, utilizing the axisymmetry. The process is shown

in Fig. 3.1.

(4) Replace the function values on the upper and the lower slices, by the interpolated values

obtained in step (3), and then substitute into the discretization.

From these four steps, operators such as 1/rn are avoided, and only Cartesian operators are directly

used.

The Lie Derivative Cartoon Method

In the third step of the original cartoon method, in order to get derivatives with respect to

y, numerical interpolation is used. The Lie derivative cartoon method [61] improves this, by

analytically replacing these derivatives by those within the y = 0 slice. For the particular example,

using the fact x∂y − y∂x being the Killing vector, we have

∂yΦ =
y

x
∂xΦ.

Taking derivatives with respect to y on both sides, we have

∂yyΦ =
1

x
∂xΦ +

y

x
∂xyΦ.
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3.1. Regularity Problem and Our Conjecture

The laplacian ∇2Φ can then be evaluated at the y = 0 plane as

∇2Φ = (∂xx + ∂yy + ∂zz)Φ =

(

∂xx +
1

x
∂x +

y

x
∂xy + ∂zz

)

Φ

∣

∣

∣

∣

y=0

=

(

∂xx +
1

x
∂x + ∂zz

)

Φ. (3.2)

The derivatives in y direction are replaced by the derivatives within the y = 0 slice, on the analytical

level (rather than numerical level in the original cartoon method).

Background Removal Method

The cartoon method is a general approach to solve regularity problem, which can be used in

any formalism of GR. On the other hand, Brown [97] and Gourgoulhon [36] developed a method to

rewrite the BSSN and generalized harmonic formalisms, by a background removal method, which

will be described in detail in the following sections. The same method was also applied in [21]

to solve static problems using Ricci-DeTurck flow methods. The simulation using this rewritten

BSSN formalism in spherical coordinates “turned out to be” regular [56]. However, the authors

did not analyze why this method is regular. Sorkin-Choptuik [54, 55] used a different method

to remove the background effect, which again “turned out to be” regular, without analyzing the

reason.

3.1.2 The Conjecture: Variables Rather Than Coordinates

Various other attempts on the solution to regularity problem had been proposed (see [50] and

references therein) and they were not very successful until the cartoon method appeared. The

cartoon method is a general method that solves the regularity problem, and there exist other

methods which overcome the regularity problem as well[36, 71, 97]. Here we will take a closer look

and provide a deeper understanding of the topic. The understanding can serve as a criteria and

a guideline to develop regularized formalisms, and can potentially completely solve the regularity

problem associated with coordinates.

We start from the facts rather than speculations:

(1) The Lie derivative cartoon method works well [61–63].

(2) 1/x still appears in eq. (3.2) which was produced based on Lie derivative cartoon method.

(3) Eq. (3.2) is the same as (3.1) (equation in cylindrical coordinates), if x is identified with ρ.

(4) Certain background removal methods (performed in non-Cartesian coordinates) [36, 54, 55, 97]

are free from regularity issues.
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(5) There exist many successful simulations with 1/rn terms (many references, e.g: [59, 61–63, 71]).

(6) All in all, a multiplication by 1/rn terms does not change the numerical feature. (ρ · ∂ρρ + ∂ρ)Φ

is not problematic, therefore (∂ρρ + ∂ρ/ρ)Φ should be as safe.

These facts lead me to ask whether the spherical/cylindrical coordinates were the sources of

the problem, and ask the question: does the regularity issue come from the terms (1/rn) in

the operators associated with the coordinate system, or somewhere else such as the fundamental

variables being used in numerical simulation?

In fact, if we take a closer look at the difference between the past simulations in cylindrical

coordinates and those in Cartesian coordinates, the situation is either to use cylindrical components

(of tensors and pseudo-tensors) under cylindrical coordinate, or to use Cartesian components

under Cartesian coordinates. i.e. whenever one switches from cylindrical coordinates to Cartesian

coordinates, he also “naturally” switches the fundamental variables from cylindrical components

to Cartesian components. i.e. he has performs two changes: change of coordinates, and change of

fundamental variables. It is not clear whether the regular results obtained from simulations under

Cartesian coordinates, are due to the change of coordinates, or due to the change of fundamental

variables. All the previous studies, including those yielding regular results, did not make the

distinction between the effects from coordinates and the effects from fundamental varibles. Here we

will make the distinction and make the conjecture: The regularity issue come from the fundamental

variables used in simulation, rather than the operators associated with coordinate systems.

According to the conjecture, the fact that simulations in Cartesian coordinates with Cartesian

components are regular, is because the Cartesian components (of tensors and pseudo-tensors) are

regular, rather than “Cartesian coordinates are regular”, or “operators in Cartesian coordinates

are regular” 9. According to the conjecture, the key to avoid regularity issue, is to express various

tensors and pseudo-tensors in the equations in terms of regular functions10. In the following, we

will first construct regular functions out of Cartesian components, then construct an example as a

direct test to our conjecture.

9According to the conjecture, the fact that the cartoon methods produce regular simulations, is because the
Cartesian components (of tensors and pseudo-tensors) are used as fundamental variables, rather than that the
operators are made effectively Cartesian.

10According to the conjecture, eq. (3.1) should be free from regularity problem. The simulation confirms this
claim.
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3.1.3 Cartesian Components Method

It is fairly easy to express a tensor in terms of regular components and there are multiple ways

to achieve this. As a specific example, here we adopt a “canonical” approach: since the Cartesian

components are regular, one way to express tensors in terms of regular components, is to rewrite

tensors in cylindrical coordinates in terms of the (regular) Cartesian components, using the basic

tensor transformation relation. Since there is a geometrical relation between Cartesian coordinates

and cylindrical coordinates, we will do the coordinate transformation at certain region of the space,

such that the radius coordinate ρ (or r) coincides with one of the Cartesian coordinates (refer

to Fact 3 in Lie derivative cartoon method above), and the functional forms in the cylindrical

coordinates, are the same as that in the Cartesian coordinates. Let us call this procedure as

Cartesian component method.

To clarify the concept and demonstrate the usage, let us take metric function in 3+1 dimension

as an example. We use indices “cylin” and “Cart” to indicate cylindrical and Cartesian, respec-

tively. The procedure to express tensors in terms of their Cartesian components in cylindrical

coordinates, comprises the following four steps.

(1) write down the most general form of the metric (according to axisymmetry) in cylindrical

coordinates (t, ρ, φ, z)

g(cylin) =

















g
(cylin)
tt g

(cylin)
tρ 0 g

(cylin)
tz

g
(cylin)
tρ g

(cylin)
ρρ 0 g

(cylin)
ρz

0 0 g
(cylin)
φφ 0

g
(cylin)
tz g

(cylin)
ρz 0 g

(cylin)
zz

















, (3.3)

(2) apply coordinate transformation

g(y)µν =
∂xα

∂yµ
∂xβ

∂yν
g
(x)
αβ , (3.4)

to transform this metric into its Cartesian coordinates (t, x, y, z) at the location (y = 0, x ≥ 0),

which is φ = 0 half plane in cylindrical coordinates, where the positive half of the x axis
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coincides with ρ. Now the metric in Cartesian coordinates at (y = 0, x ≥ 0) is

g(Cart) ≡

















ηtt ηtx 0 ηtz

ηtx ηxx 0 ηxz

0 0 ηyy 0

ηtz ηxz 0 ηzz

















(3.5)

=

















g
(cylin)
tt g

(cylin)
tρ 0 g

(cylin)
tz

g
(cylin)
tρ g

(cylin)
ρρ 0 g

(cylin)
ρz

0 0 g
(cylin)
φφ /x2 0

g
(cylin)
tz g

(cylin)
ρz 0 g

(cylin)
zz

















, (3.6)

where the first matrix is defined by

ηµν(t, x, z) ≡ g(Cart)
µν (t, x, y, z)

∣

∣

∣

y=0,x≥0
,

which is merely the restriction of Cartesian components onto (y = 0, x ≥ 0) half plane. The

second matrix is the calculation result of (3.3) via coordinate transformation relation (3.4).

(3) compare the components in (3.5) and (3.6), and rewrite the tensor in terms of Cartesian

components. Take the tt component as an example: the above relation tells us that ηtt(t, x, z) =

g
(cylin)
tt (t, ρ, z) for all ρ = x ≥ 0, therefore ηtt and g

(cylin)
tt have the same value at every (t, ρ, z),

which means they have the same function form in terms of x (and ρ). Since g
(Cart)
µν (t, x, y, z) is

regular, its restriction to (y = 0, x ≥ 0), ηtt(t, x, z), must be regular, which means g
(cylin)
tt (t, ρ, z)

is regular in cylindrical coordinates. Actually all functions are of the same form as the Cartesian

components, except for φφ component, for which we have g
(cylin)
φφ /x2 = ηyy (and remember,

x = ρ), and this relation suggests to rewrite the φφ component as ρ2ηyy.

(4) Finally we assemble components together to express the metric in cylindrical coordinates in

terms of Cartesian components. The metric in cylindrical coordinates can be written as

g(cylin) =

















ηtt ηtρ 0 ηtz

ηtρ ηρρ 0 ηρz

0 0 ρ2ηφφ 0

ηtz ηρz 0 ηzz

















, (3.7)
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which is the same as
















ηtt ηtx 0 ηtz

ηtx ηxx 0 ηxz

0 0 ρ2ηyy 0

ηtz ηxz 0 ηzz

















, (3.8)

with the subindices renamed. In the future we will denote this process roughly as

ηµν(t, ρ, z) ≡ g(Cart)
µν

∣

∣

∣

y=0=φ,x=ρ
(t, ρ, 0, z).

To this point the procedure of “expressing (metric) tensors in terms of their Cartesian compo-

nents” is complete. Afterwards, Einstein’s equations (and other tensorial equations) are expressed

in cylindrical coordinates to perform numerical calculations, which are regular.

Let us study how this method is related to Lie derivative cartoon method. The residuals of

Einstein’s equations are ℜµν ≡ Gµν − kdTµν . The following two equations are obtained by direct

calculation, via Lie derivative cartoon method and our Cartesian components method, respectively.

ℜLDC =

















ℜLDC
tt ℜLDC

tx 0 ℜLDC
tz

ℜLDC
tx ℜLDC

xx 0 ℜLDC
xz

0 0 ℜLDC
yy 0

ℜLDC
tz ℜLDC

xz 0 ℜLDC
zz

















, (3.9)

ℜCC =

















ℜCC
tt ℜCC

tρ 0 ℜCC
tz

ℜCC
tρ ℜCC

ρρ 0 ℜCC
ρz

0 0 ℜCC
φφ 0

ℜCC
tz ℜCC

ρz 0 ℜCC
zz

















=

















ℜLDC
tt ℜLDC

tx 0 ℜLDC
tz

ℜLDC
tx ℜLDC

xx 0 ℜLDC
xz

0 0 ρ2ℜLDC
yy 0

ℜLDC
tz ℜLDC

xz 0 ℜLDC
zz

















, (3.10)

where LDC stands for Lie derivative cartoon method, and CC stands for our Cartesian components

method. LDC is expressed under Cartesian coordinates, while CC is expressed under cylindrical

coordinates. The result means, with identifying x = ρ, the two residuals are the same, except

for a multiplication of ρ2 in the φφ components in cylindrical coordinates. However, as explained

in fact (6), or Sec. 1.6, a multiplication of a smooth, non-zero function onto a residual equation,

does not change the numerical properties of the numerical calculation. Therefore, our Cartesian

component method is the same as Lie derivative cartoon method via a different approach under

different philosophy.

This agreement is not surprising. We can actually “prove” it as the following: both the Lie
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derivative cartoon method and our Cartesian components method, are expressing the same tensor

(the Einstein tensor) under the same coordinates (with identifying x with ρ), at the same physical

location (y = 0 = φ, x = ρ ≥ 0), using the same variables (Cartesian components), therefore the

results from the two methods must be the same.

In the end, we reiterate that there are multiple ways to express tensors in terms of their regular

components (such as the example with a superficially singular metric in Sec. 3.4, or background

removal method in generalized harmonic formalism and BSSN formalism to be introduced below).

Here expressing the metric (and other tensors or pseudo-tensors) in terms of their Cartesian com-

ponents using the transformation relation of tensors and pseudo-tensors, is just a specific example

to obtain regular components.

Also, the above example can actually be improved: using local flatness [52] at ρ = 0, the above

ηφφ can be replaced by ηρρ + ρW with W |ρ=0 = 0 (or replaced by ηρρ + ρ2W with W,ρ|ρ=0 = 0).

The local flatness condition can also be obtained by the procedure in Sec. 3.1.4.

3.1.4 Results for General Symmetric Tensors

In GR, the governing equations Gµν = kdTµν are symmetric tensors of (0, 2) type (i.e. tensors

with two “downstairs” indices). As long as we know how to deal with symmetric tensors of (0, 2)

type, we know how to deal with Einstein’s equations — we know how to deal with GR.

Let us consider a general symmetric tensor of (0, 2) type which in general has the following

expression in Cartesian coordinates (t, x, y, z)

T (Cart) =

















Ttt Ttx Tty Ttz

Ttx Txx Txy Txz

Tty Txy Tyy Tyz

Ttz Txz Tyz Tzz

















. (3.11)

Now we will express T in cylindrical coordinates. Since the final expression should be independent

of φ, one can express T at any value of φ. e.g. let us choose φ = 0. At this “location” we have

x = ρ, y = 0. 11

The axisymmetry is expressed as

L(−y∂x+x∂y)T = 0. (3.12)

11Again, we emphasize that the expression in cylindrical coordinates does not depend on the value of φ, and here
we just take advantage of this fact and do the calculation at φ = y = 0.
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Opening up this expression, we obtain the following relations at y = 0

Tty = Txy = Tyz = 0, (3.13)

Ttt,y = Ttx,y = Ttz,y = Txz,y = Txx,y = Tzz,y = Tyy,y = 0, (3.14)

Ttx = x · U, Txz = x · V, Tyy − Txx = x ·W, where W |x=0 = 0, (3.15)

where (U, V,W ) are regular expressions in terms of the Tµν , which specific forms are irrelevant at

this point.

Performing a coordinate transformation from Cartesian coordinates (t, x, y, z) to cylindrical

coordinates (t, ρ, φ, z) and using (3.13) (and take φ = 0), we obtain

T (cylin) =

















τtt τtρ 0 τtz

τtρ τρρ 0 τρz

0 0 ρ2 · τφφ 0

τtz τρz 0 τzz

















, (3.16)

where τµν(t, ρ, z) ≡ Tµν |y=φ=0,x=ρ (t, ρ, 0, z), which are guaranteed regular if the Cartesian com-

ponents are regular.

The condition (3.15) now reads

τtρ = ρ · U, (3.17)

τρz = ρ · V, (3.18)

τφφ = τρρ + ρ ·W such that W |ρ=0 = 0. (3.19)

The first two can be alternatively expressed as τtρ|ρ=0 = τρz |ρ=0 = 0 12, which are parity conditions,

and the last condition is called local flatness. To complete the parity conditions at ρ = 0, similar

to the derivation of (3.14) at y = 0, now opening up (3.12) at x = 0, and then renaming the indices

and notations, we get

τtt,ρ
∣

∣

ρ=0
= τtz,ρ

∣

∣

ρ=0
= τρρ,ρ

∣

∣

ρ=0
= τφφ,ρ

∣

∣

ρ=0
= τzz,ρ

∣

∣

ρ=0
= 0. (3.20)

i.e. the local flatness condition and the parity conditions about the metric tensor obtained in

Sec. 3.1.3, actually apply to any symmetric tensors of (0,2) type.

12For functions that can be expressed as Taylor expansion f =
∑

∞

i=0 fir
i, the condition f |r=0 = 0 implies f0 = 0.

Therefore f =
∑

∞

i=1 fir
i = r ·

∑
i=0 fi+1ri ≡ r · V .
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3.1.5 Test of the Conjecture

Here we study a testing problem: massless scalar field evolution in 5D. By the same procedure

as what is used in 4D, the metric in cylindrical coordinates (t, r, θ, φ, z) is

g
(4+1)
cylin =























ηtt ηtr 0 0 ηtz

ηtr ηrr 0 0 ηrz

0 0 ηθθr
2 0 0

0 0 0 ηθθr
2 sin2 θ 0

ηtz ηrz 0 0 ηzz























. (3.21)

Einstein’s equations in terms of (3.21) are equivalent to that from Lie derivative cartoon method,

and the simulation is, without surprise, regular.

Now, to directly test our conjecture, we also perform the simulation using the following metric

representation

g
(4+1)
singular =























ηtt ηtr 0 0 ηtz

ηtr ξ · r+1
r 0 0 ηrz

0 0 ηθθr
2 0 0

0 0 0 ηθθr
2 sin2 θ 0

ηtz ηrz 0 0 ηzz























. (3.22)

i.e. we purposely introduce a “singular” term ξ · (r+1)/r (or, we have defined ξ = r
r+1 ·ηrr), which

would be troublesome from the conventional point of view. However, if our conjecture is correct,

then the simulation in terms of (3.22) would be just as good as the simulation in terms of (3.21),

since ξ = r
r+1 · ηrr is regular.

To test the claim, we performed the simulation in terms of both metric representations. It turns

out that the results of the two simulations are the same (which means the superficially singular

term ξ · r+1
r does not cause trouble). Therefore, this simulation supports our conjecture.

For the details of the simulation, please refer to Sec. 3.4.

3.1.6 Validity and the Extension of the Conjecture

The conjecture is simple, and its usage and validity have been demonstrated though examples.

However, the demonstration is not a proof. In this section we try to give a proof (in a physicist’s

sense) and we will address the following three questions:

(1) Why terms like 1/rn do not cause singularity problems?
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(2) When taking only regular functions, are there still any other kind of regularity issues (other

than the singularity issue)? And if yes, how to cure it?

(3) What role does machine precision play in the regularity problem?

To answer these questions, we study at what degree the finite difference approximation (FDA)

can represent a derivative operator. It is clear to use an example. For a function f(x) with h as

the spacing of the grids, let us consider the following FDA

fi+1 − fi−1

2h
= f ′(x) + h2C2f

′′′ + h4C4f
′′′′′ + · · · =

∞
∑

n=0

h2nC2nf
(2n+1),

where Cn are constants which specific values are irrelevant here, and f (n) is the n-th derivative

of f . The expression shows the FDA of a first order derivative, discretized at a finite difference

scheme that is of the second order accuracy. Generally, the FDA (A) of a d-th derivative operator,

discretized at a finite difference scheme that is of a-th approximation order, is

Af (d) = f (d) + haCaf
(a+d) + h2aC2af

(2a+d) + · · · =
∞
∑

n=0

hnaCnaf
(na+d), (3.23)

where h is the grid spacing.

In GR, when r is small, the leading orders of the Cartesian components of symmetric tensors

of (0,2) type (denoted as f) are asymptotically either linear or quadratic in r (refer to Sec. 3.1.4).

Therefore, as long as a+ d ≥ 3, we have f (na+d) = 0 (n = 1, 2, ...) in (3.23), therefore

Af (d) = f (d). (3.24)

i.e. the FDA approximation with a+ d ≥ 3, is exact when f is linear or quadratic in r. In general,

when the FDA is exact in the vicinity of the symmetry axis, we say that the FDA is compatible

with the asymptotic behaviour of fundamental variables. Therefore, as long as the equations are

well-behaved at the continuous limit, they are also well-behaved at the discrete level. In particular,

terms with multiplications of 1/rn are well-behaved since the discretization results of the functions

are exact, and multiplication operation is (almost) exact as well.

The above equation explained why our solution to regularity issue works, and it can also predict

the failure of FDA. From equation (3.23) one can see that if f (a+d) 6= 0, then f (d) and haCaf
(a+d)

are comparable at small r (because (a+d)−a = d), then the FDA is a bad approximation. i.e. the

FDA has to be exact, otherwise the error (haCaf
(a+d)) is of the same order as the value (f (d)),
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3.1. Regularity Problem and Our Conjecture

which invalidates the FDA. For example, when f = r3 and a = 2, then the FDA for f ′ has trouble.

Given the asymptotic behaviour of f being f ∼ r3, one can find ways to cure, such as

(1) Use higher order FDA.

(2) f ′ → diff(f, r3) × 3r2, then only discretize the “diff”. Here the notation “diff” is the partial

derivative: diff(A,B) ≡ ∂A/∂B.

(3) Rewrite f as f = r ·F and let F be the fundamental variable instead. The criterion to rewrite

f in terms of F is that the asymptotic behaviour of F is compatible with the FDA in the

vicinity of the symmetric axis.

These method can be easily generalized to other asymptotic behaviours (for example, using the

third method, a function with asymptotic behaviour as f ∼ r5/2 can be rewritten as f = r1/2 ·F ).
The first two methods have been used in the literature and proved to be successful. Overall, our

opinion is that, as long as the asymptotic behaviours are known, there is always a way to easily

fix these issues. 13

We end this section by analyzing machine precision and show that it is not related to the irreg-

ularity issues. In the above analysis, we only analyzed truncation error (caused by the finiteness

of h) with machine precision ε (∼ 10−16 in double precision) being ignored and we concluded that

both 1/rn terms and non-(1/rn) terms are exact, as long as the FDA scheme is compatible with

the asymptotic behaviours of the fundamental variables in the vicinity of r = 0. Now we restore ε

and analyze its effects. The concern regarding ε is that the 1/rn terms would amplify the effect of

machine precision so that the errors in 1/rn terms might be significantly larger than the errors in

non-(1/rn) terms. In the following, we will show that the errors in 1/rn terms are not larger than

the errors in non-(1/rn) terms.

For specificity, let us consider the FDA of

f,rr + f/r2 − 1/r2,

13However, in the literature there is yet another type of “cure” to regularity problem. Let us take f = r3 using
second order FDA as the example. The basic idea of the cure is to still discretize f ′ as f ′ → (fi+1 − fi−1)/2h,
which is actually wrong according to our analysis above since the truncation error is comparable to the value itself.
But it is easy to prove that, for any fixed r, the truncation error convergences to zero as the resolution increases.
However, for any resolution, there is always a region in the vicinity of r = 0, where the error is still comparable to
the value itself. In particular, the values at the first few grids in the vicinity of r = 0 will always be wrong. Since the
mistake only happens in a finite region (which size shrinks as the resolution increases), the result in other regions is
still correct, as long as the simulation is stable. Therefore the focus of this kind of “cure” is to make the simulation
stable. Our opinion is that, these methods start from a mistake and try to do something to cover the mistake so
that it is controllable within a shrinking region (as the resolution increases), and even if the mistake is controllable,
the behaviour at r = 0 is always problematic (for example, the independent residual tests would not be passed at
the point). Instead of searching for any “cure” of this kind, our suggestion is to develop methods based on our two
criteria (see Sec. 3.1.7) on regularity, such as the three ways presented above.
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3.1. Regularity Problem and Our Conjecture

where the asymptotic behaviour of f(r) in the vicinity of r = 0 is f ∼ 1 + r2. The concern is that

f,rr ∼ f ∼ 1, but f/r2 would be of order 1/ε when r is as small as ∼ √
ε, therefore the addition

operation in f,rr + f/r2 is not accurate. Symbolically, we denote this concern of non-accuracy as

f,rr + f/r2 ∼ 1 + 1/ε = ε−1 · (1 + ε), (3.25)

whose accuracy is the same as 1 + ε since multiplication operation does not lose accuracy. We

will analyze what it takes to let this non-accuracy in f,rr + f/r2 show up. For the expression

f,rr + f/r2 − 1/r2, the discretized equation at the second order FDA is (fi+1 − 2fi + fi−1)/h
2 +

(f − 1)/r2. Representing f,rr as (fi+1 − 2fi + fi−1) /h
2, relies on the validity of Taylor expansions

such as fi+1 = fi + hf,r + (h2/2)f,rr + (h3/6)f,rrr + .... It is then crucial to examine whether

the higher orders in these expansions can be expressed accurately by floating point numbers.

To let (fi+1 − 2fi + fi−1) /h
2 be of second order accuracy, it is required that (h3/6)f,rrr in the

expansion must be representable by floating point number. Even if we give up the desire for second

order accuracy, it is required at least (h2/2)f,rr is representable in the expansion by floating point

number. i.e. it is required the value of (h2/2)f,rr is not lost in fi + hf,r + (h2/2)f,rr, which can

be symbolically expressed as ∼ 1 +
√
ε+ ε. Therefore in (fi+1 − 2fi + fi−1) /h

2, the operation is

symbolically (1 +
√
ε + ε − 2 + 1 − √

ε + ε)/ε. The accuracy level is determined by the largest

and the smallest values involved in the addition (subtraction) operations, which are 1/ε and ε/ε.

i.e. the accuracy level of this FDA is

ε−1 ·
(

1 + ε
)

. (3.26)

i.e. in order to let the FDA (fi+1 − 2fi + fi−1) /h
2 represent f,rr at the lowest order accuracy, the

ε is required to be representable in the operation 1 + ε. Comparing (3.26) with (3.25) one sees

that, the accuracy level (due to machine precision) of non-(1/rn) terms is the same as that of the

1/rn terms. If the operations involved 1/rn terms (such as f,rr + f/r2) lose their accuracy due to

machine precision, then the FDAs of non-(1/rn) terms can not represent the derivative operators

any more (such as (fi+1 − 2fi + fi−1) /h
2 fails to represent f,rr at any grid point, rather than

merely a few grids in the vicinity of r = 0). i.e. what it takes to fail f,rr + f/r2, is the failure of

FDA method.

Or equivalently, provided the FDA is still valid (so that finite difference method can be used),

then f,rr + f/r2 does not lose its accuracy (therefore machine precision can still be ignored).

i.e. for the aspect of machine precision, the 1/rn terms are not worse than the non-(1/rn) terms.

Therefore machine precision plays no role in regularity. The discussion above reveals that the
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3.2. The Generalized Harmonic Formalism in Non-Cartesian Coordinates

truncation error (due to the finiteness of h) is fundamentally different from the machine error.

The former is a generic feature associated with the FDA method which has nothing to do with

machines, while the latter is due to the limited ability of machines. One can improve the latter by

using more accurate numbers such as quadruple-precision floating point numbers with the machine

precision ε ∼ 10−34, while the truncation error can not be improved in this way.

3.1.7 Summary of Regularity

This subsection is the summary of the regularity discussion, which should be treated as a

rephrase of our conjecture: the irregularity has nothing to do with coordinate system (and operators

in the coordinate system) or machine precision. The simulation in cylindrical coordinates (or any

other coordinates) is regular, provided the following two conditions are met:

(1) The fundamental variables being used in numerical calculations, are regular functions;

(2) The FDA scheme is compatible with the asymptotic behaviours of the fundamental variables

at the symmetry axis (or the origin or any other special locations in the coordinate system).

3.2 The Generalized Harmonic Formalism in

Non-Cartesian Coordinates

In the previous sections, we described how to apply the Cartesian components method to

express the metric functions in terms of regular functions. In this section, we apply the same

method to the generalized harmonic formalism (and to BSSN in appendix A).

3.2.1 An Introduction to the Generalized Harmonic Formalism

Now we briefly introduce the generalized harmonic formalism [61] of GR. The source functions

Hµ are defined as

Hα ≡ ∇β∇βx
α = −Γα

µνg
µν , (3.27)

and Hµ ≡ gµνH
ν . In terms of Hµ, Einstein’s equations

Rµν = kd

(

Tµν −
1

d− 2
gµνT

)

,
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reduce to [61]

−1

2
gαβgµν,αβ − gαβ(,µgν)β,α −H(µ,ν) +HβΓ

β
µν − Γα

νβΓ
β
µα = kd

(

Tµν − 1

d− 2
gµνT

)

. (3.28)

The generalized harmonic formalism [61] is to lift Hµ as fundamental variables, then the defining

equations (3.27) are not defining equations any more. Instead, they are now constraints

Cα ≡ Hα − Γα
µνg

µν ≃ 0, (3.29)

where ≃ means the equations are constraint relations. i.e. in the generalized harmonic formalism,

the fundamental variables are the metric functions gµν and the source functions Hµ, where Hµ are

subject to the constraints (3.29). Since Hµ are now fundamental variables, the principal parts of

(3.28) are now − 1
2g

αβgµν,αβ , which are manifestly strongly hyperbolic.

Using the Bianchi identities, it can be proved [61] that the constraints (3.29) will always be

satisfied during an evolution, as long as they are satisfied at any instant of the evolution and the

Hamiltonian constraint together with the momentum constraints are also satisfied at the instant.

In numerical simulations, however, there are always modes violating the constraints, and the

violation modes might grow with time (even exponentially), which will produce unphysical results.

Gundlach et al. then suggested [58] to add constraint damping terms to the left hand side of

eq. (3.28), which can be

Zµν ≡ κ

(

n(µCν) −
1 + p

2
gµνn

βCβ
)

, (3.30)

where κ > 0, −1 ≤ p ≤ 0. If the constraints are satisfied, the damping terms vanish. If small

violation modes develop, the damping terms can damp out the modes [58] and drive the numerical

results back to physical configurations.

Since Hµ are now fundamental variables, their equations of motion need to be imposed. The

constraints Hα ≃ −Γα
µνg

µν = ∇β∇βx
α show that the Hµ are related to coordinate gauge choices.

There are a lot of freedom to impose these equations of motion. For example, Hµ can even be

functions of coordinates and metric functions such as Hµ = gµνx
ν . But generally it is required that

Hµ do not include the derivatives of metric functions (which means the equations of motion such

as Hµ = gµν,αg
να are generally not recommended), so that the principal parts of (3.28) are not

affected. We do not intend to extensively discuss the gauge choices in this section. Please refer to

Sec. 5.3 for the details of some popular gauges being used in the literature.
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To simplify future discussions, we define

Γα ≡ Γα
µνg

µν .

3.2.2 The Generalized Harmonic Formalism in Cylindrical Coordinates

Numerical evolutions using GH in cylindrical coordinates in terms of Hµ, are unsuccessful due

to the fact that the Hµ’s are singular. Instead, our approach is again to use Cartesian components

method: employ the coordinate transformation relation for Christoffel symbols

(y)Γκ
αβ =

∂xµ

∂yα
∂xν

∂yβ
(x)Γγ

µν

∂yκ

∂yγ
+
∂yκ

∂xµ
∂2xµ

∂yα∂yβ
, (3.31)

to express Hµ’s in terms of their Cartesian components. By the same procedure, we obtain

















Ht

Hρ

Hφ

Hz

















=

















ht + (1/ρ) (ηtρ/ηφφ)

hρ + (1/ρ) (ηρρ/ηφφ)

0

hz + (1/ρ) (ηρz/ηφφ)

















, (3.32)

where hα(t, ρ, z) ≡ (Cart)Hα(t, x = ρ, y = 0, z) with sub-index renamed, therefore are regular.

Specifying the gauge amounts to choosing appropriate hα (rather than Hα). e.g. the harmonic

gauge now reads hµ = 0, which is indeed the harmonic gauge in Cartesian coordinates. From

(3.32), one can see why the simulations with Hµ as fundamental variable fail—because Hr is

singular, which violates our first criterion for regularity.

By the same procedure, the metric in spherical coordinates (t, r, θ, φ), with spherical symmetry,

is

g
(3+1)
sphere =

















ηtt ηtr 0 0

ηtr ηrr 0 0

0 0 ηθθr
2 0

0 0 0 ηθθr
2 sin2 θ

















. (3.33)
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Again, ηθθ is replaced by ηrr + rW , considering local flatness. The source functions are

















Ht

Hr

Hθ

Hφ

















=

















ht + (2/r) (ηtr/ηθθ)

hr + (2/r) (ηrr/ηθθ)

cot θ

0

















. (3.34)

For 5D, the metric in cylindrical coordinates (t, r, θ, φ, z) is

g
(4+1)
cylin =























ηtt ηtr 0 0 ηtz

ηtr ηrr 0 0 ηrz

0 0 ηθθr
2 0 0

0 0 0 ηθθr
2 sin2 θ 0

ηtz ηrz 0 0 ηzz























, (3.35)

where ηθθ is replaced by ηrr + rW , considering local flatness. And the source functions are























Ht

Hr

Hθ

Hφ

Hz























=























ht + (2/r) (ηtr/ηθθ)

hr + (2/r) (ηrr/ηθθ)

cot θ

0

hz + (2/r) (ηrz/ηθθ)























. (3.36)

3.2.3 Background Removal in the Literature

In the literature, there exist a class of methods for solving the regularity issue of the Hµ’s

through the use of the source functions with a background term subtracted, which can all be

called background removal methods.

In [54, 55], the authors used (for example in the axisymmetric case in 5D)

Hr = Ĥr +
2

r
,Ht = Ĥt, Hz = Ĥz,

where 2/r is the value of Hr in flat spacetime background, and the variables with a hat (ˆ ) are

the variables the authors used as fundamental variables. From the discussion above, we obtain

Ĥr = hr +
2

r

(

ηrr
ηθθ

− 1

)

= hr +
2

r

(

ηθθ − rW

ηθθ
− 1

)

= hr −
2W

ηθθ
,
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which is related to hr by a regular term, therefore is regular. Similarly, their

Ĥt = ht +
2

r

ηtr
ηθθ

and Ĥz = hz +
2

r

ηrz
ηθθ

,

are regular too (because ηtr and ηrz are asymptotically linear in r as discussed in section 3.1.4).

On the other hand, there is another way to remove the background [36, 97]. Instead of using

Hµ’s, the authors developed the formalisms to use

Ĥµ ≃ −gµν
(

Γν
αβ − Γ̄ν

αβ

)

gαβ

as fundamental variables, where the “bar” means that the associated quantities are for the back-

ground. Ĥµ is actually a vector (while Hµ is not). Although no simulations using this method have

been reported14, this method should be able to generate regularized simulations if the background

is chosen correctly. The reason is as follows: if the background is chosen to be flat, in Cartesian co-

ordinates (where Γ̄ν
αβ = 0) we have Ĥµ = −gµνΓν

αβg
αβ = hµ, where hµ is the Cartesian component

of the source function, which is what is used in our Cartesian components method. Since Ĥµ is a

vector, its transformation from Cartesian coordinates to cylindrical coordinates at (y = 0, x ≥ 0) is

simply Ĥ
(cylin)
t = Ĥ

(Cart)
t = ht, Ĥ

(cylin)
r = Ĥ

(Cart)
x = hr, and Ĥ

(cylin)
z = Ĥ

(Cart)
z = hz, while other

components are zeros. Therefore Ĥµ = hµ holds in cylindrical coordinates as well. i.e. when the

background is flat, the fundamental variables used by the background removal method in [36, 97],

are the same as the ones used in Cartesian components method. Therefore, by our conjecture, this

method has no regularity issues, as long as the Cartesian components are regular and the FDA

scheme is compatible with the asymptotic behaviour of the fundamental variables.

This formalism can solve the regularity issue (by choosing the background properly), and the

source function is now a vector. Furthermore, it can remove any background (especially non-flat

backgrounds) 15. We will develop it further in Sec. 3.3.

14We will use a generalization of this method in our simulation of the braneworld.
15However, when the background is not flat, the regularity of the source functions is not guaranteed, in which

case the background needs to be analyzed in a case-by-case basis.
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3.3 The Generalized Harmonic Formalism in Non-Flat

Backgrounds

The spacetime background for RSII is

ds2 =
ℓ2

z2

(

− dt2 + dr2 + r2
(

dθ2 + sin2 θdφ2
)

+ dz2
)

. (3.37)

For this background, the h’s from eq. (3.36) are

(ht, hr, hz) =

(

0, 0,−3

z

)

. (3.38)

Normally setting up the gauge choices is to let hµ take specific values or satisfy specific conditions.

For example, in the case for the harmonic gauge, the hµ are zeros. However, the spacetime

background is now non-trivial, in the sense that hz is not zero for the background, and it is not

clear how to let gauges, such as harmonic gauge, make sense. In other words, it is not clear how

to setup hµ.

Generally, in the current literature, the gauge choices for GH are all in Cartesian coordinates

with a flat spacetime as the background. In the last section, we have developed the GH in non-

Cartesian coordinates, where we have used the assumption that Cartesian components are perfect.

For the braneworld, however, Cartesian components might not be sufficient in the sense that it

is not clear how to easily employ the existing gauge choices used in the literature. i.e. actually

Cartesian components are not perfect and we need to find a way to “get rid of” the background.

3.3.1 Tensorial Source Functions

The first way is to use the “background removal” methods mentioned above. For example,

following [97], we employ the following functions to serve as the fundamental variables

hµ ≃− gµν
(

Γν
αβ − Γ̄ν

αβ

)

gαβ, (3.39)

where the bar ( ¯ ) stands for quantities and operations associated with the background. As

discussed in section 3.2.3, when the background is taken to be flat, hµ in (3.39) is the same as the

hµ used in “Cartesian components” methods. Yet, (3.39) can be applied to non-flat background.

Another good feature is that hµ is now a tensor (vector), which geometrically makes more sense. For

the braneworld, if (3.37) is taken as the background in (3.39), we have hα = 0 for the background.
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However, still this can not be easily linked with the existing work in the literature where the

background is flat. i.e. it is not clear what gauge should be given to the hα.

3.3.2 Conformal Transformation

Noticing the background metric (3.37) is conformally flat, we can do a conformal transformation

g̃µν ≡ (z2/ℓ2)gµν to obtain g̃µν whose background is flat. Actually we can use a general conformal

factor Ψ in the conformal transformation as g̃µν ≡ Ψ−2gµν . The only requirements on this Ψ are:

(a) Ψ = ℓ/z when the metric is the background metric; and (b) Ψ goes to ℓ/z asymptotically at

spatial infinities. Or even more generally, we define conformal transformation

g̃µν ≡ Ψ−qgµν , (3.40)

where q is a numerical factor that can be set as any value for convenience. A tilde (̃ ) is used for

the quantities and operations associated with g̃µν . For example, the Christoffel symbols are

Γ̃α
µν =

1

2
g̃αβ (g̃βν,µ + g̃µβ,ν − g̃µν,β) . (3.41)

Repeating the derivations in [32] or [36] while keeping q and d general, we obtain

Rµν = R̃µν +R(Ψ)
µν , (3.42)

where

R(Ψ)
µν ≡− q(d− 2)

2
∇̃µ∇̃ν lnΨ− q

2
g̃µν ∇̃α∇̃α lnΨ

+
q2(d− 2)

4

(

∇̃µ lnΨ∇̃ν lnΨ− g̃µν ∇̃α lnΨ∇̃α lnΨ
)

. (3.43)

Substituting this into Einstein’s equations

Rµν − 1

2
gµνR = kdTµν (3.44)

⇔ Rµν = kd

(

Tµν − 1

d− 2
gµνT

)

. (3.45)

we have

R̃µν = kd

(

Tµν − 1

d− 2
g̃µν T̃

)

−R(Ψ)
µν , (3.46)
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where T̃ ≡ g̃µνTµν . The equations are Einstein’s equations with a modified right hand side.

Depending on how the left hand side is rewritten, one can proceed with either one of the

following two approaches. The first approach is to define the source function as

H̃β ≡ −Γ̃β
αδ g̃

αδ, (3.47)

which results in the following GH formalism with a conformal function

−1

2
g̃αβ g̃µν,αβ − g̃αβ(,µg̃ν)β,α − H̃(µ,ν) + H̃βΓ̃

β
µν − Γ̃α

νβΓ̃
β
µα = kd

(

Tµν −
g̃µν T̃

d− 2

)

−R(Ψ)
µν . (3.48)

For braneworld simulation, this formalism is sufficient since the conformal transformation let the

background of g̃µν be flat which enables us to borrow the existing results regarding gauge spec-

ification in the literature. Eq. (3.48) can be solved using (3.35) as the metric and (3.36) as the

source function (every quantity needs to have a tilde though).

Alternatively, R̃µν can be rewritten using tensorial source functions. This approach does better

in the following aspects: it is not limited to the case where the background of g̃µν is flat, and the

source function forms a tensor. The background spacetime of g̃µν is denoted as ḡµν . We further

define

C̃α
µν ≡ Γ̃α

µν − Γ̄α
µν , (3.49)

∆Γ̃β ≡ C̃β
αδg̃

αδ, (3.50)

h̃β ≡ −∆Γ̃β = −
(

Γ̃β
αδ − Γ̄β

αδ

)

g̃αδ. (3.51)

Repeating the derivation in [36] (for the BSSN derivation though), while keeping d general and

without requiring g̃ = ḡ, we obtain the final equation as

− 1

2
g̃αβ∇̄α∇̄β g̃µν − ∇̄αg̃β(µ∇̄ν)g̃

αβ − ∇̄(µh̃ν) + h̃αC̃
α
µν − C̃α

µβC̃
β
αν

= kd

(

Tµν − g̃µν T̃

d− 2

)

− R̄µν −R(Ψ)
µν . (3.52)

3.3.3 The Implementation of Generalized Harmonic Formalism

The discussions in this subsection regarding the implementation apply to all the GH formalisms

(3.28), (3.48) and (3.52). Here we use (3.52) as a specific example.

The (t, µ) components of equation (3.52) are the Hamiltonian constraint and momentum con-
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straints. Eq. (3.51) are extra constraints due to the introduction of h̃. In this sense, performing

the evolution using all the components in (3.52), is a full-evolution scheme with Hamiltonian and

momentum constraints being satisfied. Constraints (3.51) are driven to be satisfied by adding the

constraint violation damping terms [58] into (3.52). Therefore we give it the name full-evolution

with source driving gauge. This is what has been adopted in the literature. However, it is not very

clear how the coordinates condition is imposed via h̃µ (or even Hµ).

Alternatively, we can adopt the same strategy as that in BSSN (therefore we give it the name

BSSN-like method): the lapse and shift functions are specified in the “ordinary way” (such as max-

imal slicing, 1 + log slicing, Gamma freezing, etc), while the Hamiltonian/momentum constraints

are left un-evolved. Also, an evolution equation for h̃µ will be derived, rather than using h̃µ to drive

lapse and shift. Using Γ̄β
βα = 1

2∂α ln ḡ (and Γ̃β
βα = 1

2∂α ln g̃), we obtain ∇̄αg̃
αβ = h̃β − g̃αβ∇̄αF ,

where F ≡ 1
2 ln (g̃/ḡ), which is a scalar. Taking derivative with respect to t, we have

∇̄th̃µ = −∇̄tg̃
αβ∇̄αg̃βµ − g̃αβ∇̄t∇̄αg̃βµ + ∇̄t∇̄µF, (3.53)

within which there are terms ∇̄t∇̄tg̃αβ, which will be replaced by quantities with first-order and

zeroth-order in ∇̄t, via eq. (3.52). As for the Hamiltonian/momentum constraints, the damping

terms for their violation modes could be constructed. Beyond these, h̃µ + ∆Γ̃µ ≃ 0 are still con-

straints (which are similar to the constraints Γ̃i ≃ γ̃jk
(

(d−1)̃Γi
jk − (d−1)̄Γi

jk

)

in BSSN formalism).

Note, we have not implemented a code using BSSN-like methods yet. Performing simulations

using this method is part of our future plans.

The BSSN method is widely used in numerical relativity, and we have simply borrowed its

spirit, in deriving the generalized harmonic formalism in non-Cartesian coordinates in non-flat

background. For completeness, we also generalized the BSSN formalism to non-flat background

with non-Cartesian coordinates. However, since we will not use the BSSN in simulating the

braneworld, the development of the BSSN method is put in appendix A.

3.4 Evolution of Massless Scalar Field under Cylindrical

Coordinates

In this section, we study a model problem: the massless scalar field collapse in 5D under

axisymmetry. The reason for choosing the collapse in 5D under axisymmetry is that this system is

close to our main project — the massless scalar field collapse in the braneworld, and is therefore an
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instructive model problem. We will use this section to demonstrate the use of the various methods

developed in this chapter. Namely: we will test the Cartesian components methods of generalized

harmonic formalism. Then we will test our conjecture by introducing a seemingly singular term

into the metric, while the fundamental variables are known to be regular.

3.4.1 Initial Data

At the initial instant, we assume the metric takes the following form

ds2 = e2A
(

− dt2 + dr2 + r2
(

dθ2 + dφ2 sin2 θ
)

+ dz2
)

, (3.54)

under cylindrical coordinates (t, r, θ, φ, z), with r = 0 being the symmetry axis. The range of the

coordinates are of course r ≥ 0, 0 ≤ θ ≤ π, 0 ≤ φ < 2π,−∞ < z < ∞. In this simulation we will

keep the spacetime symmetric about z = 0 plane, therefore the range of z (in the code) is [0,∞).

The initial data is obtained by solving the momentum constraints and the Hamiltonian con-

straint. We take time symmetric initial data, therefore the momentum constraints are satisfied

automatically, which leaves only the Hamiltonian constraint to be solved. The Hamiltonian con-

straint reads

A,rr +A,zz +
2A,r

r
+ (A,r)

2 + (A,z)
2 +

1

6

(

(Φ,r)
2 +

(

Φ,z
2
)

)

= 0, (3.55)

where Φ is the massless scalar field. We choose its initial configuration to be

Φ(0, r, z) = a · exp
(

−
(√
z2 + r2 − r0

)2

σ2

)

, (3.56)

which is symmetric about z = 0. Here we purposely choose the spherically symmetric initial

configuration, to test the quality of our axisymmetric code by examining whether a spherically

symmetric initial data will remain spherically symmetric. For the testing, we take a = 0.1, σ =

0.25, r0 = 1.

The time derivatives of spatial components of the metric are taken as zeros since the initial data

configuration is time symmetric. The other metric components are taken trivially gtr = gtz = 0,

but the time derivatives of gtt, gtr, gtz are chosen such that ht = hr = hz = 0 (ref. eq. (3.58)) at

the initial instant [62, 63].
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3.4.2 Evolution

The evolution is performed using our Cartesian components method applied to the generalized

harmonic formalism (eq. (3.28)), therefore the metric representation is (3.35)

g =























ηtt ηtr 0 0 ηtz

ηtr ηrr 0 0 ηrz

0 0 ηθθr
2 0 0

0 0 0 ηθθr
2 sin2 θ 0

ηtz ηrz 0 0 ηzz























, (3.57)

where ηθθ is replaced by ηrr + rW , considering local flatness condition at r = 0, as discussed in

Sec. 3.1.3. The gauge sources are (3.36)























Ht

Hr

Hθ

Hφ

Hz























=























ht + (2/r) (ηtr/ηθθ)

hr + (2/r) (ηrr/ηθθ)

cot θ

0

hz + (2/r) (ηrz/ηθθ)























. (3.58)

During the evolution, the gauge is chosen to be ht = hr = hz = 0, which is equivalent to harmonic

gauge in Cartesian coordinates.

A constraint damping term [58] is added to the left hand side of eq. (3.28)

Zµν ≡ κ

(

n(µCν) −
1 + p

2
gµνn

βCβ
)

, (3.59)

where κ > 0, −1 ≤ p ≤ 0. κ = 6 and p = 0 were chosen during the simulation.

The simulation is performed in compactified coordinates R̂ ≡ r/(r + 1) and Ẑ ≡ z/(z + 1). In

this way the spatial infinities, r = ∞ and z = ∞ are mapped to R̂ = 1 and Ẑ = 1. Since we focus

on the behaviour in the region that is close to r = z = 0, where the resolution in terms of (R̂, Ẑ)

and (r, z) are comparable, the compactification does not cause loss in resolution. The boundary

conditions at r = ∞ or z = ∞ are trivial Dirichlet condition such that the metric is asymptotically

flat. At z = 0, the spacetime remains symmetric about z = 0. The boundary conditions at

r = 0 are parity conditions and local flatness condition which are consequences of axisymmetry:

∂rηtt|r=0 = ∂rηzz|r=0 = ∂rηtz|r=0 = ∂rηrr|r=0 = ηtr|r=0 = ηrz|r=0 = W |r=0 = ∂rΦ|r=0 = 0.
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The simulations are performed by “standard” FDA of second order accuracy

∂tf →
fn+1
i,j − fn−1

i,j

2 ·∆t , (3.60)

∂R̂f →
fn
i+1,j − fn

i−1,j

2 ·∆R̂
, (3.61)

∂Ẑf →
fn
i,j+1 − fn

i,j−1

2 ·∆Ẑ
, (3.62)

∂ttf →
fn+1
i,j − 2fn

i,j + fn−1
i,j

(∆t)2
, (3.63)

∂R̂R̂f →
fn
i+1,j − 2fn

i,j + fn
i−1,j

(

∆R̂
)2 , (3.64)

∂ẐẐf →
fn
i,j+1 − 2fn

i,j + fn
i,j−1

(

∆Ẑ
)2 , (3.65)

∂tR̂f → 1

4 ·∆t ·∆R̂
(

fn+1
i+1,j − fn+1

i−1,j + fn−1
i−1,j − fn−1

i+1,j

)

, (3.66)

∂tẐf → 1

4 ·∆t ·∆Ẑ
(

fn+1
i,j+1 − fn+1

i,j−1 + fn−1
i,j−1 − fn−1

i,j+1

)

, (3.67)

∂R̂Ẑf → 1

4 ·∆R̂ ·∆Ẑ
(

fn
i+1,j+1 − fn

i−1,j+1 + fn
i−1,j−1 − fn

i+1,j−1

)

. (3.68)

where the index i (or j) is to characterize the grid position in R̂ (or Ẑ) direction, and ∆R̂ (or ∆Ẑ)

is the (uniform) spacing of the grids in R̂ (or Ẑ) direction. In the simulation, we set ∆R̂ = ∆Ẑ.

The superscript n, n+1, n−1 is to characterize the discretized time levels, while ∆t is the spacing.

Since compactified coordinates are used, the Courant factor is defined as ∆t/min(∆r) = ∆t/∆R̂,

where min is taken over all ∆r. The Courant factor is set to be 0.5 in the simulation.

The residual equations are the discretized equation (3.28) (the GH formalism of GR). The

update scheme is to obtain quantities at time level n+1 from given quantities at level n and n−1,

by solving the residual equations. We solve the residual equations by pointwise Newton-Gauss-

Seidel iteration, until residuals are smaller than a “small” threshold.

A Kreiss-Oliger [73] style numerical dissipation is adopted to control high frequency numerical

noises. Since we are using second order FDA, a fourth order KO dissipation is sufficient. Before

obtaining the advanced time level n+ 1, the dissipation is applied to both n and n− 1 time levels

[61].
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Tests and Validation of the Numerical Scheme

The first test we perform is to examine whether spherical initial data evolved under axisym-

metric code, can remain spherically symmetric. Fig. 3.2 shows instants during the process when

the majority of Φ field is being bounced back at the centre. The figure shows that the spherical

symmetry is indeed preserved during the evolution.

(a) (b) (c) (d)

Figure 3.2: The preservation of spherical symmetry monitored by Φ. The horizontal axis is r,
and the vertical axis is z. The simulation was carried out by 16 cores, and these graphs show
the results at the r = z = 0 corner. Since compactified coordinates are used, the spherical
configuration will appear to be non-spherical. However, when r and z are small, the distortion due
to the compactification is small. This is why we choose to show the r = z = 0 corner. The four
graphs show four instants when the pulse travels towards the center, and then gets bounced back
and travels outwards. The graphs show that the spherical symmetry is indeed preserved during
the evolution.

By the general theory of numerical solutions, the numerical result is a numerical solution only

if the independent residual tests and the convergence tests of the constraints are passed. The inde-

pendent residuals are obtained by evaluating the residuals resulting from a different discretization

which is to discretize the R̂ and Ẑ derivatives by forward finite difference approximation of second

order accuracy, while the time derivative is discretized by backwards finite difference approxima-

tion with second order accuracy. Fig. 3.3 shows the convergence of independent residual of the

tt component of (3.28), and the convergence of the t component of the constraint equation. The

results of other independent residual tests and convergence tests are similar, therefore omitted.

These tests show that the simulation produces valid physical results, which confirms that our

Cartesian components method does not have the regularity issue.

Another way to justify that the solution is indeed a physical solution, is to directly evaluate

the residuals of original Einstein’s equations Rµν = kd

(

Tµν − gµν
T

d−2

)

, without referring to the

source functions at all. i.e. we use the generalized harmonic formalism to obtain the solutions, then

substitute them into original Einstein’s equations to get the residuals. Fig. 3.4 shows the tt and
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(c) (d)

Figure 3.3: The independent residual tests and the constraint tests. Results from two resolutions
are needed to perform the tests. Here the finer resolution’s grid spacing is one half of that in
the coarser resolution. If the numerical results are actually numerical solutions, the independent
residuals obtained at finer level are one-fourth of the independent residuals obtained at the coarser
resolution, since these results are obtained from the FDA with second order accuracy, and the
independent residuals are also discretized at second order accuracy. Fig. (a) is the independent
residual test of the (tt) component of Einstein’s equations (3.28). Fig. (b) is the test of the t-
component of the constraint equations Hµ+Γµ ≃ 0. Fig. (c) is the snapshot of the (tt) component
of the independent residual at the (r = 0, z = 0) corner, at some instant. The function with zero
value is shown as a reference, which appears as a plane with uniform colour (light blue). The one
taking larger value is obtained from the coarser grid, which value should be 4 times of the value
obtained from the finer grid at all grid points at all instants. We purposely show the (r = 0, z = 0)
corner which is the location suffering the most severe irregularity (if there is). This figure shows
that there is no irregularity in our simulation, and the independent residual indeed convergences
as expected at every grid point. Fig. (d) is the snapshot of the residual of constraint Ht + Γt at
the (r = 0, z = 0) corner, at some instant.
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rz components respectively, as two examples. Indeed they converge as second order quantities.
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Figure 3.4: The convergence tests using the residuals obtained from the original Einstein’s equa-
tions. Fig. (a) is the convergence of the residual obtained from evaluating the (tt) component

of the original Einstein’s equations Rµν = kd

(

Tµν − gµν
T

d−2

)

. Fig. (b) is the test from the (rz)

component.

3.4.3 Superficially Singular Metric Representation

To test our conjecture, instead of using (3.57), here we perform the evolution in terms of the

following representation of metric which includes a superficially singular term

gsingular =























ηtt ηtr 0 0 ηtz

ηtr ξ · r+1
r 0 0 ηrz

0 0 ηθθr
2 0 0

0 0 0 ηθθr
2 sin2 θ 0

ηtz ηrz 0 0 ηzz























, (3.69)

where ηθθ is replaced by ξ · r+1
r + rW . The boundary conditions of ξ are ξ|r=0 = 0, ξ|r=∞ =

1, ∂zξ|z=0 = 0, ξ|z=∞ = r/(r + 1).
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The source functions are of course























Ht

Hr

Hθ

Hφ

Hz























=























ht + (2/r) (ηtr/ηθθ)

hr +
(

2/r2
)

· ξ · (r + 1)/ηθθ

cot θ

0

hz + (2/r) (ηrz/ηθθ)























. (3.70)

The metric representation gsingular should be problematic due to ξ/r terms, according to the

conventional point of view in [50]. However, according to our conjecture, as long as ξ is regular,

and its asymptotic behaviour is compatible with the relevant FDA (in the sense that the FDA is

able to accurately represent the derivatives of ξ at small r), then the result would be regular (i.e.

not problematic). Since ηrr ∼ const + r2 at small r, one should expect ξ ∼ r · ηrr ∼ r at small r,

and the second order finite difference approximation to its derivatives should be exact. Therefore

the simulation in terms of ξ should be regular, if our conjecture holds.

The independent residual test and constraint convergence test of the simulation in terms of

(3.69) and (3.70) are shown in Fig. 3.5. It shows the simulation produces valid physical results as

well. The superficially singular term ξ/r does not cause problem.
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Figure 3.5: The independent residual tests and constraint tests for the simulation using the su-
pervifially singular metric (3.69). Fig. (a) is the independent residual test of the (tt) component
of Einstein’s equations (3.28). Fig. (b) is the test of the t-component of the constraint equations
Hµ + Γµ ≃ 0. These two tests show that the simulation using (3.69) and (3.70) indeed satisfies
Einstein’s equations.

Now we examine whether these two simulations produce the same result. We perform this test
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by comparing the same quantities resulting from two simulations. Here we show the L2-norms of

(α − 1) (where α is the lapse function) and Φ in Fig. 3.6, which shows that the two simulations

indeed produce the same results.

Therefore, our conjecture passed this challenging test.
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Figure 3.6: The comparison of the results from two the simulations. In the legend, “normal” means
the result obtained from the simulation using metric representation (3.57) and “singular” means
that obtained from (3.69) where there is a superficially singular term in the metric representation.
(a) shows the L2-norms of (α − 1) from the two simulations, and (b) shows the L2-norms of Φ
from the two simulations. These two graphs show that the two simulations indeed produces the
same results.

3.5 Remark about Regularity

We have a conjecture regarding the regularity issue: provided the fundamental variables used

in a numerical simulation are regular functions, and the FDA scheme is compatible with the

asymptotic behaviours of the fundamental variables at the symmetric axis (or the origin), there is

no irregularity issue.

According to the conjecture, the key to overcome irregularity issues is to express tensors (and

pseudo tensors) in terms of regular functions that are compatible with the FDA. One way to

do it is to carry the regular Cartesian components into cylindrical coordinates (by coordinate

transformation relations) and let them serve as the fundamental variables.

There exist formalisms in the literature that are able to generate simulations without regular-

ity issue, according to our conjecture. Among these specific methods, our Cartesian components

method and Lie derivative cartoon method are equivalent (although the philosophies underlying
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them are different). Both methods use Cartesian components, and are general ways to rewrite

equations in non-Cartesian coordinates using Cartesian components, which apply to any formal-

ism of GR. The background removal methods with tensorial source functions [36, 97], however,

only apply to the formalisms where Christoffel symbols (or other connection coefficients) play

fundamental roles, such as generalized harmonic formalism and BSSN formalism. In these for-

malisms, when the background is chosen to be flat, this background removal method generates the

same results as those of our Cartesian components method (and Lie derivative cartoon method).

One advantage of the background removal method is that it can be applied in non-flat background,

where our Cartesian components method (and Lie derivative cartoon method) need to be modified.

The gauge choice in terms of the tensorial source functions needs further study. The background

removal method used in [54, 55], however, is different from any of the above. It is also regular,

although it is not clear how to setup coordinate gauges in this formalism.

Above all, I emphasize the following: for the aspect of regularity, our conjecture is more

fundamental than any specific formalisms in this chapter. For example, Cartesian components

are not guaranteed to be singularity free—an example is the behaviour in the vicinity of the

physical singularities. In this case the Lie derivative cartoon or Cartesian component method will

not help. In background removal methods, the modified source function serving as fundamental

variable, is the subtraction of two terms. In principle it is possible that both terms are singular

but the function resulting from the subtraction is regular, and in this case the formalism can

still generate regular results. All in all, before using any formalisms, one need to check the two

aspects of the conjecture: regular functions being used as fundamental variables, and FDA being

compatible with the asymptotic behaviours of the fundamental variables in the vicinity of the

axis/origin/other special points.
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Chapter 4

Initial Data

The evolution of the braneworld is specified by the evolution equation(s) with the initial data

and the boundary conditions. The governing equations of the braneworld are Einstein’s equations

in the 5D bulk: Rµν − 1
2gµνR = −Λgµν . We will use the formalism of Einstein’s equations with

the conformal factor (3.46). For the conformal factor Ψ, we simply choose Ψ = ℓ/z and q = 2.

Therefore the conformal metric is

g̃αβ = Ψ−qgαβ =
z2

ℓ2
gαβ . (4.1)

According to the knowledge we obtained from the regularity discussion in Chap. 3, the most general

yet regular metric can be

g̃ =























η̃tt η̃tr 0 0 η̃tz

η̃tr η̃rr 0 0 η̃rz

0 0 η̃θθr
2 0 0

0 0 0 η̃θθr
2 sin2 θ 0

η̃tz η̃rz 0 0 η̃zz























, (4.2)

where η̃θθ is replaced by η̃rr + rW̃ .

In this chapter and the next, we choose the unit ℓ = k5 = 1 (which implies 8πG4 = 8πG5 = 1).

In this chapter, the initial data is obtained by solving the Hamiltonian constraint, subject to the

boundary conditions imposed by Israel’s junction condition.

The initial data is specified on a spacelike hypersurface. Because the evolution equations are

partial differential equations with second order time derivatives, the initial data is specified by the

values of the evolving quantities (to be specified below) and their first order time derivatives. The

lapse and the shift functions are related to the gauge freedom in choosing the coordinates which

can be chosen arbitrarily, therefore the initial data is the combination of spatial (d− 1)-metric gij ,

matter distribution, and their first order time derivatives that satisfy the Hamiltonian constraint
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4.1. Formulation

and momentum constraints. For time symmetric initial data, the momentum constraints are

satisfied automatically, which leaves the Hamiltonian constraint to be solved. In most situations

of GR, we can then choose a spatial metric ansatz with only one unknown function such as

dl2 = A
(

dr2 + r2(dθ2 + sin2 θdφ2) + dz2
)

. The Hamiltonian constraint is then solved for A. We

will examine whether this situation will still be true in the braneworld.

4.1 Formulation

In the braneworld, Israel’s boundary condition can not be met if there is only one unknown

variable in the spatial metric. To “absorb” this “inconsistency”, there must be at least two unknown

variables in the spatial metric. The spatial metric can be taken to have a conformal form in (r, z)

coordinates

dl2 =
ℓ2

z2
[

e2A+2B
(

dr2 + dz2
)

+ e2A−2Br2
(

dθ2 + sin2 θdφ2
)]

. (4.3)

The brane is located at z = ℓ, while z = ∞ is the spatial infinity. Eq. (4.3) is actually the most

general spatial metric for the axisymmetric (in the bulk) case, as discussed in Sec. 2.4.2. The

background spacetime (vacuum) corresponds to A = B = 0.

The Hamiltonian constraint is

3

2

(

∇2A
)

− 1

2

(

∇2B
)

+
1− e4B

2r2
+

3

z2

(

1− e2(A+B)
)

+
3U,r

r
− 3U,z

z
+

3

2
(U,z)

2
+

3

2
(U,r)

2
= 0, (4.4)

where ∇2 ≡ ∂rr + ∂zz, and U ≡ A − B. The domain within which to solve the equations is

(r, z) ∈ [0,∞) × [1,∞). Let Φ be the massless scalar field that lives on brane, Israel’s junction

condition (1.29) is then translated into

A,z = 1− eA+B − 1

6
e−A−B (Φ,r)

2
, (4.5a)

B,z = −1

4
e−A−B (Φ,r)

2
, (4.5b)

from which one see that a vanishing B is only possible when there is no matter (Φ,r = 0) on the

brane.

The boundary conditions at the symmetric axis r = 0 are simply the parity condition and

the local flatness condition which translate into A,r

∣

∣

r=0
= B,r

∣

∣

r=0
= B

∣

∣

r=0
= Φ,r

∣

∣

r=0
= 0.

When z → ∞, the spacetime should approach the background: A|z→∞ = B|z→∞ = 0. If the
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4.1. Formulation

matter is localized to finite r, then the spacetime should approach the background as r → ∞:

A|r→∞ = B|r→∞ = 0 = Φ|r→∞.

There is only one equation (the Hamiltonian constraint) for two variables A and B, therefore

there remains freedom in the initial data. We fix the freedom by imposing the form of B. Based on

the specific forms of B, we used two specifications: Laplacian specification and direct specification.

4.1.1 Laplacian Specification

Since there is no other requirement on B except for the boundary conditions, we will impose an

equation for B, for example, ∇2B = 0. However, it turns out that there are numerical instability

issues at spatial infinities, which suggests us to carry the asymptotic behaviour at these boundaries

by some factors. I.e. we define Y as B ≡ fBY where the asymptotic behaviour at spatial infinities

is carried by fB. Since we do not know the asymptotic behaviour yet, we will try to choose fB in

an experimental manner. There is actually a guidance we can start with. A similar problem is the

static star configuration studied in [47], where the boundary condition at z → ∞ is asymptotically

B ∼ const

z3
. (4.6)

If the matter is localized at finite r, the boundary condition at r → ∞ is asymptotically [47]

B ∼ const

r
. (4.7)

As discussed in Chap. 2, the asymptotic bahaviour of A at r ≫ z is supposed to be A ∼ 1/rz for

conformally flat space. We can then introduce factors like

A =
X

(r + 1)z
, (4.8a)

B =
Y r2

(r + z)3
, (4.8b)

where the r2 in equation (4.8b) is to let the boundary conditions B
∣

∣

r=0
= B,r

∣

∣

r=0
= 0 be satisfied

automatically. In the numerical method, we will directly solve for X and Y instead of A and B.

The equation of B can be imposed via Y as

∇2Y − aY b = 0. (4.9)
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4.2. Numerical Methods

The principle part ∇2 plays the role as a smoother, and the second part is to serve as an amplitude

damper (to be explained below) when both a and b are set to be positive values, such as a = b = 3.

The functionality of the damping term is to prevent the amplitude of Y from getting too large.

The damping term is needed because instabilities arise at the brane when the amplitude of Y

becomes too large.

4.1.2 Direct Specification

Since the only requirements on B are the boundary conditions among which only the boundary

condition at the brane is non-trivial, we may directly set B to take the following simple form so

that (4.5b) holds

B(r, z) =
∂B

∂z

∣

∣

∣

∣

z=1

· f(z), (4.10)

where f(z) satisfies the condition: f,z
∣

∣

z=1
= 1. In case we want the magnitude of B to be small,

we can also let f(z) satisfy a second condition: f |z=1 = 0. There is still a lot of freedom to choose

f . e.g. we can choose it to be f(z) = (z − 1)/zpz , where pz = 4 if we want B to satisfy (4.6) (not

necessary though). Or we can let B die off faster by choosing

f(z) = (z − 1) · exp
[

− (z − 1)
2
/σz

2
]

, (4.11)

where σz can be chosen arbitrarily. In all the numerical results presented in this chapter, σz = 2σr

is chosen, where σr is going to be defined in (4.14). Because (4.10) and (4.11) yield B|z=1 = 0, we

have

B(r, z) = −1

4
e−A0 (Φ,r)

2 · f, (4.12)

where A0(r, z) = A(r, z)|z=1. It is easy to check all the boundary conditions of B are satisfied.

It turns out the numerical behaviour of the direct specification is better than that of the

Laplacian specification, so we will mainly focus on the direct specification method.

4.2 Numerical Methods

In order to let the spatial infinities be a part of our computational domain, compactified

coordinates (R̂, Ẑ) are used

R̂ ≡ r

r + r0
; Ẑ ≡ z − ℓ

z − ℓ+ z0
, (4.13)
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4.3. The Numerical Solution

where r0 and z0 are parameters to control the compactification. r0 = z0 = 1 is used for the

numerical results that are going to be shown in this chapter. The discretized grids are uniform

in R̂ and Ẑ, and the equations are discretized by finite difference approximation with second

order central stencil, which are shown by eq. (3.60) to eq. (3.68). Then Newton-Gauss method is

employed iteratively to solve for the numerical solution. After the numerical solutions are obtained,

we validate the solutions by the mean of independent residual test.

4.3 The Numerical Solution

4.3.1 The Solution and Apparent Horizon

We used the following profile for the matter field

Φ = A · exp
[

− (r − x0)
2

σ2
r

]

. (4.14)

The condition Φ,r

∣

∣

r=0
= 0 needs to be satisfied in the initial data, therefore we either choose

x0 = 0, or choose x0 to be at least several σr.

The independent residual, calculated as the residual of equation (4.4) under a different dis-

cretization scheme (other than eq. (3.60) to eq. (3.68)) that is of second order accuracy, should

behave like a second order quantity everywhere in the domain if a numerical solution is obtained.

To show the independent residuals compactly, we use their L2 norms. As an example, we per-

form the independent residual test to the numerical results obtained from the calculation with

(A , σr, x0) = (2.8, 0.15, 0) using the direct specification. The L2 norms of the independent resid-

ual at resolutions 64 × 64 (the domain in R̂ direction and Ẑ direction are uniformly divided into

64 intervals), 128× 128 and 256× 256, are 0.0799, 0.0194 and 0.00498, respectively. The L2 norm

shrinks by a factor of 3.9-4.1 when the grid spacing decreases by a factor of 2. The independent

residual indeed converges to zero at second order, therefore the numerical scheme is justified.

The results of the numerical calculation with (A , σr , x0) = (3.2, 0.3, 0) using the direct speci-

fication, are shown in Fig. 4.1. The scalar field is strong enough to produce an apparent horizon

which is shown in Fig. 4.2.

4.3.2 Brane Geometry as Seen by a Brane Observer

In this subsection we focus on the geometry of the brane, since the bulk is not directly observ-

able. In the next subsection, we will study the geometry of the bulk. Again, here we reiterate
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Figure 4.1: Function A and −B in the initial data metric (4.3) obtained from the parameters
(A , σr, x0) = (3.2, 0.3, 0)
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Figure 4.2: The apparent horizons for the configuration with parameters (A , σr, x0) = (3.2, 0.3, 0).
The red x in the figure is the apparent horizon calculated using the brane geometry only. It does
not coincide with the intersect of the brane and the bulk apparent horizon.
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that the masses of the spacetime obtained from the brane geometry, play no direct roles in the

braneworld. Especially, they do not really represent the masses of the brane. The purpose of

studying these masses, is to compare with GR and obtain some observable difference from GR.

We will study two different masses defined on the brane—brane ADM mass and the Hawking

mass (see Sec. 2.5.1 and 2.5.2). The proper area radius r̃ on the brane is

r̃ = eA−Br, (4.15)

so that the metric on the brane is now

ds2brane = gr̃r̃dr̃
2 + r̃2dΩ2, (4.16)

where gr̃r̃ = e4B [1 + r (dA/dr − dB/dr)]
−2

.

In terms of gr̃r̃ and r̃, the Hawking mass is

MH =
r̃

2G4

(

1− (gr̃r̃)
−1
)

, (4.17)

which has r̃ dependence. Then the r̃ dependence of the Hawking mass is an observable difference

from 4D GR. One example is shown in Fig. 4.3.

The Hawking mass goes to ADM mass as r̃ → ∞

MADM = lim
r̃→∞

r̃

2G4

(

1− (gr̃r̃)
−1
)

=
α1 + β1
G4

. (4.18)

α1 and β1 are defined via the asymptotic behaviour of A and B at large r, which are assumed to

be A
∣

∣

z=1
≈ α1/r and B

∣

∣

z=1
≈ β1/r. As it is shown in Sec. 4.3.3, the asymptotic behaviour of B

actually implies β1 = 0.

The masses for the results of the configuration with (A , σr, x0) = (3.2, 0.3, 0), are shown in

Fig. 4.3. In the next section we will study the total mass in the bulk. To distinguish different

masses, the ADM mass on brane will be referred as MbraneADM.

4.3.3 Asymptotic Behaviour

The asymptotic behaviour at r ≫ z is crucial for the calculation of total energy (see Sec. 2.4.2).

The construction of B in the direct specification according to eq. (4.12), directly implies |B| ≪ |A|
at the r ≫ z region. When B is negligible, in Sec. 2.4.2 we showed that a solution at r ≫ z region
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Figure 4.3: Brane Masses from the initial data configuration with parameters (A , σr, x0) =
(3.2, 0.3, 0). The result is MADM = 22.67. The graph shows that the Hawking mass is not a
constant in the braneworld, in contrast to 4D GR. Hawking mass agrees with ADM mass only at
r → ∞. Madm (defined in equation (2.58)) still blows up around the apparent horizon.
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4.3. The Numerical Solution

was

A ≈ α1

rz
when r ≫ z. (4.19)

However, as discussed in that section, there is no proof of the uniqueness of this solution. Therefore

in this section we need to test whether the solution is indeed given by eq. (4.19). Please refer to

Fig. 4.4 for the results of a series of simulations from the family (A , σr, x0) = (A , 0.3, 0) using

the direct specification. The graphs show that the asymptotic behaviour is indeed described by

eq. (4.19).
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Figure 4.4: The asymptotic behaviour of A at r ≫ z region, shown by the simulations from the
family (A , σr, x0) = (A , 0.3, 0). In the first diagram, we plot r ×A versus z in log-log scale. The
red line, is plotted assuming r×A = α1/z. If A ≈ α1/rz, one would expect the plots for different
r should follow the red line. Other diagrams are plotted in the same way, but with different α1

resulted from different A . The diagrams look almost identical, despite that α1 has changed over
three orders of magnitude. It means that the asymptotic behaviour of A at r ≫ z region is indeed
A ≈ α1/(rz).
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4.4 The Total Energy

The asymptotic behaviour of eq. (4.19) is confirmed by Fig. 4.4, therefore the calculation in

Sec. 2.4.2 applies. The calculation shows that the total energy (Mtotal) in the whole spacetime is

Mtotal = α1/G5 = 8πα1. (4.20)

Consequently, as shown by eq. (2.67), the relation between the brane “energy” and the total energy

is then simply

MbraneADM =Mtotal. (4.21)

4.4.1 The Relation with the Area of Apparent Horizon

In 4D GR case, there is a simple relation between the Hawking energy of the spherically

symmetric vacuum spacetime and the area of the horizon of the black hole sitting at the symmetric

center, which is eq. (2.62). In the braneworld, we would like to examine whether the total energy

can also be characterized by the area of apparent horizon in 5D braneworld. To study this relation,

we choose the configurations where the matter outside of the apparent horizon are negligible.

Fig. 4.5 shows the relation between the total energy Mtotal, and
√
4πAbulk, where Abulk is the

area of the apparent horizon in the bulk. The figure shows these two quantities are equal. Therefore

we have

Mtotal =
√

4πAbulk. (4.22)

How to understand this relation? Eq. (4.21) tells us that the mass can also be understood as

the ADM mass calculated on the brane. The size of BH—the areal radius of the intersect of the

horizon with the brane—is ra ∼ (0.7, 2.0) according to the area-versus-radius relation shown by

Fig. 1.1, where ra is the areal radius of the horizon on the brane. These BHs are then considered

to be medium to large. For large BHs, the area of the horizon in the bulk reduces to the area

of black string, which is equal to the area of the horizon on the brane, and the brane geometry

(without matter) reduces to 4D GR. Eq. (4.22) might be just

MbraneADM =
√

4πAbrane. (4.23)

On the other hand, given there are many BHs of medium size in this data set, the knowledge

of large BHs (that the areas reduces to those for black strings) might not apply. Therefore the

relation might be generically about total energy and the area of apparent horizon in the bulk.
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Figure 4.5: The mass-area relation of apparent horizon. This plot is produced from simulations
with various parameters (A , σr, x0), using both direct method and Laplacian method. The only
criteria is that the configurations defined by the parameters are able to produce apparent horizons
in the bulk.
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At the end, we emphasize that the range of the size of the BHs is merely ra ∼ (0.7, 2.0), and

Fig. 4.5 exhibits a small but systematic deviation between the data and the line of a linear fit.

Therefore further study is needed.

4.5 Discussion: the Results of Laplacian Specification

The total energy is obtained in eq. (4.20), which was derived based on the condition that

|B| ≪ |A| in r ≫ z region. By the construction of the “direct specifiction”, |B| ≪ |A| is met

automatically. On the other hand, without pre-setting this condition, this condition emerged in

the star solution [47] and the small black hole solution [14]. In our initial value problem, there is

no such a pre-set condition in Laplacian specification method. It is then interesting to see whether

this condition can still emerge. Fig. 4.6 shows the results of a series of simulations from the family

(A , σr, x0) = (A , 0.15, 0.5) using Laplacian specification, where we see that indeed A ≈ α1/rz

emerges. The validity of the discussion leading to Mtotal = α1/G5 is based on the assumption
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Figure 4.6: The asymptotic behaviour of A at r ≫ z region obtained via Laplacian Specification,
shown by simulations from the family (A , σr, x0) = (A , 0.15, 0.5). This diagram shows that the
asymptotic behaviour of A is indeed A ≈ α1/(rz). Instead of almost identical configurations as
in Fig. 4.4, this diagram shows interesting pattern: 1) the asymptotic behaviour of stronger data
is more like A ≈ α1/rz; 2) disregard the trend with the strength of the data, as long as r is big
enough, there is always A ≈ α1/rz. The asymptotic behaviour of B is observed to be B ≈ c/r2.3.
The fact that c/α1 decreases with α1 explains that A become more like α1/(rz) with the increase
of α1.

A ≈ α1/rz and |B| ≪ |A|. Since B ≈ c/r2.3 and A ≈ α1/rz, ∀ (small) ε > 0, ∃ Q = (cv/α1ε)
10/3

such that |B/A| ≤ ε for r = Q, z ∈ [1, v · Q] (which is the region to calculate the total energy,

as shown in Fig. 2.2(a) and discussed in Sec. 2.4.2). Therefore the assumptions hold, and we still

have Mtotal = α1/G5.
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4.6 Prepare the Initial Data for Evolution

Often the lapse α̃ and the shifts η̃ti are freely specifiable in initial data. However, for the

braneworld, the Israel’s junction condition imposes non-trivial boundary conditions on the lapse

function and the shift functions. For our specific initial data ansatz with time symmetric initial

configuration, the boundary conditions for the shift functions are automatically satisfied by setting

η̃ti = 0. The lapse function, on the other hand, has a non-trivial boundary condition. We denote

the tt component of the metric as gtt = −
(

L2/z2
)

e2a, then Israel’s boundary condition for a is

a,z = 1− eA+B +
1

12
e−A−B (Φ,r)

2
. (4.24)

Using the direct specification, a can take

a = f ·
(

1− eA +
1

12
e−A (Φ,r)

2

)

, (4.25)

where f is the same f used in eq. (4.10) to specify B.

4.6.1 Prepare the Initial Data for Specific Initial Source Functions

Given the values of the metric functions and their time derivatives, the constraints for source

functions h̃µ +∆Γ̃µ ≃ 0 (which is satisfied at initial instant), can give us the initial values of the

source functions. Alternatively, as used by Pretorius [63], if one would like to set a certain gauge

at the initial instant by setting the value of h̃µ, then one can use the constraint equations to work

backwards to get the values of ∂tη̃tµ. In this way the initial values of ∂tη̃tµ is expressed in terms of

the value of the metric components and their derivatives. Let us denote the obtained expression

as η̃tµ,t(η̃, ∂η̃).

This procedure works well in ordinary spacetime (such as the 5D massless scalar field studied

in section 3.4). However, in the braneworld, generally η̃tz,t(η̃, ∂η̃) is not continuous at the brane

under the perpendicular gauge (2.7). This is because, ∂tη̃tz should be zero at the brane, due to

the boundary condition η̃tz
∣

∣

z=1
= 0 at all time. On the other hand, η̃tz,t(η̃, ∂η̃) will include z

derivatives of other metric functions (i.e. η̃tt,z, η̃rr,z, η̃zz,z, η̃θθ,z), which generally results in a non-

zero η̃tz,t(η̃, ∂η̃) at the brane, due to Israel’s junction condition. i.e. η̃tz,t is not continuous at the

brane.

This discontinuity problem can be solved by properly adjusting η̃zz . If we do not choose

η̃zz = η̃rr at the initial instant, there is the freedom to setup the value of η̃zz since neither Israel’s
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junction condition nor parity condition impose any requirement on η̃zz. We can use this freedom

to adjust η̃zz such that η̃tz,t(η̃, ∂η̃) = 0 at the brane. In this case the simplest ansatz for the initial

metric is

ds2 =
ℓ2

z2

(

− e2adt2 + e2A+2Bdr2 + e2A−2B
(

dθ2 + sin2 θdφ2
)

+ e2bdz2
)

, (4.26)

for which the Hamiltonian constraint reads

− −1 + e4B

2r2
− 3e2(A+B)

z2
+

1

2z2
e2(A−b+B)

(

6 + 6z2 (A,z)
2
+ 3zB,z + 2z2 (B,z)

2

+ zb,z (3 + zB,z)− zA,z (9 + 3zb,z + 4zB,z) + 3z2A,zz − z2B,zz

)

+
1

2
(A,r)

2
+

1

2
A,rb,r +

1

2
(b,r)

2
+

2A,r + b,r − 4B,r

r

− 3A,rB,r −
3

2
b,rB,r +

5

2
(B,r)

2
+A,rr +

1

2
b,rr −B,rr = 0. (4.27)

The boundary conditions of a,A,B are now

a,z =
1

12
e−2A−2B (Φ,r)

2
, A,z = −1

6
e−2A−2B (Φ,r)

2
, B,z = −1

4
e−2A−2B (Φ,r)

2
. (4.28)

The only requirement on b (from solving η̃tz,t(η̃, ∂η̃) = 0) is its derivative at the brane

b,z = −
(

h̃z +
1

6
e−2A−2B (Φ,z)

2

)

, (4.29)

so that ∂tη̃tz is continuous on the brane. The h̃z in (4.29) is the target initial value of h̃z that we

try to achieve at the initial instant. For example, h̃z = 0 if the harmonic gauge is chosen to be

imposed at the initial instant.

Similar to the direct specification method applied to B above, we can adopt direct specification

method to specify (a,B, b)

a = f ·
(

1

12
e−2A (Φ,r)

2

)

, B = f ·
(

−1

4
e−2A (Φ,r)

2

)

, b = f ·
(

−
(

h̃z +
1

6
e−2A (Φ,z)

2

))

. (4.30)

Or

a = f ·
(

1

12
e−2A0 (Φ,r)

2

)

, B = f ·
(

−1

4
e−2A0 (Φ,r)

2

)

, b = f ·
(

−
(

h̃z +
1

6
e−2A0 (Φ,z)

2

))

,

(4.31)

where A0 ≡ A|z=1, is the value of A on the brane. While both of (4.30) and (4.31) work, the
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4.6. Prepare the Initial Data for Evolution

numerical experiments show that (4.31) enables the Hamiltonian constraint equation (which is an

elliptic equation in term of A) converges faster when performing numerical relaxation. Therefore

we adopt (4.31).

For an example of the initial data, please refer to Fig. 4.7.
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Figure 4.7: Function A and −B in initial data metric (4.26) from the initial data configuration
with parameters (A , σr, x0) = (2.5, 0.2, 0)

4.6.2 Total Energy

The total energy from the metric (4.26) can be obtained by the same method presented in

Sec. 2.4.2. For this metric, according to equation (4.30) or (4.31), we have b ∼ 0 and B ∼ 0 at

large r (or large z) region. Therefore the embedding conditions (2.40) and (2.41) reduce to

r̄

z̄
=

r

z
eA; (4.32a)

(r̄′)2 + (z̄′)2

z̄2
=

1

z2
, (4.32b)

where ′ ≡ d/dz.

Only the asymptotic behaviour of A at r ≫ z region contributes to the calculation of total

energy. The asymptotic behaviour is (shown by Fig. 4.8)

A ≈ α1

r
at r ≫ z. (4.33)
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This asymptotic behaviour gives the solution to (4.32) at the lowest order of A as

z̄ ≈ z, r̄ ≈ r · exp
(α1

r

)

, (4.34)

which yield the total energy

Mtotal = α1/G5 = 8πα1. (4.35)

Therefore, the equality of the total energy with the ADM “mass” calculated on the brane, also

holds for metric (4.26).
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Figure 4.8: The asymptotic behaviour of A at r ≫ z region, shown by numerical solutions for
the family (A , σr, x0) = (A , 0.15, 0.5). The diagrams are almost identical, and here we only show
the one with the smallest α1 and the one with the largest α1. These diagrams show that the
asymptotic behaviour of A is A ≈ α1/r for α1 over a wide range of magnitude. Therefore, the
conclusion of A ≈ α1

r at r ≫ z, is robust.
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Chapter 5

Evolution

5.1 The Evolution as an Initial Value Problem

✲
r

✻
z

Bulk: (d)Gµν + Λgµν = 0.

AdS

AdSAxis

Brane (z = ℓ): Israel’s BC and matter’s equations of motion.

Figure 5.1: The evolution as an initial value problem with boundary conditions. z ∈ [ℓ,∞) is
the extra dimension, while the brane is located at z = ℓ (expressed by the shadowed line in the
diagram). r ∈ [0,∞) is the radius coordinate, and r = 0 (z axis) is the symmetry axis of the SO(3)
symmetry.

The evolution of the braneworld is specified by the evolution equation(s) with initial data and

the boundary conditions. The initial data was discussed in Chap. 4. Here we present the evolution

equation and the boundary conditions.

The governing equations are composed of the 5D Einstein’s equations in the bulk and the

matter’s equation of motion on the brane. The 5D Einstein’s equations are

Gαβ = −Λgαβ =: kdTαβ ⇔ Rαβ = kd

(

Tαβ − gαβ
T

d− 2

)

. (5.1)
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5.1. The Evolution as an Initial Value Problem

Its form in terms of the conformal metric g̃αβ is

R̃αβ = kd

(

Tαβ − g̃αβ
T̃

d− 2

)

−R
(Ψ)
αβ , (5.2)

where g̃, Ψ, R
(Ψ)
αβ and R̄αβ were introduced in section 3.3. For the conformal function and the

conformal parameter, we take q = 2 and Ψ = 1/z in our calculations.

The most general conformal metric in terms of regular functions η̃, is (see eq. (3.35))

g̃αβ =























η̃tt η̃tr 0 0 η̃tz

η̃tr η̃rr 0 0 η̃rz

0 0 η̃θθr
2 0 0

0 0 0 η̃θθr
2 sin2 θ 0

η̃tz η̃rz 0 0 η̃zz























; (5.3)

where η̃θθ is taken as equal to η̃rr+rW̃ , which makes the local flatness condition η̃θθ
∣

∣

r=0
= η̃rr

∣

∣

r=0

be satisfied automatically.

The evolution equation (5.2) can be solved in two ways. The first way, is to use (3.48), in terms

of the following source functions (see eq. (3.36))























H̃t

H̃r

H̃θ

H̃φ

H̃z























=























h̃t + (2/r) (η̃tr/η̃θθ)

h̃x + (2/r) (η̃rr/η̃θθ)

cot θ

0

h̃z + (2/r) (η̃rz/η̃θθ)























. (5.4)

Alternatively, a second way, is to use the generalized harmonic formalism with conformal function

and tensorial source functions, which is equation (3.52)

− 1

2
g̃αβ∇̄α∇̄β g̃µν − ∇̄αg̃β(µ∇̄ν)g̃

αβ − ∇̄(µh̃ν) + h̃αC̃
α
µν − C̃α

µβC̃
β
αν

= kd

(

Tµν − 1

d− 2
g̃µν T̃

)

− R̄µν −R(Ψ)
µν . (5.5)

When the background in (5.5) is taken to be flat spacetime (which is what we adopted in the

numerical calculations presented in this chapter), the two ways are equivalent. For discussion and

presentation purpose, we will adopt the second, eq. (5.5).
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5.1. The Evolution as an Initial Value Problem

A second part of the governing equations is the equation of motion of the matter on the brane,

which only “feels” the 4D metric. For massless scalar field, the equation of motion is

DαDαΦ = 0, (5.6)

where D is the covariant derivative associated with the brane metric hαβ .

Next we look at boundary conditions. The boundary conditions at the spatial infinities (r → ∞
or z → ∞) are Dirichlet conditions such that the metric takes the form of the background

ds2 =
ℓ2

z2

(

− dt2 + dr2 + r2
(

dθ2 + sin2 θdφ2
)

+ dz2
)

, (5.7)

which is a Poincaré patch of the AdS spacetime (see Sec. 1.4). The background of RSII braneworld

is the z ≥ ℓ portion. In terms of the conformal metric components, the boundary conditions at

r → ∞ and z → ∞ are η̃rr = 1, η̃tt = −1, η̃zz = 1, η̃tr = 0, η̃tz = 0, η̃rz = 0, W̃ = 0, and Φ = 0 for

the matter at r → ∞.

The boundary conditions on the symmetry axis are parity conditions, and the local flatness

condition, which are η̃tt,r|r=0 = 0, η̃rr,r|r=0 = 0, η̃tz,r|r=0 = 0, η̃zz,r|r=0 = 0, η̃tr|r=0 = 0, η̃rz|r=0 =

0, W̃ |r=0 = 0, Φ,r|r=0 = 0.

The boundary conditions at the brane are Israel’s junction condition (1.29)

K+
αβ = −K−

αβ =
1

2
kd

(

λ
hαβ
d− 2

+ ταβ − hαβ
τ

d− 2

)

, (5.8)

which translates into conditions on η̃tt,z, η̃tr,z , η̃rr,z, W̃,z . The expressions are long and the specific

forms do not matter at this stage, and are thus not written here. The expressions are in terms of

metric functions, their first order derivatives with respect to r and t, and Φ,r, Φ,t. As discussed in

Sec. 2.1, generically there is no boundary condition for η̃µz, yet we need their boundary conditions

in the numerical calculation. These conditions are more subtle and will be discussed below.

The massless scalar field Φ only exists at z = ℓ. Therefore it is not defined in the bulk.
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5.2. Details of the Numerical Implementation

5.2 Details of the Numerical Implementation

For spatial coordinates, we use “compactified coordinates” to include spatial infinities into the

calculation domain, and numerical grid is uniform in R̂ and Ẑ:

R̂ ≡ r

r + r0
; Ẑ ≡ z − ℓ

z − ℓ+ z0
, (5.9)

where r0 and z0 are parameters to control the scale of the compactification. The derivatives in

the equations need to be changed accordingly. For example, f,r = f,R̂ · ∂R̂
∂r , etc. The numerical

calculations are performed using the central stencils of finite difference approximation operators

of second order accuracy, whose explicit forms are

∂tf →
fn+1
i,j − fn−1

i,j

2 ·∆t , (5.10)

∂R̂f →
fn
i+1,j − fn

i−1,j

2 ·∆R̂
, (5.11)

∂Ẑf →
fn
i,j+1 − fn

i,j−1

2 ·∆Ẑ
, (5.12)

∂ttf →
fn+1
i,j − 2fn

i,j + fn−1
i,j

(∆t)2
, (5.13)

∂R̂R̂f →
fn
i+1,j − 2fn

i,j + fn
i−1,j

(

∆R̂
)2 , (5.14)

∂ẐẐf →
fn
i,j+1 − 2fn

i,j + fn
i,j−1

(

∆Ẑ
)2 , (5.15)

∂tR̂f → 1

4 ·∆t ·∆R̂
(

fn+1
i+1,j − fn+1

i−1,j + fn−1
i−1,j − fn−1

i+1,j

)

, (5.16)

∂tẐf → 1

4 ·∆t ·∆Ẑ
(

fn+1
i,j+1 − fn+1

i,j−1 + fn−1
i,j−1 − fn−1

i,j+1

)

, (5.17)

∂R̂Ẑf → 1

4 ·∆R̂ ·∆Ẑ
(

fn
i+1,j+1 − fn

i−1,j+1 + fn
i−1,j−1 − fn

i+1,j−1

)

. (5.18)

where the index i and j are grid indices in R̂ and Ẑ directions, and ∆R̂ and ∆Ẑ are the (uniform)

spacing of the grids in R̂ and Ẑ directions. The superscripts n, n+1, n− 1 are the discretized time

levels, where ∆t is the spacing. In the simulations performed in this chapter, we set r0 = z0 and

the resolution in R̂ is the same as that in Ẑ. Courant factor ∆t/min(∆r) = ∆t/(r0 ·∆R̂) is set to
be 0.5.

The residual equations are the discretized eq. (5.5) and eq. (5.6). Let n denote the current time

level. The update scheme is to obtain time level n+1 from given quantities at level n and n−1, by
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solving the residual equations. We solve the residual equations by pointwise Newton-Gauss-Seidel

iteration in a black-red manner (see, e.g. [73]) until residuals are smaller than a “small” threshold.

A Kreiss-Oliger (KO) [73] style numerical dissipation is added to control high frequency numer-

ical noises. Since we use second order FDA to discretize eq. (5.5) and eq. (5.6), a fourth order KO

dissipation (see [61] for the specific form) is employed. Following [61], the dissipation is applied to

both n and n− 1 time levels before solving for the advanced time level n+ 1.

Adaptive Mesh Refinement (AMR) is used to reach high resolution (when needed). We used

PAMR/AMRD [65] as the tool to realize the parallelization of the code. Both of the KO style

dissipation and AMR are built into PAMR/AMRD. The simulations producing BHs in this chapter,

however, were obtained using only one CPU with uniform grid structure, because a shooting

method is employed to locate apparent horizons, which is not parallelized, nor adapted to AMR.

Our plan for the future is to upgrade the code to use flow method to locate apparent horizons,

which can be parellelized and adapted to AMR [62].

5.3 Gauge Freedom

As discussed in section 3.3, there are two ways to perform evolutions using GH formalism: the

BSSN-like method and the source function driven method. Here we adopt the source function

driven method. Therefore we need to consider how to impose gauges via the source functions,

and how to make sure the h̃µ +∆Γ̃µ ≃ 0 constraints are preserved during the evolutions. In this

section we focus on imposing gauges. Please refer to section 5.4 for the study of the constraint

preservation.

5.3.1 Fixing Gauges via Source Functions

There are gauge freedoms in gravitational theories, which are about the coordinate choices. It

is important to properly specify coordinates in numerical relativity to avoid coordinate pathology,

to evolve spacetime with strong fields, and to deal with physical singularities. For the generalized

harmonic formalism, the following gauges are generally adopted in the simulations in the literature.

(1) The simplest gauge is the harmonic gauge

h̃µ = 0. (5.19)
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5.3. Gauge Freedom

(2) The lapse driving gauge used by Pretorius [63]:

�̃h̃t + c1
α̃− α̃0

α̃s
− c2h̃t,µñ

µ = 0, (5.20)

where s ≥ 0, c1 > 0, c2 > 0. It is generalized from the damped harmonic equation x,tt+ c1 ·x+
c2 ·x,t = 0. With �̃, the equation has the functionality as a smoother. The effect of this gauge

is to drive the lapse function towards its desired value α̃0. For example, Pretorius found that

the instability tends to happen at the apparent horizon excision boundary when the value of

the lapse function is too small. He then chose α̃0 = 1, the value of the lapse function in flat

spacetime.

One can also apply this method to the spatial components h̃i, to achieve the desired gauges.

(3) Damped wave gauge [60, 98]. In our case, the gauge reads

h̃µ = c1 log

(

η̃P

α̃

)

ñµ − c2 η̃µiβ̃
i/α̃, (5.21)

where η̃ =
[

η̃rr η̃zz − (η̃rz)
2
]

(η̃θθ)
2
is the determinant of the spatial (conformal) metric in

Cartesian coordinate. P, c1, c2 are positive parameters. The effect is to damp out the dynamics

in spatial coordinates on the time scale 1/c2, and to suppress the growth in
√
η̃/α̃ (when

P = 1/2) on time scale 1/c1.

In ours simulations, (3) was adopted for the simulations that produce small black holes. For

small black holes, it is crucial to set both r0 and z0 much less than 1 to let the black hole boundaries

include many grid points, so that the small black holes are well-resolved. (2) was adopted for

the simulations that produce large black holes. Pretorius’ group successfully performed many

simulations [62, 66, 67] using (5.20) as the slicing condition, and h̃i = 0 for spatial coordinates,

which are also the conditions we use. α̃0 = 1 is chosen. For large BHs, (1) also works well. In any

case, after BHs are obtained and the evolution is stablized, we gradually change the gauge into (3)

to drive the value of α̃ towards α̃0 = 1 so that the lapse rate of the coordinate time is comparable

to that of the proper time, which enables us to define and to monitor the apparently stationary

state that is going to be introduced in Sec. 5.7.1.

116



5.4. Constraint Violation and the Cure

5.4 Constraint Violation and the Cure

5.4.1 Constraint Damping

The generalized harmonic formalism, has the constraints Cµ ≡ Hµ+Γµ ≃ 0 (or C̃ ≡ h̃µ+∆Γ̃µ ≃
0). During the evolutions, there are always numerically errors that violate the constraints, and

often the modes of the deviation from the constraint equations grow with time, and drive the

evolution away from Einstein’s equations. The phenomena, numerical violation from constraint

equations growing with time, is a very common challenge for numerical relativity (see, e.g. [58]).

One way to improve the performance, is to add the following constraint damping terms [58] to

the left hand side of the evolution equations (3.28)

Zµν ≡ κ

(

n(µCν) −
1 + p

2
gµνn

βCβ
)

, (5.22)

where κ > 0 and p > −1 are constant parameters. For evolution equations (5.5), the damping

terms are changed to

Z̃µν ≡ κ

(

ñ(µC̃ν) −
1 + p

2
g̃µν ñ

βC̃β
)

, (5.23)

where C̃µ ≡ h̃µ + ∆Γ̃µ. These damping terms have been proven to be useful in keeping the

constraints satisfied for simulations in “ordinary” spacetimes (e.g. the simulation in 5D carried out

in Sec. 3.4). However, for the braneworld, it turns out that these damping terms are not sufficient

— the constraints do not converge to zero as the resolution increases. In fact, the residuals of the

constraints almost stay the same when the resolution increases.

We experimented with many changes to the damping term—some worked better than others.

One version was to make κ spacetime dependent. We tried a few choices and it turns out the

following choice worked to a certain degree

κ→ κ
zn

(z − c ℓ)n
, (5.24)

where c was chosen to be, for example, 0.9 or 0.95, which effectively puts more damping near

the brane. This change enhanced (a little) the convergence of the constraints. However, the

convergence criterion is still not perfectly satisfied.

It turns out the following choice is more successful, although we can not explain why at this
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moment. More work is needed.

Z̃µν = κ

(

ñ(µC̃ν) − F · 1 + p

2
g̃µν ñ

β C̃β
)

, (5.25)

where F may depend on spacetime. i.e. only the second term of Z̃µν is multiplied by F , which

is a spacetime dependent function. We experimented with different forms of F , and the following

family worked the best so far (among all our trials)

F =
zn

zn − c ℓn
, (5.26)

where c is close to 1, which again adds more damping on the brane. A choice was n = 4, c = 0.99

(refer to Fig. 5.2). This damping was successful, since the constraints converged at the expected

order.

The success of this method means that the second term in constraint (5.23) and the first term

may have very different effects.

The constraint damping is very important. We do not have specific guidance to give the forms

of such damping parameter settings. A survey over the parameters showed that the effect of

damping is very sensitive to parameters. Also, even for the most successful result (Fig. 5.2), the

independent residuals (and the residual of constraint equations) increase rapidly after certain time.

i.e. very long term simulations seems to be problematic.

5.4.2 Imposing Constraints on the Brane

From the result of Fig. 5.2, we learn that 1) the gauge choice h̃µ = 0 works; 2) the damping

should be larger at the brane, which motivates us to exactly impose constraints h̃µ +∆Γ̃µ = 0 on

the brane.

How to impose constraints h̃µ +∆Γ̃µ = 0? What one usually does in successful simulations in

ordinary spacetimes (non-braneworld, such as the 5D simulation in Sec. 3.4), is to set h̃’s to certain

pre-set values (e.g. in the case of the harmonic gauges, we have h̃ = 0). In this situation, the effect

of constraint damping is to drive the metric components to the values that satisfy the constraint

equations, rather than doing something to the source functions h̃µ. i.e. to impose constraints, it

is the metric (rather than h̃’s) that should be guided.

How does this guidance happen? Let us define should̃hµ ≡ −g̃µν
(

Γ̃ν
αβ − Γ̄ν

αβ

)

g̃αβ . i.e. they

are what the h̃’s should be, if the constraints are exactly satisfied. The should̃h’s are functions of

the metric components and their derivatives. One can set the value of metric components or their
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Figure 5.2: This convergence test is for the results obtained from the simulation using harmonic

gauge h̃µ = 0, and constraint damping Z̃µν = κ
(

ñ(µC̃ν)− 1+p
2 g̃µν ñ

αC̃α · z4

z4−0.99

)

. The initial data

is Φ = A exp
[

−(r − x0)
2/σ2

r

]

with (A , r0, σr) = (0.05, 1, 0.25). After the results are obtained
by the generalized harmonic formalism with a conformal function, the results are substituted into
the original Einstein’s equations in terms of the original metric functions without the conformal
function, to get the residuals. The residuals should converge to zero as second order quantities,
if the results are numerical solutions. Fig. (a) is the convergence of the residual obtained from

the (tt) component of Einstein’s equations Rµν = kd

(

Tµν − gµν
T

d−2

)

. Fig. (b) is the test from

the (rz) component. Fig. (c,d,e) show the convergence of constraints: h̃µ +∆Γ̃µ with µ = t, r, z,
respectively. The residuals converge at the expected order. However, this is the result obtained
from very extreme damping, and all the residuals have up-climbing tails.

119



5.5. The Evolution with an Apparent Horizon

derivatives at the brane to let should̃hµ = h̃µ (therefore imposing constraints), which can be done

in multiple ways. Here we adopt the following. should̃hµ = h̃µ can be equivalently expressed by

setting the values of η̃tz,z, η̃rz,z and η̃zz,z , which in principle can serve as the boundary conditions

for η̃µz—as shown in Sec. 2.1, generically there is no boundary condition for η̃µz.

In addition, we impose the perpendicular gauge at the brane (η̃tz
∣

∣

z=ℓ
= η̃rz

∣

∣

z=ℓ
= 0) since this

gauge gives the smoothness of the apparent horizon across the brane, as discussed in Sec. 2.2.2.

Now we have two conditions for η̃tz (and two conditions for η̃rz): one is constraint imposing

condition which is a condition on the value of η̃tz,z (and η̃rz,z), the other is the perpendicular

gauge condition which is a condition on the value of η̃tz (and η̃rz). Imposing two boundary

conditions on one function is achieved by the following trick: let one of the conditions be satisfied

automatically by choosing the forms of the functions:

η̃tz ≡ (z − ℓ) · ξ̃t, (5.27)

η̃rz ≡ (z − ℓ) · ξ̃r. (5.28)

In this way, the η̃tz |z=ℓ = η̃rz|z=ℓ = 0 are automatically satisfied. The conditions on η̃tz,z and

η̃rz,z are now converted into the conditions on the values of ξ̃t and ξ̃r. We then use ξ̃t and ξ̃r as

fundamental variables instead of η̃tz and η̃rz.

It turns out that this method works well, and there is no need to use special damping.

Beyond the constraints imposed on the brane, the “normal and plain” damping term Z̃µν =

κ
(

ñ(µC̃ν) − 1+p
2 g̃µν ñ

αC̃α
)

is still employed to control “ordinary” violation modes in the bulk. The

tests of the method are shown in Fig. 5.3.

5.5 The Evolution with an Apparent Horizon

During the evolution, sometimes singularities are formed and the code crashes. There are at

least two types of singularities. The first is the coordinate singularity due to pathological coordinate

gauges, which can be avoided by properly choosing coordinate gauges (which is non-trivial). The

second is the physical singularity. However, Penrose’s cosmic censorship hypothesis [84] states

that, the physical singularity is always hidden behind an event horizon. While there is no proof of

this hypothesis, it does seem to be satisfied in many cases.

Event horizon is the boundary in spacetimes that separates the events which can be causally

connected with future Poincaré horizon by future oriented null geodesics, from the events which can

not. The interior surrounded by event horizons, by definition, can not affect the regions outside of
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Figure 5.3: The convergence Tests for the simulation using gauge h̃µ = 0. The initial data is

Φ = A exp
[

−(r − x0)
2/σ2

r

]

with (A , r0, σr) = (0.05, 1, 0.25). After the results are obtained by
the generalized harmonic formalism with a conformal function, the results are substituted into
the original Einstein’s equations in terms of the original metric functions without the conformal
function, to get the residuals. The residuals should converge to zero as second order quantities,
if the results are numerical solutions. Fig. (a) is the convergence of the residual from the (tt)

component of Einstein’s equations Rµν = kd

(

Tµν − gµν
T

d−2

)

. Fig. (b) is the test for the (rz)

component. Fig. (c,d,e) show the convergence of constraints: h̃µ+∆Γ̃µ with µ = t, r, z, respectively.

In all the tests shown in the figures, the spacing of the coarser grid is ∆R̂ = ∆Ẑ = 1/256 and the
spacing of the finer grid is ∆R̂ = ∆Ẑ = 1/512. The simulations were performed using 16 CPUs
and the test is performed on the result obtained by the CPU at the R̂ = Ẑ = 0 corner, which is
the region that would suffer from the most severe problems (if there was). The convergences are
shown to be good. After t ∼ 2, the residuals suddenly decreased, because the interesting dynamics
propagated out of the region where we evaluate the residuals.
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5.5. The Evolution with an Apparent Horizon

the event horizons. Therefore, one way to avoid the physical singularity in the calculation domain

is to perform the evolution without referring to the interior of the event horizons (so that the

interior of the event horizons is excised from the calculation domain).

Event horizon, however, is a concept based on the global structure of the whole spacetime,

which is therefore not quite useful during the evolution since one can not tell the event horizon

until the full evolution is completed. But the full evolution is not able to be obtained without

knowing the event horizon to excise the physical singularities. Fortunately there is the concept of

apparent horizon which is locally (in time) defined. Apparent horizons are not guaranteed to exist

in a certain evolution. But, if they do exist, they are inside of the event horizons. Therefore the

interior of an apparent horizon can not affect the exterior of the event horizon. Since the apparent

horizon lies inside the event horizon, and sometimes by a long way, the Penrose hypothesis does

not guarantee that singularities can not exist outside the apparent horizon. But again, often

the physical singularities (to be formed in a future instant) are inside of the apparent horizon.

Therefore, if an apparent horizon appears, we may excise the interior of the apparent horizon to

get rid of the physical singularities from the calculation domain. This idea (black hole excision)

was proposed by W. G. Unruh [70], and had become a common practice to deal with physical

singularities in numerical relativity.

To perform black hole excision, one needs to locate the apparent horizon.

5.5.1 Smoothness of Apparent Horizons in the Braneworld

In the braneworld, the Israel’s junction condition at the brane essentially imposes cusp con-

ditions to certain metric functions. This raises the question of whether apparent horizons will

be non-smooth across the brane. By the discussion of the smoothness of apparent horizons in

Sec. 2.2.2, the apparent horizons in the braneworld is smooth under the perpendicular gauge

(2.7). Under gauge grz
∣

∣

z=1
= 0 (perpendicular gauge), the smoothness can be simply expressed as

(dr/dz)
∣

∣

z=1
= 0, where the derivative is evaluated along the apparent horizons.

5.5.2 Apparent Horizon Finder

In this subsection we introduce a method to locate apparent horizons [64].

We introduce polar coordinates (ρ, χ) via r = ρ sinχ, z = 1 + ρ cosχ (length dimensions are in

the unit of ℓ). In this coordinate system, the symmetric axis r = 0 is χ = 0, and the brane z = 1
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5.5. The Evolution with an Apparent Horizon

is χ = π/2. On a t = constant hypersurface, we define function

f ≡ ρ− ̺(χ), (5.29)

and let the apparent horizon be the one with f = 0. The form of ̺ is going to be determined by the

apparent horizon equation (2.14). The spacelike outpointing unit vector normal to f = constant

surfaces is now

sα =
pα

√

pβpβ
, where pα ≡ γ β

α ∂βf. (5.30)

Substituting sα into (2.14), we get a second order ordinary differential equation (ODE) of ̺ with

respect to χ. The boundary condition at χ = 0 (the symmetric axis r = 0) is d̺/dχ = 0; the

boundary condition at χ = π/2 (the brane) is d̺/dχ = 0 under the perpendicular gauge at the

brane (η̃rz = η̃tz = 0), because of the Z2 symmetry of the braneworld and the smoothness of the

apparent horizon. Apparent horizon is obtained via solving this second order ODE subject to the

boundary conditions. Numerically, we use a version of the shooting method to obtain the apparent

horizon. There are multiple ways to implement shooting methods. The basic idea is to start the

trajectory (implied by the ODE) at certain initial point (χ = 0), and then solving the ODE subject

to the initial conditions yields a value of d̺/dχ at the final point (χ = π/2) of the trajectory. We

then adjust the inital point accordingly until d̺/dχ = 0 at final point. One version is implemented

as the following. At χ = 0, we pick up certain value of z(0)p (which is ̺(χ = 0)) as the initial value

of z and solve the ODE to obtain the trajectory to χ = π/2. Not losing generality, let us assume

the value of d̺/dχ at χ = π/2 is positive. Then we try different initial value of z(0) until we find

an initial value z(0)n such that d̺/dχ is negative at χ = π/2. Now we have found a bracket of the

initial guesses: (z(0)p, z(0)n). Then we can use the following binary search to find the apparent

horizon. We use z p for z(0)p, z n for z(0)n and Rp for d̺/dχ in the pseudo code.

eps = pre-set small value

Rp = 10 * eps

do while ( abs(Rp) > eps )

z_m = (z_p + z_n) / 2

solve ODE to get Rp at chi = pi/2, by initial value z = z_m

if (Rp > 0) then

z_p = z_m

else if (Rp < 0) then

z_n = z_m
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5.6. Tests and the Validation of the Numerical Scheme

end if

end do

z(0) = z_m

In performing shooting method above, we need to solve the ODE, for which we used the Runge-

Kutta method of second order accuracy.

5.5.3 Dissipation at the Excision Boundary

To perform the excision, which is to ignore the interior of the apparent horizon during numerical

evolutions, is conceptually simple and neat. However, technically it is tricky and probably messy

to deal with the excision boundary. To ignore the interior of the apparent horizon, we only evolve

the exterior, and the boundary condition at the excision boundary is “no boundary condition”.

Instabilities and noises tend to happen at the excision boundary, which should be removed by

certain numerical dissipation. One way to do it, is to reconstruct the interior from the exterior,

such that the reconstructed functions are smooth across the excision boundary. Then we apply

Kreiss-Oliger dissipation to remove the noises. This process, while sounding trivial, is very difficult

to realize. There is no good way to reconstruct smooth functions across the excision boundary.

This method is able to evolve the spacetime with excision for “a while”, so its success is limited.

Another way, which is the best among the methods we tried, is to use the one-side dissipation at the

excision boundary, which was developed by Calabrese et al. [72], and adopted in PAMR/AMRD

[65]. This method significantly improves the performance.

5.6 Tests and the Validation of the Numerical Scheme

As pointed out in Sec. 1.6.2, the tests after the numerical results are obtained, are essential to

make sure the results are actually numerical solutions rather than numerical artifacts. To this end,

the independent residual tests need to be performed. For systems with constraints, convergence

tests for constraint residuals need to be performed as well.

For GR, one can either perform independent residual tests together with constraint convergence

tests, or perform convergence tests for residuals obtained from a different formalism of GR. Given

generalized harmonic formalism (5.5) was used to obtain the solutions, where the conformally

transformed metric and source functions were fundamental variables, now we perform the conver-

gence tests of the residuals obtained from the original Einstein’s equations (5.1). i.e. the numerical

solutions are obtained via the generalized harmonic formalism with the conformally transformed
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5.7. The Numerical Solution

metric as the fundamental variables. Then the solutions are transformed back to obtain the phys-

ical metric, and are then substituted into the original Einstein’s equations to get residuals. These

residuals should converge to zero at the expected order (which is of order 2 in our simulations), if

the numerical solutions are obtained. The tests are shown in Fig. 5.3.

Beyond this, we also performed independent residuals, which are perfect thus omitted here.

Beyond these, we also performed convergence tests for the residuals of the constraints, which are

shown in Fig. 5.3.

5.7 The Numerical Solution

The scheme can be used to study a wide range of dynamical processes, such as critical phe-

nomena, the evolution problem in cosmology, gravitational wave from collapse, etc. But we will

limit our attention to the end states of gravitational collapse at this time.

We performed a series of simulations from the initial data metric (4.26) with the initial matter

field as

Φ = A · exp
[

−(r − x0)
2/σ2

r

]

, (5.31)

from different initial data families. Within each family, only amplitude A changes, while Gaussian

parameters (σr and x0), σz (the parameter in the “direct specification” function f in (4.11), which

is used in eq. (4.31)) and the compactification parameters (r0 and z0), are fixed.

5.7.1 The Evolution Process and Apparently Stationary State

The initial data represents a localized Gaussian pulse. Since the initial data is time symmetric,

the pulse evolves into two pulses: the ingoing pulse and the outgoing pulse. For weak data, the

ingoing pulse is bounced back from r = 0 to travel outwards, which is the same phenomena as that

in GR. The unique phenomena in RSII, is the interaction between the brane and the bulk, which

mainly appears as the energy leaking into the bulk from the brane. Please refer to Fig. 5.4 and

5.5.

Sufficiently strong data will lead to BHs. The spacetime with BH can continue to evolve using

BH excision techniques. The properties of the BHs are studied via apparent horizons in the bulk.

Apparent horizon is generally different from event horizon. However, at the end of an evolution,

the system reaches its stationary state and its apparent horizon coincides with its event horizon

[89]. In the braneworld, when matter is absent around the horizon, the intersection of the bulk
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event horizon with the brane, is actually a well-defined event horizon on the brane as proved in

Sec. 2.3, therefore observable, in principle.

We monitor ra, Abulk and C5 during an evolution, where ra is the areal radius of the intersection

of the apparent horizon with the brane, Abulk is the area of the apparent horizon in the bulk, and

C5 is the length of the circumstance of the horizon (restricted on the r− z plane) in the bulk. For

the simulations that can reach their end states or their apparently stationary state (to be defined

below), the quantities reach the values that are almost constants. Please refer to Fig. 5.6 and

Fig. 5.7 for an evolution which produces a BH of medium size, Fig. 5.8 for an evolution which

produces a BH at a smaller size, Fig. 5.9 for an evolution which produces a small BH and Fig. 5.10

for an evolution which produces a large BH. Fig. 5.4 and 5.5 show the evolutions from two initial

data families, monitored by the Kretschmann scalar RµναβR
µναβ .

To obtain the end state of a system, it is necessary to let the evolution continue sufficiently

long so that the system settles down. Even so, it is non-trivial to recognize the end state in a given

simulation, due to coordinate effects. When a system reaches its end state, the system has a Killing

vector that is asymptotically timelike, which corresponds to the time translational symmetry. If

the slicing condition is such that the t = constant slices are Lie-dragged by the Killing vector, it is

easy to overcome the spatial coordinate effects, by embedding the apparent horizons into a fixed

space, such as the background space. During a particular evolution, the apparent horizon evolves

with time, but its embedding in the fixed space will evolve into a time-independent state, if the

slicing condition is adapted according to the Killing vector.

However, it is non-trivial to impose such slicing conditions. Such a slicing condition is currently

not imposed in our numerical schemes 16. As a result, we do not have a time-independent state at

the end of the evolutions. In the simulations, instead, we can obtain apparently stationary states—

the states with BHs whose horizons (embedded into a fixed space) appear to be stationary for a

finite time. By this definition, the apparently stationary state that stays stationary for infinite

time is actually the end state.

To recognize the apparently stationary state of a system, we monitor the evolution of the

apparent horizon by its embedding into the “vacuum” background

ds2 =
ℓ2

z̄2

(

− dt̄2 + dr̄2 + r̄2
(

dθ̄2 + sin2 θ̄dφ̄2
)

+ dz̄2
)

. (5.32)

16In the literature, there are the so-called symmetry seeking coordinate conditions [118–120] towards the conditions
which can evolve into the coordinate configurations such that the time coordinate t is adapted to the Killing vector
associated with the time translational symmetry of a stationary system. It will be our future work to implement
such slicing conditions in our code.
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Figure 5.4: The snapshots of four evolutions resulting in BHs with different sizes, monitored via

Kretschmann scalar RµναβR
µναβ . Each small panel represents an instant of the space, where the

horizontal and vertical axes are r and z axes expressed in compactified coordinates r/(r+ r0) and
(z − ℓ)/(z − ℓ + z0), therefore the bottom of each panel is z = ℓ, the brane. The complete space
in r direction is shown. In z direction, only the part with interesting dynamics is shown. The
evolutions are from the family with x0 = 2, σr = 0.2, σz = 0.4, and r0 = z0 = 2 are chosen. They
produce no-BH, BH with ra = 0.29ℓ, 0.61ℓ, 3.78ℓ from A = 0.04, 0.15, 0.24, 0.49 respectively. The
two smaller BHs are apparently stationary states, and the largest BH is not since the configuration
has not settled down to stationary state after evolving for a long time, and eventually the code
crashes. In general it is harder for an evolution to settle down if the excision surface is going across
the “wiggling” regions. This appears to be a technical issue related to the black hole excision at
relatively coarse resolutions. The black ellipses in the figures are the excision surfaces inside the
apparent horizons. The evolutions clearly show how the energy flows from the brane into the bulk,
and flow from the exterior towards the symmetric axis. Part of the energy is captured by black
holes, the remaining energy continue to flow towards the “far end” of the bulk.
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Figure 5.5: The snapshots of three evolutions resulting in BHs with different sizes, monitored

via Kretschmann scalar RµναβR
µναβ . The evolutions are from the family with x0 = 1, σr =

0.1, σz = 0.2, and r0 = z0 = 1 are chosen. They produce no-BH, BH with ra = 0.22ℓ, 2.9ℓ from
A = 0.03, 0.16, 0.54 respectively. The smaller BH is a apparently stationary state, and the larger
BH is not since the configuration is not settled down to stationary state after evolving for a long
time. Again, presumbly this is a technical issue related to the black hole excision.
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Here a bar (̄ ) is used to emphasize that this spacetime is fixed, and the z̄ ≥ 1 portion is actually

the background of the braneworld spacetime. The embedding is demonstrated by Fig. 2.3 (also

eq. (2.40) and eq. (2.41)). The apparently stationary state appears as an “accumulating” curve in

the embedding plot. Please refer to Fig. 5.6, Fig. 5.7, Fig. 5.8 and Fig. 5.9 as examples where the

apparently stationary states are obtained. The processes of the settlement into time-independent

states, show that the portion of the apparent horizons that is close to the brane, gets settled first,

when the remaining portion might be still dynamical.

Similar to apparent horizon, the existance of apparently stationary state is not guaranteed, and

its relation with end state is not clear. In our simulations, as it turns out, apparently stationary

states can be easily obtained by long term evolutions, as long as the apparent horizons do not cross

the regions with interesting dynamics (the “wiggling” regions), which can be realized by properly

choosing the initial data such that the wiggles either finally travel away from the apparent horizons,

or are captured by the black holes. Furthermore, the plots of the quantities of apparently stationary

states (such as the plots of Abulk-versus-ra and C5-versus-ra shown by Fig. 5.11), generated from

the evolutions of the initial data profiles from different families, exhibite certain trends, whilst

the same plots with horizons that are not apparently stationary state do not have trends. Also,

the Abulk-versus-ra plot (the upper panel of Fig. 5.11) agrees perfectly with that obtained in the

static system studied by Figueras-Wiseman in [20]. Therefore, we conjecture that the apparently

stationary state is close to the end state, and we use apparently stationary state to approximate

the end state.

5.7.2 Black Holes as the Result of Gravitational Collapse

For the BHs as apparently stationary states of gravitational collapse, we focus on the following

aspects: the topology, the size and the shape.

For the topology, one can see that the BHs appear to be localized on the brane with finite

extension into the bulk.

For the sizes, please refer to the results of all the simulations we performed, which are shown by

Fig. 5.11, and table 5.1 for the results from some selected simulations. We did not try extremely

hard to find the largest/smallest BHs possible. But within the simulations we performed, we

obtained BHs with

ra ∈ (0.04ℓ, 19.6ℓ). (5.33)

At the end of an evolution, the matter has either fallen into the BH, or escaped to infinity,

which makes the brane tension be the only content associated with the brane. The strength of the
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(c) The evolution of massless scalar field Φ

Figure 5.6: This figure and Fig. 5.7 show an evolution that produces apparently stationary state as
medium BH with (ra,Abulk, C5) = (0.601, 2.785, 3.164), using parameters (A , x0, σr, σz , r0, z0) =
(0.24, 2, 0.2, 0.4, 2, 2) which defines the initial data and the compactification. (a) is the evolution
of the apparent horizon, where r and z are coordinates. The black dashed line is the first apparent
horizon that appears during the evolution, and the red “-.” line is the apparently stationary state
of this specific evolution of gravitational collapse. Other lines are apparent horizons at intermediate
instants, which color changes continuously from black to red. To better study the evolution without
coordinate distortion effects, we embed each apparent horizon into the background spacetime:

ds2 = ℓ2

z̄2

(

− dt̄2 +dr̄2 + r̄2
(

dθ̄2 + sin2 θ̄dφ̄2
)

+dz̄2
)

. The embedding is demonstrated by Fig. 2.3.

The embedding plot is shown in (b). This graph shows more clearly that the apparently stationary
state is obtained: the shape of the apparent horizon has settled down, since the coordinate time
t ∼ 5.5. (c) shows the evolution of the massless scalar field that only lives on the brane. The initial
profile is a Gaussian pulse, which splits into ingoing and outgoing branches. The ingoing branch
is gradually captured by the BH.
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Figure 5.7: This is the continuation of Fig. 5.6. Here we show the evolution of ra, Abulk, C5 and
the minimum of lapse function α̃ over the whole calculation domain. One can see the apparently
stationary state is obtained by sub-figure (b) in Fig. 5.6, since t ∼ 5.5. The quantities approaches
quasi-constant since then. However, the quantities do not stay strictly at constants. Combining
the plot of α̃, finally the values at t = 5.8 are recorded as the data for the apparently stationary
state. min(α̃) ∼ 0.35 means the lapsing rate of coordinate time is comparable with that of proper
time.
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Figure 5.8: This figure shows an evolution that produces apparently stationary state as
small BH with (ra,Abulk, C5) = (0.221, 0.184, 1.311), using parameters (A , x0, σr, σz , r0, z0) =
(0.16, 1, 0.1, 0.2, 1, 1).
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Figure 5.9: This figure shows an evolution that produces apparently stationary state as small
BH with (ra,Abulk, C5) = (0.0432, 0.00155, 0.269), using parameters (A , x0, σr, σz , r0, z0) =
(0.08, 0.5, 0.1, 0.2, 0.5, 0.5).
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Figure 5.10: This figure shows an evolution that produces large BH as apparently station-
ary state with (ra,Abulk, C5) = (15.1, 2866, 14.9), using parameters (A , x0, σr, σz, r0, z0) =
(1.05, 2, 0.5, 1, 2, 2). This is the case that data is so strong that all the interesting dynamics is
captured by the BH. Note the plots of ra and Abulk are noisy, which we can not explain. This
might be caused by the KO dissipation—the dissipation appears to have stronger effects at larger
spatial coordinates, and its perturbing effect on larger horizon is also stronger. As a result, the
energy of the BH gradually decreases, which causes the decrease in Abulk.
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r0 z0 σz x0 σr A ra/ℓ Abulk/ℓ
3 C5/ℓ

0.5 0.5 0.2 0.5 0.1 0.08 0.0432 0.00155 0.269
1 1 0.3 0 0.3 2.05 0.600 2.80 3.18
1 1 0.2 1 0.1 0.16 0.221 0.18 1.31
2 2 0.4 2 0.2 0.24 0.601 2.79 3.16
2 2 1 2 0.5 1.05 15.1 2866 14.9

Table 5.1: BHs produced from different initial data from different families. The initial data profile

for the massless scalar field on the brane is Φ = A · exp
[

−(r − x0)
2/σ2

r

]

. σz is the parameter to
set up metric functions via “direct specification” eq. (4.11), which is then substituted into (4.31).
The spatial metric for initial data is eq. (4.26). r0 and z0 are simply compactification parameters
defined in eq. (5.9).

brane tension is proportional to 1/ℓ, therefore invisible to small BHs whose size ra ≪ ℓ. These

BHs will be asymptotically 5D Schwarzschild, therefore Abulk = 2π2r3a and C5 = 2πra. Please

refer to Fig. 5.11.

For the shape of large BHs, please refer to Sec. 5.7.3.

5.7.3 The Relation with Black Strings

The black string solution is ds2 = ℓ2

z2

(

habdx
adxb + dz2

)

, where a = 0, 1, 2, 3 and xa stands

for a coordinate other than z, and hab is a BH solution of vacuum Einstein’s equations in 4D,

which does not depend on coordinate z. This could be called black cone instead of black string,

if we had considered the intrinsic geometry of the horizon of black strings. It is named string,

in the sense that the
(

habdx
adxb + dz2

)

part is a string. The “string” shape can be revealed by

embedding the horizon into the background spacetime (5.32). Therefore, the embedding of the

BHs into this background, can give a direct comparison with the black strings. The embedding of

the BHs (represented by the apparently stationary states) of different sizes is shown in Fig. 5.12.

Please refer to the caption of the figure for more details.

Fig. 5.12 shows that small BHs are almost spherical. The BHs gradually change into a cigar-

shape as the size increases, which suggests to call those BHs, black cigars, as first suggested in [6].

As the size of BH increases, the portion of the horizon that is close to the brane gradually changes

into a black string. Also, the ℓ2/z̄2 factor in the background metric (5.32), contributes to Abulk as

ℓ3/z̄3, which means the contribution from large z̄ region become relatively negligible. As a result,

for large BHs, only the portion that is close to the brane actually contributes to Abulk, regardless

the behaviours in the large z̄ region. This explains why the relation Abulk-versus-ra for large BHs

(shown in the upper panel of Fig. 5.11), behaves as that of black strings. On the other hand, this
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Figure 5.11: The shape of BHs with all sizes. Small BHs are asymptotically 5D Schwarzschild. The
area-radius relation for large BHs is that of black string, which is also 4D Schwarzschild according
to AdS5/CFT4 [20, 22]. The area-radius relation is consistent with the one obtained from a static
problem by Figueras-Wiseman. C5 for large BHs follows C5 = 4 log(ζ · ra) [23], where ζ = 2.71 is
the best fit of our data.
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Figure 5.12: The shape of BHs with all sizes shown by embedding into the background spacetime
(5.32). The horizons are scaled by a factor of(c + ra). Note both coordinates r̄ and (z̄ − 1) are
scaled by the same factor, therefore the shape is not affected by the scaling. The scaling is to
bring BHs with very different sizes (here ra ∼ (0.04ℓ, 15ℓ)) onto comparable plotting scale. Here
the scaling parameter on the left panel is c = 0.3, and the right panel corresponds to c = 0. The
left panel still carries the information of sizes, which emphasizes on the uniqueness feature. The
right panel emphasizes on how the shape changes with size, which can also be read-off from the
left panel.
Small BHs are asymptotically 5D Schwarzschild, which are almost spherical. They then change
into cigars (seen from the embedding point of view) as the size increases, which suggest to call
them black cigars as firstly suggested in [6].
More importantly, the BHs are apparently stationary states from different families. For family
(i), the parameters specifying the family are (x0, σr, σz , r0, z0) = (0.5, 0.1, 0.2, 0.5, 0.5). These
parameters for other families are: (ii) (0, 0.3, 0.3, 1, 1); (iii) (1, 0.1, 0.2, 1, 1); (iv) (2, 0.2, 0.4, 2, 2);
(v) (2, 0.5, 1, 2, 2). From the left panel we see that BHs obtained from different families with the
same size, almost agree with one another. This indicates the detail of initial data is lost, and the
solution is unique. The right panel shows the relative extension into the bulk increases with the
size, and the portion (of the horizons) that is close to the brane looks more and more like black
string as the size increases.
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also means that the relation of Abulk-versus-ra can not reveal the difference between the BHs and

black strings.

Therefore, we study C5 (the length of the circumstance of the horizon restricted on the r − z

plane) versus ra, since C5 is infinite for black strings, but finite for BHs. Furthermore, Fig. 5.12

shows that the relative extension into the bulk (as seen from the point of view of the background

metric (5.32)), increases with the size on the brane. It is not very clear whether the relative

extension has an upper limit. On the other hand, by the uniqueness of the BH solutions that is

going to be studied in Sec. 5.7.4, and the comparison with Figueras-Wiseman solution that is going

to be shown in Sec. 5.7.5, there is strong indication that our solutions generated from evolution

systems, are the same as those were obtained by Figueras-Wiseman in their static systems. For

the Figueras-Wiseman solution, as shown in the upper figure of Fig. 5.14, the large BHs has a

limiting shape which is the AdS5/CFT4 solution [20, 21]. Generally, for configurations with fixed

shape in the space (5.32), there is the following property for large ra

C5 = 4 log(ζ · ra), (5.34)

regardless what the shape is, as long as the shape is fixed. This statement can be justified by direct

numerical experiments for a few shapes. ζ is determined by the specific shape. C5 versus ra is

plotted as the lower panel of Fig. 5.11, which supports the assumption that large BHs have the same

shape, and the best fit of ζ is 2.71. ζ ∼ 2.8 was first independently found by Figueras-Wiseman

[23], and eq. (5.34) was proposed by Toby Wiseman in [23].

Large BHs have the same shape (black cigar) in the background space (5.32), and black strings

also appear as strings (rather than cones) in this space, whilst C5/ra merely appears as log(ra)/ra

(black pancake) which is not as great as a fixed shape (personal tastes), therefore it makes more

sense to name BHs as black cigars as first suggested in [6], rather than black pancakes.

5.7.4 The No-hair Feature

We purposely performed the simulations from distinct initial data families. Because the result

of a well-posed numerical simulation depends smoothly on its initial data, if only one family is

considered (only one parameter A in the initial data profile is changed), the quantities (such as

Abulk, C5 and ra) will depend smoothly on A . Therefore, for a given family, relations between

quantities such as Abulk-versus-ra, will emerge. For a different family, in principle the relation of

Abulk-versus-ra might be different from the relation obtained from the previous family. Should
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this happens, the BH solutions are not unique. In reality, however, the relations of Abulk-versus-ra

obtained from different families are the same: the Abulk-versus-ra relation plotted using the data

obtained from the evolutions from different initial data families is shown in the upper panel of

Fig. 5.11, which appears to be one single curve. Similarly, C5-versus-ra is plotted as the lower

panel of Fig. 5.11, which also appears to be one single curve. i.e. Fig. 5.11 shows that the BHs

with the same sizes have the same areas and the same circumferences, regardless which families

the results are generated from. This indicates that the shape of the horizon is solely determined by

the size ra, regardless which initial data family the BHs are generated from. Therefore a no-hair

theorem of the BH solution in RSII is suggested. In general, however, the BH solutions in AdS

spacetimes may not be unique (see, e.g. [117]). Therefore, the uniqueness of the BHs is limited

to the RSII spacetimes studied in this thesis—these spacetimes are axisymmetric without angular

momentum and non-gravitational charges. In this situation, the shapes of the horizons are directly

studied in Fig. 5.12, where one can see that the BHs with the same size produced from different

families actually have almost the same shape, which is an indication that the detail of the initial

data is lost in the final state, and the geometry of a BH is solely determined by its size. Therefore

a no-hair theorem (the uniqueness of BH solution) is suggested to hold for BHs in RSII.

5.7.5 The Comparison with Figueras-Wiseman Solution

If the BH solutions in RSII are unique in axisymmetric spacetimes without angular momentum

and non-gravitational charges, then the BH solutions should be the same, regardless how the BH

solution is obtained. In particular, the BHs produced as the end states of evolutionary systems

should agree with the ones obtained from the static problem studied in [20, 22]. Here we still use

apparently stationary states to approximate end states. Following [20, 22], we plot our data of

Abulk versus ra on top of the Figueras-Wiseman data in the upper panel of Fig. 5.11. The figure

shows the agreement with Figueras-Wiseman solution as illustrated by Abulk versus ra is perfect.

To better compare with their solution, we also embed the BHs into the space (5.32) with z̄ ≤ 1,

which is what Figueras-Wiseman did in [20]. Following [20], the freedom of the embedding is fixed

by mapping the r = 0 ends (i.e., the axis ends) of the horizons to the point (r̄, z̄) = (0, 1) in (5.32),

instead of mapping the z = 1 ends (i.e., the brane ends) to z̄ = 1 in (5.32) as what we did in

the above sections. i.e. instead of performing the embedding as Fig. 2.3, here we perform the

embedding as Fig. 5.13. Please refer to Fig. 5.14 for the results. Fig. 5.14 shows the two results

qualitatively agree. However, there are a few differences between these two figures: the largest BH

meets the vertical axis at r̄ ≈ 0.468 for our data, but at r̄ ≈ 0.457 for Figueras-Wiseman data; there
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Figure 5.13: The embedding of a closed surface. Fig. (a) is the closed surface in the physical
spacetime, and Fig. (b) shows its embedding into the background spacetime (5.32) with z̄ ≤ 1.
The freedom of the embedding is fixed by mapping D to D̄.

exist line crossings (can be seen by zooming in) in our data but there is not in Figueras-Wiseman

data. Together with the line crossings in Fig. 5.12, it implies that generally apparently stationary

states are, close to but distinct from, end states. Here we emphasize that our solution for large

BHs were obtained at a resolution that is effectively coarse at the horizon, thus the solution should

be less reliable. Furthermore, as one can see from the processes of the settlements to apparently

stationary states (Fig. 5.6, Fig. 5.7, Fig. 5.8 and Fig. 5.9), the portion of the apparent horizon

that is close to the brane gets settled first, while the remaining portion (the portion that is far

from the brane, and close to the symmetric axis) might be still dynamical. This makes the portion

that is close to the brane more reliable than the portion that is far from the brane. Therefore,

the embedding plot by fixing the brane end of the apparent horizon as done in Fig. 5.12, is more

reliable than the embedding plot by fixing the axis end of the apparent horizon as done in Fig. 5.14.

5.7.6 Brane Energy

In this section we focus on the physics on the brane, by studying the quantities obtained from

the reduced metric (hµν) on the brane. The rationale is that the brane is all one can directly

observe (while the bulk is invisible). We compare quantities obtained on the brane, with the same
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Figure 5.14: The comparison with the Figueras-Wiseman solution via embedding into (5.32),
with z̄ ≤ 1. The freedom of the embedding is fixed by mapping the r̄ = 0 ends of the horizons to
z̄ = 1 in (5.32). Note, figure (a) is from [20], and the labels (r, z) should be understood as (r̄, z̄).
The large BHs have a limiting shape which is the AdS5/CFT4 solution [20, 21]. In (b), the largest
BH is the one with ra = 15.1.
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quantities obtained from 4D GR. We will study ADM mass and Hawking mass. As explained in

Sec. 2.5, these masses are only defined at asymptotic spatial infinities. However, let us first study

the ADM mass and Hawking mass in 4D GR, to obtain some insights.

To compare with the braneworld where a spherical symmetry is present on the brane, we first

consider gravitational collapse under spherically symmetric configuration in 4D GR. The initial

data is time symmetric Gaussian (massless scalar field), centred at r = 1. The pulse splits into

ingoing and outgoing branches. For data that is not strong enough to produce BH, the ingoing

branch is bounced back and then travel outwards. For the ADM mass and Hawking mass in 4D

GR, please refer to Fig. 5.15. The figure shows that:

(1) the energy is conserved (remains to be constant at spatial infinity);

(2) the energy is monotonic with radius r, which means the energy “density” (not well-defined in

general) is positive;

(3) there is a “stair” between two separate matter pulses—this is due to Birkhoff’s theorem:

vacuum solutions in spherical symmetry are unique (which are Schwarzschild’s solutions).

Therefore, in the vacuum gap between the two pulses, the solution is should be Schwarzschild,

where the ADM/Hawking energy is well-defined as well. Thus Hawking mass is constant within

this gap, while ADM mass is approximately constant.

For the ADM mass and Hawking mass on the brane, please refer to Fig. 5.16, where one can

see that the above mentioned features (2) and (3) are lost. Feature (1) still holds—this is because

the masses are defined as the limit at the spatial infinity utilizing the time translational symmetry.

Or in another word, this is because the dynamics happening locally can not propagate to the

spatial infinity within finite time. However, it is expected that feature (1) does not to hold in the

braneworld. This is because, there is energy exchange between the bulk and the brane, and the

simulations show that the “wiggles” are moving from the brane into the bulk. Therefore we need

a quantity that can describe this phenomena.

It turns out the energy defined by equation (2.69) can indeed fulfill this task. Please refer to

Fig. 5.17. This energy has feature (2) and feature (3) mentioned above. The energy at spatial

infinity, on the other hand, changes with time. Fig. 5.17(b) shows the change with time: the

brane loses energy in majority of time (which agrees with the phenomena we observed from the

simulations we performed), but it gains some energy when the incoming pulse gets bounced back

at the origin.
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Figure 5.15: Energies in 4D GR. Each line is plotted at an instant (i.e., constant coordinate time).
The black dashed line is at the earliest instant, and the red “-.” line is at the last instant. Other
lines’ colour changes gradually from black to red, with respect to coordinate time. Each line only
has one colour since it stands for one instant.
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Figure 5.16: “Energies” on Brane. Each line is plotted at an instant (i.e., constant coordinate
time). The black dashed line is at the earliest instant, and the red “-.” line is at the last instant.
Other lines’ colour changes gradually from black to red, with respect to coordinate time. Each line
only has one colour since it stands for one instant.
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Figure 5.17: This figure shows the brane energy defined by equation (2.69). In (a), each line
is plotted at an instant (i.e., constant coordinate time). The black dashed line is at the earliest
instant, and the red “-.” line is at the last instant. Other lines’ colour changes gradually from
black to red, with respect to coordinate time. Each line only has one colour since it stands for one
instant. (b) shows the energy at spatial infinity changing with coordinate time.
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Chapter 6

Conclusion and Future Work

The basic idea of braneworld scenarios is that our observable universe could be a 3+1 dimen-

sional surface (the “brane”) embedded in a higher dimensional spacetime (the “bulk”). The single

brane scenario constructed by Randall and Sundrum (also known as RS-braneworld II), is what

we study in this thesis project. The basic setup is as follows: the single brane (the observable

universe) is embedded in the bulk with one extra dimension of infinite size. The matter is strictly

trapped on the brane while gravity is free to access the bulk. The bulk is therefore “empty”, but

has an assumed negative cosmological constant. The bulk has a Z2 symmetry with respect to

the brane, and, the brane has a tension which enable fine-tuning to any equivalent cosmological

constant on the brane. General relativity (GR) is recovered on brane at low energies, but the

brane dynamics can be rather different from GR at high energies. This latter regime is the focus

of our research. Specifically, we study the dynamical process of black hole formation as a result of

gravitational collapse of massless scalar field.

6.1 Conclusion

We have achieved the following: in terms of developing the machinery, we discover/develop/in-

vent several novel facts, formalisms and techniques regarding NR and braneworld. The regularity

problem in previous NR simulations in axisymmetric (and spherically symmetric) spacetime, is

actually associated with neither coordinate systems nor the machine precision. The numerical cal-

culation is regular in any coordinates, provided the fundamental variables (used in simulation) are

regular, and their asymptotic behaviour at the vicinity of the axis (or origin) is compatible with the

finite difference scheme. Generalized harmonic (GH) and BSSN formalisms for general relativity

are developed to make them suitable for simulations in non-Cartesian coordinate under non-flat

background. A conformal function of the metric is included into the formalism to simulate the

braneworld. The usual constraint damping term used in GH, can not control the severe constraint

violation in braneworld. The violation is cured by imposing the constraints properly. In solving

145



6.2. Future Work

elliptic equations (Hamiltonian constraint, for instance), using functions to carry the asymptotic

behaviour at spatial infinities could be crucial. The delta-function matter can be simulated by

“integrating out” the delta function and the brane content can be encoded in Israel’s junction

condition.

On the physics side, we perform the first numerical study of gravitational collapse in braneworld

within the framework of the single brane model by Randall-Sundrum (RSII). The scheme is capable

of obtaining apparently stationary states as the results of gravitational collapse, which are BHs

localized on the brane, with finite extension into the bulk. The extension changes from sphere

to flattened pancake (or from sphere to cigar, from the embedding point of view) as the size

of BH increases. There is strong evidence that the detail of initial data is lost in the resulting

BH, therefore no-hair theorem of BH (uniqueness of BH solution) is suggested to hold in RSII

spacetimes that are studied in this thesis—these spacetimes are axisymmetric without angular

momentum and non-gravitational charges. In particular, the BHs we obtained as the apparently

stationary states from the dynamical system, are consistent with the ones previously obtained from

a static problem by Figueras and Wiseman. We also obtained some results in closed form without

numerical computation: the smoothness of apparent horizon across the brane under perpendicular

gauge, the well-definedness of event horizon on the brane, and the equality of ADM mass of the

brane with the total mass of braneworld.

6.2 Future Work

There are many potential research directions/projects suggested by this project, some of which

will become our future work. One such direction is to derive the mass-area relation of the (apparent)

horizons in closed form. Another project is to look at the examples related to holographic principle:

the equality of bulk energy and the ADM/Hawking energy calculated from the brane geometry

which we have proved to hold for two classes of spacetimes. We would like to examine whether

the relation holds in general space, and study the asymptotical configurations at spatial infinities.

As for this work per se, it can be expended/upgraded as follows

(1) Apparently stationary states were obtained, but it is not clear whether end states were ob-

tained. The method to identify end state needs to be developed. Some attempts would be to

implement the slicing conditions in [118–120].

(2) The current slicing condition and coordinate gauges can perform a wide range of initial data

and yield apparently stationary states. However, for certain initial data, the gauges we used
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6.2. Future Work

(Harmonic gauge, lapse driven gauge, damping wave gauge) can not yield a simulation that

last “forever”. Therefore we need to improve the performance by studying coordinate gauges.

(3) There is slight inconsistency in the initial stages of the evolution (which fade out during

evolution), which might be due to the truncation error, or inconsistency in initial data. Further

study is needed.

(4) The energy of the brane is needed to describe the interaction between the brane and the

bulk. The brane energy we obtained is not conceptually satisfying, although the qualitative

behaviour is surprisingly good. The energy aspect needs more study.

(5) The current code can run in a parallel environment since it is based on AMRD/PAMR. How-

ever, we used a single CPU to do all the simulations since shooting method were employed to

search for the apparent horizon. One improvement is to use flow method to search for apparent

horizon, which can be used in a parallel environment.

For the same reason, although the code is capable of using the adaptive mesh refinement

(AMR) that is built-in in AMRD/PAMR, because of the shooting method used in finding

apparent horizon, we performed the simulations under unigrid. Hopefully we can turn on the

AMR feature when the shooting method is replaced by flow method. In this way we can also

improve the accuracy of the result. Here we emphasize that resolution is important since our

calculation of large BHs resulted in apparent horizon at z ∼ 30ℓ, where the effective resolution

was quite low and should be improved.

Also, we could try another way (which I called BSSN-like method) to implement the generalized

harmonic formalism as discussed in section 5.3.

(6) Generalized harmonic formalism of GR was used in this work. We could also try other formal-

ism such as BSSN, where it is more natural to impose gauges.
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Appendix A

Generalized BSSN Formalism

The original BSSN [45, 46] formalism is only applicable to 4D spacetime with Cartesian co-

ordinate. It was generalized into non-Cartesian coordinate in [36, 97] for 4D spacetimes with

flat backgrounds. We will generalize BSSN into arbitrary dimension, general background, general

coordinate and general conformal function (without requiring γ̃ = γ̄, see below), yet free from

irregularity issue. This work is essential to make BSSN applicable to higher dimensional space-

time with non-trivial background, such as braneworld simulation. The derivation in [36] is largely

borrowed in this section.

Fundamental variables to evolve: ϕ, K, γ̃ij , Ãij , Γ̃
i, which are defined as

γ̃ij ≡ e−qϕγij , (A.1)

Aij ≡
(

Kij −
1

d− 1
γijK

)

, (A.2)

Ãij ≡ e−qϕAij , (A.3)

Γ̃i ≡ γ̃jk
(

(d−1)̃Γi
jk − (d−1)̄Γi

jk

)

, (A.4)

where γ̃, the determinant of γ̃ij , is set to a time-independent function, such as γ̄ (the determinant

of the background spatial metric). The bar-ed quantities are associated with the time-independent

background metric.

Let’s derive the evolution equations for these quantities.

The starting points are the evolution equations for Kαβ and γαβ in ADM-York formalism:

eq. (1.15) and (1.16). They are written below as

LmKαβ = ǫDαDβα+ α

[

−ǫ (d−1)Rαβ +KKαβ − 2KαµK
µ
β + ǫ kd

(

Sαβ − γαβ
S + ǫρ

d− 2

)]

, (A.5)

Lmγαβ = −2αKαβ, (A.6)
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from which we can derive

Lm ln γ1/2 =
1

2
γijLmγij = −αK. (A.7)

The equation of motion for K is

LmK = γijLmKij +KijLmγ
ij

= ǫDiDiα+ α

[

ÃijÃ
ij +

1

d− 1
K2 + kd

(

d− 3

d− 2
ρ− ǫS

d− 2

)]

, (A.8)

where the Hamiltonian constraint is used. The equations of motion for ϕ, γ̃ij are derived to be

Lmϕ =
2

q(d− 1)

[

Lm ln γ1/2 − Lm ln γ̃1/2
]

=
2

q(d− 1)

(

−αK − Lm ln γ̃1/2
)

. (A.9)

Lmγ̃ij = e−qϕLmγij − qe−qϕγijLmϕ = −2αÃij +
2

d− 1
γ̃ijLm ln γ̃1/2. (A.10)

For Γ̃i, we have

Γ̃i = γ̃jk
(

(d−1)̃Γi
jk − (d−1)̄Γi

jk

)

= −D̄j γ̃
ij + γ̃ij∂j

[

ln(γ̄/γ̃)1/2
]

. (A.11)

⇒ ∂tΓ̃
i = −D̄j

(

∂tγ̃
ij
)

+ ∂tγ̃
ij∂j

[

ln(γ̄/γ̃)1/2
]

. (A.12)

where we have applied (d−1)̄Γj
jk = 1

2∂k ln γ̄ (and (d−1)̃Γj
jk = 1

2∂k ln γ̃), and ∂tD̄j− D̄j∂t = 0 which

is because ∂t
(d−1)̄Γi

jk = 0. ∂tγ̃
ij can be easily evaluated from (A.10) via ∂tγ̃

ij = −γ̃ikγ̃jl∂tγ̃kl.
The evolution of Ãij needs the result of the evolution of Aij , which is

LmAij =LmKij −
1

d− 1
(KLmγij + γijLmK)

= (LmKij)
TF

+
2α

d− 1
KKij −

2α

d− 1
γijKlmK

lm, (A.13)

where TF means trace free. Therefore

LmÃij = e−qϕLmAij − qe−qϕAijLmϕ

= e−qϕ

[

ǫDiDjα− αǫ(d−1)Rij + ǫαkd

(

Sij − γij
S + ǫρ

d− 2

)]TF

+ αKÃij − 2αÃilÃ
l
j +

2

d− 1
ÃijLm ln γ̃1/2. (A.14)

(d−1)Rij needs to be rewritten in terms of the Γ̃i defined in (A.11). By the same procedure for the
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conformal transformation carried out in [32, 36], we have

(d−1)Rij =
(d−1)R̃ij −

q(d− 3)

2
D̃iD̃jϕ− q

2
γ̃ij D̃kD̃

kϕ+
q2(d− 3)

4

(

D̃iϕ D̃jϕ− γ̃ij D̃kϕ D̃
kϕ
)

.

(A.15)

Therefore

(d−1)R = e−qϕ

(

(d−1)R̃− q(d− 2)D̃kD̃
kϕ− q2(d− 3)(d− 2)

4
D̃kϕD̃

kϕ

)

. (A.16)

Expressing (d−1)R̃ij and (d−1)R̃ in terms of Γ̃i, has been done in section 3.3 (or [32, 36])

(d−1)R̃ij =
(d−1)R̄ij −

1

2
γ̃klD̄kD̄lγ̃ij − D̄kγ̃l(iD̄j)γ̃

kl − D̄(iΓ̃j) + Γ̃kC̃
k
ij − C̃k

ilC̃
l
kj . (A.17)

Here we have defined C̃i
jk ≡ (d−1)̃Γi

jk − (d−1)̄Γi
jk, and Γ̃i ≡ γ̃ij Γ̃

j . Contracting (A.17) with γ̃ij ,

we can obtain the expression of R̃ in terms of Γ̃i.

In (A.14), DiDjα needs to be expressed by its counter parts

DiDjα = DiD̃jα = D̃iD̃jα− Ck
ijD̃kα

= D̃iD̃jα− q

2

(

D̃iαD̃jϕ+ D̃jαD̃iϕ− γ̃ij D̃
kϕD̃kα

)

, (A.18)

where Ck
ij ≡ (d−1)Γk

ij − (d−1)̃Γk
ij , and C

k
ij = q

2

(

δkiD̃jϕ+ δkjD̃iϕ− γ̃ijD̃
kϕ
)

are used, and the

latter can be obtained by repeating the relevant derivations in [36].

To perform numerical relativity, all the equations above need to be rewritten as partial deriva-

tives with respect to t, which are related to Lm by Lm = L∂t
− Lβ . We must be careful with the

Lie derivatives of tensor densities with respect to β. An object X is a tensor density of weight w,

if X = tensor× γw/2. Its Lie derivative is

LβX =
[

LβX
]

w=0
+ wX∂iβ

i. (A.19)

Let’s now figure out the weight of fundamental variables. Because of (A.1), we have eϕ =

(γ/γ̃)
1

q(d−1) , therefore the weight of eϕ is 2−w̃
q(d−1) , where w̃ is the weight of γ̃. Similarly, the weight

of γ̃ij and Ãij is w̃−2
d−1 , the weight of upstairs γ̃ij and Ãij is 2−w̃

d−1 . The value of w̃, can actually

be determined as follows. γ̃/γ is a scalar, because its value does not change under coordinate

transformation. Therefore, γ̃ = (γ · tensor), which implies w̃ = 2. Therefore, eϕ, γ̃ij and Ãij are
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all tensors17. Knowing w̃ = 2, it is then easy to derive

Lβ ln γ̃1/2 =
1

2γ̃
Lβγ̃ = · · · = βi∂i ln γ̃

1/2 + ∂iβ
i. (A.20)

The formulae can then be rewritten in terms of coordinate derivatives by opening Lβ ln γ̃1/2. Let’s

take (A.9) as an example. Using m = ∂t − β and ∂tγ̃ = 0, we have

∂tϕ =
2

q(d− 1)

(

−αK + βi∂i ln γ̃
1/2
)

+ βi∂iϕ+
2

q(d− 1)
∂iβ

i, (A.21)

where we have applied L∂t
T = ∂tT in a coordinate system where t is a coordinate, for tensor T .

The Hamiltonian constraint is now

kd ρ ≃ 1

2

(

−ǫ(d−1)R+
d− 2

d− 1
K2 − ÃijÃ

ij

)

, (A.22)

where (d−1)R is of course replaced by its expression in equation (A.16). ≃ means the equation is

a constraint relation. The momentum constraint reads

ǫkdSi ≃ D̃iK −
(

D̃jÃ
j
i +

q(d− 1)

2
D̃jϕÃ

j
i +

1

d− 1
D̃iK

)

=
d− 2

d− 1
D̃iK −

(

D̃jÃ
j
i +

q(d− 1)

2
D̃jϕÃ

j
i

)

. (A.23)

Summary

The fundamental variables are ϕ, K, γ̃ij , Ãij , Γ̃
i. The equations of motion are (A.8, A.9, A.10,

A.12, A.14). Constraints are the Hamiltonian constraint (A.22), momentum constraints (A.23),

and the definition equations (A.1-A.4), which read

γ̃ ≃ the pre-set time-independent function such as γ̄, (A.24)

γ̃ijÃij ≃ 0, (A.25)

Γ̃i ≃ γ̃jk
(

Γ̃i
jk − Γ̄i

jk

)

. (A.26)

17Quite a few authors counted the weights incorrectly—especially under Cartesian coordinate with flat background
where γ̃ was set to 1, where these authors incorrectly assumed w̃ = 0. Fortunately, the values of the weights per se
do not matter in the final expressions in terms of partial derivatives. It is the relative weight that matters. e.g. one
can keep w̃ general (without substituting w̃ = 2), therefore the weight of eϕ is 2−w̃

q(d−1)
. One can still obtain (A.21)

correctly.
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Axisymmetry

For simulations in axisymmetry—take 4D as an example—under cylindrical coordinates (t, ρ, φ, z),

as shown in Chap. 3, the such defined Γ̃i reduces to the results obtained by our Cartesian com-

ponents method if the background γ̄ij is flat, therefore regular. When the background is not flat,

the behaviour needs to be analyzed in a case-by-case basis. The conformal metric and conformal

traceless extrinsic curvature are

γ̃ij =











γ̃ρρ 0 γ̃ρz

0 ρ2(γ̃ρρ + ρW ) 0

γ̃ρz 0 γ̃zz











, Ãij =











Ãρρ 0 Ãρz

0 ρ2(Ãρρ + ρV ) 0

Ãρz 0 Ãzz











, (A.27)

where local flatness has been applied. All the fundamental variables depend on (t, ρ, z) only.
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Extrinsic Curvature as Geodesics

Deviation: C ≥ 1 Case

In this section, we consider the case that a (d − C) dimensional object Σ embeds in the d

dimensional space M . Therefore C is the codimension.

Let (1)nµ, ... , (C)nµ be C continuous normal vector fields of Σ, with unit length (1)ǫ, ... , (C)ǫ,

and (I)nµ’s are set to be mutually orthogonal, where the index I = 1, 2, ..., C. Each (I)ǫ = ±1,

depending on the spacelike/timelike nature of the corresponding dimension.

The procedure to obtain equation (2.23) can be straightforwardly generalized to C ≥ 1 case.

For example, generalize equation (2.17) to

γαβ = gαβ − (1)ǫ (1)nα
(1)nβ − ...− (C)ǫ (C)nα

(C)nβ . (B.1)

Eventually the deviation of two geodesics produced by Tα ∈ Σ is derived to be

C
∑

I=1

(I)ǫ (I)nµTαT β∇α

(

(I)nβ

)

≡ TαT β
C
∑

I=1

(I)ǫ (I)nµ (I)Kαβ. (B.2)

i.e. we have defined C tensors

(I)Kαβ = γ µ
α γ ν

β ∇µ

(

(I)nν

)

, where I = 1, ..., C. (B.3)

On the other hand, NVP takes the “change rate” of the direction of unit normal vector along

Σ to serve as extrinsic curvature. When C > 1, the direction of C dimensional orthogonal space

is characterized by the wedge form

(1)nµ ∧ ... ∧ (C)nν . (B.4)
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Therefore, under NVP, the extrinsic curvature is18

Kδµ...ν = γ α
δ ∇α

(

(1)nµ ∧ ... ∧ (C)nν

)

, (B.5)

which is a tensor of rank C + 1. As the form implies, Kδµ...ν does not lie within Σ. However, we

can prove that NVP is still equivalent to GEP.

First, we define the notation

dδ ≡ γ α
δ ∇α. (B.6)

Then it is easy to show that

Kδµβ...ν = dδ

(

(1)nµ ∧ (2)nβ ∧ ... ∧ (C)nν

)

=
(

d(δ)
(1)nµ

)

∧ (2)nβ ∧ ... ∧ (C)nν

+ (1)nµ ∧
(

d(δ)
(2)nβ

)

∧ ... ∧ (C)nν + (1)nµ ∧ (2)nβ ∧ ... ∧
(

d(δ)
(C)nν

)

. (B.7)

i.e. Leibniz rule. And of course the operation dδ should be excluded from the wedge’s. We use a

bracket on δ as d(δ) to express this fact explicitly.

Before we continue, let us introduce some notations

Nµν = gµν − γµν =

C
∑

I=1

(I)ǫ (I)nµ
(I)nν . (B.8)

(I)Nµν = Nµν − (I)ǫ (I)nµ
(I)nν =

C
∑

J=1,J 6=I

(J)ǫ (J)nµ
(J)nν . (B.9)

Noticing that (I)nν
(I)nν = (I)ǫ = constant along Σ, we have

(

dδ
(I)nν

)

(I)nν = 0, (B.10)

which implies

dδ
(I)nν = γ α

δ ∇α
(I)nν =

(

γ α
δ ∇α

(I)nµ

)

g µ
ν

=
(

γ α
δ ∇α

(I)nµ

)

(γ µ
ν +N µ

ν ) =
(

γ α
δ ∇α

(I)nµ

)(

γ µ
ν + (I)N µ

ν

)

, (B.11)

18Or define the extrinsic curvature via the derivative of the wedge of the D − C tangent vectors of Σ.
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where we have applied equation (B.10) in deriving the last equal sign. The above equation is just

dδ
(I)nν = (I)Kδν +

C
∑

J=1,J 6=I

(J)ǫ(J)nν
(IJ)Bδ, (B.12)

where we have defined

(IJ)Bδ ≡
(

(J)nµdδ
(I)nµ

)

. (B.13)

Overall, the above procedure is nothing but projecting dδ
(I)nν into the tangent space of Σ and the

orthogonal space of Σ.

Now we can use the fact

... ∧ (J)nν ∧ ... ∧ (J)nµ ∧ ... = 0, (B.14)

and use equation (B.12) to rewrite equation (B.7) as

Kδµβ...ν = (1)K(δ)µ ∧ (2)nβ ∧ ... ∧ (C)nν

+ (1)nµ ∧ (2)K(δ)β ∧ ... ∧ (C)nν + · · ·+ (1)nµ ∧ (2)nβ ∧ ... ∧ (C)K(δ)ν . (B.15)

Again, when doing wedge, δ is not affected. The terms above are linearly independent, therefore

Kδµβ...ν is a tensor whose coefficients of linearly independent tensors are (I)Kαβ. In another word,

there is a one-to-one correspondence betweenKδµβ...ν and a set of (I)Kαβ. Therefore, NVP extrinsic

curvatureKδµβ...ν is equivalent to C quantities (I)Kµν , which characterize extrinsic curvature under

GEP. i.e. GEP and NVP are equivalent for any codimension.
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