A Combined Clustering and Placement
Algorithm for FPGAs

by

Mark Yamashita
B.A.Sc., The University of Toronto, 2005

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

Master of Applied Science
in
The Faculty of Graduate Studies

(Electrical and Computer Engineering)

The University Of British Columbia
November, 2007
© Mark Yamashita 2007

Abstract

One of the major drawbacks of reprogrammable microchips, such as feddaonmable gate arrays
(FPGAS), is an inherent speed disadvantage over ASIC technoldgiesitigate this speed disad-
vantage, this thesis presents a novel algorithm to improve timing performatioe possible ex-
pense of area and runtime. The algorithm presented leverages ndbatimupand a depth-optimal
initial clustering to provide a starting point for a non-greedy, iterative opttion technique using
detailed placement and timing information to develop the final clustering andnpéentesolutions.
For a set of benchmarks commonly used in FPGA research, the progigseithm achieves an
119% critical-path delay improvement compared to the VPR academic tool flow.pEhformance
improvement is obtained at the expense of a 44% increase in area ushge2ém increase in
maximum runtime. Techniques have also been implemented to sacrifice peréertoamoderate
the area or runtime increases. For a 1% critical-path delay penalty, the rurgimiee improved by
a factor of 4. The algorithm also provides facilities to impose area restri¢cfiongich case timing

degradation is proportional to the area saved.

Table of Contents

Abstract e ii
Tableof Contents iii

Listof Tables o vii

Listof Figures viii

Glossary e X
Acknowledgements e e e Xi

1 Introduction e

1.1 Motivation e e e e

1
1
1.2 Objectives e 2
1.3 Contributions 4
4

1.4 Thesis Organization i

2 Background e e 6
2.1 FPGATechnology Overview ittt 6
2.2 FPGACADFIOW o 9

221 Synthesis e
2.2.2 Technology Mapping

Table of Contents

2.3

2.2.3 Clustering e 10
2.24 Placement 15
225 Routing 16
Previous Work e 17
2.3.1 \ersatile Place & Route (VPR) 18
2.3.2 Simultaneous Placement with Clustering and Duplication (SPCD) 22

2.3.3 Improving Timing-Driven FPGA Packing with Physical Information

(DPack) e 22
234 RAC . . . e 22
2.3.5 Using Logic Duplication to Improve Performance in FPGAs 23
3 Combined Clustering and Placement Algorithm Overview 25
3.1 Algorithm e 25
3.2 Microcluster Formation 26
3.3 Placement 27
3.4 Microcluster Compaction with Orchestrator 28
4 Phase 1: Microcluster Formation 29
4.1 Introduction and Motivation 92
4.2 Algorithm Description 30
4.3 Step 1A - Handling of Sequential Circuits 31
4.4 Step 1B - Lawler Levitt Turner Algorithm 32
4.5 Step 1C - Node Duplicate Reduction Algorithm 5 3
4.5.1 NDR Algorithm Description 35
452 Relabelling 36
4.5.3 Pruningto Correct CLB Violations 38
454 NDRAlgorithmResults 39

Table of Contents

4.6 Additional Duplicate Reduction Through Depth Relaxation 39
4.7 AnalysisandResults e 42
4.7.1 Node Duplicate ReductionResults 42
4.7.2 Analysis of Microcluster FormationResults 43
4.8 SUMMAIY o e e 46
Phase 2: Microcluster Compaction with Orchestrator 47
5.1 |Introduction and Motivation 74
5.2 Algorithm Description e 48
5.2.1 Descriptionoflnputs 49
5.2.2 Orchestrator Preliminary Operations 49
5.2.3 Orchestrator Operational Overview 0 5
5.2.4 Orchestrator Timing Model and TimingGraph 51
5.2.5 Orchestrator Main Operation 53
5.2.6 Duplicate Analyzer e 55
5.2.7 Microcluster Relocation, . 57
5.2.8 Microcluster Relocation During the Reduction Stage 64
529 PadRelocation 65
5.2.10 Compaction e e e 68
5.3 AnalysisandResults 69
531 TimingResults 70
5.3.2 Orchestrator with Area Restrictions 71
5.3.3 Timingvs. Area Performance 72
5.4 Orchestrator Summary e e e e e 73
6 FinalResults 75
6.1 Timing Performance 75

Table of Contents

6.2 Depth e 78
6.3 RoutingResourceUsage i i i e 79
6.4 ArealUsage 81
6.5 Runtime Performance 82
7 Conclusion, Contributions and Future Work 85
7.1 Conclusions e 85
7.2 Contributions e 86
7.3 Future Work o 88
7.3.1 Microcluster Formation Phase 88
7.3.2 Orchestrator 89
Bibliography e e e e 91
Appendices
A Microcluster Statistics e 99
B Margininterval Test 101

Y

List of Tables

21
2.2

4.1
4.2

51
52

6.1
6.2
6.3
6.4
6.5
6.6

Commercial FPGA Device Sizes in total basic logicelements

Summary of Different Clustering Techniques 14
LLT/NDR Results Normalizedto T-VPack 34
Depth Analysisof Benchmarks 44
Duplication Limiting Final Settings 72
Orchestrator Results for Various Area Restrictions, Normalized todaek/P. . . . 73
Timing Results for Different Clustering Algorithms 76
Depth - Timing Improvement Comparison 79
Minimum Channel Width Comparison 80
CLB Usage Comparison v i v i it it e e e e e e e 81
Total Area Comparison [min. sized transistors] 82
RunTimeResults[min] 84

Vii

List of Figures

21
2.2
2.3
2.4
2.5
2.6
2.7

3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7

51
5.2
5.3
54

BasicLogicElement

Configurable LogicBlock 7
Technology Mapping Example (from [30]) 10
Clustering Example (from [30]) 11
Placement Example (from [30]) 15
Routing Structure (from [22]) oo 17
T-VPlace Pseudocode (from[40]) 24
VPR and Proposed DesignFlows 26
Microcluster Formation Flow oL

Node Duplication Example
Motivationfor NDR
Reduction of Blocks AfterUsingNDR 40

Duplicate ReductionResults

Depth Increase vs. DuplicationLimit. 42
Grid Size - Avg Net Length Relationship 45
Orchestrator Flow Chart 50
Flow Chart of Timing Graph Update for a Block Move 52
VALID _LOCATIONS Masking Example

Compaction Routine Example (from [37]) 68

List of Figures

55
5.6
5.7

6.1

Al
A.2

B.1

Critical-Path DelayResults 70
Duplication Limiting TestResults 71
Orchestrator Area vs. Timing Performance 74
Depth Improvement vs. Timing Improvement 8 7
Average Blocks Per Microcluster 99
Microcluster Size by Circuit (0]011
Margin Interval Test Results 101

Glossary

Application Specific Integrated An integrated circuit that is designed andifactured for a specific

Circuit (ASIC): task, as opposed to a reprogammable circuit such aB@iF
Basic Logic Element (BLE): A logic entity in the FPGA consisting of a LUT andmfibp.
Computer Aided Design Software tools that assist designers in building cosydtems.
(CAD) Tool:

Configurable Logic Block (CLB): A group dfl BLEs

Field Programmable Gate A customizable integrated circuit that can be progcaimme
Array (FPGA): perform a given function.
Look Up Table (LUT): A logic element that can compute any function of ulitgputs.

Microelectronics Corporation of A set of FPGA benchmark circuits commoséd in
North Carolina (MCNC) Circuits: academic research.

T-VPack: The most commonly used academic clustering tool.

Versatile Place & Route (VPR): The most commonly used academic place atedool.

Acknowledgements

First, | would like to thank my supervisor Guy Lemieux for his support anidajce. Without him
this work would not have been possible. | would also like to thank other meaflike SOC Lab,
past and present, for their help and expertise. Particularly Dave Gdantin Tom, Eddie Lee,
Karim Allidina, Julien Lamoureux, Scott Chin, Natalie Chan, Andrew Lam/ Paahan, Jason Yu
and Roberto Rosales.

I would also like to acknowledge Konrad Walus for generously allowing maécis computer
cluster and Nick Geraedts who administers the cluster.

| am grateful to my friends and family for their support. Especially my girlftiédknya, who
has provided constant encouragement over the past two years.

Finally, | would like to thank my parents. To my mother who has always had faitieinand to

my father, who | know would be proud.

Xi

Chapter 1

Introduction

1.1 Motivation

A field-programmable gate array (FPGA) is a customizable integrated cir@titcdn be pro-
grammed to perform a given function. The programmability of the device steans & highly
flexible routing architecture and programmable logic elements. The starglanobah to using FP-
GAs is to describe a logic circuit in a hardware description language (IDth as Verilog and use
an FPGA computer-aided design (CAD) tool to produce a bitstream that iram the routing
architecture and logic elements. It is the job of the CAD tool to produce dt tbsit satisfies the
requirements of the user, in terms of such metrics as delay, area and power

The most definitive advantage an FPGA has over a design in a comparetmeltagy, such
as an application specific integrated circuit (ASIC) or standard cell desg low non-recurring
engineering (NRE) cost and fast time to market. Though an ASIC may ter tasd have a lower
unit cost, the cost to design, verify, and produce a chip can be progiyitexpensive for low
to medium volume designs. A modern ASIC design requires considerabldowsis;- a mask-set
that can cost up to $1.5 million USD for 65-nm technology [31], and possigleral months for
the design to be fabricated. An FPGA design is comparatively simpler, hapfrant production
costs and requires only that the FPGAs be programmed instead of manedcata foundry. As
mentioned, though, these advantages are obtained at the expensiitecobt] power consumption,
and speed. According to [28], in a 90nm process technology, an F&@E#érs a 4 times speed

disadvantage and 14 times increase in dynamic power when compared té@n AS

Chapter 1. Introduction

As process technologies shrink and circuits become larger, the abselfibenpance gap be-
tween ASICs and FPGAs will continue to increase. To remain competitiveARBEinology must
close this performance gap. One of the most direct ways to improve FP@aipance is to create
better CAD tools.

In the clustering step of the FPGA CAD flow, the majority of algorithms are baseaigreedy
approach. While a greedy algorithm is fast and effective, it is limited by abhility to adjust the
clustering solution during later stages of the CAD flow and it provides natdimeans for node
duplication, a method that can reduce interconnect delay by reducingdepib.

FPGA clustering algorithms that use node duplication, do so either in exgessa mechanism
for tuning the solution. When node duplication is done solely at the clustetayg sbecause
of a lack of accurate timing information, a large amount of duplication is redueensure a
performance improvement. Using duplication to tune the clustering solutionr eftke placement
([3], [53]) or after each iteration of the simulated annealer ([9]), may limétpkerformance gains
achievable through node duplication.

Previous research has also tried to combine the clustering and placenpenbftee FPGA
CAD flow. The approach used by [9] is to integrate clustering changesisimulated annealing-
based placer. While this approach is effective in making incremental immeves to the clustering
solution, it still lacks the ability to fully utilize accurate timing information when makingdamen-
tal clustering decisions.

Finally, one feature not present in current clustering tools is the ability tetodf area for
performance. If the final routed solution does not meet the timing requitsnoéthe design, the

designer has no opportunity to expend additional resources to improtienthg of the circuit.

1.2 Objectives

The algorithm presented in this thesis leverages node duplication and aageiotial initial clus-

tering to provide a starting point for a non-greedy, iterative optimizationnigcie using detailed

Chapter 1. Introduction

placement and timing information to develop the final clustering and placematibss. The main
goal is to improve timing performance at the possible expense of aream@tinmteu

To combine the clustering and placement steps in a runtime-efficient marsmprotiram must
first create an initial clustering solution. This solution is comprised of a ssi@bclusters, which
are small groups of connected blocks. The formation of microclustevaa®the algorithm with a
means to create a preliminary placement from which accurate timing informatidmecaxtracted.
As the composition of microclusters usually persists through the remaindee GfAD flow, it is
the aim of the Microcluster Formation Phase to create microclusters that digtdgidy-cohesive
entities that facilitate a low critical-path delay.

During the initial clustering phase, a depth-optimal clustering solution is ctedieis means
that the worst-case number of clusters traversed along any path frofrtdngutput is minimized. It
will be shown that this depth advantage translates into a critical-path delaptade after routing.
Therefore, the clustering and placement algorithm should strive to mairdatrotover the depth
of the circuit.

From an initial placement of microclusters, the program can create areéetiming model of
the circuit. With this comprehensive timing and placement information, the galaéagorithm is
to use this information to make informed decisions about how to alter the clusterthglacement
solutions. Making a change to the organization or composition of the microdusbastitutes
a change in both the clustering and placement solutions. Therefore,dbeapr should use all
timing and placement information available to ensure each change maximizes#ii toetiming
performance, area and routing resource usage.

Node duplication can be instrumental in helping reduce the critical-path déldne a@ircuit.
Node duplication refers to replicating the same logic function, with the same jriputgfferent
locations on the chip. Duplication can reduce delay by allowing successchkshto take inputs
from a local copy to improve timing, rather than taking it from a distant origifk objective of

the algorithm is to use node duplication as effectively as possible to reeélayeah the critical path,

Chapter 1. Introduction

while not impeding the algorithm from meeting the imposed area restrictions.pfneach taken is
to create a large amount of duplication during the Microcluster FormatioreRimakthen reduce the
amount of duplication as required throughout the remainder of the algoritistiherefore essential
that when removing duplication, the algorithm retains those nodes that aneodtebeneficial to
timing performance.

One final objective is to allow the user to sacrifice area for an improvemdimhing perfor-
mance. If the user has already purchased a chip that is larger tharecefqur the circuit, it is the
goal of the algorithm to take full advantage of the additional logic to increas®rmance. This
relies on the principle that more node duplication can reduce the critical-péh df the circuit.
The trade-off between area and performance should be a contirwmih, where the greater the

area increase, the greater the performance gain, up to a certain point.

1.3 Contributions

This thesis introduces a combined clustering and placement algorithm comgi$tiwo unique
algorithms, the Node Duplicate Reduction algorithm and the OrchestratoitatgorThe Node
Duplicate Reduction (NDR) algorithm provides a proficient means of iedube node duplication
of a label and cluster solution, while maintaining a specified depth. The €irebar algorithm
introduces a novel strategy for using placement and timing informationto mékenied decisions
concerning how to reorganize and consolidate the initial clustering fronNR algorithm to

reduce area usage and critical-path delay.

1.4 Thesis Organization

The remainder of the thesis is organized as follows. Chapter 2 providescise overview of
modern FPGA technology, associated state of the art CAD tools and pseval which is related

to the subject of this thesis. Chapter 3 provides a broad overview of thathlg presented in the

Chapter 1. Introduction

thesis. Phase 1 of the algorithm is described in Chapter 4, and Phaseeza@ahithm is described
in Chapter 5. Chapter 6 compares the results of the proposed algorithmthéthagademic tools.

Finally, Chapter 7 presents conclusions drawn from this researctelbasxcontributions made and

possible future work.

Chapter 2

Background

This chapter first presents an overview of modern field-programmaldeagay (FPGA) technol-
ogy. It then describes the computer-aided design (CAD) flow used to roiaguit on to an FPGA.
For each step in the CAD flow, a short description of the function of thatistgiven, along with
a survey of common tools used for the given step, with particular emphasisdpten the cluster-
ing and placement steps. Finally, a more thorough review of work most simikkigdahesis is

presented.

2.1 FPGA Technology Overview

The primary building block of an FPGA is the basic logic element (BLE), ctingi®f ak-input
look-up table (LUT) and a flip-flop. A4-input LUT can perform any Boolean logic function of up

to k inputs. The BLE can either be used in sequential mode, where the outplersftam the
flip-flop, or in combinational mode, where the output is supplied by the LbThiks thesis, a BLE

is referred to as blockor anodewhen representing a netlist entity and as a BLE when representing
an architectural entity.

Modern FPGAs such as the Xilinx Virtex-5 [24] and Altera Stratix Il [15pgp a number of
BLEs into a configurable logic block (CLB). A CLB provides fast local neannect to directly
route signals between resident BLEs. This allows the CAD flow to place deitEs in the same
CLB to reduce delay incurred between them. A CLB is characterized byutmber of BLES in the

cluster (N) and the total inputs to the clustd).(It is assumed that each BLE may draw inputs from

Chapter 2. Background

—»
—»
»| k-input » D Q
LUT
FF
— =

Figure 2.1: Basic Logic Element

any of thel cluster inputs or any BLE output within the CLB. In this document CLBs dfierred to

asclusterswhen representing a netlist entity and as CLBs when representing atearatfal entity.

5}4 L]
}4 L.

:} BL;

1l

1l

1l

Figure 2.2: Configurable Logic Block

Generally, an FPGA is arranged so that the CLBs form a grid. The roattigtecture forms
routing channels between each row and column of CLBs. A channel segmthe portion of
a channel that spans one CLB. The number of signals that can occgpgrarouting channel
segment is termed thehannel width of the FPGA. It is the responsibility of the CAD flow to
ensure that the maximum number of signals routed through any channed thdesor equal to the
channel width. If the channel width is exceeded, the circuit is said to mutable.

During the design process of commercial FPGAs, a single tile is designsisting of a CLB
and its adjacent routing resources. For all devices in that family, the FE¥@sists of an array of

those tiles in different size grids. So, for a given FPGA fankiyN, | and the channel width are

Chapter 2. Background

fixed, and the variant is the number of tiles on the chip. The following tablerstioe number of

BLEs in two popular FPGA families.

Stratix Ill (Altera) k=6, N=10
EP3SL50 EP3SL70 EP3SL110 EP3SL150 EP3SL200 EP3SE260 BRGSL
19,000 27,000 42,600 56,800 79,560 101,760 135,200
Virtex-5 (Xilinx) k=6, N=8
XC5VLX30 XC5VLX50 XC5VLX85 XC5VLX110 XC5VLX220 XC5VLX330
19,200 28,800 51,840 69,120 138,240 207,36(

Table 2.1: Commercial FPGA Device Sizes in total basic logic elements

For this thesis, unless otherwise noted, the followdlegfactostandard FPGA architecture is

assumed:
e Lutsizerk=4
e Cluster sizeN =10
e Inputs per CLBI = (k/2) « (N+ 1) = 22, as recommended by [1]
e wirelength = 4 (a single wire spans 4 CLBSs)
¢ |/O ratio = sufficient to ensure circuit is logic limited
e Switch block type = subset
e Connection block input connectivity = 0.4
e Connection block output connectivity = 0.125
e Connection block pad connectivity = 1
e Switch type = buffered

For a further description of these architectural features, pleas&fee [

Chapter 2. Background

2.2 FPGA CAD Flow

The purpose of the FPGA CAD flow is to produce a bitstream used to protra device from
a hardware description language (HDL) specification of the circuit. Tis¢rdam designates the
function of all BLEs and specifies how the routing architecture shoultersignals between them.
The CAD flow must ensure that no architectural limitations are exceededtamdd attempt to
optimize a given set of metrics, such as delay, area and power.

The FPGA CAD flow is generally broken into 5 steps: synthesis, technatoayping, clus-
tering, placement and routing. In the standard flow, each step is pedamtarn with no back-
tracking. What follows is a brief description of each step, with particularrersis on steps that are

related to this work.

2.2.1 Synthesis

In the synthesis step, the HDL description of the circuit expressed in adaegsuch as VHDL
((Very-High-Speed Integrated Circuits) Hardware Description Lage) or Verilog is translated
into a gate-level description of the circuit. Technology-independent logficnization is also per-

formed during this step.

2.2.2 Technology Mapping

The technology mapping step takes the netlist produced by the synthesédtemaps the circuit
into a series ok-input LUTs and flip-flops. Figure 2.3 shows an example of technologypmap

where a netlist described as a directed acyclic graph (DAG) is mappethpudtUTs. The goal
of technology mapping can be reduce the number of LUTs used ([48],[B5], [52]), delay ([11],

[10], [21], [47]), or some combination of the two. The technology mapgingblem generally
equates to finding sets of Boolean gates with a total of no greatektimputs, and implementing
these gates within a LUT.

When optimizing for delay, the goal is to minimize the LUT depth of the circuit. Th& depth

9

Chapter 2. Background

Figure 2.3: Technology Mapping Example (from [30])

is defined as the maximum number of LUTs traversed from circuit input taitmatput. The most
well-known academic tool for delay-driven technology mapping is Flowidy. FlowMap will
find a solution that has an optimal LUT depth in polynomial time.

For the MCNC benchmark circuits used in this thesis, all technology mappinigooiits was
performed by running FlowMap [11] for depth optimality followed by FlowR§t2] for area re-
duction. Next, SIS [55] was run with the scripseript.ruggedandscript.algebrai¢ and the lower

area solution out of the two was chosen.

2.2.3 Clustering

The function of the clustering step is to assign blocks to clusters that will fitGhB to reduce
the delay and routing resource usage of the circuit. The CLB has its awimgostructure that, in
general, fully connects all block inputs to: 1. the inputs of the CLB and 2otifyguts of all resident
BLEs. This fully-connected intracluster routing is faster than the gemneudihg resources, so any
signals that can be routed intracluster will incur a smaller delay. Additionadipguthe CLB’s
routing structure reduces the stress on the general routing architgesuking in a lower required
channel width. An example of the clustering process is shown in Figure 2.4.

The simplest clustering algorithms are based on a greedy approactebyteesingle block is

chosen as a seed, and other blocks are added to the cluster depentlieg celation to that seed,

10

Chapter 2. Background

\ ll Clusters 5 l I e o A

] 1 block block block

block block block 1 2 4

1 2 3 ——7— 1
\j l_‘ q ¥ N

block block ; L | [block| [block
4 5 : : 5 3

Figure 2.4: Clustering Example (from [30])

until the capacity constraints are met. Being greedy, there is typically narbaking; once a
block is placed in a cluster, it remains in that cluster for the duration of the @éd Many such

greedy algorithms exist, all with distinct goals. Such algorithms include VRHckvhich tries to

minimize the total number of inputs per cluster; T-VPack [41], which tries tacedhe number
of intercluster nets on the critical path; RPack [7], which attempts to red@ceothiing effort of

the circuit by enclosing intercluster nets in clusters; a timing-aware ver§iaPack, T-RPack [6],
which assigns a criticality to each net to aid in deciding which nets to make intraclaad finally

iRAC [57] which attempts to minimize routing channel width by completely enclosingféowut

nets within a cluster. Greedy clustering algorithms are fast and area mffibig due to a lack of
backtracking, they can get trapped in local minima.

The next group of algorithms are termed label and cluster, where twepasshe circuit
are made. The first assigns a label to each node, relative to the minimum tiniedelefore it
produces a result; the second pass groups nodes into clusters uslalgetisepreviously assigned.
The origin of the label and cluster method is the Lawler Levitt Turner (LUgdathm [32], which
produces the smallest maximum circuit depth, but at the expense of 2&oaerhead. A more
generalized delay model, where gate delays are included, is presen#8].inRajaraman and
Wong [51] presented a performance-driven optimal clustering algoritraduced in [45], based

on dynamic programming. This algorithm also suffers from a high areaheadrthrough node

11

Chapter 2. Background

duplication.

A number of attempts have been made to build upon the algorithm presented].inTbé&
clustering algorithm presented in [63] extended the algorithm by introdacpast-clustering node
duplication reduction technique, rooted cluster elimination, which eliminates techvben the
root of that cluster can be replaced by one of its duplicates withoutteffgtiming. Timing Driven
Clustering followed by cluster Packing (TDCP) [16] builds upon [51]¢goaithm by using a slack
based node duplication control, whereby any node with a slack greatestimae predetermined
amount is not duplicated, even if it detrimentally effects circuit delay. In bethniques, node
duplication reduction is performed during the clustering step. This limits the anuduiming
information available, subsequently restricting the algorithm’s ability to makenrddrclustering
decisions.

Multi-level clustering algorithms, though targeted to hierarchical FPGAs,le&ad important
innovation to clustering as a whole. Two-level clustering (TLC) [13] builg®n the dynamic
programming algorithm in [51], and also introduces the node duplicatiorctietutechnique of
refusing to duplicate nodes exceeding a certain slack. The multi-level iihgsteol presented in
[60] performs clustering by using the algorithm from [51] at each levelwih the label and cluster
techniques, multi-level clustering addresses node duplication reductsopas-clustering step.

Work has also been done on clustering performed in unison with otheristdyesFPGA design
flow. The algorithm presented in [39] performs simultaneous technologyimgjand clustering.
Through this, they can make area-aware technology mapping decisiosduterarea usage. The
Simultaneous Placement with Clustering and Duplication (SPCD) algorithm,npeelsm [9] in-
corporates incremental changes to the clustering solution during anneaatingllows duplication
insertion after each iteration of the annealer. The algorithm is limited by theHactuplication
and clustering changes are only employed to provide incremental improt&toghe solution; the
initial clustering is taken directly from T-VPack [41].

A modified clustering and placement algorithm is presented in [53], whetaiceCLBs are

12

Chapter 2. Background

only partially filled during clustering, and node duplication is performed gii@rement to reduce
the critical-path delay. Duplication is performed after routing in [3] to straigtuétical paths,
reducing the delay incurred on them. In these last two techniques, placsnpenformed with no
information on where duplication will exist. Therefore, it has no ability to aotdor duplication
during placement to improve performance.

Finally, DPack [17] creates a fast, min-cut partitioning based placemeBt.B§ to provide
placement information during the clustering stage. The placement informatisedsin a greedy-
based clustering tool which integrates the placement information into the alg&ritbst function.
While this algorithm demonstrates the merit of including placement informationglahirstering,
the placement information is not accurate enough to provide a useful timinglmaigo, it does
not consider the benefits of duplication.

A summary of the clustering methods mentioned above is provided in Table 2.2.

13

14

Reference\ Algorithm Name / Title Clustering Approach \ Duplication
[4] VPack Greedy none
[41] T-VPack Greedy none
[7] RPack Greedy none
[6] T-RRack Greedy none
[57] iRAC Greedy none
[32] Lawler Levitt Turner (LLT) Label and Cluster during clustering
[45] Generalized LLT Label and Cluster during clustering
[51] Optimum Clustering for Delay Label and Cluster during clustering
Minimization
[63] CLUSTER Label and Cluster during clustering w/
post-clustering reduction
[16] Timing Driven Clustering followed Label and Cluster limited amount during clustering
by Cluster Packing
[13] Two-Level Clustering Label and Cluster limited amount during clustering
[60] Multilevel Circuit Clustering Label and Cluster during clustering w/
post-clustering reduction
[39] Simultaneous Mapping and Clusterind.abel and Cluster during clustering w/
with Tech. Mapping post-clustering reduction
[9] Simultaneous Placement with Greedy with during placement
Clustering and Duplication Post-Clustering Modification
[53] Using Logic Duplication to Improve | Greedy post-placement
Performance in FPGAs
[3] Timing Optimization of FPGA Greedy post-routing
Placements by Logic Replication
[17] DPack Greedy w/ placement informationnone

Table 2.2: Summary of Different Clustering Techniques

punoibxoeg -z 1aideyd

Chapter 2. Background

2.2.4 Placement

The job of the placer is to assign a unique location in the FPGA to each blotkstecin the circuit.
The placement algorithm may try to optimize for delay, routing resource usageombination of
the two. Placement algorithms for FPGAs generally fall into two categories:lai@tuannealing
and analytical placement. Figure 2.5 shows an example of placing clustezfietta throughn,

into a 5x5 grid.

LI
LI L
(][] [a] [m] [x]
[(] []
RN

Figure 2.5: Placement Example (from [30])

Simulated annealing was first proposed by [27] as a general optimizatioritafg. As it re-
lates to the FPGA placement problem, the idea is to start with a random placen@iBs) a cost
function that acts to assess the metrics of the placement, and some temper&iorea Tertain
number of iterations, two randomly chosen clusters tentatively swap locatidhe change causes
a decrease in the cost function, the change is kept. If the changes@us®rease in the cost func-
tion, the probability of keeping the change is dependent on the currenétatape of the annealer.
Detrimental changes may benefit the overall solution by preventing the sosgace from getting
trapped in local minima. As the algorithm progresses, the temperature is slearlgrdented. This
causes unfavourable moves to become less likely, thus allowing the solutionl @ $itable mini-
mum. Examples of simulated annealing tools are TimberWolf [54] for standdlasements, and

Versatile Place & Route (VPR) [5] for FPGAs. The VPR Placement algoritiiurther explained

15

Chapter 2. Background

in Section 2.3.1.

Analytical placers represent the placement problem with a system ofie@asiavhich are then
solved numerically. Force-directed placement [49] is one type of andlplimeer that models the
system as a series of particles and springs. When applied to the FPGanplaceroblem, each
cluster is analogous to a particle and each net is modelled as a spring witle aémstant relative to
the criticality of the net. Any given cluster will be under the force of a nundb@ets. The problem
then reduces to solving the system such that each cluster reaches d state where the forces
from all incident nets sum to zero. One significant drawback to thedgtmaétechniques is the
overlapping of clusters. A valid solution requires that each cluster hawggaie discrete location,
therefore the placer must legalize the placement by separating overlagpsters. Solutions to
this problem include repulsive forces for overlapping blocks [49]aative forces to low density
areas [18], and disallowing overlap by forcing one CLB to swap outherd56]. Force-directed
placers for VLSI, standard cell and macro-cell designs include [$2Z], and [23], respectively.
There has been little work done on force-directed placement for FPGre& notable exception is a
comparison of placement techniques in [44] where they implemented thedinected placement
algorithm described in [56]. The results of [44] show similar performandbdd/PR placement
tool when allowed similar run times. Force-directed placement is applied tordtesal FPGAS
in [38] by using a force-directed scheme for coarse net-level pladeameha similar process for
detailed logic cell placement.

Additional placement algorithms exist for FPGAs, such as min-cut partiticedggyithms and

other analytical placers. For brevity, a complete description of thesethlgaris not included.

2.2.5 Routing

The final step in the FPGA CAD flow is routing all signals that connect to multiplBsC This
is accomplished by setting programmable switches, buffers, or pass toasméisthe switch and

connection blocks. In Figure 2.6, CLBs are labelled L, switch blocks @edld S, and connection

16

Chapter 2. Background

blocks are labelled C. Connections blocks connect routing track sign@lsBanputs and switch
blocks connect different routing tracks to each other. The goal afdimer may be to either mini-
mize the channel width of the circuit, achieve the lowest critical-path delaycomdination of the

two.

¢ 1 2

b

Figure 2.6: Routing Structure (from [22])

The routing problem can potentially be broken into two stages, a global gostage and a
detailed routing stage. The global router chooses the path through théogegdch net and the
detailed router assigns the actual wire segments for each net. Examplgsrahens that perform
routing in two distinct steps include Course Graph Expansion [8], SEGAl&dator [35], FPR
[2] and [36]. Pathfinder [42] and VPR [5] are examples of routersd¢bmbine global and detailed

routing into single-step routing.

2.3 Previous Work

In the realm of FPGA clustering and placement, there has a been a gataf desearch, some of
which has been cited in Section 2.2. In this section, a more comprehenalysiawill be presented
of algorithms considered to be particularly relevant to the work in this thesissi@erable attention
is paid to the VPR suite, as this not only represents the baseline for compdrigdhe simulated

annealing engine is employed by the work here.

17

Chapter 2. Background

2.3.1 \Versatile Place & Route (VPR)

The 4.30 release of VPR is considered the academic standard for FPG#I@ig, Placement and
Routing. It combines a timing-driven clustering tool, T-VPack [41], a simdlatenealing placer,

T-VPlace [40] and a router based on Pathfinder [42].

T-VPack

As mentioned earlier, T-VPack is a greedy clustering tool with the goaldiaieg the number
of intercluster nets on the critical path. The first step is to estimate the crititalbpshe circuit.
Assuming logic has a delay of 0.1, intracluster nets have a delay of 0.1 anduster nets have a
delay of 1.0, T-VPack builds a timing model with all nets initially intercluster. Whackmg the
next clusteiC, a seed is chosen as the unclustered block driven by the most-criticadatan in
the circuit. The algorithm continues to add the block with the most-critical cdimmeto cluster
C until the cluster is full or all inputs are used. In this manner, T-VPack attetoptsaximize the
number of critical connections made intracluster, thus reducing the exioaelzzy.

T-VPack tends to produce high-quality, efficient clustering results.ebdimg on the number
of inputs per cluster, T-VPack will usually use the fewest possible CLlBt4l_BLES/N]) and in
general has a low critical-path delay. One significant limitation of this appriathe inability to
backtrack, or change decisions previously made. Once a block isghatkea particular cluster, it

will remain there through the remainder of the clustering phase, and thpgiagbment and routing.

Slack Definition

Slack is a measure of how much we may delay the output of a block, bef@nesiés a new critical
path to form. Prior to examining the VPR Placement Algorithm, it is important to staled the
concept of slack and how it is computed. This is used by both VPR and the timmdg! of this

research to compute a slack estimate.

For a given blockb, with predecessorgs, p2...pn, €ach of which produces an output at times

18

Chapter 2. Background

t1,t...t, the completion time db is defined as:

t_.completiortb) = maxt; +delay p1,b),t> + delay pz,b)...tm+ delay pn,b) }
+ logic_delayb)

Wheredelay(p;, b) is a function used to describe the delay of routpdo b, andlogic_delayb) is
the intrinsic logic delay of nodb. Once the completion time of all blocks in the circuit have been

computed, we can define the critical-path delay as:

terit = mMax j ¢ outpadit—com pletiortj)}

At this point, the slack for each circuit outpwait pad, can be set as:

slackout paq) = t¢it —t_completioriout put)

In terms of connections, slack is defined as the additional amount of dedagdh be incurred

before the connection becomes critical. Therefore, for a connectbambtocki to block j:

slack(i, j) = (t.completiorij) — logic_delay j) + slackj)) —t_completiorti) — delayi, j)

Finally, slack is set for all other blocks in a backwards traversal fratpad to inpad. If block has

SUCCESSOrSy, S)...Sm,

slackb) = minysyccessorss {Slack(sk) +t-completiortsy)
—logic_delay(sq) — delay(b,sc) —t_completiorib) }

If a block has zero slack, it is said to batical .

19

Chapter 2. Background

VPR Placement Algorithm - T-VPlace

The VPR placement algorithm is of particular importance to this work, as thedaebesimulated
annealing engine is modelled to emulate VPR’s simulated annealer. Note that \ARR erdire

clusters at a time, not individual blocks. The first step is to randomly plh€d 8s and pads. To
track the quality of the current placement a cost function is necesshaeycdst function takes into
account both the aggregate bounding box area and timing cost of allTtetounding box cost

function is:

B Nnets bk&(n) bby(n)
BB_cost= H;Q(n) Cavn(n) * Cavy(Nn)

such thatbb,(n) andbby(n) are the bounding box values for n@tCayn(n) andCayy(n) are the
average channel capacities acrosounding box (which are both assumed to equal 100)g@nd
is a bounding box correction factor. The correction factor compensatésct that bounding box
estimation underestimates wirelength for high fanout nets.

g(n) = 2.79+0.02616+ (num.terminals— 50)

The second cost function attempts to minimize the length of critical nets close ¢agdthe

timing cost function is a summation over all source-sink pairs (i, j).
Timingcost= % delay(i, j) «criticality i, j) oealtyexponent
(i,j)Ccircuit

where the criticality of the connection is defined as:

_ slacki, j)

criticality (i,) t crit

The criticality exponent is used to heavily weight critical nets. It is variedhfi..O to 8.0 through
the course of the algorithm.

To evaluate the merit of a move, the total change in d#Stis computed as follows:

20

Chapter 2. Background

ATiming Cost ABB_Cost

AC=A- . — 1-A)- .
PreV|ousT|m|ngCost+() PreviousBB_Cost

Unless otherwise noted,is always 0.5, equally weighting the bounding box and timing cost.

To begin the algorithm, an initial temperature is found by performing a numberowés and
setting the temperature high enough that almost all move are accepted. iendegnperature,
10- (Nc|usters)1~33 moves are attempted. The temperature is then lowered, with the objective of
maintaining a 44% acceptance rate as prescribed in [29] and [59].

The current temperature valuempurrent IS important when evaluating bad moves. If a swap
produces a negativC, the move is considered good, so it is kept. If a swap produces a positive

AC, the swap is kept only if:
—AC
etemrurent > rand(0, 1)

Therefore, the probability of a bad move being accepted is increas&é@ i6 small or if
temRurrent iS large. Initially, whentempurrent is large, most swaps are accepted. As the tem-
perature decreases, fewer and fewer bad moves are accepteadlldhsthe placement to slowly
settle to a good solution. The algorithm terminates wiggnprrent = 0.005- Cost/Nnets

While the VPR simulated annealing placer is very proficient at its task, it laekaliity to
adjust the clustering to improve the solution. The pseudocode for the Te&¥ Blacement algorithm

is shown in Figure 2.7.

VPR Routing Algorithm

The VPR Routing algorithm is based on the Pathfinder [42] router, whichrinisumodeled after
the A* router by [48]. All of these algorithms utilize the Lee maze router algorifB3], which can

find the shortest path between two terminals, provided one exists.

21

Chapter 2. Background

In the Pathfinder algorithm, all nets are routed using the A* router, distegathe resource
usage of other nets. The routing usage is then analyzed, and anyceeHizat exceeds its capacity
is assigned a cost. All nets are then re-routed and penalized for usimgrces that have assigned
cost. The cost associated with an overused resources accumulategogghsve iterations until it
becomes so high a sufficient number of nets avoid it. In this way, ovemnesedrces are brought

within their capacity limits and the circuit can be routed.

2.3.2 Simultaneous Placement with Clustering and Duplican (SPCD)

SPCD [9] is based on a simulated annealing placement algorithm. The anreraling is modified
to allow incremental changes to the clustering solution and the introductiorpbaition after each
iteration of the annealer. Starting from a T-VPack clustering solution, ti@DSkgorithm permits
the annealer to make block-level moves in much the same was as cluster-lees. nAdter each
iteration of the annealer, duplication is performed on nodes residing oniticalgath to reduce the
critical-path delay. The work cites a 18% critical-path delay improvement\sR& with a cluster

size of 4 and wirelength of 1.

2.3.3 Improving Timing-Driven FPGA Packing with Physical Information (DPack)

DPack [17] is a greedy algorithm which incorporates placement informattionthe clustering step.
Using a min-cut partitioning-based placer, a fast placement of blocke#ext. This placement
information is used to create another term in the clustering tool’s cost funckioework cites an

8% reduction in critical-path delay and a 19% reduction in channel width.

2.3.4 IRAC

iIRAC [57] is greedy-based clustering tool that is specifically concemigd reducing the routing
resource usage of the circuit. In FPGA CAD, iRAC is considered stateeddrttin terms of achiev-

ing the lowest channel width for a circuit. The goal of the algorithm is to makaany low-fanout

22

Chapter 2. Background

nets intracluster as possible. It accomplishes this by choosing seeds wgthraumber of incident
nets and a low number of associated terminals. It then packs clusters ia suaghas to encompass
as many nets as possible into the cluster. The iRAC tool can reduce the rcldingel width by an

average of 34% compared to T-VPack, without substantially altering the tingrigrmance.

2.3.5 Using Logic Duplication to Improve Performance in FPG/A

Work by Schabas et al. [53] describes an algorithm that inserts logidtipn after placement to
improve the critical-path delay of the circuit. During the clustering phasepproach similar to
T-VPack is employed, but some clusters are left under-full. In the p#perclustering algorithm
leaves a minimum of 4 blocks empty in a cluster of 10, for clusters deemed tothe oritical path.
After a simulated-annealing placement of the circuit, the algorithm inserts dtgdialong timing-
critical paths to reduce the overall circuit delay. The paper cites a 14et¥ease in critical-path
delay for a 20% increase in area. This area increase roughly equatess@asing the grid size by 2

rows and 2 columns.

23

Chapter 2. Background

S = RandomPlacement ();

T = InitialTemperature [};

Rijmit = InitialRyim ():

Criticality_Exponent = ComputeNewExponent();

ComputeDelayMatrix();

while (ExitCriterion () == False) { ™ “Outer loop™ */

}

TimingAnalyze(); * Perform a timing-analysis and update each connections criticality */
Previous_Wiring_Cost =Wiring_Cost(S); /™ wire-length minimization normalization term *f

Previous_Timing_Cost = Timing_Cost(S); /* delay minimization normalization term */
while {InnerLoopCriterion () == False){ ™ “lnner loop™*/

Snew = GenerateViaMove (S, Ryih
ATiming_Cost = Timing_Cost(S 5, - Timing_Cost(S);
AWiring_Cost =Wiring_Cost(S 5,,) -Wiring_Cost(S);
AC = A-(ATiming_Cost'Prev_Timing_Cost) +
(1-%)-(AWiring_Cost/Previous_Wiring_Cost); ™ new cost fon */

if (AC =0){
S = Spaw M Move is good, accept */

}

else {
r = random (0,1);
if (r < e €Ty

5 = Saws ™ Move is bad, accept anyway */
}
} ™ End “inner loop™ */

T = UpdateTermp ();
Rijimit = UpdateRjmit ():
Criticality_Exponent = ComputeMewExponent();

™ End “outer loop™ *f

Figure 2.7: T-VPlace Pseudocode (from [40])

24

Chapter 3

Combined Clustering and Placement

Algorithm Overview

The algorithm presented in this thesis leverages node duplication and aagejotial initial clus-
tering to provide a starting point for a non-greedy, iterative optimizationnigcie using detailed
placement and timing information to develop the clustering and placement solufldr@s main
goal is to improve timing performance at the possible expense of area atgheu This chapter

describes the algorithm at a high level and presents rationale for theaagbpr

3.1 Algorithm

The clustering and placement steps of the FPGA CAD flow require assigaiciy pad, LUT or
flip-flop to a CLB, and assigning each CLB to a location on the FPGA. Thesrptthe combined

clustering and placement algorithm are:
e A description of the logic circuit defined by a setleinput LUTS, flip-flops and pads.
e An architectural description of the target FPGA.

The outputs are:
e A netlist describing the clustering solution.

¢ A file describing the placement solution.

25

Chapter 3. Combined Clustering and Placement Algorithm Overview

VPR Design Flow

Proposed Design Flow

Logic Optimization (SIS)
Technology Map to

LUTs (FlowMap)

Logic Optimization (SIS)
Technology Mapto LUTs (FlowMap)

|
.blif Logic Description

T
.blif Logic [iescription

Microcluster Formation
group Logic Blocks into micro clusters

} Phase 1

T-VPack
group Logic Blocks in Clusters

.net Netlist File
v

.net Netlist File

VPR
Fast Placement

T T
.net Netlist File VPR Placement File

VPR
Placement

I
VPR Placement File

Orchestrator
micro clusters and create ne
placement

Consolidate

} Phase 2

1 |
.net Netlist File VPR Plilcement File

VPR
Detailed Routing

VPR
Detailed Routing

-

Placement and Routing Output Files,
Placement and Routing Statistics

|

|

Placement and Routing Statistics

[Placemem and Routing Output Files,]

Figure 3.1: VPR and Proposed Design Flows

As shown in Figure 3.1, the proposed design flow is broken into two phtseMicrocluster
Formation phase and the Microcluster Compaction with Orchestrator phiageéef microcluster
is used to describe a group of logic blocks that will be put into the same QuiBnhy still leave

room in the CLB for additional microclusters.

3.2 Microcluster Formation

The purpose of the Microcluster Formation stage is to construct microgdusyegrouping con-
nected blocks in a depth-controlled manner. Creating a solution with a minimusibjdepth
requires introducing node duplication into the circuit. This phase is alsomegpe for managing
the amount of duplication in the intermediate solution that is passed to the Mideyal@mpaction

phase.

26

Chapter 3. Combined Clustering and Placement Algorithm Overview

To create microclusters, the Lawler Levitt Turner algorithm [32] is usedéate a clustering
solution with a minimum circuit depth. To create a minimum-depth clustering, the LLdridign
requires a great deal of duplication. Some amount of duplication is desigesbit will be used to
improve performance. Conversely, too much duplication may limit the ability of ltqarithm to
meet the area restrictions imposed by the user. Therefore, a Node DeReduction (NDR) tech-
nigue is presented to reduce the amount of duplication in the initial clusteriniso Using these
two techniques in tandem, an initial clustering solution is created where the awfaluplication
is customized to the area constraints of the circuit.

For subsequent steps in the CAD flow, grouping blocks into microclustevédes certain ad-

vantages over using individual blocks as basic entities. These adeantafjude:
e reduced runtime in creating an initial placement as there are fewer entitiexto pla

e a more useful placement model, as microclusters are more representatiZé B than indi-

vidual blocks

e a controlled depth that the Microcluster Compaction Phase can use to detiviéical-path

delay improvement over a clustering approach with no depth control

The Microcluster Formation phase produces a set of microclustersewheh microcluster is a
group of connected blocks of size.1N, with up tol external inputs. A microcluster is essentially a
precursor to a cluster, but conforms to the same restrictions as a clustavlidrocluster Formation

phase is described in detail in Chapter 4.

3.3 Placement

After Microcluster Formation, but before Microcluster Compaction, a pree# of the microclus-
ters is created with the VPR simulated annealer using the -fast flag. A fastptat is sufficient as

the Orchestrator tool produces similar results with either a full placememtsbpfacement. Dur-

27

Chapter 3. Combined Clustering and Placement Algorithm Overview

ing this stage, each CLB is limited to hold only 1 microcluster, regardless of haw ivlacks it
contains. The VPR Placement algorithm is described in Section 2.3.1.
The placement of microclusters provides the Microcluster Compaction ptitlsex detailed

estimate of circuit timing, which is then used to produce the final clusteringlacdmpent solution.

3.4 Microcluster Compaction with Orchestrator

The goal of the Microcluster Compaction phase is to reorganize andlaateahe microclusters
created in the Microcluster Formation phase to better match CLB capacity. Thieduce the
number of CLBs required, improving area efficiency, wirelength and/delsing the fast placement
result, the algorithm builds an accurate timing model of the circuit. Using this timimgntion,
the algorithm iteratively moves microclusters to locations that improve delay BBdi€age.

To move a microcluster, the algorithm analyzes all predecessor andssaceeicroclusters to
build a set of source and sink positions. From this, a set of possible meaitidios are generated that
would place the microclusters in a position that is more advantageous from a feiggective.
If multiple move locations are found, they are ordered by how they affecbttunding box cost
of the circuit. The algorithm then attempts each move location, in order, untiled tegve is
found, or until the algorithm reaches the microcluster’s current locafldmough this technique,
the algorithm can compact the placement and iteratively reduce delay oalaritivear critical nets
and gradually lower the overall critical-path delay.

The Orchestrator algorithm can also try to force a circuit to conform teengarea restriction.
If the user provides a maximum grid size, the algorithm will reduce supedldaoiplication and
CLB usage while moving microclusters. This allows the designer to tradeeddffar performance
in a controlled fashion.

The final output of the Orchestrator algorithm is a valid clustering and planesolution that

can be routed by VPR.

28

Chapter 4

Phase 1: Microcluster Formation

The Microcluster Formation routine groups individual blocks into microchgstgsing the Lawler
Levitt Turner (LLT) algorithm, a depth-optimal clustering solution is formed. ré@duce the total
amount of node duplication in the clustering solution, a Node Duplicate Redy8tldR) algorithm

is used. The NDR algorithm takes advantage of depth slack to reduceatapli€inally, if further
duplication reduction is required, the NDR algorithm can increase the defbilibate a greater

reduction in duplication.

4.1 Introduction and Motivation

To goal of the Microcluster Formation phase is to create a set of highlysa@hmicroclusters that
provide good opportunity for subsequent steps in the algorithm to acluevdelay. In forming
microclusters, the algorithm does remove some freedom in altering the clgssetirtion during
later steps. As microclusters usually persist for the duration of the CAD flere is little oppor-
tunity to undo the initial clustering. Therefore, it is important to create micréetaghat promote
low delay throughout the circuit.

When forming microclusters, to facilitate lower delay in the final routed solutioa concept
of cluster depth (or microcluster depth, depending on the context) is impokarocluster depth
(or hereafter referred to simply as depth) is the worst-case number ajchisters traversed along
any combinational path through the circuit. Circuit depth directly influendésal-path delay as

the depth indicates the number of intercluster nets that must be traversedontée solution. As

29

Chapter 4. Phase 1: Microcluster Formation

intercluster nets have larger delay compared to intracluster nets and Itaycttey tend to dictate
the delay on the critical path. Therefore, it is in the best interest of theitiigoto minimize circuit
depth during the Microcluster Formation phase.

Another important consideration when forming microclusters is node duplicatiode dupli-
cation refers to creating a block with the same inputs and same functionalitytifesrblock, but
in a different microcluster. As will be shown, node duplication is used tagediepth and critical-
path delay, but this comes at the expense of increased area. Thewebfectihe duplication is
to provide more opportunity for critical-path delay reduction in subseqpieases by strategically
placing duplicates.

For a combined clustering and placement approach, a placement of iraliitbcks would
require significant runtime for large circuits. Even if such a placemenepessible, without
any clustering information, the timing information available would be of little merit. Torattoe
program to create a meaningful initial placement, the Microcluster Formatiasepimust create a
set of microclusters. During Phase 2 of the algorithm, groups of microctuste consolidated and
placed to form the final clusters. Since microclusters will not be brokart &ger, they provide the
opportunity to reduce the amount of effort required during placememefti&s individual blocks,
even more runtime would be needed due to the increased amount of flexibility.

This chapter begins with a complete description of the Microcluster Formationitalg, bro-
ken into 3 steps labelled 1A, 1B and 1C. Step 1C is described in Section 4.B.i% gsite long.
Section 4.6 explains how NDR algorithm is used to further reduce duplicagiorlaxing circuit
depth. Finally, the results of the Microcluster Formation Phase are prdsamieanalyzed in Sec-

tion 4.7.

4.2 Algorithm Description

As shown in Figure 4.1, the Microcluster Formation phase is broken into 8:stép- Handling of

Sequential Circuits, 1B - LLT algorithm, and 1C - NDR algorithm. In this sectath of the these

30

Chapter 4. Phase 1: Microcluster Formation

steps is explained in detalil.

Logic Description

1A :Break FFs
into Virtual
Inpad /Outpad

1B: LLT algorithm

Label

v

Cluster

1C : NDR | algorithm

Relabelling

v

Pruning

Microclusters

Figure 4.1: Microcluster Formation Flow

4.3 Step 1A - Handling of Sequential Circuits

When performing clustering and placement, special consideration muisgngg sequential circuit
elements, namely blocks which use a flip-flop. As a flip-flop is a delimiter for titieal path, any
output of a flip-flop starts a new path through the circuit, and any input to dldlipfinishes a
path. In this work, a flip-flop is treated as two elements, a virtual input andwaloutput. After
Microcluster Formation is completed, the flip-flops are re-inserted to theitcii2epending on the
positioning of the flip-flops, Phase 2 will either assign each flip-flop its owk,Bor match it with

a LUT and combine the two elements into a single BLE.

31

Chapter 4. Phase 1: Microcluster Formation

4.4 Step 1B - Lawler Levitt Turner Algorithm

The Lawler Levitt Turner (LLT) algorithm [32] was originally devised apacking algorithm for
digital networks, but has found relevance with FPGAs. This relevaniesisiue to the unit delay

model, which to a first order approximation, can be applied to FPGAs. Thig deodel assumes:
1. all BLEs have zero delay,
2. intracluster connections have zero delay, and
3. intercluster connections have one unit delay.

This algorithm produces a clustering solution with the lowest possible maximpth,dehich gen-
erally translates into a low critical-path delay. However, the algorithm haswldrck, which we
will try to fix later in Step 1C: an excessive amount of duplication is required.

The LLT algorithm is comprised of two phases, the labelling phase and themchgsphase. In
the labelling phase, each nodés assigned a label(n) representing the worst-case delay to that

node, under the unit delay model. The labelling phase proceeds as follows
1. Label all primary/virtual inputs 0.

2. Find an unlabelled node such that all predecessorsohave been labelled. Lé&tbe the

largest label of any predecessor node, and let thBdet all ancestors af with labelk.

if [A+1>N,I(n)=k+1, otherwiseI(n) =k

3. Continue until all nodes are labelled. In this manner, for any mootelabel k, the number
of predecessors af with labelk, plusn itself, is always less than or equal Kb(maximum

blocks per cluster).

32

Chapter 4. Phase 1: Microcluster Formation

The clustering phase uses the labels to create a depth-optimal clusteritignsolRuring the
clustering phase, inpads and outpads are ignored (as they are igoeds® clusters) and latches

are treated as virtual outputs. The clustering stage proceeds as follows:

1. Find a node with labelk, such that is a virtual output or all successors ohave labels

greater thatk. This noder is referred to as enicrocluster root.
2. Form a microcluster which includesand all predecessors pivith labelk.
3. If unclustered nodes still exist, return to step 1.

At the conclusion of the clustering phase, all nodes (except inpadoaipads) should be
assigned a microcluster. Instances may also exist where a single blotskiexdsiumber of micro-
clusters. This is referred to a®de duplication. In Figure 4.2, two microclusters exist, one rooted
at node D, the other rooted at node E. As node B is a predecessathdDland E, and shares the
same label, it must exist in both microclusters. Therefore, a block will existanmicroclusters,

rooted and D and E, with equivalent logic and the same set of inputs.

Figure 4.2: Node Duplication Example

Node duplication is not only essential in producing a depth-optimal clusteohgion, it can
also have a large effect on delay, area and routing resource ufage.the previous example,

microclusters D and E were on different sides of the chip after placeméhtw duplication the

33

Chapter 4. Phase 1: Microcluster Formation

signal originating at B would have to be routed to both microclusters. With dafait, we are no
longer required to route the signal originating at B to two different micraetss as a copy of B
will exist in both microclusters. This can reduce delay, as D and E no langer the large delay
of an intercluster wire, but the comparatively smaller delay of an intracluster

The effect of node duplication on routing resource usage is difficuluamtify. On one hand,
the output of the duplicated block now requires no general routing reseuOn the other hand, by
duplicating a node, each input net to that node may have to route an addiéionaal.

Finally, node duplication has an affect on the area usage of the circuiesBixe duplication
can cause a substantial increase in the logic usage of the circuit. Conipgtind problem is the
fact that the LLT algorithm makes no attempt to completely fill microclusters. TFagnientation
also contributes to area overhead. The problem of under-utilized CilBsaraddressed in Chapter

5.

20000

18000

1a000

14000

12000

B TvPack
Lawler

10000

Total Blocks

a000

G000

4000

2000 4

& 4R & e F o DL &S e R AR -2
& %@* c%‘é.\\a@@ag@“& ¥ "“‘Q,,;ﬁaﬂléb SN @Z@ﬁﬁ &
MCNC Circuit

Figure 4.3: Motivation for NDR

34

Chapter 4. Phase 1: Microcluster Formation

4.5 Step 1C - Node Duplicate Reduction Algorithm

The LLT algorithm in the previous section produces a minimum-depth clustdfiggre 4.3 shows
there is a 112% increase in block usage after LLT due to node duplicatiohmiinimizes depth
for all paths in the circuit, so a certain amount of slack exists on all non-criticas pdthe Node
Duplicate Reduction algorithm attempts to convert this slack into a reduction ia ecgolication
and an improvement in the number of nets enclosed within a microcluster.

The driving observation here is that non-critical paths may be delayedided it does not
cause that particular path to become critical. This allows the algorithm to del@ckisoresult
(i.e., its label), forcing it into a different microcluster(s). Through this teghe, NDR attempts to
find the position for all nodes which will minimize node duplication, maximize nebigti®n and
retain a predetermined maximum depth. A complete description of the NDR algasifmesented
in Section 4.5.1.

To further reduce duplication, we may increase the maximum depth of thét ¢orqrovide all
nodes with some degree of slack. This allows the algorithm a greater rpgssible relabels.

This technique is further explored in Section 4.6.

4.5.1 NDR Algorithm Description

The NDR algorithm proceeds by iteratively applying to following steps:
1. Determine the set of labels to which a block may graduate.

2. Score each of these new labels in terms of how it will affect node duiplicaintercluster

nets and input sharing.
3. Update the labelling and re-clustering the circuit.

4. Prune microclusters which exceed cluster size or input limits.

35

Chapter 4. Phase 1: Microcluster Formation

After each iteration, the algorithm assesses if any progress has been &maall oscillations in the
number of blocks used can occur between iterations, therefore peagmmade only if the algorithm
has reduced the overall block usage to a new low. If no progress is aftede defined number of
iterations (default=10), the program terminates successfully.

Using this process, the NDR algorithm can achieve a predetermined maxinpimwiéh sig-
nificantly less node duplication, and hence area overhead, than thelgdfitiam. Each of these

step is now described in detail.

4.5.2 Relabelling

The first step is to determine the applicable label increases for all cluteradies in the circuit. If
the current node under consideration is nedeith labell (a), having successoss, s, .. .Sy, then
the maximum label possible faris Inax@) = min{l(s1),1(s2)...1(sm)}. In this manner, no node
may graduate to a higher label than any of its successors. Intuitivelya) — | (a) is representative
of the slack of noda. Once anmaxhas been associated with all nodes, the next step is to score each
possible move in terms of how it will affect the clustering solution. For eaakenan influence
array is created with indices frohfa) to Imax(@): lia) - - - limaxa)- The largest influence value will be
used to determine the new label. The influence value for a given relabedsmguo components,
a weighted score which depends on how the change will affect duplicateirusage and input
sharing, and an element of randomness.

The calculated portion for the influence value is a weighted sum of the ehangpde dupli-
cation @Aduplication), intercluster netsAinterclusted, and shared inputsA§haredinputy. To
determineAduplicationfor relabelling blocka to I (a) +i we must examine all od’'s predecessors

and successors at the same label.

Aduplication= max0, |succclusters at (a) +i| — 1} — |duplicated preds at [a)|

Intuitively, Aduplicationcounts the net change in the number of duplicates. It is larger when re-

36

Chapter 4. Phase 1: Microcluster Formation

labellinga to I(a) + i forcesa to be duplicated for existence in multiple successor microclusters,
and smaller when relabelliragto | (a) + i causes duplicated predecessors in the current microcluster
rooted ata to be dissolved. These dissolved duplicates can be replaced by the oigpute other
microcluster at a lower label thdfa) +i. For example, if block; existed in microclusteA andA
was dissolved by relabelling, a different copy ob; in another clustet,, could now supply the
successors di;.

Similarly, Ainterclustercounts how many intercluster nets are made intracluster during a rela-
belling. Ifais relabelled td(a) +i, itis increased by the number of intracluster nets to a predecessor
that are made intercluster, and it is decreased for each interclusterangiitcessor made intraclus-

ter.
Aintercluster= |predecessors at&)| — |succclusters at (a) + i

Next, Asharedinputs is a count of how many blocks share the same input to a cluster.
Asharedinputsis found by comparing the distinct inputs to each successor microclDgter ()
atl(a) +i with the inputs ta itself. Any netn which exists in both sets will reduce its total number

of sinks by one ifais promoted td(a) +i.

Asharedinputs= Z |distinct inputs to Gucea(j)|N|inputs to &
Csucca(]) at 1(a)+i

The final element to the influence value calculation is the weighting fagtoys ys, which can

be adjusted by the user. The final influence value is calculated as:

li(@)+i = —Y1-Aduplication—y; - Aintercluster+ ys - Asharedinputs+p

Note that negative values fdduplicationor Ainterclusterare good, since we want to promote

a reduction in node duplication and intercluster nets. Through empirical tesighting factors

37

Chapter 4. Phase 1: Microcluster Formation

are selected as1,Y2,Y3] = [100,4,8]. These values can be changed to reflect a higher priority for
certain metrics.

The random element is an integere [0, TEMP], whereT EMPis a value that is decremented
by TEMP_ST EPafter each iteration of the algorithm. As the chief factor in the influence value
is the duplication term, the initial temperature value is chosen to be proportiopastd LT node

duplication:

initial TEMP = (avg.dupl icatesper,node2

TEMP.STEP= avg duplicatesper.node

The p term causes nodes to promote to labels which may not be the most effedting the
initial iterations, but can prevent the solution from settling to a local minima. Inéxésection it is
shown that a node relabelling may be undone. Therefore, a degreeartainty can combat cycles
from forming in the relabelling process by having nodes attempt to relabéfeosht values when

multiple options exist.

4.5.3 Pruning to Correct CLB Violations

After the relabelling phase, the possibility exists that some microclusters heategtharN blocks
or | distinct inputs. Therefore, NDR traverses through each microclustebaclkwards breadth
first order starting at the outputs and prunes blocks from illegal micreckisintil all constraints
are met. Pruning begins at the outputs, so that if a pruned node caussteagssor microcluster
to overfill, that microcluster will be reached later and pruned accordingly.

For a given microcluster, each valid candidatés assigned a scord(c), where a greater
P(c) translates into a higher probability of the node being pruned from therdumerocluster. A

valid candidate is any leaf node whose label may be reduced by one withooming less than

38

Chapter 4. Phase 1: Microcluster Formation

its original label assigned by the LLT algorithm. We restrict all nodes to remiaar above their
original LLT label to avoid instances where the algorithm would be forcatkbtnote a node below
label zero.

Pruning scores are determined in a similar manner as influence schirggrcluster and

Aduplicationare found for relabelling to I (c) — 1, and the pruning score is calculated as:

P(c) = —vy1-Aduplication—y, - Aintercluster

Note that pruning ignores input sharing and declines the random eleoresitriplicity. The

largestP(c); will decide which node reduces its label by one.

4.5.4 NDR Algorithm Results

Using this technique, node duplication can be reduced by an averagéwicémpared to the orig-
inal LLT algorithm. Figure 4.4 shows the block usage results for T-VPauek | LT algorithm and
the NDR algorithm. While the post-duplication reduction results still have a 39%k ldeerhead

from T-VPack, it is much less than the LLT algorithm.

4.6 Additional Duplicate Reduction Through Depth Relaxation

The NDR algorithm trades off slack on non-critical paths for a reductidsidok usage. A way to
further decrease duplication is to increase the maximum depth of the circugthyhereating some
degree of slack along all paths. This technique can be especially wdefuala tight area restriction
is imposed, since reducing area usage during the initial clustering phasbeviags detrimental
than reducing area during a subsequent phase.

Duplication limiting is implemented as follows:

e The user defines a duplication limitu plicationlimit, relative to the total number of original

blocks in the circuit. Therefore, dluplicationlimit = 20%, the algorithm is permitted, at

39

Chapter 4. Phase 1: Microcluster Formation

20000

18000

18000

14000

12000

N TWPack
Lawler
W Feduced

10000

Total Blocks

aooo

G000

4000

2000

 —— —
//////////////I//A-‘

____I-
LS LA LA ALLLLLLLELL

(/////////Ii

g ANH
PPN @

& o) o

) qgrgz?’;> o

&
& ¢

)
<
%,
%
%,
%
¥,
6
6%%}
j‘"p
S
2
’5‘,‘.0

MCNC Circuit

Figure 4.4: Reduction of Blocks After Using NDR

most, a 20% increase in block count.

e After each iteration of the program, the number of blocks used in the ciraouisted. If the

block usage is within the predefined limit, the program terminates successfully.

e If the algorithm’s progress count expires without reaching the prevel@fiduplication limit,
the depth of the circuit is increased by 1. The algorithm then resets theepsogount and
continues running with the new maximum depth. A limit (default=5) is set on the maximu
depth increase that is allowed. When this limit is reached without meeting the akiguic

limit, the algorithm terminates and produces a netlist for the current clusterintjos.

To determine the effect this technique has on timing performance and aga, ascomparison
was performed with a number of different settings. The results are simowigure 4.5. CLB usage
and timing results are post-routing values, where T-VPack uses the VE&ptat engine and all

other tests use the Orchestrator tool presented in Chapter 5. All resmuis@metric means across

40

Chapter 4. Phase 1: Microcluster Formation

the largest 20 MCNC benchmarks. The different clustering settingsrshothie figure are:
e T-VPack, with VPR placement
e LLT clustering with Orchestrator placement and compaction

e LLT with a single pass NDR (Section 4.5.1) and Orchestrator placementoampaction (no

duplication limiting)

e LLT with multi-pass NDR using a duplication limit of: 5%, 10%, 20%, 30%, 50% @6%

131 a00

T 4350

127

400
1248

123 + 350

Terit [ns]
CLB Count

121
+ 300

118

+ 250
M7

1148

t + t t t t 200
Lawlers Single Pass T0% 50% 30% 20% 10% 5% TWPack

Clustering Method

Figure 4.5: Duplicate Reduction Results

Figure 4.5 shows the timing results as squares and the CLB usage as diambass results
show that the Additional Duplicate Reduction technique is effective atiaduhe CLB count, but
at the expense of critical-path delay. Timing results also show that, with tlepgsc of the LLT
clustering, more duplication results in better timing performance.

Since the multi-pass NDR technique sacrifices the depth advantage esthblystie LLT al-
gorithm to reduce node duplication, it is important to understand how much deith advantage

is exhausted. Table 4.6 shows the depth increase for different duphidetibs, averaged across

41

Chapter 4. Phase 1: Microcluster Formation

the 20 largest MCNC benchmarks. Note that in some cases the depth enlingiaisf 5 is reached
and the duplication limit is ultimately not met.

4

35

AN

N

Avg. Depth Inc.
ra

23

1
os ,_,/

70 a0 30 20 10 g

Duplication Limit

Figure 4.6: Depth Increase vs. Duplication Limit

4.7 Analysis and Results

The analysis and results presented in this section are meant to demonstratedadér that the
Microcluster Formation phase provides a valuable contribution to the clugtanith placement al-

gorithm, but that further work is required.

4.7.1 Node Duplicate Reduction Results

In this section, results are provided for the Lawler Levitt Turner Algoritteacribed in Section 4.4
and the Node Duplicate Reduction Algorithm described in Section 4.5. Tip@geiof presenting
these results is to demonstrate the merit of the Microcluster Formation phase.

To provide a fair comparison of each algorithm, the clustering solutionsdarh algorithm are
placed and routed with VPR, in the same manner baseline results are piadtlcd-VPack. For

all tests the standard architecture, as described in Section 2.1 is used;tigéhpath delay found

42

Chapter 4. Phase 1: Microcluster Formation

using a fixed channel width of 100. All results are a geometric mean attresX) largest MCNC
benchmarks. Table 4.1 presents results for T-VPack, the LLT algoritfthi BT with a single pass

of the Node Duplicate Reduction algorithm.

[Terit | # Blocks | # CLBs | Channel
TVPack 12.99 ns 2388.1 blocks 241.6 CLBs 43.6 tracks
Lawler 1.06 2.11 5.22 0.40

NDR 0.99 1.39 3.24 0.52

Table 4.1: LLT/NDR Results Normalized to T-VPack

The results show that the LLT algorithm achieves an average critical-gdaly @hich is 6%
worse than T-VPack. This is likely because of large amounts of node dtiplicand high fragmen-
tation. The NDR results illustrate how effective the NDR algorithm is at reduduplication, and
that this results in a noticeable performance improvement. Even with a 3x secire&€LB count,
the NDR timing performance is at par with T-VPack.

The final column shows that, in general, the channel width is reduced inawket.and NDR
solutions. This is primarily due to spreading smaller clusters outs across a ¢aidesize. A
larger grid has more routing channels overall, therefore the routingeusagpread out over more

resources.

4.7.2 Analysis of Microcluster Formation Results

To understand the LLT/NDR results better, it will be shown that there arectwapeting factors
influencing the performance of the routed solution. The first is the deptiedfircuit, the second
is the grid size.

The depth of the circuit is important because it directly affects the numbetes€tluster nets on
the critical path. As the delay of intercluster nets is more substantial than lelgig dr intracluster
net delay, in most circumstances it the primary factor in the delay of the crgathl Table 4.2
provides depth information for each of the 20 largest MCNC benchmagksler Depth specifies

the lowest achievable clustered depth of the circuit under the architecs&raints. Actual Critical

43

Chapter 4. Phase 1: Microcluster Formation

Path Depth is calculated by the VPR Router and it specifies the depth of thalgrétb. It should
be noted that the final cluster depth may be less than the Lawler Depth if thalquiit is along a

route with larger interconnect delays.

Lawler Depth/ Actual Critical Path Depth (Post-Routing)

File | NDR Single Pass Depth TVPack NDR Single Pass
alu4 5 5 5
apex2 5 6 5
apex4 4 6 4
bigkey 3 3 2
clma 7 10 6
des 4 7 4
diffeq 6 5 5
dsip 3 3 2
elliptic 5 8 4
ex1010 5 7 5
ex5p 4 7 3
frisc 8 16 7
misex3 4 5 4
pdc 5 9 5
$298 8 14 7
s38417 6 8 4
s38584.1 5 9 4
seq 4 6 4
spla 5 7 5
tseng 5 8 4

Geomean: 4.88 6.01 4.25

Table 4.2: Depth Analysis of Benchmarks

Overall, the critical-path depth of the T-VPack solution is 30% larger than R Blustering
solution. It is interesting to note that for some circuits the routed depth ofdek'is particularly
high. For benchmarks elliptic, frisc, 298, s38417, and tseng, theabk/Elustering solution has a
depth at least twice that of optimal. Conversely, T-VPack does well in tefdegoh for a number of
circuits, such as alu4, bigkey and diffeq. The correlation between degtlittion and critical-path
delay reduction is shown later in Section 6.2.

If depth were the only consideration for performance, the LLT algoritrould/be substantially

44

Chapter 4. Phase 1: Microcluster Formation

better compared to T-VPack than what is presented in Table 4.1. The majosidie of the LLT
algorithm is the amount of area required due to node duplication and fragtioen This affects
the critical-path delay of the circuit by increasing the average net length.

For a larger grid, it is reasonable to assume that a net, on average, avastfarther to con-
nect two terminals. This will require more delay, and therefore, the delaygtrthe circuit will
increase. Figure 4.7 shows a plot of grid size versus average nét rgss the 20 largest MCNC
benchmarks. The average net length is produced by the VPR Routepaniies the average

number of wire segments (of length 4) used across all nets.

14.0

120

100 >

=
5
2 80 — . 4 TVPack
:l 'R * NOR
£ —— Linear (TvPack)
;h 6.0 . * e | iNEAN (MDRY
<
A ®
40 P Y 4,
e s
Ak
A
A A %

2.0

oo

Grid Size

Figure 4.7: Grid Size - Avg Net Length Relationship

The trendlines in Figure 4.7 show a weak correlation between grid sizevanalge net length
for T-VPack and the NDR algorithm. Although the correlation is low, it does\stfiat small circuits
have low average net lengths, and most large circuits have high averalpmgths.

The previous analysis shows that the NDR algorithm has an advantagbegeeedy approach
in terms of depth. This advantage is counteracted by the increase in ageaaishe NDR algorithm
which leads to an increase in the average net length. This makes it extremelyantgo compact

the microclusters into a smaller grid.

45

Chapter 4. Phase 1: Microcluster Formation

4.8 Summary

This chapter has described how the Microcluster Formation Phase @eatesrmediate clustering

solution that:

e group blocks into entities (microclusters) that are large enough to easecgient placement

steps
e introduces a controlled amount of duplication to improve critical-path delay

e has a controlled depth, typically being the minimum possible depth, unless adtiitiote

duplication is required

An analysis of the NDR algorithm results show that a performance adwaidagained by
having a lower circuit depth, which results in fewer intracluster nets in tred §olution. This
advantage is mitigated by the area increase required by the solution, whidts i@ an increase in
average net length. This implies that subsequent phases of the algadnidtiid sittempt to reduce
the area usage of the circuit without altering the depth. This provides theatioti for the next
phase of the algorithm, Microcluster Compaction with Orchestrator. In AgigeX, we present a

breakdown of microcluster sizes for the interested reader.

46

Chapter 5

Phase 2: Microcluster Compaction with

Orchestrator

After the Microcluster Formation Phase is complete, the next portion of theithligofurther con-
solidates the microclusters into CLB-sized clusters to reduce the numberRs. CLhis should
result in a grid and net length reduction to improve critical-path delay further simplicity, this
portion of the tool is called Orchestrator. Figure 3.1 highlights where in thB @éw the Orches-

trator tool resides.

5.1 Introduction and Motivation

As was shown in Section 4.7, Phase 1 produces a set of microclustersmatttimal depth, but
high fragmentation (under-filled CLBs) and duplication. The goal of BR4s to reorganize micro-
clusters to reduce fragmentation and CLB count. It will also attempt to impnatveat-path delay
by considering detailed placement and timing information while finishing the ciogter

The primary activity of the Orchestrator tool is to move microclusters to impravériing and
area efficiency. With clustering and placement information available, theithigocan build an
accurate timing model of the circuit. With this timing information, the algorithm iterativebyes
microclusters to reduce the critical-path delay and consolidate microclusterdinal result of the
Orchestrator algorithm is a valid clustering and placement solution that cautesl by VPR.

When an area restriction is given, the Orchestrator tool strives to meeeghigtion in a way

a7

Chapter 5. Phase 2: Microcluster Compaction with Orchestrator

that is least detrimental to timing performance. The Orchestrator uses teelrim reduce node
duplication and vacate CLBs to gradually reduce area usage until thigtieatis met. The area
restriction imposed by the user carries a higher precedence than criitediglay, so increases in
the critical path, though undesirable, are tolerated.

The main focus of this chapter is Section 5.2, which explains the Orchestfgtoithm. After
the algorithm description, an analysis of the results is presented, and a suofrtiiee Orchestrator

algorithm concludes the chapter.

5.2 Algorithm Description

The Orchestrator tool proceeds in an iterative fashion, with two distingestaThe first stage
relocates microclusters with the sole objective of reducing the critical patheotircuit. The
second stage is invoked if the area constraints are not met. This stageteoekluce area usage by
removing duplication and relocating the set of microclusters to fit into fewd<CL

During each iteration of the algorithm, Orchestrator attempts to move each mitercllA
microcluster may move to a location which is already occupied, provided thregagg of all mi-
croclusters at that location still meet the CLB constraints of the architectumd blocks, < |
inputs). In this chapter, location and CLB are used interchangeably teseqt an (x,y) location
that coincides with a CLB in the final solution. At the completion of the Orchestagorithm,
all microclusters that reside at the same location are combined in a single .cliibteugh this
consolidation process, the Orchestrator tool has the ability to alter the ahgssefution.

To improve the timing of the initial solution, the Orchestrator tool relocates micsteisi to
reduce the critical-path delay of the circuit. In relocating a microcluster, lg@ithm analyzes
predecessors and successors of the microcluster to create a setitiigoonove locations. The
set of possible move locations is chosen such that moving the microclusterowithiarease the
critical-path delay of the circuit, and may even reduce it. Once a set oftfmssove locations

has been established, the algorithm will either move or swap the microclusieidgd a gain in

48

Chapter 5. Phase 2: Microcluster Compaction with Orchestrator

performance or bounding box cost is achieved.

5.2.1 Description of Inputs
The Orchestrator tool takes a number of inputs:
1. A BLIF description of the circuit, required to build a list of all blocks aredsin the circuit.

2. AVPR-style Netlist (.net) which describes the initial clustering solution ddarthe previous

stage.

3. AVPR-style Placement (.p) showing the location of all microclusters ads ipethe circuit.
It should be noted that if no placement file is specified, the Orchestratbwibbaise its

embedded simulated annealing engine to perform a fast placement equigalR -fast.
4. A VPR-style Architecture file (.arch) that is used to build a timing model of P& A.

5. A grid size which the algorithm attempts to fit the circuit to. If no grid size i®gjvthe

algorithm assumes that no area restrictions are imposed.

5.2.2 Orchestrator Preliminary Operations

Once the circuit description has been read in, a number of preliminary tas&sbe performed.

These include:

1. Remove all unused elements in the circuit (blocks, flip-flops or inpadowuiithny succes-

sors).

2. Pack blocks and flip-flops together where possible. This requirdisdrall blocks that have
a single flip-flop successor, and combining the two elements into a single Biderebul-
tant BLE will reside where the block originally existed. We will continue to regethese
BLEs as blocks when we are discussing the netlist, and as BLEs whesslisgihe FPGA

architecture.

49

Chapter 5. Phase 2: Microcluster Compaction with Orchestrator

The final step before the main operation of the algorithm is to build the timing méde @ircuit.

This is described in detail in Section 5.2.4.

5.2.3 Orchestrator Operational Overview

Figure 5.1 shows a high-level flow chart of the Orchestrator algorithm.

Phase 1 Fast Placement

Ne pl‘a}‘ ent file

'@ Remove unused circuit
elements

'® pack blocks and
flip-flops together

[Microclusters ~ from ‘] [Placememirom VPR‘J

Orchestrator Mgin Loop

— Peephole optimization

Clustering and
Placement Solution

Duplicate Analyzer

Microcluster Move

Figure 5.1: Orchestrator Flow Chart

The main loop of the Orchestrator algorithm is responsible for moving micreckiand pads,
removing duplicates and readjusting the grid size. The objective of the mairiddo reduce the
grid size to that specified by the user while maintaining a low critical-path delag.nTain loop is
described in Section 5.2.5.

Once the main loop of the program has completed, one final "peephole optonizes per-
formed on the duplicates to improve routability. Using the Duplicate Analyzer$setion 5.2.6),
each sink selects the closest duplicate as its source, provided this ddesrease its arrival time.
The program is forced to keep all duplicates. However, each sinkselsabe duplicate that both

meets its timing requirements and has the smallest Manhattan distance. While this reagerde-

50

Chapter 5. Phase 2: Microcluster Compaction with Orchestrator

lay on non-critical paths, it does not affect the critical-path delay bexainks continue to enforce
their timing requirements. This improves the routing resource usage of thétciithe average
channel width across the 20 largest MCNC benchmarks is 43.74 withotihgiedjustment, and
41.46 with it. The maximum channel width is 100 without the final adjustment, cadgaronly
78 with it.

After the peephole optimization, the program merges all microclusters aen i) location
into a single cluster. The resulting cluster will obey all constraints assigree@td3 (LUTSs, inputs,
etc.).

To allow the circuit to be routed, the clustering description (.net) and a platddites(.p) of the
solution are output. If requested, the program will also produce a BldRkdpresenting the final
logic description of the circuit. This can be useful when performing forveaification to ensure
the final circuit is logically equivalent to the original. Finally, the prograimptetes by reporting

statistics on the clustering/placement solution.

5.2.4 Orchestrator Timing Model and Timing Graph

The Orchestrator timing model is similar to the VPR timing model in most respectypteicea
simplified wire delay estimation routine. When a net delay is requested, the timingl wheter-
mines the minimum number of wire segments required, multiplies the number of wiresegby
the wire segment delay, and finally, adds the delays associated with tionniglocks and CLB
internal routing. The wire segment delay is calculated using an EImore deldgl fd®].

Using this model, a timing graph is constructed for a circuit in order to compute:
e the arrival time of a signal at a node,

e the completion time of a node (when the node produces an output) or thd imigeof a

node (time at which all inputs to the node have arrived),

¢ the delay incurred along a net between any two terminals, and

51

Chapter 5. Phase 2: Microcluster Compaction with Orchestrator

e the slack of any node or net as described in Section 2.3.1.

Generally, the timing graph keeps an up-to-date value for all block completies and slack

values, and computes net delays and net slack estimates as required.5shows a flow chart

explaining the process by which the timing model is updated after a block is m@Weeh multiple

blocks are moved, all arrival times are updated as shown in the left ofgheefithen all slack

estimates are updated as shown in the right of the figure.

Block bismovedtoa
new position

update net delay for all
connections to b / recompute
arrival time for b, push b to

stack updated_block

Recurse »
Entry

for successor s of b, update
arrival time

did the arrival
time of s
change?

update
remaining
arrival times,
recompute all
dack
estimates

issa
virtual/primary
output, and have
we changed the
max arrival time?

push sto updated_block

At this point, we should have all successors or b, for
which their arrival times have changed in updated_block
The program must now reverse back through the list
and update the slack estimates for the set of all predecessors
of al blocksin updatgd_blocks

- v

pop block k from stack
updated_block

have we
examined all

examining al
successorsof kK,

is

of b's calculate new slack dated block
successors? etimaefor k updated_bloc!

empty?

did the slack
estimatefor k
change?

push all predecessors
of k onto
updated_blocks

recurse on s from" Recurse
Entry"

Figure 5.2: Flow Chart of Timing Graph Update for a Block Move

52

Chapter 5. Phase 2: Microcluster Compaction with Orchestrator

5.2.5 Orchestrator Main Operation

This portion of the thesis describes the operation of the main loop in the @naoegorogram.
The main loop has two distinct stagdseorganizeandReduction The Reorganize stage re-orders
the microclusters with no emphasis paid to reducing the area/CLB usage; itg\pfounas is to
reduce the critical-path delay of the circuit. The Reduction stage is exeatitgdhe circuit has
reached a steady-state during the Reorganize stage, but has still nbenged size requirement.
The Reduction stage actively removes duplicates and attempts to reducentermi CLBs used,
so that the circuit will fit within the specified grid.

The default behaviour is for the Reorganize stage to run for 100 itesatéom if required, the
Reduction stage to run for up to 100 further iterations. In most circuits,aalgtstate is reached
in the Reorganize stage prior to 100 iterations, but as run-time is not a majoercoat this time,
we use 100 iterations as a safe margin to ensure the Reorganize stagenpéested. The default
number of iterations can be changed by providing the program with aetiffealue at run-time, but
for simplicity, this document will assume default values. If run-time was a@andthe Reorganize
stage could conclude after a number of iterations without the algorithm makingragress in

terms of area and delay.

1. If the main loop is in the Reduction phagefations> 100), and the grid size is still not met,

do the following two substeps:

(a) Perform Duplicate Reduction as described in Section 5.2.6. The dkalkpsirameter
is computed aslack steal= erations-100 The duplicate reduction step will remove all
duplicates that it deems superfluous, allowing the progranséslack steal percent of

the slack of any given sink block to aid in duplication reduction.

(b) The most aggressive technique the algorithm uses to reduce clostdris to force
a given location to expel all of its microclusters. This is done througle jmut flag

associated with each CLB location. Thgectflag will be set for a percentage of the

53

Chapter 5. Phase 2: Microcluster Compaction with Orchestrator

least-critical CLBs and all empty CLBs. The algorithm strives to graduatlyce the
cluster count of the circuit while minimizing the impact this has on critical-path delay
The goal is to finish the Reduction stage at iteration 150. Define a vaggbt pct,

where

: _ (usedclbs—desired grid_siz&) ¢ :
ejectpct = Jsedclbs if iteration< 150

ejectpct =0.02 if iteration> 150

Notice that if the area is not met by iteration 150, a fixed 2% of locations grellex
until the area requirement is met.

Theejectflag is set for all empty CLBs, and tlegect pct% least-critical of all occupied
locations. A location’s criticality is the inverse of the minimum slack of all its blocks.
If the ejectvariable is set for a cluster, the algorithm will not move any microclusters
into it; it will only move microclusters away from that location even if this means an
increase in critical-path delay. The usage ofdljectflag is further explained in Section

5.2.8.
2. Order all microclusters according to criticality:

e First priority is the minimum slack of all blocks in the microcluster.

e Second priority is the average slack of all blocks in the microcluster. If muliiple
croclusters have the same minimum slack, the average slack across afl lsicble

microcluster is used as a tie-breaker.

3. For each microcluster, in descending order of criticality, attempt to maske mécrocluster.

See Section 5.2.7 for details on the moving process.

4. For each pad, in no particular order, attempt to move. See Section 5.2.9.

54

Chapter 5. Phase 2: Microcluster Compaction with Orchestrator

5. Perform compaction if enough free space exists to fit the circuit into desngaid size.
AssumingGeurrent is the length/width of the current grid (excluding pads), a grid compaction

is possible if the following equation is satisfied:

(Geurrent— 1)? > total clusters

Compaction is performed by an incremental placer described in Section.5.2.10
6. The main loop of the program exits when all of the following conditions Heen met:

e The program has completed at least 25 iterations since the last compattipB)SThis
criteria is in place to give the algorithm sufficient opportunity to recoverdeigimental

effects the compacting/annealing may have had on the critical path.

e The program has run the predefined minimum number of iterations (de2Q)AND

met the desired grid size

e The program has not yet reached a hard limit on iterations (default 200)

If any of these conditions have not been met, return to Step 1.

5.2.6 Duplicate Analyzer

input: float slacksteale [0,1]

The job of the Duplicate Analyzer is to remove node duplication in an effort tet tie area
specification of the design. Under no circumstances should the Duplicailgzsn remove a du-
plicate which causes the critical-path delay to increase. The Duplicate Amalyay remove a
duplicate which causes the completion time of a non-critical block to increake sl@ck steal
variable specifies, as a percentage, the amount of slack that canrlfieezhén order to further
reduce the number of duplicates. An initial step the Duplicate Analyzer ipesfis to merge all

duplicates that exist at the same (x,y) location but in different microclustéis requires migrating

55

Chapter 5. Phase 2: Microcluster Compaction with Orchestrator

all successors to one of the duplicates and removing the unused ongsioT bnly simplifies the
task of the Duplicate Analyzer, it prevents certain errors from ocaogirrin

The main portion of the Duplicate Analyzer works by traversing all blocks wesdth-first
order starting at the primary outputs. Starting from the outputs will preveritiplicate Analyzer
from accommodating a sink that will later be removed. For each set of dtesitlaat has not yet

been analyzed:

1. Assemble lists of 1. all clones and 2. all sinks

2. Create a set of sets, thlne usage setwhere each internal set represents all clones which

satisfy the timing requirements a given sink. A clone is said to satisfy a givenmiovided:

completiontime(clone) +net.delay(clone sink) < arrival -time(sink) 4 [slack(sink) x slack steal

Theslackstealvariable is used to trade off slack for node duplicate reduction. It alloass th
algorithm to exhaust the slack of some nodes to find a smaller set of duplidaitgs satisfy

the requirements of all sinks.

3. From the clone usage set, find a hitting set. The hitting set is a set of dockeshat at least
one element from the hitting set exists for each internal set in the clone gsagntuitively,
this creates a set of clones (possibly smaller than the original set) thétlar® aatisfy the
timing requirements of all sink blocks. The hitting set is an NP-Complete proi2&ingo a
simple greedy heuristic is required. The algorithm gives precedencertescloith a higher

cardinality.
To find the hitting set:
e Start by adding all blocks that are essential to a given sink. If we cdadlatsinka
can only be satisfied bglongs, automatically includelones in the hitting set.
e Remove internal sets of clone usage set that are satisfied.

56

Chapter 5. Phase 2: Microcluster Compaction with Orchestrator

e Provided internal sets remain in the clone usage set, find the clone thadtcsin the

most remaining sinks. Include that clone.
e Remove internal sets of clone usage set that are satisfied.

e If sinks remain to be satisfied, return to first step. Otherwise, return hittihg s

4. For each sink, update its input to the clone in the hitting set that will protheearliest

arrival time of that signal.
5. Remove all duplicates that are not in the hitting set.

6. Update timing graph.

5.2.7 Microcluster Relocation

input: m crocl uster MC
The microcluster relocation routine will attempt to mdv€ to a new location, with respect to

the following objectives, in order of priority:
¢ the validity of the solution is maintained (no cluster constraints are broken),
e the critical-path delay of the circuit is not increased,
e the arrival time for successors BIC is minimized, and
¢ the overall bounding box cost is minimized.

If possible, the algorithm will mov&IC to a location which reduces the delay on a critical path; this
may occur at the expense of slack on other non-critical paths.

The microcluster relocation routine works by maintaining a two dimensiona/l afrpossible
move locations. By analyzing the predecessor nodes and succestes afdC, the algorithm

constructs a set valid move locations and attempts to reldd@teo one of these locations.

57

Chapter 5. Phase 2: Microcluster Compaction with Orchestrator

The first step of the microcluster move routine is to checkMi@ican be moved from its current
location. A microcluster cannot be moved out if its removal would increaseuh#ber of inputs to
the location and cause a violation of the input constraints. This may happendtithut ofMC is
used within the location by another microcluster.

ProvidedMC is movable, the microcluster move routine is performed as follows:

1. Create two arrays, equal in size to the current grid. The fist/D _LOCATIONS, is an
array ofbool s, where each element specifies whether a given (x,y) location meets the timing
requirements for microclust®C. Initialize thevALID _LOCATIONS so that all pads are false
and all CLBs are true. The second arr@g, OVERLAP, is an array of nt eger s, where each
element specifies how many bounding boxes of nets incidemGaooverlap a given (x,y)

location. Initialize all elements to 0.

2. Compute th@B_OVERLAP array. TheBB_OVERLAP array is used to assess how a move will

affect the bounding box cost of the circuit. For all input na@tdo the microcluster:

e Compute the bounding box aii; ignoring any blocks in microclustéviC. Ignoring

MC’s current position prevents a biasing towahM€ remaining where it is.

e For all locations that fall outside of the bounding boxéf increment the corresponding

BB_OVERLAP element by 1.
For all output netsig of the cluster:

e Compute the bounding box @i, ignoring the source location and any sinks that are

intracluster.

e For all locations that fall outside of the bounding boxof, increment the correspond-

ing BB_LOVERLAP element by 1.

The BB_LOVERLAP array now represents how many bounding boxes will increase in size if

microclustetMC is moved to any location on the grid.

58

Chapter 5. Phase 2: Microcluster Compaction with Orchestrator

3. Next, thevALID _LOCATIONS array is constructed. From the input nets to the microcluster,
form a set of valid move locations. A move location is valid provided that periftg the
move does not cause the completion time of any blocki@ to increase beyond its slack
margin. To create the set of valid move locations, iterate through all inputinetsd do the

following:

e Determine the time at which the sourcerdf produces a resulsource finish. The

value is calculated to the point when the signal leaves the CLB of the solaale b

e Find the sink ohi; in MC with the earliest arrival timesinkMG. ForsinkMG, compute

required.arrival (SiInkMG) = arrival time(sinkMG) + slack'sinkMG)

- tCLB,input —tuT.n put

tcLg input IS the delay through the connection block to the CLB input pigt input IS

the delay from a CLB input pin to a BLE input pin.

e The time allowance of neti; is defined as the difference between the required arrival of

sinkMG andsource finish.

input_allowancéni;) = required.arrival (sinkMG) — sourcefinish

Intuitively, MC must be positioned such that the signal froincan reach it in the time

allowance, or risk creating a critical path.

e As we have sufficient placement and timing information, we can determindlygxac
which locations can meet the constraint of the timing allowance. From the timingmode

the delay of a wire segment is known to bdelwire. Therefore,

hops= |input_allowancéni;)/T del wire|

59

Chapter 5. Phase 2: Microcluster Compaction with Orchestrator

is the number of wire segments that mgthas to reactMC. So, for all locations not
within hopsof the source ohi;, mark corresponding element @iLID _LOCATIONS as
false.

Figure 5.3 presents an example of tre.ID _LOCATIONS masking procedure. In the
exampleMC is shown in blue and predecessord are shown in red. Examining the
predecessor to the bottom-rightMfC, assumdnopsis found to be 3. In Figure 5.3b, the
VALID _LOCATIONS array has been masked such that all invalid move locations farther
than 3 hops are shown in grey. By definitidfiC's current location will always be a

valid move location, as it is known to meet the timing requirementd ©f

d
Figure 5.3:VALID _LOCATIONS Masking Example

After all input nets have been examined, Wra.ID _LOCATIONS should have a number of
elements marked true (at the very least, olI¢’s current location is marked true). The
elements marked true represent (x,y) locationskMi@tcan move to and still meet the timing
requirements of all blocks iMC. If the only valid location isMC's current location, return

from the microcluster move routine, leaviM where it is.

. The next step requires the program to impose some unobtainable timingticastron the

output nets of the microcluster, and slowly relax those restrictions until ebtiit@ove loca-

60

Chapter 5. Phase 2: Microcluster Compaction with Orchestrator

tion is found. The idea s to find a location to mdv€ to that satisfies the tightest restrictions.

The hope is that this will in turn cause the arrival time of successor blodksdi@ase.

To proceed, the algorithm must find a starting point that is guaranteed twbéainable. Find
sSuccesSsOsmin, such thaarrival time(smin) + slacksmin) is the lowest value for all successor

blocks. Define a variablmargin and set it to:

margin= arrival_time(Smin) + slack Smin) — tcLB_input — tLuT _input

The margin variable is used to adjust the restrictions on the output nets. Tigikvialue is

shown to be unobtainable later in this section.
5. The process of finding a valid move location for MC is as follows:

e For each output né¥1C_out, provided it has at least one intercluster connection, mask
the VALID _LOCATIONS for each sink. First compute the time at which the signal

MC_out leaves microclustaviC.

completiontime(MC_out) = completiontime(source block of MQut) +tLyT_output

wheret yT_output is the delay from the output of a LUT to the output pin of the CLB.

Next, for each sinlsink, of MC_out;:

— Calculate the arrival time adink, minus the time required to route a signal from

the CLB input to BLE input:

CLB_arrival (sink,) = arrival _time(sink)
— tcLBlinput
— QuT input

61

Chapter 5. Phase 2: Microcluster Compaction with Orchestrator

— For netMC_out, completiontime(MC_out) is the time at which the signal leaves
microclustetMC. CLB_arrival (sink) is the time at which né¥iC_out must reach
sink to prevent the arrival time dadink, from increasing. Theutputallowance

value is calculated as:

out putallowance= CLB_arrival (sink) + slack(sink)
— completiontime(MC_out)
— margin

The out putallowancevalue is the delay permitted for signklC_out to reach
sink. If the program can successfully find a position for microcludi€r where

the out putallowancevalue is less than current net delay, it may cause a reduction
in arrival time for sink.. The slack(sink) term increasesut putallowanceby
depleting the slack of non-critical blocks. Thearginvariable is used to adjust the
timing restrictions for bloclsink;.

Note that with an initial margin value @frrival (Smin) + Slack Smin) — tcLs_input —

tLuT _input, if SiNkc == Smin, terms one and two will be cancelled out by thargin
term, leavingout put allowanceless than or equal to zero. Therefore, we guarantee

our initial value is unobtainable.

— In order to meet the allowance delay, microclustdC must be within
hops= |allowancgTdelwire| of sink. Therefore, mask all elements of

VALID _LOCATIONS, which are not withirho psof sink, as false.

6. Once thevALID _LOCATIONS has been masked for all sinks of all output nets, there may or
may not be a some elements which are still marked as valid locations. If thene asdid

locations (implying the timing restriction is too tight), do the following:

e restore the/ALID _LOCATIONS array computed after masking the input net sources

62

Chapter 5. Phase 2: Microcluster Compaction with Orchestrator

e decrement the margin variable Bylelwire/4

e returnto Step 5

Decrementing margin by del.wire/4 was determined by experimentation described in Ap-
pendix B.

If valid locations are still present, the algorithm attempts to find the best caedataeloca-
tion. The algorithm has four possible outcomes at this stage, here listedciendi@sg order

of desirability:

(&) move microclusteMC to a new location

(b) swap microclusteMC with a less critical microcluster, provided it results in microclus-

ter MC adhering to a tighter timing restriction
(c) retain microclusteMC at this current position

(d) if no valid moves or swaps can be found, @a1@’s current position does not meet this

timing restriction, decrement margin and perform another iteration

. The first step in attempting to reloca#C is to sort the valid move locations. The metric
used is the number of bounding boxes that are not increased by retptaimicrocluster.

Using theBB_OVERLAP array computed earlier, order all valid relocation candidates.
. For each valid relocation candiddtg, y;), in ascending order of maintained bounding boxes:

e If this is MC's current position, concede the fact that no timing improvement can be
made from movindMIC during this iteration. Any move that can be made will result in
an overall increase in bounding box cost; if a swap exists, no timing impravemik

be gained. Return from the microcluster move routine.

e If microclusterMC can not be legally moved t(;,y;) (violates a cluster constraints -

inputs/cluster, BLEs/cluster), advance to the next valid relocation caerdida

63

Chapter 5. Phase 2: Microcluster Compaction with Orchestrator

e If microclusterMC can be legally moved t¢x;,y;), perform the move. Update the

timing graph to reflect the change. Return from the microcluster move routine.

9. If no legal moves can be found, alMtC'’s current position is not a valid relocation candidate,
swappingVIC with a less critical microcluster may result in a decrease in timing cost. So, for

each valid relocation candidafe;,y;), in ascending order of maintained bounding boxes:

e For all microclusters irfx;j,y;), try to find the least criticaMC_iticar SUCh that moving
MC to (x;,y;) while movingMC_riticar to MC's current position is legal for both. If no

swap partner can be found, proceed to the next valid relocation caadida

e If a valid MC_isicar IS found, perform the swap. Update the timing graph to reflect the
change. In the event that the critical-path delay of the circuit has iredeasdo the
move. This can occur if movinyIC_itical IS SO detrimental that it causBC_itical tO
become highly critical and create a new critical path. If the swap does cratage the

critical path, return from the microcluster move routine.
If no valid swaps can be found:

e restore the/ALID _LOCATIONS array computed after masking the input net sources
e decrement the margin variable bylelwire/4

e returnto step 5

5.2.8 Microcluster Relocation During the Reduction Stage

During the reduction stage, the microcluster relocation routine is modified to aig@reduction.
It breaks non-critical microclusters into individual blocks and uses tteefill up other clusters. In
Step 1b of the main loop body, tlegectflag is set true for a number of locations. Tdjectvariable

indicates to the microcluster relocation routine:

1. not move any microclusters into this location

64

Chapter 5. Phase 2: Microcluster Compaction with Orchestrator

2. not swap any microclusters into this location

3. move all resident microclusters away from this location if possible, evem#ans a critical-

path delay penalty

This technique allows the algorithm to reduce the CLB usage to the prestinbed
The microcluster relocation routine during the Reduction stage is very similaetadimal

routine, with a few distinct modifications:
¢ If the current position of microclustéC has itse jectflag set, do not attempt any swaps.
e When ordering the valid move locations in Step 8, ignore any locations withegsetflag.

e When relocating a microclust®C, in a location with thee jectflag set, brealMC into its
constituent blocks, with each block now existing in its own microcluster. Thisnigae is
especially useful when the circuit is highly utilized as a single element miciteclbhas more

freedom to move than a near-full microcluster.

e Provided theejectflag of MC'’s current location is set, leavingC (or its derivative micro-
clusters) in its current position is not a preferable option. Therefovalid move location
may only be found by movin$IC to a location which causes a critical-path delay increase.
In this instance the algorithm is forced to sacrifice performance to obtairetheéred area.

In rare circumstances, no valid move location existsn#rgin ever becomes negative, the

algorithm gives up and leav®4C in its current position.

5.2.9 Pad Relocation

input: pad p

The pad relocation routine is used to move inpads and outpads to improvecihiemarformance.

65

Chapter 5. Phase 2: Microcluster Compaction with Orchestrator

Outpads

In the architecture model assumed here, outpads may only be drivenibgl@a source. When
relocating outpads the algorithm attempts to reduce the Manhattan distancem#te@ad and its
predecessor. Consider an outgaavith predecessappreq located atXpred, Ypred). The process for

moving p is as follows:
e Determine the current Manhattan distance frpme ppred, Manhyrrent.

e Create a list of possible move locatioagemptlocations organized in ascending order of
Manhattan distance {&pred, Ypred). FOr all I/O locations(x;,y;), compute the Manhattan dis-

tance ta(Xpred, Ypred), manh . If manh ; < manhyrrent, insert(x;,y;) into attemptlocations

e If attemptlocationsis empty, the pad relocation routine terminates, otherwise, traverse the

attemptlocationslist in order.

e For each locatiorix,yi) € attemptlocations provided(xy,y;) has space for an additional
pad, and moving does not increase the critical-path delay of the circuit, mote (X, Y).
If the move is successful, the pad relocation routine updates the timing gndgbraninates.

If the move is not successful, advance to the next location.

¢ If the attemptlocationslist is exhausted, terminate without movipg

Inpads

An inpad may supply a number of different successors, thereforejiiiress a more complicated
algorithm which is based on the same principles used in the microcluster retooatitine. The

process to move an inpgmproceeds as follows:

1. Create an array @ool s equal in size to the current grilALID _LOCATIONS. Each element
specifies whether a given (x,y) location meets the timing requirements fop.padtialize

theVvALID _LOCATIONS so that all I/Os are true and all CLBs are false.

66

Chapter 5. Phase 2: Microcluster Compaction with Orchestrator

2. Next, set the initial value of thearginvariable. For all successosgsof p, set:

margin= min{arrival (s) + slack’s) }Vvs

3. For each successsy, compute the signal time allowance as:

allowance= arrival (s¢) + slack(sq) — margin

4. Thereforep must be withinhops= |allowanceT delwire| wire segments of. Mask the
VALID _LOCATIONS grid as shown in Figure 5.3, where all locations farther thapsare set

to false.

5. If no locations ofvALID _LOCATIONS remain true after masking for all successors, reset the

VALID _LOCATIONS array, decrement the margin Bydel wire/4 and start again.
6. If legal move locations do exist, randomly choose one locdtioy;).

e If (x;,y;) is p's current location, the routine terminates without moving

e If (x;,y;) has sufficient space for an additional pad, mpwe (x;,y;), update the timing

model and return.

e If (x;,y;) does not have sufficient space, maxk y;) as false and randomly choose

another location.

While the microcluster relocation routine is more deterministic, the pad relocatigimeos
allowed to have a degree of uncertainty. This allows inpads to exploreatfflocations, which may
allow the microcluster relocation routine to achieve a lower critical-path delaije wuaranteeing
that the critical path will never increase by moving an inpad. This method wamlfto be more
effective than trying to use the bounding box cost as a tie-breaker,damesin the microcluster

relocation routine.

67

Chapter 5. Phase 2: Microcluster Compaction with Orchestrator

5.2.10 Compaction

The compaction routine uses an incremental placement algorithm desigbeioh_eong [37]. It

is used to reorganize all CLBs into a smaller grid whenever:

(Geurrent— X) > total used CLBs

X is chosen as the largest integer value that will satisfy the inequality. Thissnleanthe grid is
compacted as much as possible after each iteration of the program.

The compaction algorithm works by defining a sub-grid of $&grent — X Within the current
grid. All CLBs that exist outside this sub-grid are said to be illegal. The illagah of the original
grid is split into 8 regions: 4 sides adjacent to the sub-grid and 4 coriegerthlly connected to
the sub-grid. For each region which contains illegal CLBs, all freeesfiathe sub-grid is move
adjacent to the side or corner in question. The algorithm then moves theCitBsyinto the sub-

grid. This continues until all CLBs are contained within the sub-grid.

Figure 5.4: Compaction Routine Example (from [37])

Figure 5.4 shows an example of the compaction process. The far left irhages & circuit
which is to be compacted into the sub-grid outlined in red. Notice the two illegakblnorth
of the sub-grid. The second image shows the result of the compactiongoétihfree space in
the sub-grid is moved adjacent to the illegal blocks, and the illegal blocksiaved into the sub-

grid. The third image shows the circuit after the refinement anneal hasdeemrmed. The fourth

68

Chapter 5. Phase 2: Microcluster Compaction with Orchestrator

image is the result of a complete anneal of the circuit into the smaller grid. Notioethe block
colouring that the compaction/refinement anneal provides similar resultsutbamheal, but with
less computation time.

After a compaction, a fast refinement anneal is performed to recoyequality degradation
caused by the compaction. The refinement anneal uses the progranttedhbenulated annealer,
based on the VPR annealer described in Section 2.3.1. The refinemeat diifers from a com-
plete anneal in that it assumes the current solution is already close to asgltion. Provided
the compaction step does not drastically alter the circuit placement, a low te¢arpesaneal will
recover the bound box and timing cost increases caused by the compaction.

Specifically, the refinement anneal differs from a complete annealrideddn Section 2.3.1,

in the following ways:

1. The initial temperature is set to achieve a 44% acceptance rate from ihef stee refine-
ment. Assuming the compaction routine has not changed the placement trel\séle local

minimum should coincide with the global minimum.

2. The move range for a CLB is set to 12.5% of the grid width. This limits how muehmeal

may perturb the current placement.

3. The temperature reduction factor is set to 0.8. This causes the refinenmealer to reduce
the temperature more quickly than the VPR annealer, and therefore alloveftherment

annealer to run faster.

The refinement anneal will decrease the timing and bounding box cos oiftuit to a level similar

to the pre-compaction state of the circuit.

5.3 Analysis and Results

This section provides initial timing results to compare Orchestrator with T-VIR&R. A more

extensive comparison of results appears in Chapter 6.

69

Chapter 5. Phase 2: Microcluster Compaction with Orchestrator

5.3.1 Timing Results

The combined clustering and placement algorithm presented here achbie@®®rage, an 11% tim-
ing improvement over T-VPack. The maximum timing improvement obtained wa%2@38417).
Orchestrator failed to improve timing for only one of the twenty circuits (diffed)ich suffered a
3.5% performance degradation. All results are for no area restrictimha éixed channel width of
100. Figure 5.5 shows a graph of timing performance for T-VPack aetié3trator in ascending
order of T-VPack critical-path delay. Full numeric results can be foutsdt Ia Table 6.1.

a0

25

m o
T

—m— Jrchestrato

Terit [ns]
o

R B P R PP RN @ *\@
F g8 &£ FF P @a Qt‘rgy ff?q’\’\‘“@

MCNC Benchmark

Figure 5.5: Critical-Path Delay Results

The overall results show a noticeable improvement over T-VPack. Thikesroiacuits, bigkey
and dsip, have minimal improvements as each has such a short minimum depitingr little
room for improvement. The circuit diffeq is the only MCNC benchmark whex&ack performs
better than Orchestrator. This may be attributed to T-VPack’s ability to clussaritbuit in a depth-

optimal manner. Further exploration of the depth/timing correlation is investiga@dapter 6.

70

Chapter 5. Phase 2: Microcluster Compaction with Orchestrator

5.3.2 Orchestrator with Area Restrictions

When area restrictions are imposed on the circuit, the Orchestrator tool graase the critical-
path delay to meet the area restriction. To avoid this as much as possible,diiera Duplicate
Reduction Technique described in Section 4.6 can be employed to redpiggation prior to in-
stantiating the Orchestrator tool. To determine the best initial clustering solatialifferent area
restrictions, a series of tests were performed. The results shown ireldurepresent final timing

results produced by the Orchestrator tool. The initial clustering solutiqrisred were:
e LLT clustering
e single-pass NDR clustering (no duplication limiting)
e NDR clustering with a duplication limit of: 5%, 10%, 20%, 30%, 50%, and 70%

15.0

145 AN

M

140

—+— Unlimited

X

135 —|—Nin +3
—ahiin +2
1 ‘\\\ —se=Min +1
/x

X!

125 \
Chart Area \
120 —*

T T T
Lawlers Single 70% a0% 30% 20% 10% %
Pass

Terit [ns]

=

—#— Mlinimum

Initial Clustering Solution

Figure 5.6: Duplication Limiting Test Results

From these results, the settings for Microcluster Formation were chosearious grid size
setting to reduce delay. These settings, shown in Table 5.1, are used.
Table 5.2 shows timing results, normalized to T-VPack, for the Orchestratbutder various

area restrictionsMin refers to the minimum grid size required as determined using T-VPack. The

71

Chapter 5. Phase 2: Microcluster Compaction with Orchestrator

Orchestrator Grid Setting | Initial Clustering Settings
Unlimited Single Pass

Min +3 50% duplication limit
Min +2 20% duplication limit
Min +1 Single Pass

Minimum 5% duplication limit

Table 5.1: Duplication Limiting Final Settings

results are for the standard architecture, as described in Section 2.1owsglress routing, where
the channel width is set to 30% more than the minimum required. Results aeat@e ascending
order of T-VPack critical-path delay.

The results presented in Table 5.2 show how area allowance is directhydredgterformance.
Even with a grid increase of 1 unit, a performance improvement over TNBaossible. With the

exception of a few circuits, minimum grid size results are on par with T-VPack.

5.3.3 Timing vs. Area Performance

The main goal of the Orchestrator tool is to improve timing performance withinrdgerastrictions
imposed. To show how effectively Orchestrator accomplishes this, Figdrplots the geometric
mean critical-path delay (squares) and CLB usage (triangles). Clussadintipns include the single
pass NDR algorithm described in Section 4.5.1 with placement by VPR, theSrator tool with
various area restrictions, and T-VPack/VPR. It should be noted thawio circuits (ex1010 and
frisc), the minimum grid size was not met.

The results show that Orchestrator provides a significant improvementging just single-
pass NDR from Chapter 4. Orchestrator achieves a 9% delay improverhgareducing the CLB
usage by 56%. When area restrictions are imposed, the Orchestratpragimes a continuous

trade-off between area and performance improvement.

72

Chapter 5. Phase 2: Microcluster Compaction with Orchestrator

Unlimited | Min+3 | Min+2 | Min +1 | Minimum || TVPack

dsip 0.95 0.94 1.06 1.01 1.04| 5.57ns
bigkey 0.95 0.95 0.95 0.97 1.03| 5.60ns
des 0.94 0.93 0.91 1.04 1.02|| 9.83ns
misex3 0.91 0.97 0.97 0.98 1.03 | 10.46 ns
seq 0.89 0.87 0.87 0.96 0.95| 10.79ns
apex4 0.89 0.96 1.00 0.95 0.98| 11.11ns
alu4 0.92 0.97 0.97 0.93 0.97| 11.44ns
exbp 0.89 0.91 0.96 1.04 1.00| 11.58ns
s38584.1 0.92 0.97 0.97 1.00 1.10| 12.61ns
apex2 0.93 0.91 0.96 0.95 0.99| 12.77 ns
diffeq 1.02 1.06 1.05 1.02 1.18 | 13.04 ns
tseng 0.89 0.93 0.93 0.87 1.00| 14.14ns
spla 0.93 1.13 1.01 0.97 1.00| 14.51ns
s38417 0.83 0.82 0.82 0.92 0.99| 16.22ns
ex1010 0.86 0.99 0.87 0.88 1.122 | 16.30 ns
elliptic 0.88 0.87 0.87 0.95 1.32| 18.04ns
pdc 0.73 0.79 0.78 0.82 0.91| 18.93ns
s298 0.94 0.88 0.84 0.94 1.06 || 22.44ns
clma 0.94 1.03 1.06 1.07 1.37 | 22.78 ns
frisc 0.92 0.92 0.92 0.99 1.1° | 24.22ns
Mean: 0.91 0.94 0.94 0.96 1.05| 14.12ns

a - ex1010, used 499 CLBs, missing the target of 484 by 15 CLBs
b - frisc, used 369 CLBs, missing the target of 361 by 8 CLBs

Table 5.2: Orchestrator Results for Various Area Restrictions, Normatliz@&d/Pack
5.4 Orchestrator Summary

The Orchestrator tool has been show to be effective at consolidatingchisters and reducing
the critical-path delay of the intermediate solution. With no area restrictions firddachannel
width, the Orchestrator solution has an 11% average delay improvemeani-®Rack (9% when
a fixed channel width is replaced with +30% minimum channel width). Usingrifft techniques
to remove duplicates and reduce CLB usage, the Orchestrator tool camostearea restrictions

while still providing competitive performance compared to a greedy aphroac

73

Chapter 5. Phase 2: Microcluster Compaction with Orchestrator

Terit[ns]

135 +

@
+

125 +

15

NOR+/PR Unlimited Min +3 Iin +2 Min +1 Minirmurm TvPack

Clustering

Figure 5.7: Orchestrator Area vs. Timing Performance

0o

r 800

r 700

r 600

r 500

r 400

r 300

200

CLBs

74

Chapter 6

Final Results

This chapter examines the performance of the Orchestrator tool in a naiteevant areas, in-
clude: Timing Performance, Circuit Depth, Routing Resource Usaga, Bsage and Runtime Per-
formance. Comparisons are provided against a number of availabldygagorithms: T-VPack,
T-RPack and iRAC, and other clustering/placement tools when applicable.

Unless otherwise noted, the final results use the standard architecsarédd in Section 2.1,
with a fixed channel width of 100. To reduce noise in results, T-VPack@utthestrator (no area
restriction) results are average values across 5 independent runs.

For full VPR placement and routing, the following options are used:

—inner.num 20 — maxrouter.iterations 300 — pres facmult 1.1
All tests were run on an Intel Xeon 2.66GHz CPU with 2 Gb of RAM, runniimuk kernel 2.6.18-
8.1.15.el5. All source code was compiled using g++ 4.1.1-52 with -O2 optimizati@ept for the

Microcluster Formation Phase code which was compiled using gcc 3.4.6-g-@optimization.

6.1 Timing Performance

As improving timing performance is the main goal of this research, an effonaide to compare
the results to as many other tools as possible.

Table 6.1 presents final timing results for different clustering algorithmsgusia standard
architecture with a fixed channel width of 100. T-RPack was obtained fine author of [7] and the

iIRAC tool was reproduced for [61]. Circuits are in ascending orddrgPack critical-path delay.

75

Chapter 6. Final Results

T-VPack | T-RPack | iRAC | Orchestrator

dsip 5.58 5.60| 5.77 5.19
bigkey 5.69 5.58| 5,54 5.23
des 9.93 10.77| 10.50 8.98
misex3 10.53 10.06| 10.42 9.26
seq 10.77 10.58| 11.27 9.41
apex4 10.92 10.94| 10.85 9.66
alu4 11.02 11.28| 11.49 10.27
exbp 11.44 11.49| 12.52 9.97
s$38584.1 12.60 11.95| 13.35 11.67
apex2 12.70 12.69| 13.24 11.51
diffeq 13.00 14.98| 17.61 13.45
tseng 14.08 14.79| 15.80 12.65
spla 14.28 14.23| 14.54 12.56
ex1010 16.06 15.58| 17.16 14.08
pdc 16.25 16.42| 16.41 13.71
s38417 16.32 14.96| 15.71 13.00
elliptic 18.10 16.85| 23.68 15.62
$298 21.38 20.58| 21.39 18.31
clma 22.76 22.07| 23.10 20.80
frisc 24.14 24.22| 26.06 22.24
Geomean: 12.99 12.94| 13.76 11.62
vs T-Vpack: 1.00 1.00| 1.06 0.89

Table 6.1: Timing Results for Different Clustering Algorithms

The results of Table 6.1 show an 11% timing improvement over T-VPack d&REaEk, and a
19% delay improvement over iRAC. As is shown in subsequent sectionss thighe expense of
area, and in the case of iIRAC, minimum channel width.

In an effort to identify and quantify the sources of this performance irgar@nt, the clustering
solution produced by Orchestrator was placed and routed by VPR. fladement by VPR was
performed using the final netlist produced by Orchestrator. The neaglt 3% degradation in tim-
ing performance and a 9% improvement in minimum channel width. This indicatesdbe dupli-
cation and depth-optimality are the main source of timing improvement, but the platesuéne
outperforms the T-VPlace simulated annealer to contribute an additional 3% fimimgvement.

Also presented in the Previous Work section is the SPCD algorithm [9], vetétes a 18% de-

76

Chapter 6. Final Results

lay improvement compared to T-VPack. Although not explicitly stated, thaupred architecture
in that paper uses = 4-input LUTs,N = 4 LUTs/CLB and wire segments of length 1. When the
Orchestrator tool is run with a similar architecture, under low-stress rquit§% delay improve-
ment is achieved over T-VPack. However, one final difference isSSR&D uses 0.38ntechnology
delays and Orchestrator uses Quirlelays.

A number of techniques native to the SPCD algorithm could be modified to improvegtimin
in Orchestrator results. The most prominent of these techniques is the BeEnteves during
simulated annealing. During refinement anneals, or as a post-placemastivant, the SPCD-
modified simulated annealer could be used to adjust clustering and placeraétciestrator does
not have the same ability to modify the clustering solution, noticeable perfoemiamprovements
may be possible.

The DPack [17] algorithm useska= 4, N = 4 andl = 18 architecture with single length wires.
Under similar conditions, the Orchestrator achieves a 15% performancaviempent over T-VPack,
versus an 8% improvement cited by DPack.

The work by Schabas et al. [53] obtains slightly better timing results thaneSnetior by
performing logic duplication after placement. With a 20% area increasep8shaew placement
algorithm achieves a 14.1% delay improvement. Orchestrator achieve8@deldy improvement
with a 44% increase in area. The work by Schabas et al. may have amaglwaver Orchestrator
because their architecture uses 50% pass transistors and 50%dasaféehes, whereas the archi-
tecture in this thesis uses fully buffered switches. Performing logic duplitati@ircuits with pass
transistors can reduce the delay through a pass transistor by redacmg.fA pass transistor with
a smaller fanout will have a decreased output capacitance, and tiechefee a smaller delay.

The post-placement logic duplication of [53] could also be used after tbheeStrator flow to
increase timing performance. The most affective way to utilize the technigpeged by Schabas

et al. would be to:

e Remove superfluous duplication after the Orchestrator tool has finiakelscribed in Sec-

77

Chapter 6. Final Results

tion 5.2.6.

e Use the Schabas et al. technique to create duplication in vacant logic elemeatiice

delay.

This process would not increase the critical-path delay of the circuit, ecmtding to [53], could

provide a maximum of critical-path delay improvement 7.7%.

6.2 Depth

In the Microcluster Formation phase, node duplication was used to obtaipth-detimal clus-
tering. It was proposed that a depth-optimal initial clustering solution rekidtdetter timing
performance in the final solution. This section examines the Orchestratsrebitity to maintain a
depth advantage over T-VPack and establishes the relationship betegbradd final critical-path

delay.

25.0%

20.0%

o
3
=

Timing Improvemeni
L
»
* 4
+*
> >4 .
*

10.0% ry .
*
- R
* *
00

Plot Area

=
o
=

0.0%

-5.0%
Depth Improvement

Figure 6.1: Depth Improvement vs. Timing Improvement

78

Chapter 6. Final Results

Actual Critical Path Depth

File || TVPack Orchestrator | A Depth | Timing Improvement
alu4 5 5 0 6.8%
apex2 6 5 1 9.4%
apex4 6 4 2 11.5%
bigkey 3 2 1 8.0%
clma 10 6 4 8.6%
des 7 4 3 9.5%
diffeq 5 5 0 -3.5%
dsip 3 2 1 7.0%
elliptic 8 4 4 13.7%
ex1010 7 5 2 12.3%
ex5p 7 3 4 12.8%
frisc 16 7 9 7.9%
misex3 5 4 1 12.0%
pdc 9 5 4 15.6%
5298 14 7 7 14.4%
s38417 8 4 4 20.3%
$38584.1 9 4 5 7.4%
seq 6 4 2 12.7%
spla 7 5 2 12.1%
tseng 8 4 4 10.1%

Table 6.2: Depth - Timing Improvement Comparison

Figure 6.1 presents a scatter plot of depth improvement versus timing improveEm®rches-
trator, relative to T-VPack/VPR. The plot shows a mod&t£ 0.3) positive correlation between
depth and timing improvement. Also, it is interesting to note that circuits alu4 aretjdifive equal
depth in T-VPack and Orchestrator, and Orchestrator achieves little timirtg improvement.

These results show that depth improvement has a direct influence onlgétbadelay.

6.3 Routing Resource Usage

This section examines the performance of Orchestrator in terms of rousogroe usage. Mini-
mum channel width is used as the primary metric to assess how effectivélytaaautilizes the

routing architecture. Table 6.3 presents the minimum channel width for the@&staMCNC cir-

79

Chapter 6. Final Results

T-VPack | T-RPack | iRAC | Orchestrator

alu4 335 32 31 32.6
apex2 46.3 46 41 41.2
apex4 47.5 46 43 36.8
bigkey 41.5 36 37 32.6
clma 61.8 59 47 70.8
des 40.8 39 39 42.4
diffeq 29.5 30 21 28.4
dsip 36.3 36 35 31.2
elliptic 49.5 44 36 42.2
ex1010 535 52 45 78.2
ex5p 48.5 49 42 43.8
frisc 52.0 52 44 59.2
misex3 42.3 41 37 36.2
pdc 65.5 63 60 60.6
s298 26.5 26 25 26.2
s38417 40.5 36 29 59.4
s$38584.1 43.5 38 34 48.2
seq 45.5 42 38 41.6

spla 53.0 54 49 51.2
tseng 36.3 26 20 26.2
Geomean: 43.6 41.1| 364 42.3
vs T-Vpack: 1.00 0.94| 0.83 0.97

Table 6.3: Minimum Channel Width Comparison

cuits for three greedy approaches and for Orchestrator with no eseé&ctions.

As expected, T-RPack and iRAC consistently outperform T-VPack in tefmménimum channel
width. Orchestrator shows a general improvement compared to T-VBacidividual results are
mixed. A maximum channel width decrease of 18% is achieved on tseng, whdgienum increase
of 46% is suffered on ex1010. No specific relationship can be estafhllstteveen the minimum
channel width required by Orchestrator and a greedy approach.valis is highly influence by
the amount of duplication in the circuit, It should generally be assumed tlche®trator requires a
greater channel width than T-VPack.

As mentioned in Section 6.1, a complete VPR placement was performed on ttexinlyso-

lution produced by Orchestrator. The result was a 9% decrease in ¢h@gavminimum channel

80

Chapter 6. Final Results

T-VPack | T-RPack | iRAC | Orchestrator

tseng 107 105 105 142.6
ex5p 109 110 110 204.6
apex4 132 130 131 246.4
dsip 137 137 137 226
misex3 142 142 141 193
diffeq 151 150 150 181.2
alu4 153 154 153 184.2

des 160 160 160 225.2
bigkey 171 171 171 228.6
seq 176 177 176 247.6
apex2 190 190 191 277
s298 194 194 194 264.4
frisc 356 357 359 500.2
elliptic 363 361 363 470.4
spla 374 373 372 551.8

pdc 463 462 461 718.8
ex1010 480 477 472 868.2
s$38417 642 641 641 812.2
s$38584.1 645 645 645 772.8
clma 842 841 841 1272.8
Geomean: 241.6 241.2| 241.1 346.8
vs T-Vpack: 1.00 1.00| 1.00 1.44

Table 6.4: CLB Usage Comparison

width, and a decrease from 46% to 35% in the worst case minimum chanrtblpedalty. These
results indicate that while the Orchestrator placement routine is effectietating delay, it is

inferior to T-VPlace in terms of channel width.

6.4 Area Usage

The most direct measurement of area usage is the number of CLBs teqiatale 6.4 shows the
CLB usage for T-VPack, T-RPack, iRAC and Orchestrator (with n@ aestrictions). The three
greedy approaches have similar CLB counts, with Orchestrator reqaindgverage increase of
44%.

This CLB increase represents the area increase required to achieMEtheritical-path delay

81

Chapter 6. Final Results

H T-VPack \ T-RPack \ iRAC \ Orchestrator
5.69E+06| 5.46E+06| 5.08E+06 7.82E+06

Geomean:

vs T-Vpack: 1.00 0.96 0.89 1.38

Table 6.5: Total Area Comparison [min. sized transistors]

improvement cited in Section 6.1. This area penalty can be reduced by imposarga restriction
on the circuit and suffering a decrease in timing performance, as dedénisection 5.3.2.

A more comprehensive analysis of area usage is presented in Tableh@ére avea is the total
routing and logic area, calculated in total equivalent minimum sized transidtogic usage was
calculated by Transcount [5] and routing usage was provided by thergéter.

The results of Table 6.5 reinforce the result that Orchestrator recapmeximately 40% more

area to achieve the 11% delay improvement cited earlier.

6.5 Runtime Performance

The timing improvements over a greedy approach are had at the expearsa@ind runtime. This
section aims to quantify the runtime penalty when using the combined clusteringlaseiment

algorithm instead of T-VPack. As the majority of runtime for the T-VPack flowgpent in the

placement stage, it can be presumed that iRAC and T-RPack have simitiargsias T-VPack.

All runtime results represent the time required for clustering, placementdndary-search
routing. Routing is included because routing runtime may vary for T-VPadkGrchestrator clus-
tering solutions because of different grid sizes and routing resosamgeu Therefore, to provide a
thorough evaluation of runtime, the effect on routing runtime should be iadlud

To demonstrate the potential for runtime improvement to the Orchestrator toolifiedover-
sion of the tool is created with more emphasis on runtime performance. Theifadlchanges have

been made to the Orchestrator program described in Chapter 5:

1. The minimum number of iterations since the last compaction/anneal is retfoce@5 to

10.

82

Chapter 6. Final Results

2. The margin variable is decremented bwire Tdel/1 after each iteration instead of

wire_Tdel/4.

3. If no progress (reduction in cluster count, timing improvement) is madedaefations, the

Reorganize stage is terminated.
4. The following refinement anneal parameters are adjusted:

e The temperature adjustment factor is changed fr@8rt®@0.7.

e The number of moves per temperature is reduced by a factgf3of 2

The results for the Orchestrator Fast achieve a 10% critical-path delagvermpent over T-VPack
instead of an 11% improvement with the standard Orchestrator algorithm. Al otbtrics for
Orchestrator Fast are within 2% of the original Orchestrator results.

The results presented in Table 6.6 show that the Orchestrator tool is sgtlifislower than T-
VPack, but runtimes are still feasible for large circuits. The results alsmdstrated that significant
runtime improvements can be made with little code modification and only a small perfoema

degradation.

83

Chapter 6. Final Results

File | T-VPack | Orchestrator | Orchestrator Fast
alu4 1 4 4
apex2 3 14 7
apex4 1 13 4
bigkey 1 5 3
clma 33 783 256
des 1 6 4
diffeq 1 5 3
dsip 1 3 3
elliptic 7 32 19
ex1010 9 656 106
ex5p 1 5 4
frisc 7 87 36
misex3 1 4 2
pdc 20 106 35
s298 2 14 6
s38417 5 270 72
s$38584.1 7 48 29
seq 2 6 05
spla 8 49 23
tseng 1 2 1
Arithmetic Mean 5 102 28

Table 6.6: Run Time Results [min]

84

Chapter 7

Conclusion, Contributions and Future

Work

7.1 Conclusions

This thesis presents a novel approach to the FPGA Clustering and Pldagenielem. Through
the use of node duplication, depth-optimal clustering and a combined clgsgarih placement
approach, an 11% performance improvement has been demonstrated\éRack. This timing
improvement is obtained at the expense of area, runtime, and in someroasieg, resource usage.
It has also been shown that the proposed algorithm can graduallyerade® usage at the expense
of timing performance to fit the area restrictions imposed by the user.

In Phase 1: Microcluster Formation, microclusters are created in a dppithad manner by the
LLT algorithm. It was shown in Section 6.2 that a depth advantage in the initislering stage
results in a critical-path delay advantage in the final routed solution. Thiégsehow that a depth
advantage is instrumental in Orchestrator achieving a performanceseaear a greedy approach
such as T-VPack.

To create a depth-optimal clustering solution, the LLT algorithm requiresfisigmt amounts
of node duplication. As can be seen in Figure 5.6, this excessive dupfidatidgs the ability
of Phase 2: Microcluster Compaction to reduce the critical-path delay. dicceethe amount of
duplication to an acceptable level, the NDR algorithm is presented, whichstodidglack on non-

critical paths for a reduction in duplication. When no area restrictions areset a solution with

85

Chapter 7. Conclusion, Contributions and Future Work

reduced duplication and optimal depth results in the best post-routing timifaympance. When
area restrictions are imposed, it was shown that sacrificing depth in albedtmanner to reduce
duplication ultimately resulted in better performance by reducing the perfaerzenalty incurred
in Phase 2.

In Phase 2: Microcluster Compaction, the Orchestrator algorithm is dedcrithich iteratively
reorganizes and consolidates microclusters. Provided sufficientdwgieation exists and some
depth advantage is present in the intermediate solution, the Orchestratathaigoan produce
better timing performance than a greedy approach. Compared to T-Vihacrchestrator tool
produces an 11% critical-path delay improvement with a 44% increase in.CLBs

Finally, a modification to the Orchestrator tool was presented where the solgie forced to
conform to certain area limit. Through this, it was shown that more area allaweeater amount of
duplication in the final solution, which translated into a lower critical path. Thegsed algorithm
demonstrated the ability to outperform T-VPack in terms of timing with as little as a simdlgrid

size increase over T-VPack.

7.2 Contributions

Listed below are a number of contributions that have come out of this odsear

Orchestrator Framework

The Orchestrator tool is an independent program written in object-odéite-. The framework
has the ability to model the circuit with logic, clustering and placement informaitionl&neously;
contrary to the T-VPack/VPR framework, where T-VPack records lagitclustering information,
and VPR is concerned with placement. The Orchestrator framework atsthéability to track
timing properties of the circuit directly to the block level. While not as accumdRR, the timing
model is more accessible because of a simplified interface. Other algorittvaislsa been inte-

grated into Orchestrator, such as the VPR simulated annealer, Dave'd. gmngmental placer and

86

Chapter 7. Conclusion, Contributions and Future Work

the Lawler Levitt Turner algorithm.

As the program is written in object-oriented C++, it has a number of advestaeer the VPR
environment, written in C: intuitive hierarchical structure, simple manipulatiahes€ircuit through
class function calls and low coupling which allows altering a specific areaegbithgram. These
properties have already prompted other students to use the Orchestatewbrk to do further

research.

Combined Clustering and Placement Approach

In Phase 2: Microcluster Compaction, one of the major advantages o@Ah EFAD flows that
separate the clustering and placement steps is the availability of placemameagdinformation.
By understanding how a change to the clustering solution will affect placemelay, and area, the
Orchestrator tool can make more informed decisions. Though combiningrihgsand placement
does increase the overall runtime of the CAD flow, the approach preskate, whereby micro-

clusters are formed first, provides a reasonable trade-off betwaémeuand clustering flexibility.

Node Duplicate Reduction Strategy

The NDR algorithm presented in Section 4.5.1 provides a proficient meaadwing node dupli-
cation while maintaining a predetermined depth. In other research on labeluwsier techniques
([32], [51], [63]), duplicate reduction is treated as an afterthoughte DR algorithm should be
applicable to other label and cluster algorithms based on the LLT algorithm. Witbr miadifica-

tions, the NDR algorithm should also be applicable to algorithms which use teealeelay model

[45].

Orchestrator Algorithm

The Orchestrator algorithm described in Chapter 5 presents a novelsappo the clustering and

placement problem. Of particular innovation is the manner in which microclustersioved. To

87

Chapter 7. Conclusion, Contributions and Future Work

the best knowledge of the author, such a technique that uses placamdithang information to

incrementally move clusters to improve timing has not been used in FPGA rasearc

7.3 Future Work

The combined clustering and placement algorithm presents a new appoothehclustering and
placement steps of the FPGA CAD flow. A number of improvements for futark are described

below.

7.3.1 Microcluster Formation Phase

The Microcluster Formation Phase may be improved to produce a better iclgstetution for the

Orchestrator tool through the following technigues.

e A number of algorithms ([51], [16], [13]) have improved on the LLT ai¢fum by using the
general delay model presented in [45]. In this work, Lawler’s origatgbrithm was chosen
as the base of the initial clustering algorithm as it was conducive to the NogkicBte
Reduction technique described in Section 4.5. Additional performance ipevs may be
gained by transitioning the Microcluster Formation Phase to a general detdgl,rbat at the

cost of significant modification to the NDR algorithm.

e Figure 4.5 demonstrates the significant effect node duplication has om#h@dérformance
of a circuit. While a great deal of attention has been paid to node duplicatiompiquitous
formula has been devised to specify the most advantageous level ofatigolitor any given
circuit. If such a formula could be determined, it would allow the algorithm to bkstterage

node duplication to improve performance.

88

Chapter 7. Conclusion, Contributions and Future Work

7.3.2 Orchestrator

The Orchestrator algorithm presents a novel approach to FPGA clgstmoh placement. The
algorithm was written from scratch, with the exception of the Compaction roi#je The program

therefore introduces a great many avenues of exploration, as apfibae established algorithm
such as VPR which has been thoroughly explored over the past degaselection of possible

areas for future research are presented below.

e In general, microclusters formed during the Initial Clustering Phase pénsisighout the
Orchestrator algorithm. While this simplifies the Orchestrator tool and redocegutational
complexity, it limits the ability of Orchestrator to alter the clustering solution. A mobeisb
solution would be to allow the Orchestrator to reorganize the grouping dkbfoc a specific

location as required. This technique could be beneficial by:

1. placing blocks connected by a critical connection in the same microclustdoecing
the connection to remain intracluster

2. breaking microclusters with low cohesion, allowing greater freedom eement and
reducing fragmentation

3. consolidating related microclusters, which ultimately will reduce runtime

While this technique holds promise, it will require a considerable amounfaft ¢éb deter-

mine the best method to reorganize microclusters.

e Retiming [34] refers to adjusting the location of flip-flops to improve critical-pidlay. A
great deal of research ([58], [50], [14]) has been done on #ropnance gains possible
through FPGA retiming. Retiming during the clustering stage will result in a plesdépth
reduction and retiming during placement will results in a possible critical-pd#ty deduc-
tion. Considering how the Orchestrator tool uses a depth advantagedocpra timing
performance gain over greedy approaches, retiming could result stasuial performance

gains.

89

Chapter 7. Conclusion, Contributions and Future Work

e Logic duplication is an integral part of this research and an effort baa made to utilize it to
its full potential. When duplication reduction is performed in the Orchestratdy ttee algo-
rithm removes duplication provided it does not adversely affect pmdace for the current
clustering and placement solution. Unfortunately, the possibility exists thaeguent clus-
tering and placement solutions may benefit from removed duplicates. @uiespemployed
by other clustering tools ([53], [9]), allows duplication during or aftercgiment. This might
be implemented by adding a duplicate insertion step after each iteration of thesbetor
tool. The inserted duplicates would still be subject to removal, so any dugittaeare not

actually needed would be reduced.

90

Bibliography

[1]

[2]

[3]

Elias Ahmed and Jonathan Rose. The effect of LUT and cluster sizeéeep-submicron
FPGA performance and density. FPGA '00: Proceedings of the 2000 ACM/SIGDA eighth
international symposium on field programmable gate arrgyages 3—-12, New York, NY,

USA, 2000. ACM Press.

Michael J. Alexander, James P. Cohoon, Joseph L. Ganley, ahdgbRobins. Performance-
oriented placement and routing for field-programmable gate arrai8JIRO-DAC '95/EURO-
VHDL '95: Proceedings of the conference on European design automathges 80-85, Los

Alamitos, CA, USA, 1995. IEEE Computer Society Press.

Giancarlo Beraudo and John Lillis. Timing optimization of FPGA placementatig repli-

cation. InProceedings of the 40rd Design Automation Conferepeges 196-201, 2003.

[4] V. Betz and J. Rose. Cluster-based logic blocks for FPGASs: effe@ency vs. input sharing

and size. InCustom Integrated Circuits Conference, 1997., Proceedings of the [FRE

pages 551-554, 5-8 May 1997.

[5] Vaughn Betz, Jonathan Rose, and Alexander Marquardt, edifnchitecture and CAD for

[6]

Deep-Submicron FPGAXKIuwer Academic Publishers, Norwell, MA, USA, 1999.

Elaheh Bozorgzadeh, Seda Ogrenci Memik, Xiaojian Yang, and M&jrafzadeh.
Routability-driven packing: Metrics and algorithms for cluster-basedA&$Qournal of Cir-

cuits, Systems, and Computet8(1):77-100, 2004.

91

Bibliography

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Elaheh Bozorgzadeh, Seda Ogrenci-Memik, and Majid Sarrafzd&igack: routability-driven
packing for cluster-based FPGAs. ASP-DAC '01: Proceedings of the 2001 conference on
Asia South Pacific design automatjopages 629-634, New York, NY, USA, 2001. ACM

Press.

Stephen Dean Brown, Jonathan Rose, and Zvonko G. Vranesicdetailed router for
field-programmable gate arraysEEE Trans. on CAD of Integrated Circuits and Systems
11(5):620-628, 1992.

Gang Chen and Jason Cong. Simultaneous placement with clusterirdyplichtion. ACM
Trans. Design Autom. Electr. Syst1(3):740-772, 2006.

Kuang-Chien Chen, Jason Cong, Yuzheng Ding, Andrew Bni§gahnd Peter Trajmar. Dag-
map: Graph-based FPGA technology mapping for delay optimizalttiE Design & Test of
Computers9(3):7-20, 1992.

Jason Cong and Yuzheng Ding. An optimal technology mapping algofithn delay opti-
mization in lookup-table based FPGA designsIT&CAD, pages 48-53, 1992.

Jason Cong and Yuzheng Ding. On area/depth trade-off in LaSeth FPGA technology map-
ping. InDAC '93: Proceedings of the 30th international conference on Desidgaraation

pages 213-218, New York, NY, USA, 1993. ACM Press.

Jason Cong and Michail Romesis. Performance-driven multi-léustaring with application
to hierarchical FPGA mapping. IRroceedings of the 38th Design Automation Confergnce

pages 389-394, 2001.

Jason Cong and Chang Wu. FPGA synthesis with retiming and pipeliningydck period
minimization of sequential circuits. IDAC '97: Proceedings of the 34th annual conference
on Design automatigrpages 644—-649, New York, NY, USA, 1997. ACM.

Altera Corporation. Stratix iii device handbook.

92

Bibliography

[16] Mehrdad Eslami Dehkordi and Stephen Dean Brown. The effieciuster packing and node
duplication control in delay driven clustering. Rroceedings of the 2002 IEEE International

Conference on Field-Programmable Technolgggges 227-233. IEEE, 2002.

[17] Kristofer Vorwerk Doris Chen and Andrew Kennings. Improving tighdriven FPGA packing
with physical information. InField Programmable Logic and Applicatiopages 117-123,
2007.

[18] Hans Eisenmann and Frank M. Johannes. Generic global platemeérloorplanning. In
DAC '98: Proceedings of the 35th annual conference on Design autom@ages 269-274,
New York, NY, USA, 1998. ACM Press.

[19] W.C. Elmore. The transient analysis of damped linear networks witticpkar regard to

wideband amplifiersJournal of Applied Physi¢c4.9(1):55-63, 1948.

[20] Robert J. Francis, Jonathan Rose, and Zvonko G. Vraneshortl€-crf: Fast technology

mapping for lookup table-based FPGAs.DAC, pages 227-233, 1991.

[21] Robert J. Francis, Jonathan Rose, and Zvonko G. Vraneeichnblogy mapping on lookup

table-based FPGAs for performance.l@CAD, pages 568-571, 1991.

[22] Daniel Gomez-Prado and Maciej Ciesielsk Tutorial on FPGA Routing Department of

Electrical and Computer Engineering, University of Massachusetts, fenhe

[23] Brent Goplen and Sachin Sapatnekar. Efficient thermal placeofestandard cells in 3d
ics using a force directed approach. IIBCAD '03: Proceedings of the 2003 IEEE/ACM
international conference on Computer-aided desigage 86, Washington, DC, USA, 2003.
IEEE Computer Society.

[24] Xilinx Inc. Virtex-5 user guide.

93

Bibliography

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

R. Karp. Reducibility among combinatorial problems. In R. Miller and Baf€her, editors,

Complexity of Computer Computatiomeges 85-103. Plenum Press, 1972.

Kevin Karplus. Xmap: A technology mapper for table-lookup fieldgmammable gate arrays.

In DAC, pages 240-243, 1991.

S. Kirkpatrick, Gelatt Cd, and Vecchi Mp. Optimization by simulated afing. Science
220(4598):671-680, 1983.

lan Kuon and Jonathan Rose. Measuring the gap between FR@A&siEs. IrProceedings of
the ACM/SIGDA 14th International Symposium on Field Programmable Gaty#\ pages
21-30, 2006.

Jimmy Lam and Jean-Marc Delosme. Performance of a new annealeglide. INDAC,

pages 306-311, 1988.

Julien Lamoureux. On the interaction between power-aware cormaiated design algorithms
for field-programmable gate arrays. Master’s thesis, University of Brifislumbia, Vancou-

ver, BC, 2003.
Mark LaPedus. Mask prices flatten but tool costs se&r.TimesMarch 2006.

E.L. Lawler, K.N. Levitt, and J. Turner. Module clustering to minimize gdladigital net-

works. IEEE Trans. Computerpages 47-57, 1969.

C.Y. Lee. An algorithm for path connections and its applicatidR&E Transactions on Elec-

tronic Computers10:346—-365, 1961.

Charles E. Leiserson and James B. Saxe. Retiming synchronaustrgir Algorithmica

6(1):5-35, 1991.

Guy G. Lemieux and Stephen Dean Brown. A detailed router for dlilugavire segments in

FPGAs. INACM/SIGDA Physical Design Workshqggages 215226, 1993.

94

Bibliography

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

Guy G. Lemieux, Stephen Dean Brown, and Daniel Vranesic. Orstep routing for FPGAs.
In ISPD, pages 60—66, 1997.

David Leong. Incremental placement for field-programmable gatysr Master's thesis,

University of British Columbia, Vancouver, BC, November 2006.

Hao Li, Wai-Kei Mak, and Srinivas Katkoori. Force-directedfpemance-driven placement
algorithm for FPGAs. 12004 IEEE Computer Society Annual Symposium on VLSI (ISVLSI
2004), Emerging Trends in VLSI Systems Degigiges 193—-198, 2004.

Joey Y. Lin, Deming Chen, and Jason Cong. Optimal simultaneous ngaapdhclustering for
FPGA delay optimization. IfProceedings of the 43rd Design Automation Conferepeges
472-477, 2006.

Alexander Marquardt, Vaughn Betz, and Jonathan Rose. Tinmingrdplacement for FPGAs.

In FPGA pages 203-213, 2000.

Alexander (Sandy) Marquardt, Vaughn Betz, and Jonatha®.ROsing cluster-based logic
blocks and timing-driven packing to improve FPGA speed and densit{PBA '99: Pro-
ceedings of the 1999 ACM/SIGDA seventh international symposium onpragcammable
gate arrays pages 37-46, New York, NY, USA, 1999. ACM Press.

Larry McMurchie and Carl Ebeling. Pathfinder: a negotiationeldaperformance-driven
router for FPGAs. IFPGA '95: Proceedings of the 1995 ACM third international symposium
on Field-programmable gate arraypages 111-117, New York, NY, USA, 1995. ACM Press.

Fan Mo, Abdallah Tabbara, and Robert K. Brayton. A forcectied macro-cell placer. In
ICCAD '00: Proceedings of the 2000 IEEE/ACM international confeesoic Computer-aided
design pages 177-181, Piscataway, NJ, USA, 2000. IEEE Press.

Chandra Mulpuri and Scott Hauck. Runtime and quality tradeoffsAG /& placement and

routing. INFPGA pages 29-36, 2001.

95

Bibliography

[45] Rajeev Murgai, Robert K. Brayton, and Alberto L. Sangiovanimegntelli. On clustering for

minimum delay/area. IlCCAD, pages 6-9, 1991.

[46] Rajeev Murgai, Yoshihito Nishizaki, Narendra V. Shenoy, RoBeBrayton, and Alberto L.
Sangiovanni-Vincentelli. Logic synthesis for programmable gate arraySAC, pages 620—

625, 1990.

[47] Rajeev Murgai, Narendra V. Shenoy, Robert K. Brayton, arildefAo L. Sangiovanni-
Vincentelli. Performance directed synthesis for table look up programmaldeagrays. In

ICCAD, pages 572-575, 1991.

[48] Ravi Nair. A simple yet effective technique for global wirintEEE Trans. on CAD of Inte-
grated Circuits and Systen®(2):165-172, 1987.

[49] Jr Neil R. Quinn and Melvin A. Breuer. A forced directed comporn@atement procedure for
printed circuit boardsIEEE Trans. on CAD of Integrated Circuits and SysteR&(6):377—
388, 1979.

[50] Peichen Pan and C. L. Liu. Optimal clock period FPGA technology mapiginsequential
circuits. ACM Trans. Des. Autom. Electron. Sy8{(3):437-462, 1998.

[51] Rajmohan Rajaraman and D. F. Wong. Optimal clustering for delay minimizationDAC
'93: Proceedings of the 30th international conference on Design auiomaages 309-314,

New York, NY, USA, 1993. ACM Press.

[52] Prashant Sawkar and Donald E. Thomas. Area and delay mappingbie-look-up based
field programmable gate arrays. DAC, pages 368—373, 1992.

[53] Karl Schabas and Stephen D. Brown. Using logic duplication to imppevearmance in FP-
GAs. InFPGA '03: Proceedings of the 2003 ACM/SIGDA eleventh internatiomapsgium
on Field programmable gate arraypages 136-142, New York, NY, USA, 2003. ACM Press.

96

Bibliography

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

Carl Sechen and Alberto Sangiovanni-Vincentelli. Timberwolf3.2ew standard cell place-
ment and global routing package.DAC '86: Proceedings of the 23rd ACM/IEEE conference
on Design automatigrpages 432—-439, Piscataway, NJ, USA, 1986. IEEE Press.

Ellen Sentovich, Kanwar Jit Singh, Cho W. Moon, Hamid Savoj, RoKeBrayton, and
Alberto L. Sangiovanni-Vincentelli. Sequential circuit design using sysithand optimiza-
tion. InICCD '92: Proceedings of the 1991 IEEE International ConferenceCamputer
Design on VLSI in Computer & Processppmages 328-333, Washington, DC, USA, 1992.
IEEE Computer Society.

Khushro Shahookar and Pinaki Mazumder. ViIsi cell placemefinigaes. ACM Comput.
Surv, 23(2):143-220, 1991.

Amit Singh and Malgorzata Marek-Sadowska. Efficient circuit idtiag for area and power
reduction in FPGAs. IfFPGA '02: Proceedings of the 2002 ACM/SIGDA tenth international
symposium on Field-programmable gate arrapages 59—66, New York, NY, USA, 2002.
ACM Press.

Deshanand P. Singh and Stephen Dean Brown. Integrated retimihglacement for field

programmable gate arrays. FPGA pages 67-76, 2002.

William Swartz and Carl Sechen. New algorithms for the placement antihg of macro

cells. InICCAD, pages 336—-339, 1990.

Cliff C. N. Sze, Ting-Chi Wang, and Li-C. Wang. Multilevel circuitustering for delay
minimization. IEEE Trans. on CAD of Integrated Circuits and Syste2®%(7):1073—-1085,
2004.

Marvin Tom. Channel width reduction techniques for system-on-dhipuits in field-
programmable gate arrays. Master’s thesis, University of British Colurivaiagouver, BC,

March 2006.

97

Bibliography

[62] K. Vorwerk, A. Kennings, and A. Vannelli. Engineering details o$table force-directed
placer. InICCAD ’'04: Proceedings of the 2004 IEEE/ACM International confeeeion
Computer-aided desigmpages 573-580, Washington, DC, USA, 2004. IEEE Computer So-

ciety.

[63] Hannah Honghua Yang and Martin D. F. Wong. Circuit clusteringdielay minimization
under area and pin constraintdEEE Trans. on CAD of Integrated Circuits and Systems

16(9):976-986, 1997.

98

Appendix A

Microcluster Statistics

This appendix provides statistics on the microclusters produced by the dWister Formation
Phase with a single pass of the NDR algorithm. The statistics are presentee tihgireader a
concise idea of what is produced in the Microcluster Formation Phase.

In later stages of the algorithm, microclusters are moved and consolidatedwiays such that
no location contains more thablocks. Therefore, smaller microclusters have greater mobility. It
is not necessarily advantageous to have all microclusters contain felsplad at least some por-
tion should to allow the placement and clustering solution to evolve. Figure Avissh histogram
of blocks per cluster averaged across the 20 largest MCNC bencénfégure A.1 shows that in
general, most microclusters are less than half utilized. The average tdagk per microcluster is

4.08.

300

250

200

Count
=]
=

100

a0+

1 2 3 4] 6 7 g 9 10
Block Usage / Cluster

Figure A.1: Average Blocks Per Microcluster

99

Appendix A. Microcluster Statistics

It should be noted that characterizing blocks per microcluster is diffi@dabse it is highly
dependent on the nature of the circuit. Figure A.2 shows the distribution obohister sizes by
file. While no discernible pattern can be formed, the graph does show tisatirauits have a good
distribution of large and small microclusters.

3000+

2500+

o _
n .
1

1500~

uCluster Count

1000~

300+

PP PP L REL RE PP F DN PP
T S FGEFESFEFT EF g F P
&

MCNC Circuit

Figure A.2: Microcluster Size by Circuit

100

Appendix B

Margin Interval Test

When moving pads and microclusters, tharginvariable controls how quickly the timing restric-
tions are relaxed. As the relocation routine is the most computationally intepsitien of the
Orchestrator tool, thenarginvariable has a large influence on the run-time of the program.
Figure B.1 presents the performance and run-time results for a numbiffecéiat margin inter-
vals. Margin intervals range fromire_T del« 8 towire_T del/10. All performance results (shown as
squares) are geometric means across the 20 largest MCNC benchatlatkstime results (shown
as triangles) are arithmetic means across the 20 largest MCNC benchmarks.
1230 700
12.10
b\ /.
X —
1190 / 1 o

11.80

s - 300
1170 X-)L./M
1160 // 1 200
1180
/ -+ 100
11.40 ‘_‘—_’_"_—‘

11.30 t t t t t t t t t t t t 0
8 Ax 2 1x T P Tidw M 1dEx U 1w 1o 1410

Terit [ns]

avg run-time [min]

wire_Tdel Factor

Figure B.1: Margin Interval Test Results

101

Appendix B. Margin Interval Test

Performance results show a tendency to level off for intervalsire_Tdel. wire_Tdel/4 is
chosen as the final margin interval as it provides slightly better overailtsethanwire_T del and
still has a reasonable worst-case run-time (clma = 15h4%ing_T del/8 was also considered, but
it has a substantially higher worst-case run-time (clma = 32h23m) and aféeoadindependent

run, the timing advantage comparediive_T del/4 in Figure B.1 proved to by anomalous.

102

