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Abstract

This thesis comprises three chapters with applications of the stochastic
optimization models in healthcare as a central theme. The first chapter
considers a patient screening problem. Patients on the kidney transplant
waiting list are at higher risk for developing cardiovascular disease (CVD),
which makes them ineligible for transplant. Therefore, transplant centers
screen waiting patients to identify patients with severe CVD. We propose
a model for finding screening strategies, with the objective of minimizing
sum of the expected screening cost and the expected penalty cost associated
with transplanting an organ to an ineligible patient. Our results suggest
that current screening guidelines, which are only based on patients’ risk for
developing CVD, are significantly dominated by policies that also consider
factors related to patients’ waiting time.

In the second chapter, we extend our results from the first chapter to
the case of inspecting a vital component which is needed at a random future
time when an emergency occurs. If the component is not operational at that
time, the system incurs a large penalty, which we want to avoid through in-
spections and replacements. We propose a model and solution algorithm for
finding an inspection policy that minimizes the infinite horizon discounted
expected penalty, replacement, and inspection costs. We also discuss other
structural properties of the solution, as well as insights based on numerical
results.

In the third chapter, we consider inventory decisions regarding issu-
ing blood in a hospital. This research is motivated by recent findings in
medicine that the age of transfused blood can affect health outcomes, with
older blood contributing to more complications. Current practice at hospi-
tal blood banks is to issue blood in order from oldest to youngest inventory,
so as to minimize shortage. However, the conflicting objective of reducing
the age of blood transfused requires an issuing policy that also depends on
the inventory of units of different ages. We propose a model that balances
the trade-off between the average age of blood transfused and the shortage
rate. Our numerical results suggest we can significantly reduce the age of
transfused blood with a relatively small increase in the shortage rate.
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Modified versions of Chapter 2 and 3 have been submitted for publica-
tion, but they have not been accepted for publication yet. These two papers
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Chapter 1

Introduction

Health care has become a major application for mathematical models
and the analytical tools developed in the field of Operations Research (OR)
over the past decade. Health care is an area where the impact of providing
better solutions is most tangible. Even minor improvements at the opera-
tional level have significant potential savings due to the high costs of the
health care system. Then, these savings can compensate for the rise in the
costs, standards and the need for better health care delivery. Moreover,
by better managing limited health care resources, more patients can have
access to high quality care in a timely manner. For these reasons, the main
theme of this dissertation is to develop analytical frameworks for three im-
portant problems faced by health care policy-makers and practitioners. In
the remainder of this chapter we briefly describe and motivate each problem,
discuss the objectives of our work, and outline main results of our models.

1.1 Screening Strategies for Patients on the
Kidney Transplant Waiting List

Chapter 2 considers the management of patients who wait for several
years on the kidney transplant waiting list. Approximately 90,000 patients
with end-stage renal disease await a kidney transplant in the U.S., with a
median waiting time of between 2 and 5 years depending on blood type
(OPTN [51]). During this time, waiting patients are at significant risk of
developing cardiovascular disease (CVD), which is often described as a silent
disease (McCullough [38]). Therefore, transplant centers screen waiting pa-
tients at various intervals to identify such patients and decrease the chances
of operative mortality or poor post-transplant outcomes (Humar et al. [26]).
Although the importance of regular cardiovascular screening of these pa-
tients is well recognized, there is no consensus on which patients should be
screened and at what intervals (Gaston et al. [23]). Some centers screen
all patients annually, some biannually, and some screen different patients at
different frequencies according to risk level (Danovitch et al. [17]).
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1.2. Inspecting a Vital Component Needed upon Emergency

Since screening patients at the time of kidney arrival is infeasible (due to
the limited time available), transplant centers screen patients periodically.
Collaborating with a kidney transplant surgeon and transplant coordinators
at the British Columbia Transplant Society, we develop a model to decide
how often patients with different risk profiles and positions on the waiting
list should be screened in order to minimize the expected screening cost
and the cost of offering a kidney to a patient with unknown CVD. Using a
simulation model, we also show that current screening guidelines, which are
based only on patients’ risk for developing CVD, are significantly dominated
by policies that also consider factors related to patients’ waiting time. We
also establish that the screening intervals should be decreasing over time.
This is an intuitive property of the optimal screening policy; nonetheless, it
is not considered by the current screening guidelines.

To our knowledge, this is the first study that uses OR techniques to ad-
dress these types of screening problems. The problem of patient readiness
in the context of transplant waiting list management has its own unique
complexities that make it distinct from other disease screening problems in
the OR literature. The potential benefits for the patients include decreas-
ing the number of cardiac events after renal transplant due to unidentified
CVD, better use of scarce donated organs, and more efficient use of system
resources for performing patient screenings.

1.2 Inspecting a Vital Component Needed upon
Emergency

In Chapter 3, we extend some of our results from Chapter 2 to the case of
inspecting a vital component which is needed at a random future time when
an emergency occurs. If the component is not operational at that time, the
system incurs a large penalty, which we want to avoid through inspections
and replacements. While we describe this problem as finding inspection
policies for a general component needed at the time of emergency, a health
care related application for this problem is the inspection of defibrillator
units placed in public buildings. These unit might fail and their failure are
hidden and revealed only by inspection or attempted usage. However, if
the component is not operational at the time of the emergency, the system
incurs a large cost. Therefore, regular inspection and replacement of these
units are important.

We propose a model and solution algorithm for finding an inspection
policy that minimizes the infinite horizon discounted expected penalty, re-

2



1.3. Issuing Policies for Hospital Blood Inventory

placement, and inspection costs for these units. We also prove several struc-
tural properties of the optimal solution, and use them to develop an efficient
solution algorithm. Finally, we discuss important managerial insights based
on our numerical experiments. In particular, we show a property of the
optimal inspection policies that contrasts with the existing literature and
intuition.

1.3 Issuing Policies for Hospital Blood Inventory

The third health care problem that we study in this thesis deals with
issuing policies of blood units in the hospital blood bank. Our research is
motivated by the recent clinical evidence that suggests using older blood for
transfusion results in higher risk for complications (Koch et al. [33], Wang
et al. [76], Zallen et al. [79]). Whereas all the traditional studies of issuing
policies and the current practice only consider minimizing shortages and
outdates as part of their objective (Pierskalla and Roach [58]), our model
also considers the age of blood transfused as one of the performance metrics
that we want to optimize. The conflicting objective of reducing the age
of blood transfused requires a more complicated issuance policy that also
depends on the inventory of units of different ages.

Since consideration of the age of transfused blood in designing issuing
policies is fairly recent, there are only a few studies in the OR literature that
explore the trade-offs between the average age of blood transfused and the
shortages/wastage. For instance, Atkinson et al. [7] proposed a simple class
of issuing policies based on a single age threshold. They used simulation to
show how changing the threshold affects the average age of blood transfused
and the shortage proportion. Abouee-Mehrizi et al. [1] provided a stylized
queueing model to find the distribution of the age of transfused blood under
the above threshold policy. However, none of these papers characterize
the optimal issuing policy or provide a framework for finding good issuing
policies that consider the inventory of different ages on each day.

We formulate this problem as an infinite horizon dynamic program. Since
the dynamic programming formulation of this problem suffers from the curse
of dimensionality due to the large state and action spaces, we solve the
problem using approximate dynamic programming (ADP) methods. Our
numerical results, based on data from a large hospital in British Columbia,
suggest we can significantly reduce the age of transfused blood with a rela-
tively small increase in the shortage rate.

Our results provide evidence for policy makers that they can improve
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1.3. Issuing Policies for Hospital Blood Inventory

the health outcomes from blood transfusions by decreasing the average age
of blood transfused without sacrificing the availability of the blood supply.
Furthermore, we showed that our state-dependent ADP-based issuing policy
outperforms the static policies previously proposed in the literature. We also
introduce a simple class of issuing policies inspired by our results, that not
only performs well, but is also easy to implement and follow in practice.

4



Chapter 2

Screening Strategies for
Patients on the Kidney
Transplant Waiting List

2.1 Introduction

End-stage renal disease (ESRD) is the complete or near complete failure
of the kidney’s function and marks the final stage of chronic kidney disease
(CKD). According to the US Renal Data System annual report, approxi-
mately 400,000 patients in the United States had ESRD in 2009 (USRDS
[74]). There are two treatment options for ESRD, dialysis and kidney trans-
plantation, with the latter being the treatment of choice due to its lower costs
and better outcomes (Port et al. [60] and Schnuelle et al. [66]). However,
a shortage of living and deceased kidney donations leads to long transplant
waiting lists while patients undergo dialysis. Approximately 90,000 patients
in the United States await a kidney transplant, with a median wait time
between 2 and 5 years depending on blood type (OPTN [51]).

All ESRD patients must pass a comprehensive evaluation process before
they can be accepted to the waiting list. This includes tests for infection,
cancer, and heart disease, among others. While accepted patients may be
initially free of these comorbidities, during the long wait for a transplant,
they may develop serious health conditions. Some of these would make the
patients ineligible for transplant, since performing a major surgery on them
can put them at an increased risk of mortality or serious post-transplant
complications (Humar et al. [26]). Transplant centers try to avoid these out-
comes by periodically re-evaluating waiting patients and temporarily putting
patients they identify with such serious conditions on“inactive” (or “hold”)
status (Danovitch et al. [18]).

Among the different health conditions that waiting patients might de-
velop, transplant centers are particularly concerned about cardiovascular
disease (CVD), as patients typically are not aware they have developed it
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2.1. Introduction

until they undergo a screening test (Parfrey and Foley [52]). Studies have
shown that patients with CKD and patients on dialysis are at significantly
increased risk of developing CVD (McCullough [38], Parfrey and Foley [52]).
Also, several studies have noted that many complications after kidney trans-
plant are associated with CVD (Humar et al. [26], Ojo et al. [50]). For in-
stance, Ojo et al. [50] reports that in a population-based survival analysis
of United States patients with ESRD transplanted between 1988 and 1997
(a total population of 86,502 adult renal transplant recipients), almost half
of the deaths with a functioning graft in the first 30 days after transplant
were due to cardiovascular complications (the total number of deaths with
functioning graft in this period was 7,040 deaths). This leads to a firm
consensus among transplant centers regarding the importance of follow-up
cardiac evaluations (Gaston et al. [23]). However, while there are recom-
mended guidelines for CVD screening policies for patients on the waiting
list, they do not appear evidence-based. Furthermore, transplant centers
vary considerably in how frequently they screen patients, as they use a com-
bination of expert judgment, resource considerations, and general guidelines
to come up with their own policies for screening patients (Danovitch et al.
[18]).

There are three main issues that make screening decisions challenging.
First, when a deceased donor kidney becomes available, it must be trans-
planted in a short period of time due to the fact that the prolonged time
outside the body (cold ischemia time) reduces its functionality in the recip-
ient (Salahudeen et al. [63]). Therefore, transplant centers do not have time
to start screening patients at the time a kidney is offered for donation. The
second issue is that one cannot know in advance with certainty to which
patient the next available kidney will be offered. A kidney cannot be offered
to patients whose body may develop an immune response to the donated
kidney or whose blood type is not compatible with that of the donor, both
of which are determined only upon an organ becoming available for dona-
tion. The last issue that complicates the screening process is that screening
resources are limited and costly. Obviously, by screening all the patients in
short intervals, transplant centers can maintain updated information about
each patient. However, one must weigh the benefits of the extra screenings
against the costs and patient inconveniences of obtaining them. These issues
raise the important questions of which patients should be screened and how
the screening intervals should change as patients continue waiting. Our pri-
mary contribution in this chapter is to recommend an analytical approach
to answer these questions.

The rest of this chapter is organized as follows. First we review rele-
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2.2. Literature Review

vant literature in Section 2.2 and further describe our contributions to the
literature. In Section 2.3, we state our assumptions and present our formu-
lation of the problem. We derive several structural properties of the optimal
solution in Section 2.4, and we exploit these properties to develop a solu-
tion algorithm that finds the optimal solution. In Section 2.5, we apply our
model in the context of screening patients on the kidney transplant waiting
list. Finally, we discuss concluding remarks and future work in Section 2.6.

2.2 Literature Review

In this section, we review the relevant literature in two parts (clinical
literature and operations management literature), and we elaborate on our
contribution in light of the existing literature.

2.2.1 Clinical literature

The issue of maintaining and monitoring the kidney transplant waiting
list has been a challenge for the transplant community due to the persis-
tent rise in the number of patients on the waiting list. Danovitch et al.
[18] discussed this issue and summarized the results of a survey from 192
transplant centers. The focus of this survey was on screening for CVD and
indicated that there is considerable variability among centers regarding the
frequency and modality of the tests. They concluded that existing screening
practice is not based on specific evidence and provided general recommenda-
tions for transplant programs. Gaston et al. [23] summarized the issues and
recommendations regarding the kidney transplant waiting list addressed at
a national meeting of the transplant community in 2002. It is mentioned
in their report that “there is a widespread agreement among transplant
programs that repeated cardiovascular surveillance is required for many pa-
tients awaiting a cadaver kidney transplant, with more intense monitoring
for high-risk patients. There is no firm consensus, however, as to who should
be tested, at what interval and with what modality.” For cardiac testing,
the National Kidney Foundation [48] provided a set of recommendations
that reflect the current screening policy in the U.S. (summarized in Table
2.1). In British Columbia, Canada (the geographic region we model in our
numerical experiments of Section 2.5), on the other hand, the current policy
is even simpler: screen “low-risk” patients every two years and “high-risk”
patients annually, where high-risk is defined as a patient who is diabetic,
age 50 or older, or who has a history of CVD treatment. Gill et al. [24],
reporting on a study of British Columbia screening policy, concluded that

7



2.2. Literature Review

Table 2.1: Recommendations for cardiac surveillance of waitlisted patients.

Category Screening interval

Low-risk every 3 years
Non-diabetic high risk biannual
diabetic and/or with history of CVD treatment annual

further studies to obtain optimal cardiac screening policies is necessary given
the high cost of performing such tests and the uncertainty in the use of the
current policies highlighted in their study.

2.2.2 OR/MS literature

Our work also relates to three bodies of work in the OR/MS literature:
organ transplantation, disease screening, and machine maintenance.

a) Transplant policies: The OR/MS techniques have proven helpful
in developing policies for many healthcare problems, including problems
related to organ transplantation. The research focus of the OM community
regarding the latter has been primarily in designing better allocation policies
from a societal perspective (e.g., Bertsimas et al. [14], Su and Zenios [71,
72], Zenios [80], Zenios et al. [81]) or in improving accept/reject decisions of
organ offers from a patient perspective (e.g., Alagoz et al. [3, 4, 5], Sandikci
et al. [64]). For instance, Zenios et al. [81] proposed a fluid model to find
kidney allocation policies that optimize both clinical efficiency and equity,
Su and Zenios [71] introduced a model for organ allocation that accounts
for the patients’ choice in accepting the organ, and Alagoz et al. [5] (in the
context of liver transplant waiting list) provided a model to help patients
and their physicians decide whether to accept an organ offer of given quality.
b) Disease screening policies: Several OR/MS papers have also exam-
ined optimal screening policies for different diseases. For example, models
of breast cancer screening have been studied in Ayer et al. [9], Kirch and
Klein [32], Maillart et al. [35], Shwartz [70]. Maillart et al. [35], for exam-
ple, used a partially observable Markov chain formulation to examine the
value of dynamic screening policies in which the length of screening interval
can be a function of patient age. Ayer et al. [9] provided a partially observ-
able Markov decision process (POMDP) model to determine patient-specific
mammography screening times.
c) Machine maintenace policies: Our work is also related to the liter-
ature on machine maintenance polices and inspection policies in particular,

8



2.2. Literature Review

as there are natural analogies between deciding when to inspect deterio-
rating equipment over time and when to screen patients for disease. For
instance, Zhang et al. [82], building upon this literature, developed a model
for finding post-operative surveillance schedules for patients who have un-
dergone vascular surgery. We review several relevant machine reliability
papers here and refer the reader to the following articles for an exhaustive
survey of this literature (Chelbi and Ait-Kadi [15], Jardine and Buzacott
[27], McCall [37], Nakagawa [47], Pierskalla and Voelker [59], Sherif and
Smith [69], Valdez-Flores and Feldman [75], Wang [77]).

Barlow et al. [11] examined the trade-off between inspection costs and a
penalty cost, where the latter is proportional to the duration of time that
the system runs while a failure is undetected. They developed structural
properties of the optimal solution, as well as a method to find the optimal
inspection times for a broad class of failure densities. Their framework is
relevant to the case of a manufacturing system in continuous operations,
where failure results in the production of defective items, or in the health-
care context where early detection of disease can result in a more effective
treatment. Many extensions of the Barlow et al. [11] have been considered
in the literature. For instance, Luss and Kander [34] extended their model
to the case where the inspection time is not negligible, and Parmigiani [55]
considered the case where inspections are prone to error. Also, Munford and
Shahani [39] provided a method for finding a nearly optimal inspection pol-
icy for the model studied by Barlow et al. [11], which is easier to compute
and performs well. Sengupta [68] studied the case where failure becomes
evident after some random time due to the evident loss of product quality
or, in the patient context, due to the eventual development of symptoms.

Whereas the above papers consider a continuous running cost for the
duration of time a failure goes undetected, other reliability papers consider
costs that occur at discrete times during a failed or deteriorated state. For
example, Maillart and Pollock [36] considered a two-phase system in which
a component moves from “new” to “worn” after a random amount of time,
and from “worn” to “failed” after another random amount of time. Costs
accrue for each inspection, preventive maintenance action (taken when an
inspection finds a component in the worn state), and reactive maintenance
action (taken upon component failure), and the objective is to minimize the
total expected cost over a finite time horizon. Parmigiani [54] proposed a
model for finding optimal inspection policies for a stand-by component (e.g.,
power generator), which will be needed at a random future time (e.g., time
of an emergency). In this case, there is no penalty for a delayed detection of
failure, as long as it is detected before the standy-by component is needed

9



2.2. Literature Review

(at which time it can be replaced). However, if the stand-by component is
in a failed state at the time it is needed, the consequences are severe. The
objective in this setting is to minimize the expected number of inspections,
subject to a maximum probability of finding the component is failed at the
time it is needed.

2.2.3 Contributions to the literature

Our work contributes to the clinical literature by proposing the first
analytical framework for evaluating the performance of different screening
guidelines. By integrating our analytical results at a patient-level perspec-
tive (Section 2.4) with a detailed simulation of the entire transplant waitlist
(Section 2.5), we show that our model-based results can significantly out-
perform existing policies and other simple classes of policies. We believe this
provides a foundation for developing more effective, evidence-based guide-
lines.

To our knowledge, our model is the first work in the OR/MS literature
that addresses transplant waiting list management questions before an organ
becomes available rather than after (i.e., allocation and acceptance/rejection
decisions discussed above). Our problem considers how to best screen the
waiting list for the possibility of a kidney offer, which leads to different ob-
jectives and methodologies for addressing them. Our screening problem is
also different from previous disease screening studies in the literature be-
cause the goal in those is early detection and treatment of the disease while
considering the cost of performing the tests. In contrast, we consider the
objective of a transplant center, which is to identify adverse health condi-
tions before a patient is called upon for a transplant, while also considering
costly screening resources. Therefore, in this study, we seek to minimize the
total cost from screenings as well as the cost associated with complications
due to transplants to patients with unknown CVD.

Our analytical model and results have important similarities and differ-
ences to some of the reliability papers reviewed above. In particular, our
two main results (Theorem 1, decreasing inspection intervals, and Theorem
2, an algorithm for obtaining the optimal policy) were derived by adapt-
ing similar results found in Theorems 5 and 6 of Barlow et al. [11]. Note
that other extensions of the Barlow paper also used similar techniques to
prove the optimality of decreasing inspection intervals and to provide a cor-
responding solution algorithm (e.g., see Theorems 2 and 3 of Sengupta [68]
and Theorems 1 and 2 of Parmigiani [55]).

Our contributions to the reliability literature are in 1) providing a differ-
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ent extension to the original inspection problem of Barlow et al. [11], which
is motivated by a health care application, and 2) filling a gap in the results
that motivated previous solution algorithms in the literature. Regarding
the first part, our problem requires the consideration of three interacting
probability distributions: the time until the patient develops CVD, the time
until the patient will be offered a kidney and undergo transplantation, and
the time until the patient will die. The time until CVD development is anal-
ogous to the time until component failure (Barlow et al. [11]), and the time
until calling upon the patient for a transplantation is analogous to the time
until a stand-by component is needed (Parmigiani [54]). To our knowledge,
there has been no analogous consideration of our patient death distribution.
This might occur in a reliability context, for example, if there were some
random time until the component (and any identical replacements) became
obsolete.

Regarding our second contribution to the reliability literature, we note
that previous results (e.g., Theorem 6 of Barlow et al. [11]) are incomplete
in that they do not prove “if and only if” statements. For example, in our
Theorem 2 part A of Section 2.4, we have the statement “there exists some
m such that xj > xj−1 > 0 for all j ≥ m if and only if t1 > t∗1.” The
analogous statement in the solution algorithm of Theorem 6 of Barlow et al.
[11] has the “if” part of this but does not establish the “only if” part. The
same holds for our Theorem 2, part B. While it is not difficult to establish
the forward directions (nor would it be for the analogous result of Barlow
et al. [11]), it has significant practical importance for creating the binary
search solution algorithms. One will not know in general whether or not the
initial choice of t1 is greater or less than t∗1, but rather will conclude this
based on which of the two contradictions arises from the sequence of xj that
the choice of t1 produces.

2.3 Problem Formulation and Assumptions

We first develop a model for the problem of screening an arbitrary patient
on the waiting list. In Section 2.5, we discuss how this model, along with
a discrete event simulation (DES) model, can be used to help a transplant
center decide on screening schedules for all waiting patients. Provided the
patient survives long enough on the waiting list and is still regarded as
eligible for transplant, a kidney will eventually be offered to this patient.
Let T be the random variable representing this remaining waiting time. In
the meantime, a patient might develop CVD without knowing it, and we
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let S represent the random variable for the time until this would happen,
provided the patient survives that long. Furthermore, the patient might also
die of any reason (CVD-related or not) randomly at time U . For the sake of
tractability, we assume T, S and U are independent random variables and
have density functions g(t), f(s) and h(u), respectively. Later, we relax this
assumption in our simulation model by considering dependence between the
CVD development time and the death time.

If the decision maker (the transplant center) offers a kidney to the patient
after developing CVD (S < T < U) but before screening identifies it, a
penalty cost cp is incurred due to the increased risk of complications during
and after the transplant. In other words, cp is the expected treatment cost
for complications that result from offering a kidney to a patient with CVD.
We let cs represent the cost incurred each time the transplant center screens
a patient. We further discuss quantifying cost parameters in Section 2.5.5.
We assume cs is significantly less than cp. Our goal is to find a screening
policy that minimizes the expected total cost, where a screening policy is
defined by an increasing sequence of screening times T =

{
tj
}+∞
j=1

, where tj

refers to the scheduled time for the jth screening given that the patient is
still on the waiting list without any CVD detected.

We assume that the support of T, S and U is [0,+∞) and f(s), g(t),
and h(u) are positive for all positive s, t, and u. We assume h(u) has the
increasing failure rate (IFR) property, which is a natural property of aging.
Moreover, f(s) and g(t) are continuous (and differentiable) Polya Frequency
functions of order 2 (PF2) density functions. Note that PF2 (or log-concave)
density functions include a wide range of probability densities, including the
Exponential, Normal and Logistic distributions, as well as a large subset
of the Gamma and Weibull family. These distributions also have the IFR
property, which makes them suitable for modeling the CVD time of aging
patients. Similar logic applies to the kidney offer time density since patients
with longer waiting times are more likely to receive a kidney offer. Finally,
we assume that screenings are error-free and take negligible time to perform.
We relax these assumptions in our simulation model of Section 2.5.

2.3.1 The expected cost of a screening policy

The expected total cost (C) of a screening policy is the sum of two costs:
the expected penalty cost (P) and the expected screening cost (S). First,
consider an arbitrary screening schedule, indicated by T . To derive P, we
just need to consider the probability of incurring the penalty cost between
consecutive screening times. The penalty cost cp is incurred in the interval
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(tj−1, tj) if a kidney offer is made in this interval (say at time t), the patient
has developed CVD in the interval (tj−1, t) before the kidney arrival, and
the patient is still alive at time t:

P(T ) = cp

+∞∑
j=1

P(tj−1 < S < T < tj , U > T )

= cp

+∞∑
j=1

∫ tj

tj−1

g(t)
(
F (t)− F (tj−1)

)
H̄(t)dt, (2.1)

where t0 = 0. In deriving (2.1), we implicitly assume lim
j→∞

tj = ∞, which

means that screenings are scheduled as long as the patient is on the waiting
list.

Now consider the expected screening cost, S. We perform the jth screen-
ing if the patient has not developed CVD by the time of (j − 1)th screening
and the kidney arrival and death have not occurred by the time of jth screen-
ing:

S(T ) = cs

+∞∑
j=1

P(T > tj , S > tj−1, U > tj)

= cs

+∞∑
j=1

F̄ (tj−1)Ḡ(tj)H̄(tj). (2.2)

By combining (2.1) and (2.2) we obtain the expected total cost of a
screening policy T as C(T ) = P(T ) +S(T ). In the next section, we use this
form of C(T ) to establish structured optimal policies and an algorithm for
obtaining the optimal policy.

2.4 Structural Results

In this section and Appendices A and B, we provide several properties
of the optimal screening policy and use these properties to develop an al-
gorithm for obtaining the optimal screening policy. Again, the perspective
is that of the optimal screening policy for an arbitrary patient on the wait-
ing list; we embed this single-patient optimal algorithm into a heuristic for
screening the entire waiting list in Section 2.5. To this aim, we consider the
first order optimality condition. The expected total cost C(T ) is differen-
tiable with respect to each tj since F (s), G(t) and H(u) are differentiable
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functions (differentiability follows from the continuity of f(s), g(t) and h(u),
respectively). Appendix A provides supporting Lemmas for the two theo-
rems stated in this section, and Appendix B provides the proofs of these
theorems.

First, we need to impose the following technical assumption on the pa-
rameters of our model. While this assumption is needed for our analysis,
it holds for many instances of the problem that we solve in Section 2.5. In
fact, Lemma 4 in Appendix A shows that for the case where g and h are
Weibull densities, this assumption reduces to a condition only on the shape
parameters of such densities. In Section 2.5, we also discuss a method to
obtain nearly optimal screening policies for the cases where this assumption
does not hold.

Assumption 1 The function Λ(t) := cp − cs
(
1 + h(t)Ḡ(t)

g(t)H̄(t)

)
satisfies the fol-

lowing two properties:

(a) Λ(t) is increasing in t.

(b) There exists some ψ̂ such that Λ(t)H̄(t)g(t) is strictly decreasing in t
for all t > ψ̂.

Lemma 3 in Appendix A establishes that the optimal screening policy
must satisfy the first order necessary condition and cannot be a bound-
ary solution (i.e., 0 < t1 < t2 < t3 < . . .). This Lemma also provides a
tool for characterizing the optimal screening policy. To be more specific,
using the necessary condition we are able to reduce the dimension of the
decision variable space from +∞ to 1. The necessary condition (A.3) in
Appendix A produces a relationship among the three subsequent values of
t∗j ’s, i.e., {t∗j−1, t

∗
j , t
∗
j+1}. Since t0 = 0, we can use (A.3) to find recursively all

the screening times by just determining the optimal first screening time t∗1.
Therefore, for screening policies that satisfy the necessary condition (A.3),
the screening times are implicitly functions of t∗1.

For ease of representation, we define the length of the jth screening
interval as xj := tj − tj−1. Next we show that the length of the optimal
screening interval x∗j is always decreasing in j. In other words, we screen
the patient more frequently as time passes. This property is consistent with
the increasing failure rate property of the disease, as well as the fact that
patients are more likely to receive a kidney offer as they move up the waiting
list.

Theorem 1 In the optimal screening policy T ∗ =
{
t∗j
}∞
j=1

, the lengths of

the screening intervals
{
x∗j
}∞
j=1

are decreasing in j.
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The decreasing-interval property proved in Theorem 1 is the most important
property of the optimal screening policy, and yet it is ignored by all of the
constant-interval screening guidelines used in practice (see Section 2.2.1).
In our numerical experiments of Section 2.5, we show that constant-interval
policies are significantly outperformed by our decreasing-interval screening
policies.

Our next step is to obtain the optimal screening policy. As we discussed,
the optimal screening times can be obtained recursively using (A.3) after
obtaining the optimal first screening time t∗1. The following result motivates
our solution algorithm by providing us with a way of identifying a wrong
choice for the first screening time t1.

Theorem 2 Let
{
xj
}∞
j=1

be the sequence of the lengths of the screening

intervals generated recursively from (A.3) after choosing a first screening
time, t1 > 0. Let t∗1 be an optimal value of the first screening time t1. Then,
the following holds:

(A) There exists some m such that xj > xj−1 > 0 for all j ≥ m if and
only if t1 > t∗1.

(B) There exists some m such that xj < 0 for all j ≥ m if and only if
t1 < t∗1.

Theorem 2 establishes that if a non-optimal first screening time t1 is cho-
sen and being used to generate a sequence of screening time recursively using
(A.3), it would result in some “contradiction” (we say “contradiction” since
xj > xj−1 > 0 is inconsistent with Theorem 1, and xj < 0 is inconsistent
with the constraint t1 ≤ t2 ≤ . . .). It also states that if the contradiction is
of the kind “xj < 0 for some j”, then the current choice of t1 is less than the
optimal value t∗1, and if the contradiction is of the kind “xj > xj−1 for some
j”, then the current choice of t1 is greater than the optimal first screening
time t∗1. These conclusions also imply that the optimal screening policy is
unique. To obtain the unique optimal first screening time t∗1, a binary search
algorithm can be used since based on the guidelines of Theorem 2, we can
decide whether t1 > t∗1 or t1 < t∗1.

2.5 Numerical Experiments

This section describes how the results from previous sections can be
applied to the problem of screening patients on the kidney transplant waiting
list. First, we describe a data-driven discrete event simulation (DES) model
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we developed of a kidney transplant waiting list. This serves two purposes:
1) we can use the DES to evaluate any proposed screening policy, and 2)
we use the DES to estimate the remaining waiting time density g for our
analytical model, which are then used in our model-based screening policy
(described in Section 2.5.3).

2.5.1 Simulation of the kidney transplant waiting list

Our DES is based on the kidney transplant waiting list of British Columbia,
Canada. The main components of the model are as follows:

1. Patient generation: The patient generation module creates ESRD
patients according to a Poisson process with rate 304 patients per year and
assigns them various characteristics such as blood type, age, and gender.
These characteristic are assigned randomly based on a probability distribu-
tion obtained from historical data (see Section 2.5.2 for data sources).

2. Health progression while waiting: The simulation program as-
signs each patient a time at which the patient may develop CVD, as well
as a time of death. We use accelerated failure time models (Anderson et al.
[6], Odell et al. [49]) for modelling the time of developing CVD and the time
of death. These models have common risk factors such as age, gender and
being diabetic as covariates. Since these models are calibrated based on
data from the general population, we use a Cox proportional hazard model
to update them for ESRD patients (for instance, Foley et al. [21] and Sar-
nak and Levey [65] report that CVD mortality in dialysis patients is 10-30
times higher than in the general population). We remark that here the time
of CVD development means the time at which the severity of the disease
reaches the point that the transplant center would no longer consider the
patient eligible for a transplant. In the absence of a clear definition for this
event, we assume that the definition used in Anderson et al. [6] matches the
practice of transplant centers.

3. Kidney generation: Similar to the patient generation module, we
use British Columbia historical data to generate the time between kidney do-
nations (average 6.1 days, exponentially distributed) and the donor’s blood
type.

4. Screening policy: The screening policy indicates at what times dif-
ferent patients should undergo cardiovascular screening so as to update their
health status and eligibility for transplant. We consider imperfect screen-
ings through their estimated sensitivity and specificity, as well as screening
lead time, which denotes the time until the results of the screening becomes
available. In practice, screening is a two-stage process. In the first stage, a
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non-invasive test (e.g., echo-cardiogram or electrocardiogram) is performed.
Patients are asked to take an invasive test (coronary angiography) only if the
result of the first stage tests is positive. If the overall result of the screening
process is positive, then the patient is placed on hold status at the time
the screening result becomes available. Also, the first stage tests are usually
imperfect (i.e., have sensitivity and specificity of smaller than 1), where false
positive test results increase the screening costs due to unnecessary follow-
up tests, and false negative results lead to CVD cases that go undetected.
Furthermore, the final outcome of the screening process becomes available
after a non-negligible lead time (which we consider as exponentially dis-
tributed with a mean of one month). Note that since for each patient the
simulation program has already assigned the true CVD development time,
the result of each screening test can be easily determined given the sensi-
tivity and specificity of the tests. The simulation program assigns a cost
to each screening performed, where the cost of the second-stage test is only
applied if the result of the first-stage test is positive.

5. Allocation policy: After a kidney becomes available, the allocation
policy indicates to which patient it should be offered. We use the allocation
policy currently in place in British Columbia, which is primarily driven
by the waiting time and compatibility criteria, i.e., the kidney goes to the
compatible patient (cross-match negative, blood type compatible patient)
who has been waiting the longest. If the kidney is offered to a patient who
has developed CVD that is not identified by any of previous screenings, we
assign a penalty cost cp to this transplant (see Section 2.3 for the description
of cp).

6. Outcomes/output: The main outcome of interest in our case is
the total cost. Other detailed metrics such as annual number of screenings
performed or the annual number of CVD cases detected are also collected
by the simulation model.

2.5.2 Data

We use publicly available data from different sources. The simulation
model is based on the waiting list dynamics (patient and kidney arrival
rates, as well as allocation policy) that occur in British Columbia. However,
the characteristics of the patients and kidneys are generated based on both
British Columbia and United States data, where the latter is used if we could
not find the data for British Columbia. Patients’ CVD time distributions
are generated using accelerated failure time models introduced in Anderson
et al. [6]. For a patient’s death time, we first generate a random time from a
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death time distribution for a general ESRD patient (who has not developed
CVD yet). If the generated time is after the patient’s CVD time, we update
the death time by generating it from a death time distribution for a ESRD
patient who also has CVD, based on the model of Anderson et al. [6]. Table
2.2 summarizes the main model components, parameter values, and data
sources.
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Table 2.2: Parameter values and data sources for main model components.

Parameter Value Source

Patient

Arrival rate 304 ESRD patients per year †

Age distribution (M)
30-40 (0.176)1 40-50 (0.241) 50-60 (0.401) †
60-70 (0.144) 70-80 (0.037)

Age distribution (F)
30-40 (0.177) 40-50 (0.301) 50-60 (0.345) †
60-70 (0.168) 70-80 (0.009)

Gender Probability of female: 0.45 ‡
Blood type O (0.485) A (0.329) B (0.148) AB(0.038) ‡
PRA score 0-10 (0.7520) 10-80 (0.1720) 80-100 (0.0760) ‡
Diabetic Probability of diabetes: 0.6 ‡
CVD time Accelerated failure time models Anderson et al. [6]

Death time Accelerated failure time models Anderson et al. [6]

Kidney
Transplant rate 60 kidney transplants per year †
Blood type O (0.474) A (0.372) B (0.123) AB(0.031) ‡

Screening
Sensitivity Electrocardiogram: 0.68, Coronary Angiography: 1.00 Patterson et al. [56]

Specificity Electrocardiogram: 0.77, Coronary Angiography: 1.00 Patterson et al. [56]

Mean lead time 1 month ∗

Cost
Screening cost ECG: $330, Coronary Angiography: $1800 Patterson et al. [56]

Penalty cost $40,000 Patterson et al. [56]

1 Numbers in parentheses represent probabilities.
† Canadian Organ Replacement Register Report, 2010, and British Columbia Transplant Society (BCTS) data, 2006.
‡ Organ Procurement and Transplantation Network (OPTN) data, 2011.

∗ Discussion with transplant coordinators at BCTS.

19



2.5. Numerical Experiments

While limited public data make it difficult to perform extensive valida-
tion of our model, we were able to compare observed median waiting time
with the ones reported by the British Columbia Transplant Society [12].
The median waiting time experienced in British Columbia was 63.1 months
for patients transplanted in 2010 and 62.2 for patients transplanted in 2011,
which are close to the median waiting time of 63.0 months observed from
the simulation program.

2.5.3 Model-based screening policy

Here we discuss how we apply our analytical model of Sections 2.3 and
2.4 to develop a model-based screening policy. Note that our analytical
model determines the optimal screening times for a single patient who faces a
remaining waiting time (until kidney offer) density g and has CVD and death
time densities f and h, respectively. In practice, a transplant center needs
to develop a screening policy for all patients on the waiting list. However,
it would be analytically intractable to derive a globally optimal solution for
deciding all patients’ screening times; the state space and decision space
would quickly face the “curse of dimensionality.” Instead, we propose a
heuristic that first assigns each new patient a screening schedule, derived
from our analytical model and solution algorithm of Section 2.4. We then
dynamically update patients’ screening schedules as the waiting list evolves
and they move to higher ranks.

The CVD and death time densities (f and h, respectively) are functions
of patient characteristics such as age, gender, and diabetes status, and are
independent of the waiting list dynamics and other patients’ characteris-
tics. In contrast, the remaining waiting time density g for each patient is
a function of the waiting list dynamics and depends on the characteristics
of patients who have higher priority over the considered patient. This is
where we use the DES model for the purpose of estimating the density g for
a patient, as we can run several replications of the model to obtain waiting
time samples, and then fit a distribution to the data. However, it would
be computationally expensive to do this for every patient at different times
during the simulation run. Instead, we create a moderate number of cate-
gories based on a few factors related to the waiting time distribution, and fit
these distributions offline. These factors are a patient’s rank on the waiting
list, blood type, and panel reactive antibodies (PRA) score.

Rank is an important determinant of remaining waiting time, since kid-
neys are offered in first-in-first-out order (provided the kidney is compatible
with the intended recipient). A patient’s blood type is also a major factor
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affecting a patient’s waiting time. For instance, a patient of rank 50 with
blood type AB will experience a much shorter waiting time compared to a
patient ranked 50 with blood type O, since blood type AB is the universal
recipient and blood type O is the universal donor. The third factor, the
patient’s PRA score, estimates the percentage of the donor population that
the patient would develop an immune response to, and thus be unable to
receive the donor’s kidney. Patients with lower PRA scores will wait less for
a kidney offer. We consider all combinations of 30 rank (up to rank 300 in
groups of 10), 4 blood type (A, B, AB, O), and 3 PRA score (0-10, 10-80,
80-100) categories, for a total of 360 waiting time distributions we fit using
the DES model.

We also group patients into 20 categories based on the primary factors
that affect the CVD and death time distributions f and h: 5 age (30-80 in
groups of 10), 2 gender, and 2 diabetes status categories. We then use our
analytical model of Sections 2.3 and 2.4 to obtain the optimal screening pol-
icy for 7,200 (360× 20) different combinations of a patient’s characteristics.
Since we dynamically update the optimal screening policy every month, for
each combination, we just store the first screening interval, t∗1 in a look-up
table. If the look-up value of t∗1 is within the next month, we screen the
patient. In the remainder of this chapter, we call this look-up table the
“model-based” screening policy.

Having this look-up table effectively allows us to implement a dynamic
screening policy. As an example, suppose that based on the current rank of
a patient, the optimal policy suggests that the patient should be screened
after one year. However, after six months, the transplant center might
observe that the rank of the patient decreased faster than expected due
to a higher donation rate in that six month period. They can then use the
optimal screening policy for the updated rank, which might suggest to screen
the patient much sooner than the six months that remain in the previous
screening schedule for that patient.

We remark that for 14% of the 7,200 combinations, the particular set
of parameters does not satisfy Assumption 1 described in Section 2.4, and
therefore our solution algorithm cannot be used to find the optimal patient-
specific screening policy. For these cases, we find a nearly optimal policy
using a method inspired by Munford and Shahani [39]. In this method,
given a probability p, we find the next screening interval in such a way
that the probability of offering a kidney to a patient with unknown CVD
in that interval is equal to p. After obtaining the screening intervals, the
total expected cost of such a policy (as defined in Section 2.3) can be easily
computed. To find the best value for p, we try different values for p and
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choose the one that minimizes the total expected cost. The corresponding
screening policy provides an approximation to the optimal policy. When
compared against the optimal policy for the cases where Assumption 1 holds,
we observed that the total expected cost is only 7% less for the optimal policy
on average.

Note that our analytical model in Section 2.3 only considers one param-
eter, cs, for the screening cost, whereas in reality (and as our simulation
model considers) there are two stages of tests, with the second stage being
significantly more expensive than the first stage (see Table 2.2 for cost esti-
mates). To deal with this difference between our analytical and simulation
models, we use an implied value of cs, which we define as the sum of the
cost of performing the first non-invasive test (c1) and the expected cost of
performing the second test (ac2), where a is the proportion of times that the
second test is performed. Using the simulation program, we observe that for
the current screening policy, the second test is performed 36% of the time.
We use this value as our estimate of a.

2.5.4 Results and discussion

This section aims to provide insights and guidelines to policy-makers for
designing more effective and efficient screening policies. Towards this aim,
we perform several numerical experiments and discuss the importance of
different variables in the design of improved screening policies.

We first demonstrate the value of our model-based screening policy by
comparing its performance against the current guidelines of screening high-
risk patients annually and low-risk patients every two years. We also com-
pare our approach against the best among two other classes of screening
policies: “risk-based” and “rank-based” policies. A risk-based policy is a
generalization of the current guidelines, which assigns one fixed screening
interval to high-risk patients, and another fixed screening interval to low-
risk patients. We consider fixed intervals ranging from 3 months to 3 years,
in increments of 3 months. For the rank-based policies, we consider a sin-
gle rank threshold (50, 100, 150, 200, or 250) and assign different screening
intervals to the patients on different sides of this threshold. It is worth
pointing out that instead of using the model-based policy, one might con-
sider a simulation optimization approach. However, instead of searching
over an enormous decision space for good policies via common simulation
optimization approaches (e.g., genetic algorithms, tabu search, etc.), we use
our analytical model to find a good screening policy.

The results of our experiment are summarized in Table 2.3. We per-
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formed 100 simulation replications of each policy, and each replication sim-
ulates 1,000 kidney transplants after the warm-up period (which ends when
the waiting list size matches the current waiting list size in British Columbia).
The table provides the averages and the 95% confidence intervals for the fol-
lowing three metrics: total annual cost, percentage of bad transplants (i.e.,
transplants offered to patients with unknown CVD), and average annual
number of screenings (both non-invasive and invasive). Note our policies
focus on trying to minimize the total expected cost metric, but the other
two metrics provide other outputs of interest for the transplant center.

Table 2.3: Comparison of different screening policies.

Screening policy Total annual Percentage of Average annual
cost(million $) bad transplants number of screenings

Current 0.797 (±0.007) 20.9 (±0.2) 409.9 (±3.2)
Best risk-based 0.714 (±0.007) 12.6 (±0.2) 592.8 (±4.8)
Best rank-based 0.612 (±0.005) 7.2 (±0.2) 639.5 (±5.2)
Model-based 0.511 (±0.005) 8.5 (±0.2) 429.1 (±4.0)

First, we observe that the current screening policy results in 20.9% bad
transplants and requires 409.9 screenings performed each year. We found
that the best (lowest total cost) risk-based policy should screen high-risk
patients every six months and low-risk patients every year, which is half
of the intervals suggested by the current policy. Consequently, the annual
number of screenings performed increases by 44.6%, but the total annual
cost decreases by 10.5% due to the 8.3% decrease in the percentage of bad
transplants. The best rank-based policy suggests screening the first 100 pa-
tients every 3 months, and the rest every 3 years. Compared with the best
risk-based policy, this policy performs 7.9% more screenings each year, but
reduces the total annual cost and the percentage of bad transplants further
by 14.2% and 42.8%, respectively. This suggests the importance of consid-
ering factors highly correlated to remaining waiting time (e.g., rank on the
wait list) in the design of patient screening guidelines. Our model-based
policy, which explicitly considers the remaining waiting time distribution,
achieves a 17% reduction in total cost relative to the best rank-based policy.
It does this by by requiring significantly lower annual number of screenings
with only a slightly higher percentage of bad transplants. Comparing the
model-based policy back to the current policy, we obtain a 35.9% reduc-
tion in the total annual cost, by reducing the percentage of bad transplants
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by 59.6% while using only 5% more screenings per year. The model-based
screening policy achieves this efficiency by scheduling the screenings at pe-
riods where the patient is more likely to receive an offer or have developed
CVD.

2.5.5 Comparison of policies in the face of cost uncertainty:

Recall that we defined the penalty cost as the treatment cost of com-
plications resulting from a transplant to a patient with unknown CVD. In
practice, however, different complications might arise as a result of perform-
ing a transplant on a patient with severe CVD, and the treatment cost for
these complications can significantly vary. Furthermore, the penalty cost
can consider the opportunity cost of offering a kidney to a healthy patient
instead of a patient with severe CVD. All these issues make quantifying cost
parameters a difficult task in practice. Instead of focusing on the cost, Fig-
ure 2.1 provides an alternative way for managers to understand the benefit
of using our model-based policy over existing guidelines. Figure 2.1 depicts
trade-off curves for the two primary (non-cost-based) metrics in our study:
the percentage of bad transplants and the annual number of screenings.
Each point of the figure corresponds to one screening policy. For the risk-
based policies, each point is obtained by choosing different fixed screening
intervals for the two risk groups. Similarly, for the rank-based policies, each
point is obtained by choosing a rank threshold as well as two fixed screening
intervals for the two rank groups. We remark that the dominated policies in
each class are not shown in Figure 2.1. The different model-based policies
are obtained by changing the ratio of costs

cp
cs

.
Figure 2.1 shows that for any risk-based policy, one can find a dominating

rank-based policy (i.e., a policy with a smaller percentage of bad transplants
and smaller annual number of screenings performed). Furthermore, one
can find a model-based policy that outperforms both risk and rank-based
policies. Therefore, by using our model-based policies, one can always gain
efficiencies in terms of both metrics. Our observation suggests that the
insight discussed earlier about the importance of considering the waiting
time in designing the screening guidelines does not change if different cost
figures are used. Furthermore, the Pareto efficient curves shown in Figure 2.1
provides a powerful tool to policy-makers for developing the right screening
guidelines, as they can choose a policy which balances their desired trade-
off between the percentage of bad transplants and the amount of screenings
necessary.
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2.6. Conclusions

Figure 2.1: Pareto efficient policies from different policy classes. The “best”
coordinate for each policy reflects the values found in Table 2.3, which are
based on the baseline model parameters given in Table 2.2 .
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2.6 Conclusions

This chapter provides a new modeling framework for finding improved
screening policies for patients on the kidney transplant waiting list. We
not only provide the first evidence-based tool for designing such policies,
but also highlight several important insights regarding good policies. Our
model balances the trade-off between two costs: the penalty cost as a result
of offering a kidney to a patient with unknown CVD and screening costs.
We prove several properties of the optimal patient-specific screening policy
for this model and use these properties to develop a binary search solution
algorithm. In particular, we show that the lengths of the screening intervals
are decreasing under reasonable assumptions. Later, with the help of a
discrete event simulation model, we suggest a heuristic method that uses
our single-patient model to develop dynamic screening policies within the
multi-patient waiting list setting.
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The current screening policies are based on simple rules which may be
easier to follow in practice. However, as we discussed earlier, transplant
centers view these policies as general guidelines and deviate from them by
periodically reviewing each patient’s information. On the other hand, the
model-based policy developed by our model can be summarized in the form
of a look-up table (based on age, gender, diabetes status, blood type, PRA
score, and rank) that indicates how long a transplant center should wait
before requesting a new screening. The screening schedule is obtained by
the binary search algorithm of our analytical model, and therefore our ap-
proach may be seen as an efficient alternative to a general simulation-based
optimization approach to finding screening policies. We also note that our
look-up table can be easily implemented in the form of a spreadsheet, and
based on our discussion with British Columbia transplant coordinators, this
would significantly facilitate the screening process.

As mentioned in Section 2.3, our analytical model of Section 2.3 made
some simplifying assumptions that may pose limitations: perfect testing,
and zero lead time for test results. Our DES model, on the other hand,
relaxed each of these assumptions and reflected the reality of the process. In
Section 2.5.3, we discussed our approach for mitigating the first assumption
by estimating a screening cost parameter of the model (cs) that reflected the
two stages of testing that occur in practice. The incorrect assumption of a
zero lead time would only matter if a patient had developed CVD since the
last screening and a kidney were offered to the patient during the time it
took to receive the test results of the new screening. The probability of this
happening will be negligible for patients further down the waiting list but
may be worth considering for patients with shorter times until receiving a
kidney offer. Despite the disconnect between aspects of our analytical model
and the simulation model, our model-based screening policy performed well
compared to other classes of policies.

Our numerical experiments provide several important insights regarding
the effective and efficient screening policies. First, we observe that variable-
interval screening policies perform better than the fixed-interval policies used
in practice. Furthermore, our results suggest that the factors affecting the
waiting time of the patient, such as rank and blood type, should be con-
sidered in determining the screening intervals. This contrasts sharply with
current guidelines which are only based on patients’ risk for developing CVD.
Finally, we note that while our numerical results are based on data for the
British Columbia Transplant Center, our framework can be easily applied
to other regions by using appropriate data to calibrate the various model
parameters.
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Chapter 3

Inspecting a Vital
Component Needed upon
Emergency

3.1 Introduction

Consider a vital component that fails after some random amount of
time and that will be needed at some other random future time when an
emergency occurs. If the component is not operational at the time of the
emergency, the system incurs a large penalty cost. Failures are hidden and
revealed only upon inspections or upon attempted usage, at which time the
component is replaced (or repaired). Furthermore, the component can be
replaced preemptively after some time.

As an example, consider stand-by safety systems, such as smoke detec-
tors and fire alarms, that are needed in emergencies. As stand-by units, their
failure may go unnoticed until they are needed, which could result in very
costly or even catastrophic outcomes. For instance, the National Fire Pro-
tection Association reports that 24% of fire deaths in the US between 2005
and 2009 resulted from fires in homes in which smoke alarms were present
but did not operate (Ahrens [2]). Regular inspections of such systems is
clearly important, though it is not obvious how frequently to perform such
inspections. Maintaining emergency back-up equipment, such as power gen-
erators, is another application of this problem. For instance, during a major
storm, scattered power outages can require the use of standby power systems
installed at hospitals, commercial businesses, and government buildings. If
the backup generators are not working at these times, there may be major
consequences.

There are several important questions in designing a cost-effective main-
tenance plan for these systems, which arise from the trade-offs among dif-
ferent decisions. First, there is a trade-off between performing frequent
replacements, accumulating high replacement costs, versus infrequent re-
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placements, with higher risk of failure happening prior to the attempted
use. In other words, the first decision is determining the right time to re-
place the component (i.e., the cycle length). This preemptive replacement
can be delayed by scheduling inspections to detect the component failure.
However, as the component ages and is more likely to fail, inspections must
be scheduled more frequently, and their increasing cost can make delaying
the replacement no longer economical. Therefore, one should decide on the
right number of inspections performed in each cycle before replacing the
component. Finally, one should decide how to space the inspections within
a cycle so as to effectively reduce the likelihood of a catastrophic outcome
(i.e., attempting to use a failed component). We answer all these questions
and provide several managerial insights for designing the optimal policy.

The rest of this chapter is organized as follows. First we review the
relevant literature and indicate the contribution of our work in Section 3.2.
In Section 3.3, we state our assumptions and present our formulation of the
problem. We derive several structural properties of the optimal solution in
Section 3.4, and we exploit these properties to develop a solution algorithm.
In Section 3.5, we present and discuss numerical examples. Finally, we
discuss managerial insights and future work in Section 3.6. Proofs of main
results appear in the appendix.

3.2 Literature Review

Optimal inspection policies have such a rich history in operations man-
agement that several articles have surveyed this literature (Chelbi and Ait-
Kadi [15], Jardine and Buzacott [27], McCall [37], Nakagawa [47], Pier-
skalla and Voelker [59], Sherif and Smith [69], Valdez-Flores and Feldman
[75], Wang [77]). Of particular relevance to our setting is a seminal paper
by Barlow et al. [11] on optimal inspection policies and various extensions
of the ideas therein. They considered an inspection problem in which they
assumed that (a) system failure is known only through inspection, (b) in-
spections do not degrade the system and take negligible time, (c) a cost
is associated with each inspection (d) a cost is associated with each unit
of time that the failure is undetected, and (e) the problem ends upon de-
tection of the failure. Note that assumption (d) makes this model suitable
for a system in continuous operation (such as a production system), where
system failure may result in producing defected items proportional to the
duration of the time that the system has failed. Barlow et al. [11] developed
structural properties of the optimal solution, as well as a method to find
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the optimal inspection times for a broad class of failure densities. Barlow
and Proschan [10] relaxed assumption (e), and extended their analysis to
the case where the component is replaced upon detection of failure. They
considered the objective of expected cost per unit of time over an infinite
horizon.

Many other extensions to Barlow et al. [11] have been considered in the
literature. Luss and Kander [34] extended their model to the case where
the inspection time is not negligible. Sengupta [68] considered a system
for which failure becomes evident at some random time after failure. For
example, in a manufacturing process, the operator eventually would detect
the machine failure because of the deterioration in product quality. Parmi-
giani [55] considered a system where the inspections are fallible and take
non-negligible time.

While the papers mentioned above assign a penalty cost for each unit
of time that the failure is undetected, in our problem, a fixed penalty cost
is incurred only if one attempts to use a failed component. This relates to
literature examining inspection policies for stand-by systems. For example,
Nakagawa [46] considered inspection policies for a stand-by unit that re-
places the main unit if it fails. He assumed the inspection times are equally
spaced and the problem ends when the main unit fails. With these assump-
tions, he considered the problem of finding the inspection interval that min-
imizes the expected cost, and found sufficient conditions for the existence of
the optimal inspection interval. However, he did not provide any algorithm
to obtain one. Whereas Nakagawa [46] studied the problem of determining
the optimal inspection interval within the class of policies of equally spaced
intervals, Thomas et al. [73] modeled the problem as a discrete Markov deci-
sion process to find the inspection/repair times that maximizes the expected
time until a catastrophe occurs (i.e., stand-by unit is needed but it is not
operational). Their model considered that inspections are fallible and the
inspection and repair durations are not negligible. Sabouri et al. [62] con-
sidered the problem of screening patients on the kidney transplant waiting
list and modeled it as a type of inspection model for a stand-by system.

Another stream of models developed for systems in standby or storage
consider system availability (ratio of the system up time to the total of sys-
tem up and down times) as the primary performance criterion instead of the
average total cost. The goal in these models is to maintain a certain level of
availability with minimum inspection effort. Parmigiani [54] considered the
inspection of stand-by units in continuous time by minimizing the expected
number of inspections under the constraint of a maximum probability that
the stand-by unit is not ready upon the failure of the main unit. He used an
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approach similar to Barlow et al. [11], and by imposing certain assumptions
on both the failure distributions, he provided an algorithm to obtain the
optimal inspection times. Yeh [78] developed a model to find an optimal
inspection-repair-replacement policy that maintains a certain level of avail-
ability at any time and minimizes the long-run expected cost per unit time.
As suggested in Kim and Thomas [31], the models studied by Yeh [78] and
several other authors did not consider the case where the need for the com-
ponent changes over time. In contrast, Kim and Thomas [31] characterized
the optimal repair decisions in the case where the need for the equipment
varies over time according to a Markov chain. However, their model did not
consider finding an optimal inspection schedule.

Our model in this chapter assumes that inspections only reveal whether
the system has failed or not. While this assumption is reasonable for sev-
eral applications (e.g., fire alarms), it is worth mentioning that a more re-
cent stream of research considers situations where at the time of an inspec-
tion, the degree of equipment degradation can be determined by performing
measurements. Then, preventive replacement is performed when a certain
threshold of equipment degradation is reached. The focus of these condi-
tional maintenance models (reviewed in Chelbi and Ait-Kadi [15]) is either
in finding an optimal inspection policy for a given threshold or finding the
optimal threshold for a given inspection schedule. As an exception, Dieulle
et al. [20] proposed a model to optimize both the threshold and the inspec-
tion schedule.

Our contributions to the literature are as follows. First, instead of focus-
ing on an availability criterion, we consider a system in which component
failure is only a problem at certain times (i.e., time of emergency), and
therefore it is critical that our objective function considers the interactions
between the component failure distribution and the emergency time distri-
bution. In this context, we consider the optimal design of a joint inspection
and preventive maintenance policy by finding the optimal number of in-
spections and their timings before a preventive replacement. Second, our
analysis of the case where only a finite number of inspections are scheduled
reveals a property of the optimal inspection schedule which contrasts with
the structure of optimal policies for models with an unlimited number of
inspections (Theorem 3). We also provide insights on the impact of changes
in the model parameters by solving several numerical examples. Finally, we
explore the performance of constant interval (periodic) inspection policies,
and provide insights on the performance loss when one is restricted to this
class of policies.
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3.3 Problem Formulation and Assumptions

The time between emergencies is a random variable, which we denote
by T . We suppose that at the time of emergency, a vital component is
needed (e.g., back-up power generator), and an attempt will be made to
use it. This component deteriorates over time and has a random lifetime
S (independent of T ), where the probability density function of S is f(s),
and its cumulative distribution function is F (s). If the component fails and
the failure remains undetected until the emergency occurs (we refer to this
event as a catastrophe), the system incurs a penalty cost, cp, at the time of
the emergency (as the component cannot be used). Failure can be detected
only by inspection, at a cost of ci per inspection. We assume that upon
identifying component failure (either before or at the time of emergency),
upon using the component at the time of emergency, or at a scheduled time
in future, it is replaced (or repaired to become as good as new) in negligible
time at a replacement cost of r (in addition to possibly cp or ci). We also
assume that:

1. the remaining time until the next emergency is independent of the time
that has passed since the last emergency (i.e., the memoryless property
holds), and therefore T has an exponential probability density function
with parameter λ (i.e., g(t) = λe−λt).

2. f(s) is a continuous (and differentiable) Polya Frequency functions of
order 2 (PF2), and the support of S is [0,+∞) and f(s) > 0 for all
s > 0. Note that PF2 density functions include a range of probabil-
ity densities, including all Exponential and Normal distributions, as
well as a large subset of the Gamma and Weibull family. These distri-
butions have the increasing failure rate property, which makes them
suitable lifetime distributions for components subject to deterioration
over time.

3. ci < cp and r < cp; otherwise, we are not willing to perform inspections
or replace the component to avoid the penalty cost. Furthermore,
inspections are error-free, take negligible time to perform, and do not
affect the failure rate of the component.

4. the planning horizon starts with a newly replaced component.

Our model considers that a decision maker can perform a preventive re-
placement if it is no longer economical to perform further inspections. This
may happen if the interaction between the component failure rate and the
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emergency time distribution requires a very high inspection frequency to
avoid the large penalty cp. Therefore, we must identify the optimal num-
ber of inspections to perform before scheduling a preventive replacement.
Toward this aim, we first formulate a subproblem for finding the optimal
timing of the inspections and the replacement for a given number of inspec-
tion opportunities per cycle (the time between replacements). Then, one
can solve several instances of this problem to obtain the optimal number of
inspection opportunities.

Since the emergency arrival density has the memoryless property, a re-
newal happens each time the component is replaced. For the subproblem,
we assume that there are a limited number n of inspection opportunities
during each cycle, and that any time after performing n inspections, the de-
cision maker can preventively replace the component. Our goal is to find an
inspection policy for each cycle that minimizes the infinite horizon expected
total discounted cost C. An inspection policy is defined by an increasing
sequence of inspection times Tn =

{
tj
}n+1

j=1
(where t1 ≤ t2 ≤ . . . ≤ tn ≤ tn+1

and tn+1 is the scheduled replacement time). Note that since the problem
renews itself after each cycle, the same inspection policy is optimal for each
cycle. Therefore, without loss of generality, we restrict our attention to the
class of policies where the same inspection policy is used for all cycles, and
we set the beginning of each cycle to time 0. Then, tj represents the time
since the last renewal, and C(Tn) represents the infinite horizon discounted
expected total cost when in each cycle we use the same inspection policy Tn.
We revisit the optimal choice of n in the numerical results of Section 3.5.

3.3.1 The discounted expected total cost of an inspection
policy

Each cycle ends with a replacement in one of the following four ways:
(a) by identifying failure upon emergency, (b) by identifying failure upon
inspection prior to an emergency, or (c) by replacing the component at the
scheduled time tn+1, or (d) by using the functioning component upon emer-
gency (in which case we assume it needs to be replaced or restored to new
condition at the same cost). The objective function can be written recur-
sively based on which of these scenarios causes a component replacement.
In equation (3.1), the first three summands correspond to these cases (case
(c) is combined with (b)), respectively, and the last expression is the total
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discounted expected inspection cost in one cycle:

C(Tn) = (cp + r + C(Tn))A1(Tn) + (r + C(Tn))A2(Tn)

+ (r + C(Tn))A3(Tn) + ciA4(Tn). (3.1)

Now we explain and derive the different expressions in equation (3.1). The
first expression, (cp + r+ C(Tn))A1(Tn), represents the discounted expected
cost if a failure remains undetected until the time of an emergency (mean-
ing A1(Tn) can be viewed as the discounted probability of such an event).
To derive the A1(Tn), suppose that the emergency occurs at some time t
(according to density function g(t) = λe−λt) between the jth and (j + 1)st

inspection times (i.e., tj < t < tj+1) and the component is still operating
at time tj (which occurs with probability 1−F (tj)). Then the penalty cost
is incurred if the failure happens in time interval (tj , t), which occurs with

conditional probability of
F (t)−F (tj)

1−F (tj)
. Letting θ be the discount factor, it

follows that the discounted probability of incurring the penalty cost is

A1(Tn) :=
n∑
j=0

(1− F (tj))

∫ tj+1

tj

F (t)− F (tj)

1− F (tj)
λe−λte−θtdt

=
n∑
j=0

∫ tj+1

tj

(F (t)− F (tj))λe
−λte−θtdt,

where t0 = 0. The second expression, (r + C(Tn))A2(Tn), represents the
discounted expected cost if either one of two replacement scenarios occur: a
failure is detected by inspections or a replacement takes place at the sched-
uled time tn+1. For j ≤ n, we detect a failure at time tj if the component
has failed in interval (tj−1, tj) and the emergency has not occurred by the
time of jth inspection. Furthermore, a preventive replacement is performed
at time tn+1, if the component is still functional at the time of last inspection
tn and the emergency happens after the time of replacement tn+1. Then,
similar to the previous case, we can write

A2(Tn) :=
[ n∑
j=1

(
F (tj)− F (tj−1)

)
e−λtje−θtj

]
+
(
1− F (tn)

)
e−λtn+1e−θtn+1 .

The third expression, (r + C(Tn))A3(Tn), corresponds to the discounted
expected cost if the component has not failed by the time of emergency,
in which case the emergency prompts the use of a good component, which
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needs restoration/replacement after use. Similar to the derivation of A1(Tn),
one can show that

A3(Tn) :=
n∑
j=0

∫ tj+1

tj

(
1− F (t)

)
λe−λte−θtdt

Finally, the fourth expression, ciA4(Tn), is the total discounted expected
inspection cost in one cycle induced by policy Tn. We derive this using the
expected sum of indicator functions

∑n
j=1E[Ij ], where each Ij = 1 if the

jth inspection is performed and 0 otherwise. Then, the expected number
of inspections performed is equal to the sum of the probabilities that each
inspection is performed for j = 1, . . . , n. We perform the jth inspection if
the component has not failed by the time of (j − 1)th inspection and the
emergency has not occurred by the time of jth inspection. The corresponding
probability associated with this event is (1 − F (tj−1))e−λtj . Therefore, we
have

A4(Tn) :=

n∑
j=1

(
1− F (tj−1)

)
e−λtje−θtj .

Now, we can rewrite (3.1) as follows:

C(Tn) =
(cp + r)A1(Tn) + rA2(Tn) + rA3(Tn) + ciA4(Tn)

1−A1(Tn)−A2(Tn)−A3(Tn)
=
N (Tn)

D(Tn)
, (3.2)

where N (Tn) and D(Tn) are defined as the numerator and the denominator
of the ratio after the first equality sign, respectively. Our goal is then to find
an inspection policy that minimizes the above ratio. To this aim, we define:

Lα(Tn) := N (Tn)− αD(Tn), and (3.3)

R(α) := min
Tn

Lα(Tn). (3.4)

Our problem is then equivalent to finding an α∗ such that R(α∗) = 0, since
it implies that for any Tn, N (Tn) − α∗D(Tn) ≥ R(α∗) = 0 (i.e., C(Tn) =
N (Tn)
D(Tn) ≥ α∗). It follows that T ∗n (α∗), the minimizer of (3.4) for α∗, is the

optimal inspection policy that minimizes (3.2) (because N (T ∗n (α∗))
D(T ∗n (α∗)) = α∗).

There exists a unique α∗ that solvesR(α) = 0, sinceR(0) > 0, andR(α) < 0

for any α > N (Tn)
D(Tn) (where Tn is any arbitrary inspection policy), and R(α)

is continuous and strictly decreasing in α (since ∂R(α)
∂α = −D(T ∗n (α)) < 0 by

the envelope theorem and since D(Tn) is strictly positive due to discounting).
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Therefore, we can find α∗ by performing a simple binary search. Then, for
each candidate value α = α̃, we need to find the optimal inspection policy
T ∗n (α̃) that minimizes Lα̃(Tn). In Section 3.4, we discuss the properties of
this minimization problem and provide an algorithm to obtain T ∗n (α̃).

We remark that the above approach for minimizing (3.2) is referred to
as λ-minimization and was previously discussed and studied in Aven and
Bergman [8].

3.4 Structural Results

In this section, we provide several properties of the optimal inspection
policy and use these properties to develop an algorithm for obtaining the op-
timal inspection policy. We remark that since the optimal inspection policy
for (3.2) is also the optimal inspection policy of (3.4) for α∗, it also satisfies
all the properties presented in this section. Also, in this section, we treat
α as a parameter and discuss solving the problem (3.4) for a fixed value
of α. Therefore, we do not show the dependence of the optimal inspection
policies on α in our notation. Before characterizing and identifying an opti-
mal inspection policy, one first must establish its existence (later we discuss
uniqueness as well). Proposition 3 in Appendix A shows the existence of
an optimal inspection policy for problem (3.4) for any given value of α. We
denote this policy by T ∗n .

Now we consider the first order optimality condition. The function L =
Lα defined in (3.3) is differentiable with respect to each tj since F (s) is a
differentiable function (differentiability of F (s) follows from the continuity
of f(s)). The following lemma establishes that the optimal inspection policy
must satisfy the first order necessary condition and cannot be a boundary
solution (i.e., 0 < t1 < t2 < . . . < tn−1 < tn < tn+1). The first order
necessary condition provides a tool for characterizing the optimal inspection
policy. To be more specific, using the necessary condition, we are able to
reduce the dimension of the decision variable space from n + 1 to 1, which
we discuss more following Lemma 1. It is first useful to define:

Ω(t, x, y) :=
[F (t)− F (t− x)

f(t)
− 1− e−(λ+θ)y

λ+ θ

]
− ci
k

[1− F (t)

f(t)
+

1

λ+ θ

]
,

(3.5)

where k = λ
λ+θ (cp+r+α)−(ci+r+α). We assume that k > 0 for all instances

of the problem (3.4) that we solve. This assumption holds when the penalty
cost cp is significantly larger than the inspection cost ci and the replacement
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cost r, or if the discount factor θ is small. In most practical settings, this
assumption must hold to justify performing inspections and replacements.
Function Ω(t, x, y) will be used in Lemma 1, as well as in proving several
properties of the optimal inspection policy. Also, for ease of representation,
we define the length of the jth inspection interval as xj := tj − tj−1.

Lemma 1 Any optimal inspection policy T ∗n =
{
tj
}n+1

j=1
satisfies 0 < t1 <

. . . < tn < tn+1 < ∞. Furthermore, necessary conditions for the optimality
of an inspection policy are

Ω(tj , xj , xj+1) = 0 for each 1 ≤ j < n, (3.6)

Ω(tn, xn, xn+1) = −cie
−(λ+θ)xn+1

k(λ+ θ)
, (3.7)

F (tn + xn+1)− F (tn)

1− F (tn)
=
θ(r + α)

λcp
. (3.8)

The necessary conditions (3.6-3.8) produce a relationship among the
three subsequent values of tj ’s, i.e., {tj−1, tj , tj+1}. Since t0 = 0, we can
use (3.6) and (3.7) to find recursively all the inspection times by just de-
termining the optimal first inspection time t1. Therefore, for inspection
policies that satisfy the necessary conditions (3.6-3.8), the inspection times
are implicitly functions of t1,n (note we use the second subscript n to denote
the total number of inspection opportunities available); thus, we denote the
inspection times by tj [t1,n] and the length of the inspection intervals by
xj [t1,n] to indicate this dependence.

Now we use properties of PF2 densities (Lemma 9 of Appendix A) to de-
velop some useful insights on the optimal inspection policy. Intuitively, the
increasing failure rate property of PF2 densities should induce decreasing
lengths of inspection intervals as the component ages. In fact, other papers
in the reliability literature have shown that when there are an unlimited
number of inspection opportunities, the lengths of the inspection intervals
are indeed decreasing in other contexts (e.g., Barlow et al. [11], Sengupta
[68] and Parmigiani [54]). In contrast to these papers, our model consid-
ers a random variable for the time of emergency in addition to the failure
time, and schedules only a finite number of inspections, after which, the
component can be replaced. We will demonstrate in the numerical results of
Section 3.5 that in our setting, inspection intervals may decrease at first but
increase for later inspection intervals. The intuition is that in certain set-
tings, one might use the inspection opportunities more conservatively when
fewer of them remain and during periods where it is less likely to experience
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an emergency. This is formalized through the following theorem, which in-
dicates that if there is an increase in duration from one interval to the next,
the remaining intervals continue to increase.

Theorem 3 Suppose that T ∗n =
{
tj [t
∗
1,n]
}n+1

j=1
is an optimal inspection pol-

icy. If there exists m ∈ {1, . . . , n− 1} such that xm+1[t∗1,n] > xm[t∗1,n], then
xj+1[t∗1,n] > xj [t

∗
1,n] for all m ≤ j ≤ n.

Note that Theorem 3 does not imply that the optimal inspection intervals
necessarily increase; just that if there is an increase, then all subsequent
intervals are also increasing in length.

Now we establish other properties of the inspection policies that satisfy
the necessary conditions (3.6-3.8). We mentioned that for these inspec-
tion policies, the inspection times are implicitly functions of t1,n. Our next
lemma states how tj [t1,n] and xj [t1,n] change as functions of t1,n. This sen-
sitivity result will also be used to show that the optimal inspection policy
is unique. Furthermore, this result plays a crucial role in developing the
solution algorithm for finding the optimal inspection policy.

Lemma 2 For any 1 ≤ j ≤ n+1, xj [t1,n] and tj [t1,n] are strictly increasing
in t1,n.

We can use Lemma 2 to prove that a unique value of t1,n satisfies the nec-
essary conditions (3.6-3.8), and therefore, the optimal inspection policy is
unique. Our solution algorithm is based on finding this unique optimal value
of t1,n.

Proposition 1 The optimal inspection policy T ∗n =
{
tj [t
∗
1,n]
}n+1

j=1
is unique

for all n.

Now we briefly discuss an algorithm for finding the optimal inspection
policy (details of the algorithm can be found in Appendix E). Based on the
discussion following Lemma 1, finding the optimum first inspection time t∗1,n
suffices to determine the entire optimum inspection policy by using (3.6) and
(3.7) (note that by Proposition 1, the optimal inspection policy is unique).
Our algorithm uses Lemma 2 to perform a one-dimensional binary search to
determine the optimal first inspection time t∗1,n. The rest of the inspection
times can then be determined using (3.6) and (3.7).
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3.5. Numerical Examples

3.5 Numerical Examples

In the previous section, we established properties of the optimal inspec-
tion policy and outlined how we can use them to develop a solution algo-
rithm. In this section, we explore the effect of changes in the model parame-
ters as well as the effect of the availability of more inspection opportunities.
Finally, we compare the performance of the optimal inspection policy with
the best constant interval inspection policy (where the inspection times are
scheduled equally-spaced from each other), which is easier to compute and
implement.

To perform our experiments, we used Matlab 7.13 to implement our
solution algorithms. It took negligible time to find the optimal inspection
policy in all of our experiments. For our base-case scenario, we assume
cp, ci and r are equal to 1000, 1 and 10, respectively. Furthermore, we
assume that the emergency arrival time has an Exponential density with
rate λ = 0.2 (i.e., g(t) = 0.2e−0.2t), and the component fails according to a

Weibull density function (f(s) = γ
β

(
s
β

)γ−1
e−(s/β)γ ), where γ = 2 and β = 5.

These instances of the emergency arrival and component failure densities
have (mean, standard deviation) of (5, 5) and (4.46, 1.62), respectively. Note
that the Weibull distribution is commonly used to model failure times and
for γ = 1, it coincides with the Exponential distribution. It is also known
that the Weibull density is PF2 for values of γ ≥ 1.

3.5.1 Effect of changes in the number of available
inspection opportunities

In this section, we explore the impact of having access to more inspection
opportunities. In other words, we investigate how the optimal inspection
policy T ∗n and the optimal discounted expected total cost C(T ∗n ) change as
the limit n on the number of available inspection opportunities per cycle
increases.

In Figure 3.1a, we see that the discounted expected total cost corre-
sponding to the optimal inspection policy for the base-case strictly decreases
at first when more inspection opportunities are available, but it becomes
strictly increasing for n ≥ 9. The cost becomes increasing because as the
component ages, it requires more frequent inspections to protect against the
catastrophe, which is costlier than replacing the component. Therefore, in
this example, it is optimal to have nine inspection opportunities per cycle.

Figure 3.1b depicts the optimal inspection policy for different values
of n, where each dashed curve corresponds to one value of n, and the star
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Figure 3.1: The optimal inspection policy and the optimal discounted ex-
pected total cost (DETC) for different values of n (F represents the replace-
ment interval tn+1 − tn).
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3.5. Numerical Examples

corresponds to the replacement interval after the last inspection. We observe
in Figure 3.1b that for fixed n, the length of the inspection intervals are
strictly decreasing (i.e., inspections are scheduled closer to each other as
the component ages), which is consistent with the increasing failure rate
property of the failure density. However, this need not hold for all sets of
parameter values. If we change γ from 2 to 1.2, Figure 3.2a shows how for
different values of n, inspection intervals are strictly decreasing at first, and
whenever the lengths of the inspection intervals become strictly increasing,
they remain strictly increasing, as predicted in Theorem 3. The reason
for this behavior is that the failure rate increases at a slower rate when
γ = 1.2 (compared to the base-case of γ = 2), and the optimal inspection
policy is mostly derived by the emergency time distribution, meaning that
inspections are scheduled during periods where it is more likely that an
emergency occurs sooner rather than later when a failure is more likely.

We also observe in Figure 3.1b that for a fixed j, the length of the
optimal inspection interval x∗j,n[t∗1,n] = t∗j,n[t∗1,n] − t∗j−1,n[t∗1,n] is strictly de-
creasing in n, meaning that we schedule inspections closer to each other
as more inspections become available. While this may also seem intuitive,
Figure 3.2b demonstrates that this also is not a necessary condition of an
optimal inspection policy. In this example, ci is increased from 1 to 8 (all
other baseline parameters being the same), which is close to the replacement
cost (r = 10). Consequently, performing inspections and postponing the re-
placement is not as beneficial as before. Therefore, the optimal inspection
policy schedules the inspection times farther apart to decrease the expected
inspection cost because the resulting savings justify a slight increase in the
probability of catastrophe.

3.5.2 Effect of changes in the failure time distribution

For our second experiment, we evaluate how sensitive our results are to
changes in the component failure time density. In particular, we consider
how changes in the probability density f interacts with g to affect cost. We
do this by fixing the rate of emergency probability density λ at 0.2 and
varying the parameter β from the Weibull distribution for the component
failure time. In Figures 3.3a, 3.3b and 3.3c, we plot the discounted expected
total cost, the probability of catastrophe in each cycle, and the expected
number of inspections performed in each cycle, respectively, induced by
the optimal inspection policy (for the case n = 9). However, instead of
using β for the horizontal axis, we use a more intuitive indicator, p, which
is defined as the probability that the failure occurs before the emergency

40
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Figure 3.2: Examples of the optimal inspection policy with counter-intuitive
properties.

(a) The lengths of the inspection intervals can be increasing for
fixed n (for γ = 1.2).
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(b) The inspection times can be scheduled farther apart with more
opportunities (for ci = 8).
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3.5. Numerical Examples

Figure 3.3: Three outcome measures when p = prob(S < T ) varies between
0 and 1 (� corresponds to the base-case scenario).
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0 0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000

2500

3000

3500

4000

Prob(failure happens before emergency in each cycle)

O
p

ti
m

al
 d

is
co

u
n

te
d

 e
xp

ec
te

d
 t

o
ta

l c
o

st

(b) Probability of catastrophe in each cycle
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3.5. Numerical Examples

(i.e., prob(S < T )). For a constant value of the emergency arrival rate λ,
this probability approaches 0 if β → ∞, and it approaches 1 if β → 0.
In one extreme, when the component has a relatively long lifetime (i.e.,
as p → 0), the discounted expected total cost of the optimal inspection
policy C(T ∗9 ) approaches 40. This cost only includes the discounted expected
total replacement cost from the infinite stream of replacements after using
a functioning component upon emergency. This is reasonable since even
without performing any inspections, the probability that the component
fails before the emergency is very small. Figures 3.3b and 3.3c also confirms
this observation.

On the other extreme, if the failure occurs before the emergency with a
probability close to 1 (i.e., the component has a short life), the discounted
expected total cost is the largest. Again, this cost is also mainly derived by
the cost of the replacements, as the probability of catastrophe is relatively
small. In this case, the replacements are done after detecting the failure
through the first inspection (note that the expected number of inspections
performed per cycle approaches 1 as p → 1). Since the component has a
short lifetime (close to 0), one can wait and identify the failure by perform-
ing a single properly timed inspection. However, due to the component’s
short life, more frequent replacements are necessary in this case to provide
coverage against the catastrophe. Consequently, as the component’s lifetime
decreases, the discounted expected total cost increases. We remark that for
0.98 < p < 1, the component’s extremely short lifetime makes it no longer
economical to keep and maintain; therefore, we observe an increase in the
probability of catastrophe (Figure 3.3b) because we are willing to accept a
higher risk of incurring the penalty cost due to the high maintenance cost.
Note that our base-case scenario (β = 5) results are shown by black squares.

In Figure 3.3c, we observe that for mid-range values of p, for which
the chance of failure happening before emergency is close to the chance
of emergency happening before failure, the expected number of inspections
performed in each cycle is at its peak. For this range of p values, since
it is harder to predict whether the emergency will happen before or after
the failure, it is harder to guard against a catastrophe from occurring, de-
spite optimally timing the inspection intervals (note that in Figure 3.3b, the
probability of the catastrophe also has a peak for the intermediate values of
p).
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3.5.3 Effect of changes in the cost parameters

Finally, we explored the effect of changes in the cost parameters. To
this aim, we consider the replacement cost r to be fixed, and vary ci and cp.
Figure 3.4a depicts the optimal discounted expected total cost for ci = 1, 2, 5
and 9. As expected, as the inspection cost increases and approach r, it
is optimal to schedule smaller number of inspections before scheduling a
replacement. In fact, for ci = 5 and 9, our results suggest that we replace
the component without scheduling any inspections because the inspection
cost for these cases are close to the replacement cost. In contrast, when we
vary the penalty cost cp, our experiments does not reveal any specific pattern
on the optimal number of inspection opportunities to schedule before the
replacement (it is always optimal to schedule 9-11 inspections before the
replacement). However, we observe that for the larger penalty cost, the
magnitude of decrease in the discounted expected total cost is larger for the
first few inspections opportunities.

Also, as expected, the discounted expected total cost increases as any of
the cost parameters increase. Returning to our discussion in Section 3.5.2,
the magnitude of this change depends on the value of p (i.e., probability of
failure happening before emergency). As we mentioned earlier, in the two
extremes, the optimal discounted expected total cost consists of mainly the
expected total replacement cost. Therefore, the optimal discounted expected
total cost is the most sensitive to the replacement cost r. On the other hand,
for mid-range values of p, the penalty cost has a larger contribution to the
total cost, and therefore its changes can also affect the total cost.

3.5.4 Comparison with constant interval inspection policies

In this experiment, we compare the performance (the discounted ex-
pected total cost) of the optimal inspection policy T ∗n with the best constant
interval inspection policy. The constant interval inspection policy may be
easier to compute and implement in practice. However, since this inspection
policy is no longer optimal, it is important to know the performance loss
associated with implementing it. First, we define an inspection policy with
constant inspection interval of length T as T̃n :=

{
j · T

}n+1

j=1
, where n is the

limit on the number of available inspection opportunities as before. In other
words, we schedule n inspections at times T, 2T, . . . , nT , and a replacement
at time (n+ 1)T . For this experiment, we obtained T̃ ∗n by minimizing C(T̃n)
over the single variable T using Matlab’s built-in solver.

Figure 3.5a shows the discounted expected total cost C(T̃n) as a function
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Figure 3.4: Optimal discounted expected total cost (DETC) for different n
as ci and cp change.

(a) DETC for ci = 1, 2, 5 and 9.
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(b) DETC for cp = 50, 200, 600 and 1000.
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Figure 3.5: Comparison of constant interval inspection policies and optimal
inspection policies.

(a) Discounted expected total cost as a function of T for different
values of n
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(b) Performance of optimal policies vs. best constant interval poli-
cies
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of constant interval length T for the values of n = 1, 7 and 15. For the
baseline parameters and n = 15, the best constant interval policy is attained
for T ∗ = 0.36 with the discounted expected total cost of 233.38, which is
18.2% more than the optimal expected total cost (C(T ∗9 ) = 197.53).

Figure 3.5b depicts two outcome measures: the probability of catastro-
phe and the expected number of inspections performed in each cycle both
for the optimal inspection policies (dashed line) and the constant interval
inspection policies (solid line) for the values of n = 0, 1, . . . , 10. We observe
that for n = 0, both policies perform exactly the same since in this case,
the constant interval property does not impose any additional constraints.
However, we observe as n increases, for the same probability of catastrophe,
the expected number of inspections performed is much smaller if we space
the inspections optimally. This means that the constant interval policies
can maintain the same probability of catastrophe only at the expense of a
larger expected number of inspections performed.

3.6 Conclusions

This chapter provides a new modeling framework for determining the
optimal inspection times for a reliability problem. We defined a penalty
cost for the situation where the component is not ready at the time of
an emergency, and we also considered that there is a limit on the number
of inspections opportunities, after which a replacement can be scheduled.
Under the assumption that the component failure satisfies a mild technical
condition (i.e., the PF2 distribution), we showed that the optimal inspection
policy is unique, and we provided an algorithm for finding it. Moreover, we
established several interesting properties of the optimal solution. We also
provided intuitive explanations for changes in the inspection policy due to
changes in different parameters and supported the intuition with numerical
examples. Our experiments also highlighted some counterintuitive results,
which we discussed as well.

There are a number of managerial insights derived from our analysis
that can be of interest to practitioners. First, one can use our model to
decide when it is beneficial to pay extra to increase the inspection resources
available by comparing the reduction in expected cost for each marginal
inspection opportunity with the cost of obtaining it. Also, our numerical
examples suggest that more inspections are expected to be performed in sit-
uations where it is harder to predict whether the emergency happens before
or after the failure (Figure 3.3c), and when inspections are cheaper relative
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to the replacement cost (Figure 3.4a). Furthermore, we showed in Theo-
rem 3 and observed in our numerical examples, in certain situations, the
relative positioning of the emergency and failure distributions can result in
an inspection policy where the inspection intervals could become increas-
ing over time. This result sharply contrasts with the existing literature in
which infinite inspection opportunities lead to inspection intervals that are
decreasing. Therefore, despite the intuition that a component with the IFR
property should be inspected more frequently as time passes, this logic may
no longer hold when limited inspection opportunities are available because
we want to schedule the limited remaining inspections over a longer period
to delay the scheduled replacement (since short replacement cycles result in
increased expected replacement cost).

Our approach of considering limited number of inspection opportunities
and allowing for a preemptive replacement is not specific to this problem,
and it can be applied to many similar problems previously studied in liter-
ature. Moreover, as a direction for future research, it would be interesting
to study other versions of the problem, such as the case where inspections
may be inaccurate or the inspections/replacements may take non-negligible
time.
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Chapter 4

Issuing Policies for Hospital
Blood Inventory

4.1 Introduction

Red blood cells (RBCs), which deliver oxygen to body tissues, are the
most common blood product used in transfusions. Donated RBC units are
perishable and have a shelf life of 42 days in the United States and Canada.
Hospitals regularly receive RBC units of different ages (measured from the
time of donation) from regional blood centers and store them locally. Later,
when demand for these units arise, they are issued (allocated) according
to an issuing policy that considers factors such as the compatibility with
recipient, the age of RBC unit issued, and the current available inventory.

The efficiency of an issuing policy can be measured based on several
key performance metrics. The first metric is the outdate rate, which is
the proportion of supplied RBC units that are discarded because they have
reached the maximum allowable age of 42 days. In addition to the costs
associated with collecting, distributing, holding, and discarding these units,
reducing the outdates rate is especially important when the overall supply of
blood is not sufficient to meet the demand. Another metric is the shortage
rate, or the proportion of demand satisfied from another source since the
hospital has no on-hand inventory. Again, dealing with shortages can be
costly or difficult in urgent cases. Finally, while transfusing an RBC within
its the allowable shelf life is considered safe by the current standards, several
recent studies suggest that the transfusion value of the RBC units deteriorate
over time (Wang et al. [76]), and that transfusing older blood can increase
the risk of complications, particularly for critically ill patients (Koch et al.
[33], Zallen et al. [79]). For instance, Koch et al. [33] concluded in their study
that in patients undergoing cardiac surgery, transfusion of older RBCs was
associated with a significantly increased risk of postoperative complications
as well as reduced survival.

The current practice at hospitals is to issue RBCs in order from oldest
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to youngest inventory in order to minimize the number of outdates and
shortages cases. In the Operations Research literature, this issuing policy,
referred to as FIFO, has been shown to be the optimal issuing policies for
several objective functions including outdate and shortage rates (Pierskalla
and Roach [58]). The underlying assumption for these models is that the
quality of a RBC unit remains constant throughout the 42 days lifespan.
However, as we discussed above, recent findings in medicine suggest that
the age of transfused blood can affect health outcomes, with older blood
contributing to more complications. Given that the impact of RBC’s age
cannot be ignored, FIFO is no longer the optimal issuing policy. In fact,
considering the objective of minimizing the average age of transfused blood
would imply issuing RBCs in order from youngest to oldest (i.e., a LIFO
policy).

In response to these clinical findings, there is a recent interest in the clin-
ical community to design issuing policies that balance the trade-off between
the shortage (and/or wastage) and the average age of transfused blood. For
instance, Atkinson et al. [7] proposed the following class of policies based
on a single age threshold: transfuse the oldest blood that is younger than
the threshold, and if there is no blood younger than the threshold, transfuse
the youngest blood that is older than the threshold. They used a simu-
lation model based on data from the Stanford University Medical Center
and showed that with a threshold of 14 days they can reduce the age of
transfused blood without significantly affecting the amount of wastage or
shortage. They demonstrated how changing the threshold affects the mean
age of blood transfused and shortage percentage.

Atkinson et al. [7] suggested a simple class of policies, which aims to
find the right balance between conflicting objectives of reducing the age
of transfused blood and shortage. However, they neither characterized an
optimal issuing policy, nor provided a framework for obtaining one. In this
chapter, we analyze this problem as a perishable inventory management
problem using an infinite-horizon dynamic programming model. We assume
that the supply and demand processes are exogenous and random. Then, the
only way to reduce shortages is to avoid outdates, meaning that an issuing
policy that minimizes shortages also minimizes the outdates. Therefore, we
define our objective function by considering only two costs: (1) a penalty
cost associated with each RBC unit transfused, which is proportional to the
age of the unit at the time of issuance, and represents the expected cost of
any complications after the transfusion. (2) a penalty for each unit shortage
which is the cost of satisfying the demand from another source. Then, our
goal is to minimize the total expected discounted cost by deciding which
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units of blood on-hand and of what age to issue to satisfy the demand in
each period. This dynamic programming formulation suffers from the curse
of dimensionality due to large state and decision spaces. In order to deal
with the intractable number of states, we use methods from the approximate
dynamic programming (ADP) literature. In particular, we approximate the
value function of the dynamic programming with an affine combination of
a set of basis functions. We assign different weights to these functions by
solving a linear program. Then, we use this approximate value function
to find the approximate optimal issuing policy in each period by solving a
tractable integer program.

The remainder of the chapter is organized as follows. In the next section,
we review the relevant literature. In Section 4.3, we present our dynamic
programming formulation of the problem. In Section 4.4, we discuss our
solution method based on the linear programming approach to ADP, and
we develop an efficient algorithm that finds an approximate optimal issuing
policy. In Section 4.5, we present our numerical results, which are based on
data from a large hospital in British Columbia. Finally, we discuss conclud-
ing remarks and future work in Section 4.6.

4.2 Literature Review

Our research in this chapter is related to the literature on blood inventory
management, which is part of a larger stream of research on perishable
inventory management. We restrict our focus to the models that are closely
related to our problem (i.e., issuing policies) and refer the reader to Nahmias
[43], Nahmias [44], and Karaesmen et al. [28] for comprehensive reviews of
the early and recent developments in the area of perishable inventory systems
(e.g., models dealing with optimal ordering policies).

The focus of the perishable inventory management literature (including
the models that consider the management of the blood products) is more on
the ordering decisions rather than the issuing policies, which is in most cases
assumed to be FIFO. The limited studies that study the optimal issuing
policies are mostly for the situations where either FIFO or LIFO is the
optimal issuance policy. For instance, Pierskalla and Roach [58] showed that
FIFO is in fact the optimal issuing policy for the following three objective
functions: (1) maximizing the value of all demands satisfied, (2) minimizing
the total number of units backlogged, and (3) minimizing the total number of
outdates. More recently, Haijema et al. [25] used a Markov Decision Process
model and simulation to develop near-optimal order-up-to replenishment
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policies for a number of issuing policies. Moreover, Deniz et al. [19] provided
heuristics for finding the joint replenishment-issuing policies for a product
with two periods of lifetime.

Another stream of research uses queueing theory to analyze perishable
inventory systems. The general approach of these models is to analytically
describe different performance metrics under simple issuing policies (in most
cases, only the FIFO policy). As an example, Kaspi and Perry [29] obtained
performance metric such as the average number of units in the system and
the distribution of time between outdates for the FIFO issuing policy (also,
see Kaspi and Perry [30], Perry [57], and Parlar et al. [53] for several exten-
sions to this work). In a more recent work, Abouee-Mehrizi et al. [1] used
this approach to find the distribution of the age of transfused blood and the
shortage rates for the threshold policy introduced by Atkinson et al. [7]. Us-
ing queueing theory to analyze issuing policies has a major drawback, which
is the fact that it can only consider very simple issuing rules and therefore
one cannot use it to study general state-dependent issuing policies.

In general, dynamic inventory management models that deal with opti-
mal ordering decisions for the perishable products are known to be extremely
complicated because the dynamic programming formulation of these prob-
lems suffer from the curse of dimensionality. As a consequence, except for
very simple cases (such as the case of two-period lifetime studied by Nah-
mias and Pierskalla [45]), the main focus of the literature is on developing
efficient heuristic for finding near optimal ordering policies (see Nahmias
[40], Fries [22], Nahmias [41], Nahmias [42], Cooper [16] as examples).

4.2.1 Contribution to related literature

Our work contributes to the literature on the allocation policies of perish-
able products. To our knowledge, our model is the first work that provides
a dynamic (i.e., state-dependent) issuing policy whereas previous literature
considers only static policies such as FIFO, LIFO, or age-based threshold
policies as in Atkinson et al. [7] and Abouee-Mehrizi et al. [1]. While the
FIFO issuing policy may be optimal for certain objective functions (see
Pierskalla and Roach [58]), it does not capture the trade-offs between the
conflicting objectives of age and shortages. Also, as we show in this chapter,
the static issuing policies such as the threshold policy proposed by Atkinson
et al. [7] is no longer optimal when we try to balance the shortage rate and
the average age of blood transfused simultaneously. We develop an efficient
ADP algorithm to find approximate optimal issuing policies and show that
they can outperfom other classes of policies. Furthermore, our numerical ex-
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periments reveal several managerial insights regarding efficient blood issuing
policies. In particular, the approximate optimal issuing policy found by our
ADP algorithm motivates a simple, easily implementable policy, which still
outperforms other policies.

4.3 Model and Formulation

We formulate this problem as an infinite horizon, discounted Markov
Decision Process. We assign a penalty cost to each RBC unit transfused,
which is proportional to the age of the unit at the time of issuance. For
instance, this penalty cost can represent the expected cost of any compli-
cations after the transfusion. Furthermore, we consider another penalty for
each unit shortage, which is the cost of satisfying the demand from another
source. We consider a single blood type meaning that we do not consider
transfusion of blood from other compatible blood types. We assume that
the supply of blood units (and their age) and demand in each period are
exogenous and uncertain, but their probability distributions are available.
Then, our goal is to minimize the total expected cost by deciding which
units of blood on-hand and of what age to issue to satisfy the demand in
each period. First we define the notation:

• i ∈ {1, . . . , 42}: age of the blood.

• p(i) = ic: penalty of satisfying a unit of demand with blood of age i,
where c > 0 denotes the per-unit-period penalty cost.

• `: penalty of satisfying one unit of demand from an outside source,
when a shortage occurs. We assume ` > 42c.

• Qi, D: random variables for the number of age i blood arrivals and the
number of demand units, respectively. We assume that these random
variables are independent and identically distributed (iid) for different
periods. We let qi and d indicate the realized arrival of blood of age i
and the realized demand.

• si: total supply of age i blood before satisfying the demand. This in-
cludes the leftover from the previous period as well as the new arrivals.

• ui: total supply of age at most i before satisfying the demand (i.e.,

ui =
i∑

j=1
sj).
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• xi: number of units of age i used to satisfy the demand in the current
period (0 ≤ xi ≤ si for each i).

• λ: the discount factor.

In each period the sequence of events is as follows. We observe this
period demand d and the current supply vector (s1, s2, . . . , s42), and decide
which units, (x1, x2, . . . , x42, to issue in order to satisfy the demand. Any
part of the demand that is not satisfied by the units on-hand are satisfied
from a secondary source through a rush order. Then, the remaining units of
age 42 are discarded and the remaining blood units age one period. The new
supply of the blood of different ages (q1, q2, . . . , q42) arrives and are added
to the leftover units, resulting in a total supply inventory of (q1, q2 + s1 −
x1, . . . , q42 +s41−x41) at the beginning of the next period. Finally, the next
period’s demand d′ is observed. Now, we define the different components of
the MDP formulation.

Decision epochs: We assume that issuing decisions are made daily, after
the demand for that day is realized.

State space: The state of the system consists of this period’s supply vec-
tor and demand. In other words, we represent the state vector as S =
(s1, s2, . . . , s42, d), where each si denotes the available blood units of age i
and d denotes the current demand.

Action space: In each decision epoch, we let integer vector X = (x1, x2, . . . , x42)
represent the number of units, xi, of each age i blood to issue. Note that
if the units issued do not satisfy the whole demand, then the remaining de-
mand is met from a secondary source through a rush order, but the system
incurs a shortage cost per unit. Furthermore, for each state S, the set of
feasible actions must satisfy the following constraints.

xi ≤ si for i = 1, . . . , 42

42∑
i=1

xi ≤ d

xi ≥ 0, integer for i = 1, . . . , 42. (4.1)

The first set of constraints specify that we cannot issue units more than the
available supply of each age, whereas the second constraint ensures that we
cannot issue units more than the current demand.
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Transition probabilities: At the end of each period, the new supply of
blood Q = (q1, . . . , q42 arrives and the next period’s demand d′ is realized.
We assume that there is a finite number K of possible scenarios for the
realized new supply and demand. The probability for each scenario is known,
which we represent by Pr(Q, d′), and it is independent of the current state
or our action. Then, we can define the transition probabilities as follows:

p(S ′|S,X ) ={
Pr(Q, d′) if S ′ = (q1, q2 + s1 − x1, . . . , q42 + s41 − x41, d

′);

0 otherwise.
(4.2)

Basically, (4.2) suggest that given the starting state S and the action X ,
with probability Pr(Q, d′), we will start the next period with inventory
vector (q1, q2 + s1 − x1, . . . , q42 + s41 − x41) and we must meet the demand
d′. Note that the remaining units of age 42, s42 − x42, at this period are
discarded and the remaining units, si − xi for i < 42, have aged by one
period.

Immediate cost: The immediate cost is associated with satisfying this
period’s demand and is a function of the current state and action. We
define it as follows:

C(S,X ) =
42∑
i=1

icxi + `(d−
42∑
i=1

xi), (4.3)

where the first part,
42∑
i=1

icxi, denotes the total penalty cost associated with

issuing blood from units on-hand and the second part, `(d −
42∑
i=1

xi), corre-

sponds to the cost of obtaining the shortage units from a secondary source.

Optimality equation: First, we define the value function for state S as
the optimal expected discounted cost-to-go over an infinite horizon if we
start the current period with state S. We denote this cost by V (S), which
should satisfy the Bellman equations:

V (S) = min
X

{
C(S,X ) + λ

∑
S′
p(S ′|S,X )V (S ′)

}
∀S. (4.4)

Because of the large state and action spaces, we cannot use the traditional
methods for solving MDPs, such as the value iteration or the policy iteration
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algorithms. For instance, if the demand and the number of units of each age
never exceeds 100, the state space is of size 10043.

4.4 Solution Approach

Since it is intractable to exactly solve the MDP formulation of Section
4.3, we solve the equivalent linear programming formulation through ADP.
We first define the following approximation to the value function:

V (S) ∼= Ṽ (S) = θ0 +

42∑
i=1

θiui + δd+ σ[d− u42]+, (4.5)

where ui :=
i∑

j=1
sj represents the total supply available of age at most i, and

[d−u42]+ = max(0, d−u42) represents the shortage given the total available
supply of u42 and the demand d. Then, we can use ADP algorithms to find
the best set of coefficients (θ0, ..., θ42, δ, σ) such that (4.5) would be a good
approximation for the exact value function. Note that each θi (if negative)
can be viewed as the marginal savings in cost for each additional unit of
age at most i, whereas δ can be interpreted as the marginal cost for each
additional demand unit and σ as the marginal cost for each additional unit
of shortage. By defining the approximation as above, we try to capture the
main factors deriving the cost, i.e., the supply of different ages, the demand,
and the magnitude of a shortage if it occurs.

In the remainder of Section 4.4, we discuss our approach for determining
the best values for coefficients (θ0, ..., θ42, δ, σ) and how to use the result-
ing approximation to determine the issuing policy in each period. To this
aim, we introduce several optimization problems, which we overview here.
To tune the coefficients (θ0, ..., θ42, δ, σ), we solve the linear programming
model described in (4.6) or its dual (4.7) using column generation. In order
to generate new columns, we solve mixed integer programs of form (4.9).
Finally, we solve problem (4.15) or its equivalent form (4.17) to determine
the approximate issuing policy in each period.

4.4.1 Calibrating approximate value function coefficients

To tune the coefficients (θ0, ..., θ42, δ, σ), we use the linear programming
approach to ADP (originally proposed by Schweitzer and Seidmann [67]).
We first introduce the linear program form of our original MDP by rewriting
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the optimality equations (4.4) as follows.

max
∑
S
α(S)V (S)

subject to

V (S) ≤ C(S,X ) + λ
∑
S′
p(S ′|S,X )V (S ′) ∀S,X .

In the above linear program, we have a decision variable V (S) for each
possible state vector S. The optimal solution to the above linear program is
the same as the solution to the optimality equations of the MDP provided in
(4.4) given that the objective coefficients α(S) in the above linear program
are all positive. It is convenient to normalize these coefficients such that∑
S
α(S) = 1 and view them as a probability distribution over the initial

state of the system (Puterman [61, p. 223]).
Note that due to the large state and action spaces, this linear program

also suffers from curse of dimensionality, meaning it cannot be solved effi-
ciently. To overcome the curse of dimensionality, we can replace V (S) by our
approximation value function defined in (4.5). The resulting problem is a
linear programming problem that has 45 decision variables (θ0, ..., θ42, δ, σ):

max θ0 +
42∑
i=1

Eα [ui] θi + Eα [d] δ + Eα
[
[d− u42]+

]
σ (4.6)

subject to

(1− λ) θ0 +
42∑
i=1

Θi(S,X )θi + ∆(S)δ +Σ(S,X )σ ≤ C(S,X ) ∀S,X

where

Eα [ui] :=
∑
S
α(S)ui(S) ∀i

Eα [d] :=
∑
S
α(S)d(S)

Eα
[
[d− u42]+

]
:=
∑
S
α(S)[d(S)− u42(S)]+
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and

Θi(S,X ) := ui(S)− λ
∑

(Q,d′)

Pr(Q, d′)u′i(S,X ,Q) ∀i

∆(S) := d(S)− λ
∑

(Q,d′)

Pr(Q, d′)d′

Σ(S,X ) := [d(S)− u42(S)]+ − λ
∑

(Q,d′)

Pr(Q, d′)[d′ − u′42(S,X ,Q)]+.

Note that in (4.6), the expectations over vector α are estimated by sam-
pling states (see Bertsekas and Tsitsiklis [13, p. 377] for more details). The
above formulation reduces the number of decision variables significantly,
but this problem still has a large number of constraints because we have one
constraint for each possible state-action pair. Fortunately, for finding the
optimal solution, it suffices to find at most 45 of these constraints which are
binding at optimality (by the fundamental theorem of linear programming).
Then, we can start with an initial set of 45 constraints and add new cuts
(i.e., constraints) by finding the most violated constraint. We stop adding
new cuts and report the solution when the optimality gap is smaller than a
required precision. Equivalently, we can solve the dual of the above problem
using delayed column generation. The dual to problem (4.6) can be written
as follows:

min
∑
S,X

C(S,X )W(S,X ) (4.7)

subject to

(1− λ)
∑
S,X
W(S,X ) = 1

∑
S,X

Θi(S,X )W(S,X ) = Eα [ui] ∀i

∑
S,X

∆(S)W(S,X ) = Eα [d]

∑
S,X

Σ(S,X )W(S,X ) = Eα
[
[d− u42]+

]
W(S,X ) ≥ 0 ∀S,X .

The above problem has a dual variable for each state-action pair, but
at most 45 of these variables are needed to be non-negative at optimality.

58



4.4. Solution Approach

Therefore, we can use delayed column generation approach and add new
variables as needed. Finding an initial set of columns (variables), which
produce a feasible solution to problem (4.7) is not straightforward. Thus,
we use the Phase I method of linear programming to find this initial set.
The Phase I method starts with columns of an identity matrix of size 45,
meaning that we add a non-negative slack variable to each constraint of the
dual problem. Then, we try to minimize the sum of these slack variables
by generating and adding columns from the original dual problem. If the
Phase I objective function becomes zero, then we can remove the columns
of the identity matrix and the remaining columns provide a feasible solution
to the dual problem. We do not explain how we choose the columns that
are added to the Phase I problem because it is similar to our approach for
adding constraints to the primal problem, which we explain next.

Finally, having this initial set of columns for problem (4.7), we solve
the relaxed dual problem (which we call the master problem) and find its
optimal solution as well as the corresponding optimal solution to the relaxed
primal problem (4.6) (i.e., (θ∗0, ..., θ

∗
42, δ

∗, σ∗)). Since we did not consider all
the constraints from the original problem, this solution may not satisfy all
the constraints to the primal problem. We find the most violated constraint
by solving a pricing sub-problem that finds a feasible state-action pair (S,X )
that maximizes

Ṽ (S)− λ
∑
S′
p(S ′|S,X )Ṽ (S ′)− C(S,X ). (4.8)

Recall that the primal constraints for problem (4.6) are of the form

Ṽ (S) ≤ C(S,X ) + λ
∑
S′
p(S ′|S,X )Ṽ (S ′) ∀S,X .

If the maximum of (4.8) is greater than 0 for the optimal state-action
pair (S∗,X ∗), it means that the constraint corresponding to this state-action
pair is the most violated constraint. On other hand, if the maximum is
not positive, then the current solution (θ∗0, ..., θ

∗
42, δ

∗, σ∗) satisfies all the
constraints from the original primal problem.

Given (θ∗0, ..., θ
∗
42, δ

∗, σ∗), we can represent the pricing sub-problem as
the follows:

max (1− λ) θ∗0 +
42∑
i=1

θ∗i Θi(S,X ) + δ∗∆(S) + σ∗Σ(S,X )− C(S,X ) (4.9)
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where

Θi(S,X ) :=
i∑

j=1

sj − λ
∑

(Q,d′)

Pr(Q, d′)

 i∑
j=1

qj +
i−1∑
j=1

(sj − xj)

 ∀i

∆(S) := d− λ
∑

(Q,d′)

Pr(Q, d′)d′

Σ(S,X ) :=

d− 42∑
j=1

sj

+

− λ
∑

(Q,d′)

Pr(Q, d′)[d′ − u′42]+

u′42 :=

42∑
j=1

qj +

41∑
j=1

(sj − xj).

In the sub-problem (4.9), the decision variables are the state (s1, . . . , s42, d)
and the action (x1, . . . , x42). Therefore, to ensure their feasibility (meaning
that the action vector does not issue blood units more than what is avail-
able according to the state vector), we consider only state-action pairs that
satisfy the following set of linear constraints:

xi ≤ si ∀i
42∑
i=1

xi ≤ d

xi, si ≥ 0, integer ∀i
d ≥ 0, integer .

Note that Θi(S,X ), ∆(S), and all the constraints are linear in the deci-
sion variables. However, Σ(S,X ) is not a linear function of the decision vari-
ables because it contains piecewise linear functions of the decision variables.
We convert this function into a linear function by defining integer variables
k+

0 , k−0 , k+(Q, d′) and k−(Q, d′), and binary variables b0 and b(Q, d′):

Σ(S,X ) = k+
0 − λ

∑
(Q,d′)

Pr(Q, d′)k+(Q, d′),

where k+
0 satisfies the following set of linear constraints (letting N be a large
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positive integer):

k+
0 + k−0 −N = d−

42∑
j=1

sj (4.10)

k+
0 ≤ Nb0 (4.11)

k−0 ≥ Nb0 (4.12)

k−0 ≤ N (4.13)

k+
0 , k

−
0 ≥ 0, integer and b0 ∈ {0, 1}.

Note that if d−
42∑
j=1

sj > 0 (i.e., we face shortage), then the first constraint

(4.10) together with (4.13) imply that k+
0 > 0. Then, it follows from (4.11)

that b0 = 1. Then, we have k−0 = N from (4.12) and (4.13). Consequently,

k+
0 denotes the shortage because k+

0 = d −
42∑
j=1

sj by (4.10). On the other

hand, if d−
42∑
j=1

sj ≤ 0, then the above set of constraints ensure that k+
0 = 0.

Similarly, for each (Q, d′), k+(Q, d′) must satisfy the following:

k+(Q, d′) + k−(Q, d′)−N = d′ −
42∑
j=1

qj +
41∑
j=1

(sj − xj) (4.14)

k+(Q, d′) ≤ Nb(Q, d′)
k−(Q, d′) ≥ Nb(Q, d′)
k−(Q, d′) ≤ N

k+(Q, d′), k−(Q, d′) ≥ 0, integer and b(Q, d′) ∈ {0, 1}.

Consequently, sub-problem (4.9) becomes an integer program, which in
our case can be solved quickly. After solving the above integer program, the
optimal values of the decision variables (s∗1, . . . , s

∗
42, d

∗) and (x∗1, . . . , x
∗
42)

provides us with the state-action pair that corresponds to the most violated
constraint for the current solution to the master problem. We add this
constraint to the master problem and resolve it to find a new solution.
Then, we use the new solution to find another violated constraint. We stop
adding more cuts when the termination criteria is met (i.e., when no more
constraints are violated or when the optimality gap for the master problem
is within the required range).
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4.4.2 ADP-based issuance policy

Now, we explain how we can use the above approximation to determine
an approximate optimal issuing policy in each period. Since it is impractical
to store the approximate optimal issuing policy for each possible state, we
use our approximate value function to find the approximate optimal issuing
policy as needed for each state realized in practice.

In each period, given the state vector S, we solve the following problem
to find an approximate optimal issuing policy:

min
X

{
C(S,X ) + λ

∑
S′
p(S ′|S,X )Ṽ (S ′)

}
, (4.15)

where given the initial state S, our action X , the new arrival vector Q, and
the new demand d′, we have

Ṽ (S ′) = θ0 +
42∑
i=1

θiu
′
i + δd′ + σ

[
d′ − u′42

]+
. (4.16)

Note that in (4.16), each u′i =
i∑

j=1
qj +

i−1∑
j=1

(sj − xj) is the total inventory of

age at most i in the next period given the initial state S, our action X , and
the new arrival vector Q. This quantity is equal to the sum of new blood
units arrived of age at most i, and the remaining aged units of age at most
i after satisfying this period’s demand.

A feasible issuing policy must satisfy the constraints in (4.1). Then, we
can write the minimization problem (4.15) as follows using (4.3) to replace
the immediate cost C(S,X ):

min
42∑
i=1

icxi + `(d−
42∑
i=1

xi) + λ
∑

(Q,d′)

Pr(Q, d′)Ṽ (S ′) (4.17)

subject to

xi ≤ si for i = 1, . . . , 42

42∑
i=1

xi ≤ d

xi ≥ 0, integer for i = 1, . . . , 42

Note that the constraints of the above problem are all linear in the decision
variables xi. However, the objective function has a nonlinear part (i.e.,
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[d′ − u′42]+). We can use an approach similar to (4.14) to convert the above
problem to an integer program. We solve this integer program in each
period to find the approximate optimal issuing policy. In Section 4.5, we
will evaluate the performance of the ADP-based policy and provide several
insights based on our numerical experiments. Furthermore, we compare
the performance of our policy with other classes of policies proposed in the
literature.

4.5 Numerical Experiments

In this section, we use our solution approach discussed in Section 4.4 to
find approximate optimal issuing policies for the case of a large hospital in
British Columbia. We use historical data for this hospital to calibrate differ-
ent parameters of our model. Then, using a simulation model, we evaluate
the performance of our policy and provide several managerial insights on
the properties of good issuing policies that balance the trade-offs between
the age of blood transfused and the shortage rate. Furthermore, we show
how our policy compares to issuing policies currently used in practice as
well as previously proposed policies in the literature. Finally, using insights
from our ADP-based issuing policy, we propose a simple static issuing policy
that performs nearly as good as the ADP-based policy, but is easier to be
implemented in practice. The simulation model was implemented in Matlab
R2013a while the column generation algorithm and the integer programming
models were implemented in AMPL with CPLEX 12.2 as the solver.

4.5.1 Simulation of the hospital blood bank

In order to evaluate the performance of different blood issuing policies,
we developed a simulation model that mimics the dynamics of a hospital
blood bank (the blood bank is a division of a hospital where the received
RBC units are stored before being issued for transfusion). Our simulation
model consists of four steps which we discuss next.

1. Demand realization: In each period, we randomly generate the
daily demand according to an empirical distribution obtained from historical
data for our hospital. In particular, we used the data on daily demand for
a period of one year from April 1, 2010 to March 31, 2011. The demand
and supply information for different blood types is not specified in our data.
Therefore, we consider only a single blood type for this study.

2. Supply realization: We also generate the number of blood units
arriving at the hospital each day, by age, using the empirical distribution
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based on historical data. In practice, the hospital receives blood from two
different sources. The main source of blood supply is by ordering directly
from Canadian Blood Services (CBS). In addition to receiving blood from
CBS, the hospital receives blood units from smaller hospitals. These smaller
hospitals send their blood units to the larger hospital when these units are
within 10 days from expiration. The reason for this inter-hospital redistri-
bution program is to reduce the wastage of blood since these units are more
likely to be transfused at the larger hospital which faces a higher demand
rate.

3. Issuing policy: The new blood arrived is added to our current
inventory. Then, the simulation model passes the demand and total supply
vector to the issuing policy module. For a given issuing policy, this module
determines which units should be allocated to satisfy the demand and if the
system faces a shortage. For instance, if the current issuing policy is simply
FIFO, then the issuing policy allocates the oldest units on hand to satisfy
the demand. On the other hand, if we want to test our ADP-based issuing
policy, the simulation program calls our optimization model to determine
which blood units should be issued to satisfy the demand.

4. Updating metrics: Finally, knowing the units issued on each day,
we update our performance metrics. The simulation program gathers infor-
mation regarding the shortage, wastage, and age of blood transfused as our
main performance metrics. In calculating the average age of blood trans-
fused, we do not consider the age of blood units received in case of a shortage.
In this step, we also update the inventory of blood at the start of the fol-
lowing period. In other words, the blood units of age 42 are discarded and
the remaining units age by 1 day.

4.5.2 Results and insights

In this section, we use our simulation program to evaluate the perfor-
mance of the ADP-based issuing policy and compare it against other classes
of policies. Moreover, we discuss several important insights regarding good
issuing policies gleaned from our numerical experiments. Finally, we explore
the sensitivity of our results with respect to changes in the blood supply and
demand rates.

The performance metrics reported for each issuing policy are based on
100 simulation repetitions, where each repetition consists of simulating 1000
days of a hospital blood bank. We consider the first 700 days as the warm-
up period and calculate all metrics using the information for the last 300
days.
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For our baseline scenario, we set the per-unit-period penalty cost c = 10
and the shortage cost ` = 1000. The values for the cost parameters are
chosen arbitrarily and do not represent actual medical costs. In practice,
the relationship between the age of blood transfused and the corresponding
cost of complications is not well understood. In the absence of such data,
we decided to find the approximate optimal issuing policies for different
values of the cost parameters and depict the performance of these policies
in the form of a trade-off curve of two conflicting objectives (the average
age of blood transfused and the shortage rate). Then, policy makers can
use this curve and choose the issuing policy that they believe balances these
objectives in the best way.

Comparison of ADP-based and age-based threshold policies

The results of our first set of experiments are depicted in Figure 4.1. In
this figure, each point represents a blood issuing policy. The dashed line
corresponds to the threshold policies proposed by Atkinson et al. [7] and
the solid line corresponds to our ADP-based issuing policies. The vertical
axis denotes the average age of blood transfused, whereas the horizontal axis
denotes the other performance metric of interest, the shortage rate.

The threshold policy of Atkinson et al. [7] issues blood unit based on
the following rule: on each day, issue the oldest blood that is the same age
or younger than the threshold, and if there is no blood younger than the
threshold then issue the youngest blood that is older than the threshold.
The different points on the dashed-line are associated with different choices
of the threshold, where the upper-left point corresponds to the threshold
of 42 days (which is equivalent to FIFO policy) and the lower-right point
corresponds to the threshold of 1 day (i.e., LIFO issuing policy).

For the ADP-based policies on the solid line, different issuing policies are
obtained by varying the cost ratio `/c (in fact, we fix c = 10 and change `).
The lower-right point corresponds to the ADP-based issuing policy obtained
for the case of ` = 420, meaning that the shortage cost is the same as the
penalty cost for issuing a blood unit of age 42. In this case, the issuing policy
performs very similar to the LIFO policy because there is no incentive to
avoid a shortage scenario by issuing the units which are going to expire
soon. In contrast, as we increase the shortage cost to the other extreme
(` = 10, 000, upper-left point of the solid curve), the corresponding issuing
policy resembles a FIFO issuing policy because it tries to avoid any shortage
scenarios which are very costly.

When the shortage cost has a moderate value, the ADP-based issuing
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Figure 4.1: Comparison of ADP-based policies and age-based threshold poli-
cies.
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policy outperforms the threshold policies. For instance, for our baseline
scenario (` = 1000), the average age of blood transfused for the ADP-based
issuing policy is 25.10 and the shortage proportion is 0.037. If we issue the
blood according to a threshold policy that has the same value of average age
of blood transfused, then we face a 30% increase in the shortage proportion.
Furthermore, for the shortage proportion of 0.052, the ADP-based policy
results in 8% lower average age of blood transfused (23.13 vs. 25.10).

Our ADP-based policy is state-dependent, meaning that it considers the
current state of the system in deciding which units to issue in each period.
For instance, if the current on-hand inventory suggests that a shortage might
occur soon, then the ADP-based policy would suggest issuing blood accord-
ing to the FIFO policy, whereas it might suggest issuing fresher blood if we
have excess supply. In contrast, the threshold policy is static and always use
the same threshold regardless of the current state of the system. Atkinson
et al. [7] showed that using their threshold policy with a carefully chosen
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threshold, one can reasonably decrease the average age of blood transfused
with only a moderate increase in the shortage rate. Our results suggest that
we can achieve the same average age of blood transfused with an even lower
increase in the shortage rate if the issuing policy adapts to current state of
the system.

Our results provide stronger evidence for policy makers that they can
decrease the average age of blood transfused without jeopardizing the avail-
ability of the blood supply. Moreover, we showed that the state-dependent
issuing policies perform better than the static policies such as FIFO, LIFO
or the threshold policy. Our ADP-based policy smartly issues fresher blood
when the likelihood of facing a shortage is low, and avoids outdates by is-
suing older blood units if the current on-hand inventory suggests possibility
of a shortage scenario.

Sensitivity to supply-demand ratio

Our second set of numerical experiments explore the sensitivity of our
results under different supply-demand regimes. To this aim, in addition to
our base-line scenario where the annual total supply matches the annual total
demand (i.e., supply-demand ration of 1), we consider two more scenarios
where the supply-demand ratio is equal to 1.10 in one and 0.96 in the other.
The results of these experiments are summarized in Figure 4.2.

First, we observe that in the case where the overall supply is smaller
than the overall demand (i.e., S/D = 0.96), the difference in terms of the
average age of blood transfused between the FIFO and LIFO issuing policies
is not significant. This happens because the hospital does not have much
choice in the way it issues the blood units due to the scarcity of the supply.
In other words, for most days, the hospital should use all the blood on hand.
Consequently, we see that the units do not stay in the inventory for long
periods and even under the FIFO policy, the average age of blood transfused
is 30 days. For the same reason, we cannot gain much improvement by
issuing blood according to our ADP-based policy.

In contrast, when the overall supply is more than the demand (i.e.,
S/D = 1.10), the choice of the issuing policy is very important. In such
a system, the hospital inevitably faces outdates, but having these outdates
do not necessarily results in having shortages because of the excess supply.
Consequently, we can issue fresher blood and still keep the shortage propor-
tion very low. We observe that for the same shortage rate, the ADP-based
policy achieves a significantly smaller average age of blood transfused. As
we mentioned earlier, this is due to the fact that ADP-based policy only

67



4.5. Numerical Experiments

Figure 4.2: Comparison of ADP-based policies (solid lines) and age-based
threshold policies (dashed lines) for different supply-demand ratios.
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issues older units if the current inventory suggests a considerable chance of
a shortage in the near future. In summary, our results suggest that using
ADP-based policies is more beneficial when there is more flexibility in how
we can issue blood to satisfy the demand.

Simple threshold policy inspired by ADP-based policy

In practice, using the ADP-based policy requires solving the problem
presented in (4.15) in each period to determine which blood units should be
issued to meet the demand. Aside from requiring software and an interface
to do this, the solution might not have nice structure. This may cause
concern among users and may limit the uptake of our results. Therefore,
we studied the form of our ADP-based issuing policies to see if they might
be translated into a simpler class of policies, analogous to the age-based
threshold policies proposed by Atkinson et al. [7].

Our experiments based on the ADP-based issuing policies revealed sev-
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eral interesting observations. First, we observed that in cases where the
remaining inventory at the end of the period is relatively low and a shortage
situation in the next period is more likely, the ADP-based policy issues blood
according to the FIFO rule. Second, the solution of the ADP often has mul-
tiple optimal solutions, including the issuance of blood in consecutive order
of age. Using these observations, we proposed the following quantity-based
threshold policy: for a fixed threshold κ, issue blood in consecutive order
starting from units older than the freshest κ units. If the blood older than
the first κ units is not sufficient to meet the demand, then issue blood from
the κth oldest unit and younger (i.e., FIFO issuing policy).

Similar to the ADP-based policy, the threshold policy proposed above
also issues blood in consecutive order of age and on a FIFO basis when the
current inventory is low (i.e., when the blood older than the first κ units is
not sufficient to meet the demand). However, this threshold policy is static
because a fixed threshold κ is used regardless of the current state of the
inventory. In contrast to the threshold policies proposed in Atkinson et al.
[7], the threshold in our policy is defined for the quantity of blood units,
and not the age of blood.

We investigated the performance of our quantity-based threshold policy
using the simulation program by trying different values for the threshold
κ. The results of our experiments are presented in Figure 4.3 for values
of κ = 50, 100, . . . , 500. We observe in Figure 4.3 that our quantity-based
threshold policy outperforms the age-based threshold policy and performs
nearly as good as ADP-based policy.

The quantity-based threshold policy performs better because it explic-
itly considers the total remaining inventory at the end of period in making
issuing decisions whereas the age-based threshold policy ignores any infor-
mation regarding the quantity of blood units of different ages. Furthermore,
the age-based policy let the blood of age 42 days expire and only issues these
units if there are no fresher blood units available. However, if the current
overall inventory suggests that a shortage is likely in future, the quantity-
based threshold policy issues the oldest blood and keeps the fresher blood
for future use.

The quantity-based policy is easier to characterize and implement in
practice compared to the ADP-based policy. By choosing the right value for
a single parameter κ, one can achieve the right balance between the age of
blood transfused and the shortage rate. As discussed above, the resulting
policy also performs very close to the more complicated ADP-based policy.
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Figure 4.3: Performance of quantity-based threshold policies for values of
κ = 50, 100, . . . , 500.
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4.6 Conclusions

In this chapter, we studied the problem of issuing blood units in a hospi-
tal for transfusion when in addition to reducing shortages and outdates, the
policy maker wants to decrease the average age of blood transfused. The
optimal issuing policy in this case is not trivial and the dynamic program-
ming formulation of this problem suffers from the curse of dimensionality.
We overcome this difficulty by using ADP techniques. In particular, we
define a set of basis functions to approximate the value function of the dy-
namic programming and solve the linear programming form of the dynamic
programming using a column generation algorithm.

Our numerical results suggests that our ADP-based issuing policy (which
is state-dependent) outperforms other classes of policies previously suggested
in the literature. The ADP-based policy performs better than the threshold
policy because it considers the on-hand inventory vector in making issuing
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decisions and adapts itself to the current state of the system, whereas the
threshold policy is static and always use the same issuing rule based on a
fixed pre-chosen threshold. Our results are especially of interest to policy-
makers as it shows the average age of blood transfused can be significantly
reduced at the expense of a reasonable increase in the shortage rate. Finally,
we showed that there is more value in using state-dependent policies when
the supply is greater than the demand.

Our work in this chapter also opens up several interesting directions for
further research. The first natural extension to this work is considering
different blood types and the possibility of issuing compatible but noniden-
tical blood units to satisfy the demand. Another important extension to
this work is finding the optimal ordering policies assuming that the hos-
pital issues blood according to the ADP-based issuing policy proposed in
this chapter. More interestingly, one can jointly optimize the ordering and
issuing policies. Finally, the blood supplier (e.g., Canadian Blood Services)
also allocates blood from their inventory to satisfy the demand of different
hospitals. Considering the fact that the average age of blood transfused is
important, one might consider developing a model for finding the optimal
allocation of blood of different ages to different hospitals.

71



Chapter 5

Conclusion, Extensions and
Further Application

The research in this dissertation focused on three different decision mak-
ing problems with applications of the stochastic optimization models in
health care as a central theme. In this section, we provide a review of these
problems, our solution approaches, and the main results. Furthermore, for
each problem, we discuss possible extensions and avenues for further re-
search.

First, in Chapter 2, we provided a novel framework for finding good
screening policies for patients on the kidney transplant waiting list. We de-
veloped an analytical model for the single-patient case, and proved several
properties of the optimal screening policy. Then, we used these properties
and developed an efficient binary search algorithm to obtain the optimal
policy. Finally, we incorporated our solution for the single-patient screening
problem into a discrete event simulation model that heuristically (and dy-
namically) updates the screening policy for each patient on the waiting list.
We also performed several numerical experiments using real data and made
several important observations regarding good screening policies.

Analytically, we were able to show that the screening intervals should be
decreasing under reasonable assumptions. This property contrasts sharply
with the current practice of screening patients over fixed intervals where
the interval only depends on the patients’ risk for developing cardiovascular
disease. Our numerical results suggested that screening guidelines should
consider patients’ remaining waiting time (or their rank on the waiting list)
as a main factor in designing screening guidelines.

In practice, our results can help policy makers in designing better screen-
ing guidelines. In particular, as we showed, considering factors that affect
the waiting time of patients in developing screening guideline could not only
save money, but significantly reduce the likelihood of offering a kidney to a
patient with unknown cardiovascular disease.

Since our analytical framework does not consider all the complexities of
the real problem, we suggested heuristic methods to include several issues
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faced in practice. Alternatively, one can use other approximation methods
such as approximate dynamic programming (ADP) to model and solve this
problem. The main component of an ADP model is a set of basis functions
for approximating the value function, for which, the insights and results
from our work can be found useful.

In Chapter 3, we extended our previous results and developed a model
to find the right timing for the inspections and replacements of a component
that fails silently and is needed at a random future time. We developed an
algorithm to obtain the optimal inspection policy that consists of scheduling
a finite number of inspections as well as an age-based preventive replacement
scheduled after the last inspection.

As directions for future research, one might consider the case where
the inspections are not error-free. Furthermore, it is interesting to study
the case where inspections and replacements take non-negligible time to
perform. Finally, one might consider extending our results to the case where
the back-up component replaces a main unit and the inspection/replacement
decisions of both components need to be considered.

Finally, in Chapter 4 we examined the problem of finding the optimal is-
suing policy for the blood units in a hospital. Our modeling framework tries
to balance the existing trade-off between minimizing shortages and mini-
mizing the average age of blood transfused. We used approximate dynamic
programming methods to design an algorithm that finds state-dependent
approximate optimal issuing policies and showed that efficiencies can be
achieved by using our ADP-based issuing policies compared to simpler static
policies currently being used in practice or previously proposed in the liter-
ature.

Our results are useful for policy makers by providing evidence that the
age of transfused blood can be reduced without a significant increase in the
rate of shortages. Furthermore, we introduce simple to use issuing policies
that only use the oldest blood when a shortage scenario in the near future
is very likely. Using these policies, better health outcomes can be achieved
while the current standards of efficiency are also met.

Our work in Chapter 4 can be extended in several ways. We considered
only a single blood type in our analysis. However, in practice compati-
ble (but nonidentical) blood units can be issued to satisfy the demand. It
would be interesting to extend our results to the case where we manage
the inventory of all the different blood types. Another important problem
that hospital blood banks face is determining how many units of blood to
order in each period. It is obvious that the ordering decision can affect the
issuing policy and vice versa. Thus, one might consider optimizing both
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decision simultaneously. We believe that our work provides the first step
towards this goal and insights from our results might prove valuable when
we consider this more complicated problem. Finally, at the system level, it
is interesting to study the problem of how the supplier should allocate the
blood units to different hospitals, given the new issuing policies suggested
in this dissertation.
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Appendix A

Chapter 2: Supporting
Results

First we define function Ω(t, x, y), which will be used in Lemma 3 to
characterize the first order necessary condition. Furthermore, we prove sev-
eral properties of this function and use them to establish properties of the
optimal screening policy.

Ω(t, x, y) :=
F (t)− F (t− x)

f(t)
− cp

∫ y

0

g(t+ u)H̄(t+ u)

Λ(t)g(t)H̄(t)
du

− cs
Λ(t)

[ F̄ (t)

f(t)

cp − Λ(t)

cs
+
Ḡ(t+ y)H̄(t+ y)

g(t)H̄(t)

]
, (A.1)

where

Λ(t) = cp − cs
(
1 +

h(t)Ḡ(t)

g(t)H̄(t)

)
, (A.2)

is the function introduced in Assumption 1. We remark that Λ(t) < cp since
the expression in the parentheses is positive.

Lemma 3 Any optimal screening policy T ∗ =
{
t∗j
}n
j=1

satisfies 0 < t∗1 <
t∗2 < . . .. Furthermore, a necessary condition for optimality of a screening
policy is

Ω(t∗j , x
∗
j , x
∗
j+1) = 0 for each 1 ≤ j. (A.3)

Proof. Recall that the objective is to minimize C(T ) subject to 0 ≤ t1 ≤
t2 ≤ . . .. We need to show that the optimal screening policy cannot be
a boundary solution. Suppose, by way of contradiction, that a screening
policy, T , satisfies tm = tm−1 for some m ≥ 1. We will show that this
screening policy cannot be optimal. Let T ′ =

{
t′j
}∞
j=1

be a new screening

policy in which, t′j = tj for j < m and t′j = tj+1 for j ≥ m. In other
words, T ′ performs a screening at every time T does, but at time tm, T ′
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performs one less screening than T . Using (2.1), it can be shown that
for the new screening policy, the expected penalty cost remains unchanged
while it removes the redundancy of screenings at time tm. More specifically,
the expected screening cost of the new screening policy is smaller by the
product of cs and the probability that the patient is alive, CVD-free and
still on the waiting list by time tm, i.e., csF̄ (tm)Ḡ(tm)H̄(tm). Therefore, T ′
achieves lower expected total cost, from which we conclude that the optimal
screening policy is an interior solution. Thus, it should satisfy the first
order necessary condition: ∂C(T )

∂tj
= 0 for each j ≥ 1. By differentiating

the expression of C(T ) with respect to tj and setting it equal to zero, after
simplification and rearrangement, we obtain for each j ≥ 1:

Λ(tj)
F (tj)− F (tj−1)

f(tj)
− cp

∫ tj+1

tj

g(u)H̄(u)

g(tj)H̄(tj)
du

− cs
[ F̄ (tj)

f(tj)

cp − Λ(tj)

cs
+
Ḡ(tj+1)H̄(tj+1)

g(tj)H̄(tj)

]
= 0, (A.4)

where, Λ(t) is defined in (A.2). Note that since Λ(tj) < cp, (A.4) implies
Λ(tj) > 0; otherwise, the left hand side of (A.4) is negative. After dividing
both sides by Λ(tj), the left hand side is equal to Ω(tj , xj , xj+1). 2

Lemma 4 Suppose both the kidney arrival time and the death time follow

Weibull distribution, i.e., g(t) = α
λ ( tλ)α−1e−( t

λ
)α and h(t) = β

µ( tµ)β−1e
−( t

µ
)β

.
Also, assume that α > β ≥ 1. Then, the following statements hold for
function Λ(t) defined in (A.2):

(a) Λ(t) is increasing in t.

(b) There exists some ψ̂ such that Λ(t)H̄(t)g(t) is strictly decreasing in t
for all t > ψ̂.

Proof. (a) This statement holds for α > β since h(t)Ḡ(t)
g(t)H̄(t)

= βλα

αµβ
tβ−α is

decreasing in t.
(b) By differentiation and after simplification, we can write:

(Λ(t)H̄(t)g(t))′ = e−( t
λ

)αe
−( t

µ
)β
[
− (cp − c1 − c2)

α2

λ2α
t2(α−1) +O(tk)

]
,

where k < 2(α− 1). Then, the square bracket approaches −∞ as t→ +∞.
It follows that there exists some ψ̂ such that (Λ(t)H̄(t)g(t))′ is negative for
all t > ψ̂. 2
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Lemma 5 For PF2 densities f and g, and for (t, x, y) ∈ R3
+ such that

Λ(t) > 0, the following statements hold:

(a) Ω(t, x, y) is increasing in t.

(b) Ω(t, x, y) is strictly increasing in x for all y and for all t such that
t− x > 0.

(c) Ω(t, x, y) is strictly decreasing in y for all t and x.

Proof. (a) The following facts suffice to prove that Ω(t, x, y) is increasing

in t: F (t)−F (t−x)
f(t) is increasing in t and F̄ (t)

f(t) is decreasing in t (Theorem 3

and Corollary 3.1 in Barlow et al. [11]); Λ(t) is increasing in t (Assumption

1(a)) and Λ(t) < cp;
g(t+u)
g(t) is decreasing in t for u > 0 since density g is

PF2 (see Barlow et al. [11]); and H̄(t+u)
H̄(t)

= 1 − H(t+u)−H(t)
H̄(t)

is decreasing in

t since density h has IFR property.
(b) Since the density function f satisfies f(a) > 0 for any a > 0, we have
∂Ω(t,x,y)

∂x = f(t−x)
f(t) > 0. Thus, Ω(t, x, y) is strictly increasing in x.

(c) Since function g(t) and H̄(t) are positive for any t > 0, we have ∂Ω(t,x,y)
∂y =

−Λ(t+y)H̄(t+y)g(t+y)
Λ(t)H̄(t)g(t)

< 0. Thus, Ω(t, x, y) is strictly decreasing in y. 2

Lemma 6 Let ψf be the mode of f . For (t, x, y) ∈ R3
+ such that t − x >

max(ψf , ψ̂), where ψ̂ is defined in Assumption 1(b), the following statements
hold:

(a) Ω(t, rx, ry) > rΩ(t, x, y) for any r > 1.

(b) Ω(t, x+ δ, y + δ) > Ω(t, x, y) for any δ > 0.

Proof. (a) Since f ′(t) < 0 for t > ψf (see Theorem 2 in Appendix 1 of Bar-

low and Proschan [10]) and t−x > ψf , we have A := ∂2Ω(t,x,y)
∂x2

= −f ′(t−x)
f(t) >

0. Similarly, for t > ψ̂, we have B := ∂2Ω(t,x,y)
∂y2

= − (Λ(t+y)g(t+y)H̄(t+y))′

Λ(t)g(t)H̄(t)
> 0

by Assumption 1(b). It follows that for t − x > max(ψf , ψ̂), the Hes-

sian matrix ∇2Ω(t, x, y) =

[
A 0
0 B

]
is positive definite (note we take t

as constant), i.e., the function Ω(t, x, y) is strictly convex in (x, y) for all
t > x+ max(ψf , ψ̂). Now, for any r > 1, we can write:

Ω(t, x, y) <
1

r
Ω(t, rx, ry) +

r − 1

r
Ω(t, 0, 0) <

1

r
Ω(t, rx, ry),
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where the first inequality follows from the strict convexity of Ω(t, x, y) in
(x, y), and the second inequality holds since Ω(t, 0, 0) < 0 (see (A.1)).
(b) Since we have f ′(t) < 0 for any t > ψf , it follows that f(t − x) > f(t)

for t − x > ψf . Therefore, ∂Ω(t,x,y)
∂x = f(t−x)

f(t) > 1 for all x and t such that

t − x > ψf and for all y. Similarly, one can show that for t > ψ̂, we have
∂Ω(t,x,y)

∂y = −Λ(t+y)g(t+y)H̄(t+y)
Λ(t)g(t)H̄(t)

> −1. Now, since Ω(t, x, y) is strictly convex

in (x, y) for all t > x+ max(ψf , ψ̂) (see proof of part (a)), for any δ > 0, we
can write

Ω(t, x+ δ, y + δ) > Ω(t, x, y) +
∂Ω(t, x, y)

∂x
δ +

∂Ω(t, x, y)

∂y
δ > Ω(t, x, y),

where the first inequality comes from the strict convexity of Ω(t, x, y) in

(x, y), and the second inequality holds since ∂Ω(t,x,y)
∂x > 1 and ∂Ω(t,x,y)

∂y > −1.
2

Lemma 7 Suppose that T =
{
tj
}∞
j=1

obtained recursively from (A.3). If
there exists m ≥ 1 such that xm+1 > xm, then xj+1 > xj for all j ≥ m.

Proof. It suffices to show that if xm+1 > xm for some m, then xm+2 >
xm+1 follows. From (A.3), we have

Ω(tm+1, xm+1, xm+2) = Ω(tm, xm, xm+1) = 0. (A.5)

Note that tm+1 > tm and xm+1 > xm. Now, since Ω(t, x, y) is increasing in
t, strictly increasing in x and strictly decreasing in y (Lemma 5), we must
have xm+2 > xm+1 in order to satisfy (A.5). This completes the proof. 2

Lemma 8 For any j ≥ 1, xj and tj obtained recursively from (A.3) are
strictly increasing in t1.

Proof. Since x1 = t1, from (A.3) for j = 1, we have Ω(t1, t1, x2) = 0. To
satisfy this equation, x2 must be strictly increasing in t1 since Ω(t, x, y) is
increasing in t, strictly increasing in x and strictly decreasing in y (Lemma
5). Consequently, t2 = t1 + x2 is strictly increasing in t1. Now by inductive
reasoning it follows that tj and xj are strictly increasing in t1 for any j ≥ 1.
2
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Proof of Theorem 1. Suppose, by way of a contradiction, that in
an optimal screening policy, the lengths of the screening intervals are not
decreasing (i.e., xm > xm−1 for some m). Then by Lemma 7, xj is strictly
increasing in j for all j ≥ m. In particular, there exists k such that xk >
rxk−1 for some r > 1 and tk−2 = tk−1 − xk−1 > max(ψf , ψ̂), where ψf and

ψ̂ are defined in Lemma 6 (and the existence of such tk−2 is ensured by
assumption that lim

j→∞
tj =∞). Now, we can write

Ω(tk, xk, rxk) > Ω(tk, rxk−1, rxk) ≥ Ω(tk−1, rxk−1, rxk)

> rΩ(tk−1, xk−1, xk) = 0 = Ω(tk, xk, xk+1),

where the first two inequalities hold since Ω(t, x, y) is strictly increasing in
x and increasing in t (Lemma 5), the third inequality holds by Lemma 6(a),
and the last two equalities hold by Lemma 3. It follow that xk+1 > rxk since
Ω(t, x, y) is strictly decreasing in y (Lemma 5(c)). Then, using induction,
we can show that lim

j→∞
xj =∞.

From (A.1) and Lemma 3, Ω(tj , xj , xj+1) = 0 implies

F (tj)− F (tj − xj)
f(tj)

= cp

∫ xj+1

0

H̄(tj + u)g(tj + u)

Λ(tj)H̄(tj)g(tj)
du

+
cs

Λ(tj)

[ F̄ (tj)

f(tj)

cp − Λ(tj)

cs
+
Ḡ(tj + xj+1)H̄(tj + xj+1)

g(tj)H̄(tj)

]
≤ cp

∫ +∞

0

H̄(tj + u)g(tj + u)

Λ(tj)H̄(tj)g(tj)
du

+
cs

Λ(tj)

[ F̄ (tj)

f(tj)

cp − Λ(tj)

cs
+
Ḡ(tj)

g(tj)

]
, (B.1)

where the inequality holds since the integrand is nonnegative and Ḡ(t)H̄(t)
is decreasing in t. Note that the right hand side of (B.1) is bounded since
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non-negative functions F̄ (t)
f(t) , Ḡ(t)

g(t) and H̄(t+u)g(t+u)
Λ(t)H̄(t)g(t)

are decreasing in t (see

proof of Lemma 5(a)). However, since F (t)−F (t−x)
f(t) is strictly convex and

strictly increasing in x, and increasing in t (proofs are similar to their coun-
terparts in Lemma 6(a) and Lemma 5(a)-(b)), it follows that xj → ∞ and
tj → ∞ imply that the left hand side of (B.1) is unbounded. This contra-
diction shows that the lengths of the optimal inspection intervals must be
decreasing. 2

Proof of Theorem 2. First, we show the “if part” of the both statements.
Assume t1 > t∗1. Then by Lemma 8, tj > t∗j and xj > x∗j > 0 for all j. Let
δj = xj − x∗j . Then, δj > 0 for all j. Moreover, since lim

j→∞
t∗j = ∞, there

exists some k such that t∗k−1 = t∗k − x∗k > max(ψf , ψ̂) (where ψf and ψ̂ are
defined in Lemma 6). First, we establish that δj is strictly increasing for all
j ≥ k. We can write:

Ω(tk, x
∗
k + δk, x

∗
k+1 + δk) ≥ Ω(t∗k, x

∗
k + δk, x

∗
k+1 + δk)

> Ω(t∗k, x
∗
k, x
∗
k+1)

= 0

= Ω(tk, xk, xk+1)

= Ω(tk, x
∗
k + δk, x

∗
k+1 + δk+1),

where the first inequality holds since Ω(t, x, y) is increasing in t and tk > t∗k,
the second inequality follows from Lemma 6(b), and the last equality follows
from the definition of δk and δk+1 (the other two equalities hold by (A.3)).
It follow that δk+1 > δk since Ω(t, x, y) is strictly decreasing in y (Lemma
5(c)). Now, we claim that lim

k→∞
δk = +∞. To prove this claim suppose, by

way of contradiction, that lim
k→∞

δk = δ̂. Then, we have:

lim
k→∞

Ω(tk, xk, xk+1) = lim
k→∞

Ω(tk, x
∗
k + δk, x

∗
k+1 + δk+1)

= lim
k→∞

Ω(tk, x
∗
k + δ̂, x∗k+1 + δ̂)

> lim
k→∞

Ω(tk, x
∗
k, x
∗
k+1)

≥ lim
k→∞

Ω(t∗k, x
∗
k, x
∗
k+1)

= 0,

where the first equality follows from the definition of δk and δk+1, the second
equality holds since lim

k→∞
δk = δ̂, the last equality holds by (A.3), and the
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inequalities hold by Lemma 6(b) and Lemma 5(a), respectively. However,
Ω(tk, xk, xk+1) = 0 for all k and therefore cannot converge to a positive
number. This contradiction shows that lim

k→∞
δk = +∞. It follows that there

exists some m such that δm > t1 = x1. Then, xm = x∗m + δm > x1. Then,
we have xj > xj−1 for all j ≥ m by Lemma 7. This completes the “if part”
of (A).

Now we consider the case that t1 < t∗1. Here, we have δj < 0 (i.e., tj < t∗j
and xj < x∗j for all j), and the rest of the proof can be derived similarly to
show the existence of m such that xm < 0. More specifically, all inequalities
would be in the reverse direction, and we conclude that lim

k→∞
δk = −∞.

Thus, there exists some m such that δm < −t∗1 = −x∗1. Then, xm = x∗m +
δm < 0 since x∗m < x∗1 by Theorem 1. Since both x∗j and δj decrease as
j ≥ m increases, we have xj < 0 for all j ≥ m. This completes the “if part”
of (B).

To show the “only if part” of (A), suppose there exists some m such that
xj > xj−1 > 0 for all j ≥ m, but t1 > t∗1 is not true, i.e., t1 ≤ t∗1. For t1 = t∗1,
we cannot have xm > xm−1 for any m by Theorem 1. Furthermore, t1 < t∗1
implies that there exists some q such that xj < 0 for all j ≥ q by the “if
part” of (B). This result contradicts our initial assumption. Thus, we must
have t1 > t∗1.

Finally, we show that the “only if part” of (B) is also true. Suppose there
exists some m such that xj < 0 for all j ≥ m, but t1 < t∗1 is not true, i.e.,
t1 ≥ t∗1. Then, by Lemma 8, we have xj ≥ x∗j > 0. This result contradicts
our assumption that xm < 0. It follows that t1 < t∗1. 2
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Proof of Lemma 1. Recall that the objective is to minimize C(Tn) subject
to 0 ≤ t1 ≤ t2 ≤ . . . ≤ tn ≤ tn+1. We need to show that the optimal inspec-
tion policy cannot be a boundary solution. In Proposition 2 (Appendix A),
we established that tn < tn+1 <∞. Suppose, by way of contradiction, that
an inspection policy, Tn, satisfies tm = tm−1 for some 1 ≤ m ≤ n. We will

show that this inspection policy cannot be optimal. Let T ′n =
{
t′j
}n+1

j=1
be

a new inspection policy that performs an inspection at every time Tn does,
but at time tm, T ′n performs one less inspection than Tn, and schedules this
inspection at a later time. Using (3.3), it can be shown that for the new
inspection policy, the probability of incurring the penalty does not increase
while the expected discounted inspection cost decreases since this inspec-
tion is scheduled at a later time. Therefore, T ′n achieves lower expected
discounted cost, from which we conclude that the optimal inspection policy
is an interior solution. Thus, it should satisfy the first order necessary con-
dition: ∂Lα(Tn)

∂tj
= 0 for each 1 ≤ j ≤ n+ 1. By differentiating the expression

of Lα(Tn) given in (3.3) with respect to tj and setting it equal to zero, after
simplification and rearrangement, we obtain for each 1 ≤ j < n:[F (tj)− F (tj−1)

f(tj)
− 1− e−(λ+θ)(tj+1−tj)

λ+ θ

]
− ci
k

[1− F (tj)

f(tj)
+

1

λ+ θ

]
= 0,

(C.1)

where k = λ
λ+θ (cp + r + α) − (ci + r + α) by definition. Note that the left

hand side of (A.4) is equal to Ω(tj , xj , xj+1). Similarly, we can show that
the first order necessary conditions for j = n and j = n + 1 are equivalent
to (3.7) and (3.8). 2

Proof of Theorem 3. It suffices to show that if xm+1[t∗1,n] > xm[t∗1,n] for
some m, then xm+2[t∗1,n] > xm+1[t∗1,n] follows. From (3.6) and (3.7), we have

Ω(tm+1[t∗1,n], xm+1[t∗1,n], xm+2[t∗1,n]) ≤ Ω(tm[t∗1,n], xm[t∗1,n], xm+1[t∗1,n]) = 0,

(C.2)
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where the inequality is strict if m = n − 1. Note that tm+1[t∗1,n] > tm[t∗1,n]
and xm+1[t∗1,n] > xm[t∗1,n]. Now, since Ω(t, x, y) is increasing in t, strictly
increasing in x and strictly decreasing in y (Lemma 9 in Appendix A), we
must have xm+2[t∗1,n] > xm+1[t∗1,n] in order to satisfy (A.5). This completes
the proof. 2

Proof of Lemma 2. Since x1[t1,n] = t1,n, from (3.6) for j = 1, we have
Ω(t1,n, t1,n, x2[t1,n]) = 0. To satisfy this equation, x2[t1,n] must be strictly
increasing in t1,n since Ω(t, x, y) is increasing in t, strictly increasing in
x and strictly decreasing in y (Lemma 9 in Appendix A). Consequently,
t2[t1,n] = t1,n + x2[t1,n] is strictly increasing in t1,n. Now by inductive rea-
soning it follows that tj [t1] and xj [t1] are strictly increasing in t1 for any 1 ≤
j ≤ n. Now, from (3.7) for j = n, we have Ω(tn[t1,n], xn[t1,n], xn+1[t1,n]) =

− cie
−(λ+θ)xn+1

k(λ+θ) < 0. Similar to the discussion above, since Ω(t, x, y) is in-
creasing in t, strictly increasing in x and strictly decreasing in y, we conclude
that tn+1[t1] and xn+1[t1] are also strictly increasing in t1. 2

Proof of Proposition 1. By Lemma 1, the optimal inspection policy must
satisfy the first order necessary condition. Recall the necessary condition
(3.8) is given by

F (tn[t1,n] + xn+1[t1,n])− F (tn[t1,n])

1− F (tn[t1,n])
=
θ(r + α)

λcp
.

Now, by Lemma 2 and the fact that F (t+x)−F (t)
1−F (t) is increasing in t and strictly

increasing in x (by the increasing failure rate property of density f), the left
hand side of this equality is strictly increasing in t1,n. It follows that the
value of t1,n satisfying the necessary condition is unique (which we denote
by t∗1,n). Now, using (3.6) and (3.7), the remaining inspection times (tj [t

∗
1,n]

for each 1 < j ≤ n) can be obtained recursively (and uniquely) by having
t∗1,n. Thus, we conclude the optimal inspection policy is unique. 2
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Proposition 2 It is always optimal to schedule a replacement at a finite
time tn+1 after the last inspection time, i.e., tn < tn+1 < +∞.

Proof. Let T̃n be the inspection policy that does not schedule a replace-
ment at a finite time (i.e., tn+1 = +∞). First, we show that the best of such
policies must schedule the inspection times t1, . . . , tn at finite times. We
show that for any inspection policy that schedules m finite inspection times
(m < n) of the allotted inspection opportunities, there exists a strictly better
inspection policy that schedules m+1 inspection times. For any 1 ≤ m < n,
let T̃m =

{
tj
}m
j=1

be an inspection policy with m inspection opportunities

scheduled at finite times t1, t2, . . . , tm. Moreover, consider T̃m+1 as an inspec-
tion policy with m+ 1 inspection opportunities where the first m inspection
times {t1, t2, . . . , tm} are the same as T̃m, and we choose the (m + 1)th in-
spection time tm+1 such that 1 > F (tm+1) > F (tm)+ ci

k+ci

(
1−F (tm)

)
. Such

a value of tm+1 exists since F (tm) + ci
k+ci

(
1− F (tm)

)
< 1 by the fact k > 0,

and the F (tm+1) is strictly increasing in tm+1 (since we assumed f(t) > 0)
and approaches 1 when tm+1 is sufficiently large. Then, from (3.3) and after
further simplification, we have

Lα(T̃m+1)− Lα(T̃m) =[
− (k + ci)

(
F (tm+1)− F (tm)

)
+ ci

(
1− F (tm)

)]
e−(λ+θ)tm+1 .

By the choice of tm+1, this expression is negative. Thus, the expected total
cost can be (strictly) decreased by scheduling one more inspection at an
appropriate time.

92



Appendix D. Chapter 3: Supporting Results

Now, for a general inspection policy Tn, we can write after simplification:

Lα(Tn) = Lα(T̃n)

+

∫ +∞

tn+1

[
− cp

(
F (t)− F (tn)

)
+
θ(r + α)

λ

(
1− F (tn)

)]
λe−(λ+θ)tdt.

(D.1)

Then, we choose a tn+1 > tn such that the integral in (D.1) is negative (note
that for tn+1 = +∞, the integral in (D.1) is equal to zero). It suffices to
find a tn+1 that satisfies the following inequality:

F (tn+1) > F (tn) +
θ(r + α)

λcp

(
1− F (tn)

)
.

Such a value of tn+1 exists since θ(r+α)
λcp

= θ(r+α)
θ(r+α)+(λ+θ)(k+ci)

< 1 by the

fact k > 0, and the F (tn+1) is strictly increasing in tn+1 (since we assumed
f(t) > 0) and approaches 1 when tn+1 is sufficiently large. Thus, an optimal
inspection policy should schedule a replacement at a finite time after the
last inspection. 2

Proposition 3 For any n, an optimal inspection policy T ∗n exists.

Proof. For some ε > 0, let tMn+1 be a replacement time such that the
integral in (D.1) is larger than −ε for all tn+1 > tMn+1 and any value of tn.
Such tMn+1 exists since the integral approaches 0 as tn+1 →∞.

By Proposition 2, the optimal inspection policy should schedule a re-
placement at a finite time. Now, consider an arbitrary inspection policy Tn
such that tMn+1 < tn+1 < +∞ and let T̃ ∗n be the optimal inspection policy in
the class of policies that do not schedule a replacement at a finite time and
tn < tn+1. Such an optimal policy exists because Lα(T̃n) is continuous and
attains its minimum over the following compact set:

D̃ =
{

0 ≤ tj ≤ tn+1, tj ≥ tj−1 for all 1 ≤ j ≤ n
}
.

Then, we obtain from (3.3) after simplification:

Lα(Tn) = Lα(T̃n)

+

∫ +∞

tn+1

[
− cp

(
F (t)− F (tn)

)
+
θ(r + α)

λ

(
1− F (tn)

)]
λe−(λ+θ)tdt

> Lα(T̃ ∗n )− ε,
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where the first equality follows from (3.3), and the inequality comes from
the choice of tn+1 and the fact that T ∗n minimizes Lα(T̃n). In other words,
a policy that schedules inspections based on T ∗n and a replacement at tMn+1

is better than any Tn with tn+1 > tMn+1. It implies that if the minimum of
Lα(Tn) exists, it belongs to the following set:

D =
{

0 ≤ tj ≤ tMn+1, tj ≥ tj−1 for all 1 ≤ j ≤ n+ 1
}
.

Since Lα(Tn) is continuous and D is compact, it follows that Lα(Tn) attains
its minimum over the set D. Thus, an optimal inspection policy T ∗n exists.
This completes the proof. 2

Lemma 9 For PF2 densities f and g, and for (t, x, y) ∈ R3
+, the following

statements hold:

(a) Ω(t, x, y) is increasing in t.

(b) Ω(t, x, y) is strictly increasing in x for all y and for all t such that
t− x > 0.

(c) Ω(t, x, y) is strictly decreasing in y for all t and x.

Proof. We only prove parts (a) and (b). Proof of part (c) is similar to
part (b).
(a) Since the first square bracket of (3.5) is increasing in t (Theorem 3 in
Barlow et al. [11]), the second square bracket of (3.5) is decreasing in t
(Corollary 3.1 in Barlow et al. [11]), and k > 0, it follows that Ω(t, x, y) is
increasing in t.
(b) Since the density function f satisfies f(a) > 0 for any a > 0, we have
∂Ω(t,x,y)

∂x = f(t−x)
f(t) > 0. Thus, Ω(t, x, y) is strictly increasing in x. 2
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Chapter 3: Solution
Algorithm

We first present the approximation algorithm and then we explain its
logic. The algorithm starts with an initial search interval (t, t), for which
we can conveniently choose t = 0 and t a sufficiently large number (such
that the probability that the failure occurs before t is close to 1). Then, the
following steps are followed (note for the sake of clarity, we do not show the
dependence of the inspection times tj on the first inspection time):

1. Given the search interval (t, t), set t1 = t+t
2 , x1 = t1, and j = 1.

2. If t−t < 2ε, STOP and return tout1,n = t+t
2 as the optimal first inspection

time t∗1,n.

3. While j < n, take the following steps:

(a) Compute Q :=
F (tj)−F (tj−xj)

f(tj)
− ci

k

[
1−F (tj)
f(tj)

+ 1
λ+θ

]
.

(b) If Q ≤ 0, then set t = t1,n, and go back to Step 1.

(c) If Q ≥ 1
λ+θ , then set t = t1,n, and go back to Step 1.

(d) Find xj+1 that satisfies 1−e−(λ+θ)xj+1

λ+θ = Q. Increase j by 1 and
go back to Step 3.

4. Compute Q := F (tn)−F (tn−xn)
f(tn) − ci

k

[
1−F (tn)
f(tn) + 1

λ+θ

]
.

(a) If Q ≤ − 1
λ+θ

ci
k , then set t = t1,n, and go back to Step 1.

(b) If Q ≥ 1
λ+θ , then set t = t1,n, and go back to Step 1.

(c) Find xn+1 that satisfies
1−(1+

ci
k

)e−(λ+θ)xn+1

λ+θ = Q, and go to Step
5.

5. Compute Q := F (tn+xn+1)−F (tn)
1−F (tn) .
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(a) If Q < θ(r+α)
λcp

, then set t = t1,n, and go back to Step 1.

(b) If Q > θ(r+α)
λcp

, then set t = t1,n, and go back to Step 1.

In each iteration of the algorithm, we choose the midpoint of the search
interval as the first inspection time t1. Then, using (3.6) and (3.7), we
try to recursively find the other inspection times {t2, . . . , tn} by solving the

equation 1−e−(λ+θ)xj+1

λ+θ = Q for each j = 1, . . . , n− 1, which is equivalent to
(3.6) (see Step 3(d)). Now, since the choice of t1 is not necessarily optimal,
for some j, we might not be able to find any xj+1 that satisfies the above
equation. Since Q is increasing in tj and strictly increasing in xj (see the
proof of Lemma 9(a)-(b)), it follows that Q is strictly increasing in t1 (by
Lemma 2). Therefore, by checking whether the value of Q is too large or
too small, we can decide whether to update either the lower bound or the
upper bound of the search interval (see Steps 3(b) and 3(c)). The same logic
applies to the case j = n and j = n+ 1 (see Steps 4 and 5). The length of
the next iteration’s search interval is half of the previous iteration’s search
interval. We continue in this manner until we conclude that t∗1,n belongs to a
search interval of a required length 2ε. Then, the approximation algorithm
returns the midpoint of the last search interval as t∗1,n.
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