- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- New results on differential and non-coherent transmission:...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
New results on differential and non-coherent transmission: MSDD for correlated MIMO fading channels and performance analysis for generalized K-fading Zhu, Cindy Yue
Abstract
In this thesis, we revisit differential and non-coherent transmission techniques over fading channels. In particular, we consider receiver design for differential space-time modulation (DSTM) over correlated multiple-input multiple-output (MIMO) fading channels and the performance analysis of differential phase shift keying (DPSK) and non-coherent frequency shift keying (FSK) in generalized K-fading. For DSTM over spatially correlated MIMO channels, we derive a multiple-symbol differential detection (MSDD) and a novel MSDD-based decision-feedback differential detection (MS-DFDD) receiver. We show that MS-DFDD outperforms previously proposed decision-feedback differential detection (DFDD) schemes that are based on scalar and vector prediction. In addition, we prove that at high signal-to-noise ratio (SNR) vector prediction decision-feedback differential detection (VP-DFDD) is equivalent to scalar prediction decision-feedback differential detection (SP-DFDD) and thus fails to properly exploit the spatial fading correlations. Furthermore, we derive closed-form expressions for the bit error probability (BEP) of two non-coherent transmission schemes over L diversity branches being subject to generalized K-fading. Specifically, focus is on binary DPSK (DBPSK) and binary non-coherent FSK modulation with equal-gain combining (EGC) at the receiver. We also discuss the extension of our results to M-ary modulation schemes. Considering both independent and correlated fading across the L branches, we derive expressions for the asymptotic diversity order, which reveal an interesting interplay between the two parameters, k and m, of the generalized K-distribution. Moreover, we show that the diversity order of the considered non-coherent transmission schemes is the same as in the case of coherent transmission. Finally, numerical performance results are presented, and our analytical results are corroborated by means of Monte-Carlo simulation.
Item Metadata
Title |
New results on differential and non-coherent transmission: MSDD for correlated MIMO fading channels and performance analysis for generalized K-fading
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2009
|
Description |
In this thesis, we revisit differential and non-coherent transmission techniques over fading channels. In particular, we consider receiver design for differential space-time modulation (DSTM) over correlated multiple-input multiple-output (MIMO) fading channels and the performance analysis of differential phase shift keying (DPSK) and non-coherent frequency shift keying (FSK) in generalized K-fading.
For DSTM over spatially correlated MIMO channels, we derive a multiple-symbol differential detection (MSDD) and a novel MSDD-based decision-feedback differential detection (MS-DFDD) receiver. We show that MS-DFDD outperforms previously proposed decision-feedback differential detection (DFDD) schemes that are based on scalar and vector prediction. In addition, we prove that at high signal-to-noise ratio (SNR) vector prediction decision-feedback differential detection (VP-DFDD) is equivalent to scalar prediction decision-feedback differential detection (SP-DFDD) and thus fails to properly exploit the spatial fading correlations.
Furthermore, we derive closed-form expressions for the bit error probability (BEP) of two non-coherent transmission schemes over L diversity branches being subject to generalized K-fading. Specifically, focus is on binary DPSK (DBPSK) and binary non-coherent FSK modulation with equal-gain combining (EGC) at the receiver. We also discuss the extension of our results to M-ary modulation schemes. Considering both independent and correlated fading across the L branches, we derive expressions for the asymptotic diversity order, which reveal an interesting interplay between the two parameters, k and m, of the generalized K-distribution. Moreover, we show that the diversity order of the considered non-coherent transmission schemes is the same as in the case of coherent transmission. Finally, numerical performance results are presented, and our analytical results are corroborated by means of Monte-Carlo simulation.
|
Extent |
1355767 bytes
|
Genre | |
Type | |
File Format |
application/pdf
|
Language |
eng
|
Date Available |
2009-10-01
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0065512
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2009-11
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International