UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Applications of stochastic optimization models in patient screening and blood inventory management Sabouri, Alireza Bagh Abbas


This thesis comprises three chapters with applications of the stochastic optimization models in healthcare as a central theme. The first chapter considers a patient screening problem. Patients on the kidney transplant waiting list are at higher risk for developing cardiovascular disease (CVD), which makes them ineligible for transplant. Therefore, transplant centers screen waiting patients to identify patients with severe CVD. We propose a model for finding screening strategies, with the objective of minimizing sum of the expected screening cost and the expected penalty cost associated with transplanting an organ to an ineligible patient. Our results suggest that current screening guidelines, which are only based on patients' risk for developing CVD, are significantly dominated by policies that also consider factors related to patients' waiting time. In the second chapter, we extend our results from the first chapter to the case of inspecting a vital component which is needed at a random future time when an emergency occurs. If the component is not operational at that time, the system incurs a large penalty, which we want to avoid through inspections and replacements. We propose a model and solution algorithm for finding an inspection policy that minimizes the infinite horizon discounted expected penalty, replacement, and inspection costs. We also discuss other structural properties of the solution, as well as insights based on numerical results. In the third chapter, we consider inventory decisions regarding issuing blood in a hospital. This research is motivated by recent findings in medicine that the age of transfused blood can affect health outcomes, with older blood contributing to more complications. Current practice at hospital blood banks is to issue blood in order from oldest to youngest inventory, so as to minimize shortage. However, the conflicting objective of reducing the age of blood transfused requires an issuing policy that also depends on the inventory of units of different ages. We propose a model that balances the trade-off between the average age of blood transfused and the shortage rate. Our numerical results suggest we can significantly reduce the age of transfused blood with a relatively small increase in the shortage rate.

Item Citations and Data


Attribution-NonCommercial-NoDerivs 2.5 Canada