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Abstract

In this article we study the Kähler Ricci flow on a class of CP1 bundles
over CPn−1 known as Hirzebruch manifolds. These are defined by Mn,k :=
P(Hk ⊕CPn−1) where H is the canonical line bundle and n, k ∈ N (we refer
to §2 for a detailed description of these). We follow the work in [11], where
Song and Weinkove study solutions to the Kähler Ricci flow for a Calabi
symmetric Kähler metrics on Hirzebruch manifolds (see §2 for definitions).
They were able to show that, depending on the initial Kähler class, the
Ricci flow would reach a finite time singularity corresponding to the mani-
fold either shrinking to a point, contracting the zero section to a point, or
collapsing the fibres. In this paper, we investigate how the fibres collapse in
the latter case with the further assumptions that the singularity is formed
at a type I rate, and that the length of a generic vector does not decay too
quickly in some sense. In this case we show that the fibres converge to round
spheres after blowing up around a singular point on a fibre.
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Chapter 1

Introduction

The goal of the thisis is to prove the following theorem:

Theorem 1. Assume (Mn,k, g(t)) is radially symmetric solution to the
Kähler Ricci flow (1.1) on the Hirzebruch manifold Mn,k with initial metric
as in case 3 described in §2.1. Suppose the solution develops a Type I sin-
gularity at time T and that for some p ∈ Mn,k\{D0, D∞} and vector X ∈
TpMn,k tangent to the fibre, there exists c > 0 such that ‖X‖2g(t) ≥ c(T − t).

Then for any p ∈ Mn,k, the singularity model at p is a Riemannian
product (Cn−1 × CP1, δCn−1 + h(t)) where δCn−1 is the standard flat metric
on Cn−1 and (CP1, h(t)) is the standard shrinking sphere soliton.

We refer to §1.1, §2 and §3 for the definitions, terms and notations in
Theorem 1.

1.1 Kähler Ricci Flow

The Ricci flow is the following system of PDE’s on the space of metrics of a
manifold:

∂g

∂t
(t) = −Ricg(t)

g(0) = g0,
(1.1)

This equation is only weakly parabolic, yet local existence and uniqueness
of smooth solutions given smooth initial metrics was proved by Hamilton in
[4]. We say that T > 0 is the singular time of a solution to Ricci flow if
[0, T ) is a maximal interval on which a smooth solution to the flow exists.
If T <∞, we say that the solution forms a finite time singularity.

Kähler Ricci flow is simply the study of Ricci flow in the case when the
initial metric g0 is Kähler. In this case, solution g(t) will remain Kähler as
long as the solution exists (See [7]) and thus induces the corresponding flow
of Kähler forms:

d
dtω(t) = −Ric∧ω(t)

ω(0) = ω0

(1.2)
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1.1. Kähler Ricci Flow

where ω is the Kähler form of g and Ric∧ is the Ricci form. Since both of
these are closed real-valued (1,1)-forms, this system descends to the following
flow on H2(M,R) ∩H1,1(M):

d
dt [ω(t)] = −[Ric∧ω(t)]

[ω(0)] = [ω0]
(1.3)

We call the set of all cohomology classes corresponding to Kähler metrics
the Kähler cone:

{α ∈ H2(M,R) ∩H1,1(M) : α > 0},

where we write α > 0 if there exists a form τ > 0 such that [τ ] = α. Since
ω is Kähler, [Ric∧ω] = 2πc1(M), where c1(M) is the first Chern class of M
which is an invariant of the complex structure, and thus is independent of
ω and in particular of t. In particular the family of classes

α(t) := [ω0]− 2πtc1(M)

clearly solves the above cohomological equation. Conversely, as described in
[11], if α(t) above lies in the Kähler cone for all t ∈ [0, T ), then (1.2) will in
fact have a solution ω(t) defined for t ∈ [0, T ). It follows that if T is finite,
then α(T ) lies on the boundry of the Kähler cone.
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Chapter 2

Hirzebruch Manifolds

2.1 Introduction

Let Mn,k := P(H⊗k ⊕ CPn−1) be an n−dimensional Hirzebruch manifold,
where H is the canonical line bundle over CPn−1 (see §2.2 for detailed de-
scription). It is known that in this case the first Chern class c1(Mn,k) is
positive and thus the Kähler Ricci flow starting from any Kähler metric on
Mn,k must develop a singularity in finite time (see [11]). As discussed above,
this corresponds to reaching the boundry of the Kähler cone. Conveniently,
the Kähler cone is easy to describe in this case. In fact, it is generated
by only two classes: [D∞], the fundamental class of the divisor D∞ corre-
sponding to the∞ section of the bundle, and [π−1ωFS ], the pull back of the
Fubini-Study metric on the base. We can write our initial Kähler class as

α0 = 1
k (b0 − a0)[D∞] + a0[π−1ωFS ],

for some 0 < a0 < b0. Suppose now that the we have a solution to the Kähler
Ricci flow on Mn,k which becomes singular at time T > 0, in other words
that α(t) := [ω0]−2πtc1(M) reaches the boundry of the Kähler cone at time
T . Then under the assumption that the initial metric is Calabi symmetric
(see §2.3 for definition) it was shown in [11] that the behaviour of the Ricci
flow near time T can be classified in terms of which part of the boundry of
the Kähler cone α(T ) lies on:

1. Case: a0(n+ k) = b0(n− k).

Then α(T ) = 0, so the manifold shrinks to a point. This is the situa-
tion where it is possible for the solution to be a shrinking Kähler Ricci
soliton, and in fact, there exists one on Hirzebruch manifolds called
the Koiso soliton. This soliton is constructed using the same symme-
try assumptions that we are using. See [6] for details. A theorem of
Tian and Zhu then tells us that if we normalized the Kähler Ricci flow
to keep the volume constant, then the solution must converge to the
soliton. See [10] for details.
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2.2. Local Coordinates on Mn,k

2. Case: a0(n+ k) < b0(n− k).

Then α(T ) lies on the part of the boundry generated by [D∞] and un-
der the symmetry assumption, the Ricci flow solution exhibits Gromov-
Hausdorff convergence to the orbifold Mn,k/D0, with the divisor D0

contracted to a point.

3. Case: a0(n+ k) > b0(n− k).

This is the case that we will concern ourselves with, namely the case
when α(T ) lies on the part of the boundry generated by [π−1ωFS ]. In
this case the volume is proportional to (T − t) and under the sym-
metry assumption the Ricci flow solution exhibits Gromov-Hausdorff
convergence to the base manifold with metric aTωFS where ωFS is the
Fubini-Study metric on the base and α(T ) = aT [π−1ωFS ].

2.2 Local Coordinates on Mn,k

We now describe the manifolds Mn,k through local coordinates. Let {xi}ni=1

be homogeneous coordinates for CPn−1. Consider the charts Ui given by
xi 6= 0. Mn,k can then be realised as a CP1 bundle over CPn−1 via projective
fibre coordinates yi on π−1(Ui) where the transition functions are given by

yj =
(
xj
xl

)k
yi on π−1(Ui ∩ Uj). Notice that there are two natural sections

(divisors) of this bundle: D0 and D∞, corresponding to the fibre coordinate
yj taking the values 0 and ∞ respectively.

Consider the action of Zk on Cn\0 generated by

1 : Cn\0→ Cn\0 : x 7→ e
2πi
k x.

We identify (Cn\0)/Zk with Mn,k\(D0 ∪ D∞) via the following k-to-one
maps on each Vi := {xi 6= 0} ⊂ Cn\0

ψi : Vi → π−1(Ui)\(U0 ∪ U∞) ∼= Ui × CP1\{0,∞} : x 7→ ([x], xki ).

Note that these maps commute with the transition maps, allowing us to
extend this local identification to the whole space Cn\0. Also note that the
divisors are obtained by taking the limit as xi goes to 0 or ∞ respectively.

2.3 Radially Symmetric Metrics

In this section we describe a class of rotationally metrics on the Hirzebruch
manifolds Mn,k. These were first investigated by Calabi in [1] from where
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2.3. Radially Symmetric Metrics

we derive most of the calculations in this section. We will begin by defining
a class of radially symmetric metrics on Cn\0. Then by assuming certain
asymptotic conditions for these metrics (at 0 and ∞) we will then show
that these push forward to a smooth metric on Mn,k via the coordinate
descriptions of the last section.

Consider the function on Cn\0 given by ρ := log ‖~x‖2. We will consider
Kähler metrics on Cn\0 with potentials u(ρ), which are functions of ρ only,
and hence are radially symmetric. In order for u to be a potential for a
Kähler metric, we need u′′ > 0, where the derivatives are taken with respect
to ρ.

Now consider the Kähler metric

ω = i∂∂̄u = i∂(u′∂̄ρ) = iu′′∂ρ ∧ ∂̄ρ+ iu′∂∂̄ρ.

Claim 1. The radially symmetric metric ω descends to a metric on
(Cn\0)/Zk.

Proof. It suffices to show that the function ρ is invariant under the action.
In other words 1∗ρ = ρ.

1∗ρ(~x) = ρ ◦ 1(~x) = ρ(e
2πi
k ~x) = log ‖e

2πi
k ~x‖2 = log ‖~x‖2 = ρ(~x)

In particular, we can pushforward ω to Mn,k\(D0, D∞) via the maps
{ψi}ni=1 from §2.2. Now we further impose the condition that there exist
0 < a < b <∞ such that

a := lim
ρ→−∞

u′,

b := lim
ρ→∞

u′.

These asymptotic conditions basicallly guarantee that the Kähler form
ω on Mn,k\(D0∪D∞) will extend smoothly to all of Mn,k ([1]). Now we will
explicitely compute ω in the local trivialization π−1({Uj}), for some fixed
j ∈ {0...n}. First, choose holomorphic coordinates {zi := xi

xj
}i 6=j for Uj and

y for the fibre.

Claim 2. The function ρ pushes forward to a function ρ on Mn,k\(D0∪D∞)
which can be written in coordinates as ρ = 1

k log yȳ + 2πvFS, where vFS is
the potential for the Fubini-Study metric on the base CPn−1
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2.4. A Closer Look at the Fibres

Proof. Our identification is through the maps ψi : Vi → π−1(Ui)\(U0∪U∞),
so we compute:

(ψj)∗ρ = (ψj)∗ log ‖~x‖2 = (ψj)∗ log

n∑
i=0

xix̄i = (ψj)∗ log

(
xj x̄j

n∑
i=0

xix̄i
xj x̄j

)

= (ψj)∗

(
1
k log(xj x̄j)

k + log

n∑
i=0

xix̄i
xj x̄j

)

= 1
k log yȳ + log

1 +
∑
i 6=j

ziz̄i

 = 1
k log yȳ + 2πvFS .

For ease of notation, we will consider ρ as a function on each trivializatoin
Uj via the identification above, writing ρ instead of (φj)∗ρ. Note that

∂∂̄ log yȳ = ∂ y
yȳdȳ = ∂ 1

ȳdȳ = 0,

so that i∂∂̄ρ = i∂∂̄vV S = π−1ωFS is the pull-back of the Fubini-Study
metric on the base. Since the Kähler form of the radially symmetric metric
is iu′′∂ρ∧∂̄ρ+iu′∂∂̄ρ, this shows that the second term is degenerate along the
fibre. Song and Weinkove showed that case 3 of Ricci flow on Mn,k basically
corresponds to having u′ converging to a constant under the flow. From
the above observation, this intuitively corresponds to: as u′ moves towards
being a constant, making u′′ go to zero, the metric becomes proportional
to the Fubini-Study metric on the base and degenerate on the fibre (see
Theorem 2).

2.4 A Closer Look at the Fibres

Claim 3. Restricting ω to the fibres produces pairwise isometric Rieman-
nian manifolds.

Proof. It suffices to prove the claim on every local trivialization, since we
can then compose isometries to map any fibre onto any other one. Choose a
local trivialization π−1(Uj) for some j ∈ {1, . . . , n}. Using the holomorphic
coordinates {zi}i 6=j on Uj , it suffices to show that the fibre at z is isometric
to the fibre at 0 with respect to the the induced metric for each z ∈ Uj .
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2.4. A Closer Look at the Fibres

Using the previous claim and the fact that the vFS term does not contribute
to the fibre direction, we get that the induced metric on the fibre at z is

ω|π−1(z) = iu′′|π−1(z)∂ρ|π−1(z) ∧ ∂̄ρ|π−1(z) + iu′|π−1(z)∂∂̄ρ|π−1(z)

= iu′′|π−1(z)∂( 1
k log yȳ) ∧ ∂̄( 1

k log yȳ) + iu′|π−1(z)∂∂̄( 1
k log yȳ)

=
iu′′|π−1(z)

k2yȳ
dy ∧ dȳ.

Note that the only dependence on z is from u′′ being a function of ρ, and
hence of both y and z. We will define our isometry by

fz : π−1(0)→ π−1(z) : y 7→
(
1 + ‖z‖2

)k
2 y.

Then

(fz)∗ρ|π−1(0) = (fz)∗
1

k
log yȳ = 1

k log yȳ
(
1 + ‖z‖2

)k
= 1

k log yȳ + log
(
1 + ‖z‖2

)
= ρ|π−1(z).

Hence (fz)∗u
′′|π−1(0) = u′′|π−1(z). This gives

(fz)∗ω|π−1(0) = (fz)∗
iu′′|π−1(0)

k2yȳ
dy ∧ dȳ

=

(
1 + ‖z‖2

)k
(1 + ‖z‖2)k

iu′′|π−1(z)

k2yȳ
dy ∧ dȳ

=
iu′′|π−1(z)

k2yȳ
dy ∧ dȳ

= ω|π−1(z),

so that fz is an isometry.

The above claim allows us to concentrate on the fibre π−1(0) without
losing any generality. By definition, π−1(0) ∼= CP1 ∼= C∪∞. Our coordinate
y will act as a coordinate for C here. On π−1(0), we have ρ = 1

k log yȳ.
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Chapter 3

Singularity Analysis for Ricci
flow

In this section we set up the necessary background to study singularities for
the Ricci flow in our setting: case 3 from §2.1. In [11], Song and Weinkove
show that under the condition a0(n+ k) > b0(n− k) (case 3), the Ricci flow
with an initial metric satisfying the Calabi symmetry condition will form
a singularity at time T := b0−a0

2k . They showed that this corresponds to
studying a corresponding family u(ρ, t) of evolving potentials as above such
that ∂∂̄u(ρ, t) is the corresponding family of evolving metrics. In particular,
the the assymptotics “a(t) and b(t)” of u(ρ, t) from the previous section will
also vary in time such that

Theorem 2. [Song-Weinkove [11]] In case 3 for the Ricci flow of a Calabi
symmetric metric on Mn,k, if T is the singular time then (b(t) − a(t)) =
2k(T − t). In particular, the Ricci flow solution exhibits Gromov-Hausdorff
convergence to the base manifold with metric aTπ

−1ωFS where ωFS is the
Fubini-Study metric on the base.

We now discuss singularities for the Ricci flow in more detail. We will
define and discuss type I singularities of the flow. In particular, we will
show that the assumption on the existence of a singular point p on Mn,k in
Theorem 1.1 is natural under the assumption of type I singularity. As for the
additional assumption we make on the rate of metric decay at p, we observe
that this is natural in the sense as shown in §4.2 Lemma 4, the volume of
the fiber with respect to g(t) is precisely a(T − t) for some constant a.

To reduce clutter in the following sections, I will often write f . g for
functions f and g to mean that there exists a positive constant C such that
f ≤ Cg on the common domain of f and g. This constant will often only
be dependent on the initial metric, but occasionally it may depend on the
point of evaluation (but not the time), in which case it will be mentioned
that it is a pointwise estimate.
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Chapter 3. Singularity Analysis for Ricci flow

For Ricci flow to form a singularity at time T , one must necessarily have

sup
M
‖Rmg(t)‖g(t) &

1

T − t
.

This motivates the following definitions:

Definition 1. A sequence (pi, ti)i∈N ⊂ M × [0, T ) is an essential blow-up
sequence if ti ↗ T and

‖Rmg(ti)‖g(ti)(pi) &
1

T − ti

Definition 2. A point p ∈M is a singular point if there exists an essential
blow up sequence (pi, ti)i∈N with p = limi→∞ pi.

1

Finite time singularities are classified according to the speed at which

sup
M
‖Rmg(t)‖g(t)

diverges to ∞. We say that a solution for the Ricci flow equation is a Type
I solution if

sup
M
‖Rmg(t)‖g(t) .

1

T − t
.

We say that a finite time singular solution is a Type IIa solution if it is not
of type I. It is conjectured that Type IIa singularities will only form under
highly symmetric initial conditions.

From now on we assume that (Mn,k, g(t)) is a solution to Kähler Ricci
flow as in Theorem 1.1.

Lemma 1. Let p ∈M . If there exists c > 0 and t0 ∈ [0, T ) such that

‖Rmg(t)‖g(t)(p) ≤ c
T−t ,∀t ∈ (t0, T ),

then ‖Xp‖g(t) & (T − t)c for all X ∈ TpM .

Proof. Let α > 0 be a constant to be chosen later. Then for t ∈ (t0, T ), we
have

d

dt
log ‖αX‖2g = −Ricg(αX,αX)

‖αX‖2g
≥ −‖Ricg‖g ≥ −‖Rmg‖g ≥ −

c

T − t
.

1This is not the most general definition of singular point, but for type I solutions they
are equivalent. See [3] for details.
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Chapter 3. Singularity Analysis for Ricci flow

Integrating from t0 to t gives

log ‖αX‖2g(s)|
s=t
s=t0 ≥ c log(T − s)|s=ts=t0 .

Choosing α so that log ‖αX‖2g(t0) = c log(T − t0) gives

log ‖αX‖2g(t) ≥ c log(T − t).

Finally, exponentiating gives

(T − t)c ≤ ‖αX‖2g(t) . ‖X‖
2
g(t).

Proposition 1. For any p ∈ Mn,k\{D0 ∪ D∞}, there exists a sequence
(ti)i∈N with ti ↗ T such that (p, ti)i∈N is an essential blow-up sequence, and
thus p is a singular point.

Proof. Assume that there does not exist such an essential blow-up sequence.
Then for any c > 0, the set{

t ∈ [0, T ) : ‖Rmg(t)‖g(t)(p) ≥
c

T − t

}
is bounded. Thus there exists a t0 ∈ [0, T ) such that

‖Rmg(t)‖g(t)(p) <
c

T − t
, ∀t ∈ (t0, T ).

Without loss of generality, by the symmetry of the metric, we can consider
p to be in π−1(Un). Then, as before, we have local holomorphic coordinates
{y, zi}n−1

i=1 . Moreover, the symmetry allows us to assume that the z coor-
dinate of p is 0. It is clear by looking at the metric in these coordinates
that

‖ ∂∂y‖
2
g(t)(p) =

u′′(t)

k2yȳ
(p).

From Lemma 4.3 in [11], we u′′(t) . (T − t), so that ‖ ∂∂y‖
2
g(t) . (T − t).

Combining this with the preceeding lemma gives

(T − t)c < ‖ ∂∂y‖
2
g(t) . T − t.

In other words, (T − t)c−1 is bounded, which is impossible for c < 1. This
contradicts c being chosen arbitrarily.
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3.1. Parabolic Dilations

Note that it is not surprising that the singularity is always found in
our case by using an essential blow-up sequence with each term using the
same point. In fact, in [3], Enders, Müller and Topping show that every
singularity for a type I Ricci flow solution on a complete manifold occurs in
this way.

For the rest of the discussion, we will fix a fibre and the singular point
p such that without loss of generality, in local coordinates we have y(p) = 0
and z(p) = 0. In particular, ρ(p) = 0.

3.1 Parabolic Dilations

Let (pi, ti)i∈N be an essential blow-up sequence along the Ricci flow. We will
now describe the parabolic scalings of the flow along such a sequence. We
will use this in the next section to define the singularity model for the flow
along a blow up sequence.

For each i, we define

Ki = ‖Rmg‖g(pi, ti)

and a time dependent metric

gi :
[
−Kiti,Ki(T − ti)

)
→ Sym2TM∗ : t 7→ Kig

(
ti +

t

K i

)
.

Note that each gi is a solution to the Ricci flow equation, since

d

dt
gi(t) =

d

dt
Kig(ti + tK−1

i ) = −Ricg(ti+tK−1
i ) = −RicK−1

i gi(t)
= −Ricgi(t).

Definition 3. The sequence of Ricci flow solutions (gi)i∈N are the parabolic
dilations associated to the essential blow-up sequence (pi, ti)i∈N.

We will analyze the parabolic dilations through their behaviour at t = 0.
Note that gi(0) = Kig(ti). Thus

‖Rmgi(0)‖gi(0) = ‖RmKig(ti)‖Kig(ti) = K−1
i ‖Rmg(ti)‖g(ti) = K−1

i Ki = 1.

Let p ∈Mn,k\{D0 ∪D∞}. From proposition 1, there exists an essential
blow-up sequence (p, ti)i∈N.

Proposition 2. The distance between fibres with respect to gi(0) diverges
to infinity as i→∞.

11



3.1. Parabolic Dilations

Proof. Recall that Mn,k, g(t) converges in the Gromov-Hausdorff sense to
the base CPn−1 with the metric aT gFS under the Ricci flow as t approaches
T . Thus, the distance between points in two different fibres converges to
the distance between the corresponding points on the base with respect to
aT gFS . With respect to the parabolic dilations gi(0) = Kig(ti), this allows
us to approximate the distance between fibres by the distance between the
corresponding base points with respect to KiaT gFS , which diverges since Ki

does.
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Chapter 4

The Singularity Model

Let (Mn,k, g(t), p) be the solution to Ricci flow as in Theorem 1 where p
is the singular point. We now consider the corresponding parabolic di-
lations (Mn,k, gi, p)i∈N of our flow as a sequence of pointed solutions to
the Ricci flow. We will see that this sequence converges in some sense
to some (M∞, g∞, p∞), which is the singularity model corresponding to
(Mn,k, gi, p)i∈N. In this section, we will review some basic definitions and
results about singularity models, and describe the one corresponding to
(Mn,k, gi, p)i∈N as described above.

Definition 4. A sequence (M, gi, pi)i∈N of pointed Riemannian manifolds
converges in the Cheeger-Gromov sense to (M∞, g∞, p∞) if for each i ∈
N there exists neighbourhoods Ui and Vi of p∞ and pi respectively and a
diffeomorphism φi : Ui ∼= Vi satisfying the following three conditions:

• φi(p∞) = pi.

• (φ∗i gi)i∈N converges uniformly to g∞ in every Cm norm on any compact
subset of M∞ × (α, ω).

• Every compact subset of M∞ must be contained in each of {Ui}i≥N for
some N ∈ N.

Definition 5. Let κ > 0. A Riemannian manifold (M, g) is κ-noncollapsed
at all scales if for any x ∈ M and r > 0 satsifying supBr(x) ‖Rm‖ ≤ 1

r2
, we

have Vol(Br(x)) ≥ κrn.

Theorem 3. [Hamilton-Perelman] Let (M, g(t)) be a smooth solution to the
Ricci flow on a closed manifold M encountering a singularty at a finite time
T . Let (pi, ti)i∈N be an essential blow-up sequence such that

sup
(x,t)∈M×[0,ti)

‖Rmg(t)‖g(t)(x) . Ki.

Then there exists a subsequence of the sequence of parabolic dilations
(M, gi, pi) converging in the sense of Cheeger-Gromov to a complete ancient
solution to the Ricci flow (M∞, g∞, p∞). Futhermore, there exists a κ > 0
such that g∞ is κ-noncollapsed at all scales.
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Chapter 4. The Singularity Model

This result follows from Hamilton’s completeness theorem [5] and Perel-
man’s no local collapsing [8].

Corollary 1. For our singular point p ∈ Mn,k, the corresponding sequence
of parabolic dilations (Mn,k, gi, p) converges in the sense of Cheeger-Gromov
to a complete ancient solution to the Ricci flow (M∞, g∞, p∞). Futhermore,
there exists a κ > 0 such that g∞ is κ-noncollapsed at all scales.

Proof. Since p is a singular point, Ki & 1
T−ti . Since we are assuming that

our solution is a type I solution, we have

sup
Mn,k

‖Rmg(t)‖g(t) . 1
T−ti .

Putting this together, we have

sup
(x,t)∈Mn,k×[0,ti)

‖Rmg(t)‖g(t)(x) .
1

T − ti
. Ki,

so that we can apply the above theorem to get the desired result.

Lemma 2.

e−|ρ| .
u′′(ρ, t)

u′′(0, t)
. e|ρ|.

Proof. We will again use Lemma 4.3 from [11], which this time provides us
with the estimate |u′′′| . u′′. This gives∣∣∣∣log

u′′(ρ)

u′′(0)

∣∣∣∣ =

∣∣∣∣∫ ρ

0
(log u′′(s))′ds

∣∣∣∣ =

∣∣∣∣∫ ρ

0

u′′′(s)

u′′(s)
ds

∣∣∣∣ . |ρ| .
Exponentiating then gives the desired result.

Proposition 3. For each ρ ∈ R, we have the pointwise estimate

(T − t) . u′′(ρ, t) . (T − t).

Proof. By our assumption, there exists an X ∈ TMn,k with ρ0 = ρ◦π(X) ∈
R and ‖X‖2g(t) & (T − t). By symmetry, we can assume that π(X) is in the

same fibre as p, where we have local coordinates {y, z} with z = 0 on the
fibre. Then we can write the metric as

g(t) = u′′(ρ, t) dyky
dȳ
kȳ

for ρ = log(yȳ) ∈ R. Thus ‖X‖2g(t) ∝ u′′(ρ0, t). It follows from our assump-

tion that u′′(ρ0, t) & (T − t). Combining this with the preceeding lemma
gives the pointwise estimate u′′(ρ, t) & (T − t) for ρ ∈ R. This combines
with the uniform estimate u′′(ρ, t) . (T − t) from Lemma 4.3 of [11] to give
the desired result.
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4.1. A Candidate for the Limit Manifold

4.1 A Candidate for the Limit Manifold

In this section, we will consider Cn−1 × CP1 as a candidate for the limit
manifold M∞. We will begin by defining a sequence of holomorphic maps
ψi : Cn−1 × CP1 → Mn,k with respect to which we will study the pullback
metrics ((ψi)

∗gi(0)). The main goal of this section will be to show that the
limit of the pullback metrics factors as product metric. Later we will show
this sequence converges to a limit in some sense away from (·, 0), (·,∞). We
will later use this fact to show that in fact Cn−1 × CP1 = M∞.

Let {wj , y}n−1
j=1 be holomorhic coordinates for Cn−1 × CP1, where we

abuse notation by allowing y to take the value∞, thus parametrizing CP1 =
C t {∞}. Recall that

Un = {[x1, . . . , xn] : xn 6= 0} 3 π−1[0, . . . , 0, 1]

Recall that π−1(Un) has holomorphic fibred coordinates {zj , y}n−1
j=1 , again

allowing y to take the value ∞ in order to parametrize each fibre CP1. We
will identify Cn−1 × CP1 and π−1(Un) for each i via the biholomorhisms:

ψi : Cn−1 × CP1 → π−1(Un) : (w, y) 7→ (
√
Kiw, y),

In particular, recall that we chose our singular point p = (0, 1) in the fiber
coordinates on π−1(Un), and thus we have ψ−1

i (p) = (0, 1) in (w, y) coordi-
nates on Cn−1 × CP1 for all i.

We thus have a sequence ((ψi)
∗gi(t))i∈N of solutions to the Ricci flow on

Cn−1 × CP1. The goal in this section will be to calculate the components
of (ψi)

∗gi(0) with respect to the (w, y) coordinates. Recall that the Kaher
form corresponding to gi(0) is simply

ωi(0) = Kiω(ti) = iKiu
′′(ti)∂ρ ∧ ∂̄ρ+ iKiu

′(ti)∂∂̄ρ.

We will expand the two terms above separately. For the u′(ti)∂∂̄ρ term
above we have:

(ψi)
∗Kiu

′(ti)∂∂̄ρ = Ki(ψi)
∗u′(ti)∂∂̄

(
1
k log yȳ + log(1 + ‖z‖2)

)
= Ki(ψi)

∗u′(ti)

(
dz ∧ dz̄
1 + ‖z‖2

+
(z̄ · dz) ∧ (z · dz̄)

(1 + ‖z‖2)2

)
= Kiu

′(ti)

(
K−1
i dw ∧ dw̄

1 +K−1
i ‖w‖2

+
K−2
i (w̄ · dw) ∧ (w · dw̄)

(1 +K−1
i ‖w‖2)2

)
,
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4.1. A Candidate for the Limit Manifold

where we simplify notation by using

dz ∧ dz̄ :=

n−1∑
i=1

dzi ∧ dz̄i

z · dz :=

n−1∑
i=1

zidz
i.

Thus since limi→∞Ki =∞ and limi→∞ u
′(ti) = limt→T u

′(t) = aT , we have

lim
i→∞

(ψi)
∗Kiu

′(ti)∂∂̄ρ = aTdw ∧ dw̄. (4.1)

uniformly on compact subsets of (0, 1) ∈ Cn−1 × CP1 in the C0 sense.
For the u′′∂ρ ∧ ∂̄ρ term, first we compute:

(ψi)
∗∂ρ = (ψi)

∗
(
dy
ky + ∂ log(1 + ‖z‖2)

)
= (ψi)

∗
(
dy
ky + z̄·dz

1+‖z‖2

)
= dy

ky +
K−1

i w̄·dw
1+K−1

i ‖w‖2
,

thus giving

(ψi)
∗Kiu

′′(ti)∂ρ ∧ ∂̄ρ = Kiu
′′(ti)

(
dy
ky +

K−1
i w̄·dw

1+K−1
i ‖w‖2

)
∧
(
dȳ
kȳ +

K−1
i w·dw̄

1+Ki‖w‖2

)
=
Kiu

′′(ti)

k2yȳ
dy ∧ dȳ +Kiu

′′(ti)o(K
−1
i ),

where the asymptotic above is uniform on any neighborhood of (0, 1) uni-
formly away from (·, 0), (·,∞). From proposition 3, we have a pointwise
estimate

(T − t) . u′′(ρ) . (T − t).

Since our solution is of type I, we also have

1
T−ti . Ki . 1

T−ti .

Combining these tells us that u′′Ki is pointwise bounded away from {0,∞}.
This gives the convergence

lim
i→∞

(ψi)
∗Kiu

′′(ti)∂ρ ∧ ∂̄ρ = h (4.2)
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4.2. An Isometry Between M∞ and Cn−1 × CP1

where h is some Kähler metric on C\0 = CP1 \ {0,∞} and the convergence
is uniformly on compact subsets of C\0 in the C0 sense.

Combining (4.2) and (4.1) this gives

lim
i→∞

(ψi)
∗ωi(0) = g̃ := aT δCn−1 + h (4.3)

where δCn−1 is the standard Euclidean metric on Cn−1 and the convergence
is uniformly on compact subsets of (0, 1) in the C0 sense. In particular, we
have convergence to a product metric on Cn−1 × (CP1 \ {0,∞}).

4.2 An Isometry Between M∞ and Cn−1 × CP1

In this section we show that Cn−1 × CP1 = M∞. Consider the sequence of
maps

Ψi = φ−1
i ◦ ψi

We begin by describing the domain of these maps. We will consider
Cn−1 ×C as a subset of Cn−1 ×CP1 using the coordinates (w, y) defined in
the previous section. Now it is not hard to show that from the estimates in
the previous section, for any compact subset K ⊆ Cn−1 × C we may have

(i) ψi(K) ⊂ Bgi(0)(r, p) ⊂ π−1(Un) for some r > 0 some N > 0 and all
i > N .

(ii) Ψi is defined on K and Ψi(K) ⊂ Bg∞(2r, p∞) ⊂ M∞ for some r > 0
some N > 0 and all i > N .

Theorem 4. There exists a smooth subsequence limit map Ψ∞ = limi→∞Ψi

from Cn−1 × (C\0) to M∞. Moreover, Ψ∞ is holomorphic.

Proof. Let K be any compact set K ⊆ Cn−1 × C. Let r be the radius of K
with respect to g∞(0). Then by (ii) above, the sequence Ψi is a uniformly
bounded sequence on K with respect to g∞ on M∞, and is therefore likewise
uniformly bounded with respect to (φ−1)∗gi(0) onM∞ by the locally uniform
convergence (φ−1)∗gi(0) → g∞. Moreover, each Ψi is holomorphic into
(M∞, Ji) where Ji = φ∗i J is the pullback of the complex structure J on
Mn,k. By derivative estimates for holomorphic functions, it follows that any
fixed order derivative of the Ψi’s will be uniformly bounded with respect
to (φ−1)∗gi(0) on M∞ on any compact subdisc contained strictly within
K. From this fact and the smooth local convergences (φ−1)∗gi(0) → g∞
and Ji → J∞, we can conclude that any fixed order derivative of the Ψi’s
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4.2. An Isometry Between M∞ and Cn−1 × CP1

will be uniformly bounded with respect to g∞ on M∞ on any compact
subdisc contained strictly within K. From this and a diagonal subsequence
argument we see that some subsequence of Ψi converges smoothly uniformly
on compact subsets of Cn−1 × (C\0) to a smooth limit Ψ∞. That Ψ∞ is
holomorphic then follows from the convergence Ji → J∞.

We now want to show that Ψ∞ in fact extends to give a bijective holo-
morphic map from Cn−1×CP1 to M∞. Note that such a map must then be
a biholomorphism. We will establish this through several lemma’s.

Recall from (4.3) that we had the locally uniform convergence

lim
i→∞

(ψi)
∗ωi(0) = g̃ := aT δCn−1 + h.

in the C0 sense on compact subsets of Cn−1 × (C\0), and that the later is a
product metric on Cn−1 × (C\0). Note that we have

g∞ = (Ψ∞)∗g̃,

since (Ψ∞)∗(limi→∞(ψi)
∗ωi) = limi→∞(Ψi)∗(ψi)

∗ωi = limi→∞(φ−1
i )∗ωi =

ω∞.

Lemma 3. Ψ∞ is injective.

Proof. Let q1 6= q2 ∈ Cn−1 × (C\0). Let r = dg̃(q1, q2). Since g̃ =
limi→∞ ψ

∗
i gi(0), we can choose an N large enough such that dψ∗i gi(0)(q1, q2) >

r
2 for all i > N . Since (Ψi)

∗φ∗i gi = (ψi)
∗gi,

dg∞(0)(Φ∞(q1),Ψ∞(q2)) = lim
i→∞

dφ∗i gi(0)(Φ∞(q1),Ψ∞(q2))

= lim
i→∞

dψ∗i gi(0)(q1, q2) > r
2 .

Since r > 0,Ψ∞(q1) 6= Ψ∞(q2) as required.

Showing surjectivity is a little trickier. The proof will come after a series
of lemmas:

Lemma 4. The fibre (C\0, h) has finite volume.

Proof. We will establish this by showing that the fibres of the parabolic
dilations (π−1(p), gi|π−1(p)) have volume uniformly bounded independent of
i. As before, we have local holomorphic coordinate y for the fibre (assuming
by symmetry that z = 0). Through the relation y = exp(kρ2 + i arg y), we
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4.2. An Isometry Between M∞ and Cn−1 × CP1

can reparametrize π−1(p) in terms of ρ and θ := arg y. The metric is given
by

g = u′′

k2yȳ
dydȳ = u′′

k2

(
k
2dρ+ idθ

) (
k
2dρ− idθ

)
= u′′

(
1
4dρ

2 + 1
k2
dθ2
)
.

The volume of the fibre with respect to the dilated metric gi(0) = Kig(ti) is
then ∫

CP1

Kiu
′′(ti)

2k
dρdθ =

Ki

2k

∫
R
u′′(ti)dρ

∫
S1
dθ

=
Ki

2k
u′(ti)|∞−∞2π =

πKi

k
(b− a)(ti) = 2πKi(T − ti),

where we used that b−a = 2k(T−t). From our assumption that the singular-
ity is type I, Ki . 1

T−ti . It follows that the volume of (π−1(p), gi(0)|π−1(p))
is bounded independent of i. Thus, the limit fibre (C\0, h) has finite vol-
ume.

Lemma 5. There exists an r > 0 such that the infy∈C\0 Vol(Bh
r (y)) > 0.

Proof. Recall from the proof of corollary 1 that there exists C > 0 such that

sup
Mn,k

‖Rmg(ti)‖g(ti) ≤ CKi.

It follows that

sup
Mn,k

‖Rmgi(0)‖gi(0) = sup
Mn,k

‖RmKig(ti)‖Kig(ti) =
1

Ki
sup
Mn,k

‖Rmg(ti)‖g(ti) ≤ C.

Let r = 1√
C

. From theorem 3, there exists a κ > 0 such that the singularity

model is κ-noncollapsed at all scales. Since

sup
Mn,k

‖Rmgi(0)‖gi(0) ≤ C = 1
r2
,

we have that Vol(Br(x)) ≥ κr2n for all x ∈ Mn,k. Recall that Φ∞ is
an isometric embedding of the singularity model into the product of Rie-
mannian manifolds (Cn−1, aT δ) × (CP1, h). Define modified balls for each
x = Φ−1

∞ (v, y) by
B′(x) = Φ−1

∞ (BaT δ
r (v)×Bh

r (y)).

Clearly B′(x) ⊃ Br(x) for each x ∈ Mn,k. Let c be the volume of the unit
ball in Cn−1 with respect to aT δ. Then we have

Vol(B′(x)) = Vol(BaT δ
r (v))Vol(Bh

r (y)) = cr2n−2Vol(Bh
r (y)).
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4.2. An Isometry Between M∞ and Cn−1 × CP1

But we also have

Vol(B′(x)) ≥ Vol(Br(x)) ≥ κr2n.

Combining these gives Vol(Bh
r (y)) ≥ κ

c r
2 for all y ∈ CP1.

Lemma 6. The diameter of (C\0, h) is bounded.

Proof. Let r be chosen from the preceeding lemma. Assume that (C\0, h)
has infinite diameter. F = Ψ∞({0} × (C\0)). Thus F must also have
infinite diameter with respect to g∞|F = (Ψ∞ ◦ πC\0)∗h, where πC\0 is the

projection onto the C\0 part of Cn−1 × (C\0) ⊂ Cn−1 × CP1. Then there
exists a sequence (yi)i∈N such that the balls {Bh

r (yi)}i∈N ⊂ F are pairwise
disjoint. Applying the previous lemma, we have

Vol(F ) ≥
∑
i∈N

Vol(Bh
r (yi)) ≥ inf

y∈C\0
Vol(Bh

r (y))
∑
i∈N

1 =∞.

Since (C\0, h) is isometrically mapped onto F , this implies that the vol-
ume of (C\0, h) must be infinite. This contradicts Lemma 4. Thus our
assumption must be false as required.

Lemma 7. Ψ∞ extends to a surjection from Cn−1 × CP1 to M∞.

Proof. That Ψ∞ extends to a holomorphic map on Cn−1×CP1 follows from
the fact that Ψ∞ is a bounded holomorphic map by the previous lemma, and
derivative estimates for holomorphic functions. We now show surjectivity.
Fix any q ∈ M∞ and consider distance r of this point to p∞. Then for
sufficiently large i we have q ∈ B̄2r(p∞, g∞) ⊂ B3r(p∞, (φ

−1)∗gi(0)). In
particular, this would imply q ∈ Ψi(K) for some compact set K and all i
sufficiently large. From this it is not hard to see that we must have q ∈
Ψ∞(K).

The lemmas above imply the following

Theorem 5. Ψ∞ is a bijective holomorphic map from Cn−1 ×CP1 to M∞.
Thus Ψ∞ is a biholomorphism. Moreover, h extends to a metric on CP1,
and Ψ∞ is isometric with respect to the metrics g̃ = aT δ+h on Cn−1×CP1

and g∞ on M∞.
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Chapter 5

Conclusion

5.1 Proof of the Main Theorem

Proof. We have shown that for any p ∈ Mn,k\{D0, D∞}, under the as-
sumptions of the theorem, the Ricci flow forms a singularity at p at the
singularity time. Moreover, the corresponding singularity model at time 0 is
biholomorhically isometric to the product (Cn−1, aT δ)× (CP1, h), where δ is
the Euclidean metric on Cn−1, and h is some Kähler metric on CP1. Since
the solution is assumed to be type I, [3] tells us that singularity model must
be a shrinking soliton. It follows that (CP 1, h) must be a shrinking soliton.
By a theorem of Tian and Zhu (see [9]), Kähler Ricci solitons on compact
manifolds are unique modulo automophisms, so (CP1, h(t)) must in fact be
the standard shrinking sphere soliton. This proves the main theorem.

5.2 Remarks

In this section, we discuss the validity of the assumptions that we made.
The assumption that the lengths of of vectors tangent to the fibre bundle
don’t decay too fast is used to use the coordinates that we have for the
fibre as coordinates for the fibre in the limit manifold. Without making this
assumption, the metric in these coordinates could become degenerate even
after parabolic dilations. But the limit manifold exists, so there certainly
are some coordinates where the limit metric is non-degenerate. We could
try to adjust the coordinates for each i, as we did in the base direction, but
it is not as easy in the case. The metric in the fibre direction is invariant
under linear dilations, so the adjustments would have to be non-linear, which
makes things tricky. It is difficult to imagine adjustments that would be
holomorphic, injective, and non-linear, so we assume that they could only
be linear, so that the initial coordinates suffice. Moreover, our assumption
is consistent with the actual precise decay of volume of the fiber under the
flow being precisely a(T − t).

The other assumption that we made was that the singularity forms at
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5.2. Remarks

a type I rate. As mentioned before, it is conjectured that the alternative,
type IIa singularities, only form with very particular initial metrics. There
are other things that suggest a type I rate. The volume of the manifold
and even each fibre decays at a rate of (T − t), which is typical of a type
I singularity (e.g. shrinking Ricci solitons). Moreover, the metric becomes
degenerate only in the fibre direction. Because of the symmetry, the Ricci
flow on the whole manifold can induce a modified flow ĝ(t) on the fibre,
which is of the form

dĝ
dt = −Ricĝ + F (u′, u′′, u′′′).

Moreover, the Ric term dominates the F term. From [2], we know that the
Ricci flow on the S2 will always converge to the shrinking round sphere, and
hence will form a type I singularity. Perhaps this modified flow on S2 is close
enough to the Ricci flow to also deduce that the singularity must be type I.

It is tempting to generalize this work. In particular, one could hope that
if the Ricci flow on a compact fibration coverges in the Gromov-Hausdorff
sense to a metric on the base, then for a type I singularity at some p in a
fibre F , the corresponding singularity model should factor as a Riemannian
product of a shrinking soliton on the fibre and flat space corresponding to
the dilated base. The Gromov-Hausdorff convergence would guarantee that
the metric only becomes degenerate in the fibre direction. This implies that
the parabolic dilations will spread disjoint fibres infinitely far appart, so
that the singularity in the base direction becomes flat. One can then use
a local trivialization to find coordinates for each ti factoring apart the base
and fibre direction so that they are orthogonal along F with respect to the
parabolic dilation gi(0). This orthogonality should allow us to deduce that
near F , the cross terms of the metric decay faster than the terms in the F
direction, so that the limit metric on the singularity model have the fibre
and the base orthogonal. This allows us to use the same argument with
Perelman’s no-local-collapsing to conclude that the fibre of the singularity
model must be compact, and hence contains all of the original fibre. Of
course, these are just rough ideas, and the details still need more work.
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