- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Collapsing fibres under Kähler Ricci flow on Hirzebruch...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Collapsing fibres under Kähler Ricci flow on Hirzebruch manifolds Dixon, Kael
Abstract
In this article we study the Kähler Ricci flow on a class of ℂℙ¹ bundles over ℂℙⁿ⁻¹ known as Hirzebruch manifolds. These are defined by ℙ(Hⁱ⊕ℂ-1), where H is the canonical line bundle, ℂ is the trivial line bundle, and n,i∈ℕ. We follow the work by Song and Weinkove, who study solutions to the Kähler Ricci flow for a Calabi symmetric Kähler metrics on Hirzebruch manifolds. They were able to show that, depending on the initial Kähler class, the Ricci flow would reach a finite time singularity corresponding to the manifold either shrinking to a point, contracting the zero section to a point, or collapsing the fibres. In this paper, we investigate how the fibres collapse in the latter case with the further assumptions that the singularity is formed at a type I rate, and that the length of a generic vector does not decay too quickly in some sense. In this case we show that the fibres converge to round spheres after blowing up around a singular point on a fibre.
Item Metadata
Title |
Collapsing fibres under Kähler Ricci flow on Hirzebruch manifolds
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2010
|
Description |
In this article we study the Kähler Ricci flow on a class of ℂℙ¹ bundles over ℂℙⁿ⁻¹ known as Hirzebruch manifolds. These are defined by ℙ(Hⁱ⊕ℂ-1), where H is the canonical line bundle, ℂ is the trivial line bundle, and n,i∈ℕ. We follow the work by Song and Weinkove, who study solutions to the Kähler Ricci flow for a Calabi symmetric Kähler metrics on Hirzebruch manifolds. They were able to show that, depending on the initial Kähler class, the Ricci flow would reach a finite time singularity corresponding to the manifold either shrinking to a point, contracting the zero section to a point, or collapsing the fibres. In this paper, we investigate how the fibres collapse in the latter case with the further assumptions that the singularity is formed at a type I rate, and that the length of a generic vector does not decay too quickly in some sense. In this case we show that the fibres converge to round spheres after blowing up around a singular point on a fibre.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2010-08-25
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
CC0 1.0 Universal
|
DOI |
10.14288/1.0071224
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2010-11
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
CC0 1.0 Universal