- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- A combined clustering and placement algorithm for FPGAs
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
A combined clustering and placement algorithm for FPGAs Yamashita, Mark
Abstract
One of the major drawbacks of reprogrammable microchips, such as field-programmable gate arrays (FPGAs), is an inherent speed disadvantage over ASIC technologies. To mitigate this speed disadvantage, this thesis presents a novel algorithm to improve timing performance at the possible expense of area and runtime. The algorithm presented leverages node duplication and a depth-optimal initial clustering to provide a starting point for a non-greedy, iterative optimization technique using detailed placement and timing information to develop the final clustering and placement solutions. For a set of benchmarks commonly used in FPGA research, the proposed algorithm achieves an 11\% critical-path delay improvement compared to the VPR academic tool flow. This performance improvement is obtained at the expense of a 44\% increase in area usage and a 26x increase in maximum runtime. Techniques have also been implemented to sacrifice performance to moderate the area or runtime increases. For a 1\% critical-path delay penalty, the runtime can be improved by a factor of 4. The algorithm also provides facilities to impose area restrictions, in which case timing degradation is proportional to the area saved.
Item Metadata
Title |
A combined clustering and placement algorithm for FPGAs
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2007
|
Description |
One of the major drawbacks of reprogrammable microchips, such as field-programmable gate arrays (FPGAs), is an inherent speed disadvantage over ASIC technologies. To mitigate this speed disadvantage, this thesis presents a novel algorithm to improve timing performance at the possible expense of area and runtime. The algorithm presented leverages node duplication and a depth-optimal initial clustering to provide a starting point for a non-greedy, iterative optimization technique using detailed placement and timing information to develop the final clustering and placement solutions.
For a set of benchmarks commonly used in FPGA research, the proposed algorithm achieves an 11\% critical-path delay improvement compared to the VPR academic tool flow. This performance improvement is obtained at the expense of a 44\% increase in area usage and a 26x increase in maximum runtime. Techniques have also been implemented to sacrifice performance to moderate the area or runtime increases. For a 1\% critical-path delay penalty, the runtime can be improved by a factor of 4. The algorithm also provides facilities to impose area restrictions, in which case timing degradation is proportional to the area saved.
|
Extent |
727914 bytes
|
Genre | |
Type | |
File Format |
application/pdf
|
Language |
eng
|
Date Available |
2007-12-06
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0066182
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2008-05
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International