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Abstract

In this thesis, we revisit differential and non–coherent transmission techniques

over fading channels. In particular, we consider receiver design for differen-

tial space–time modulation (DSTM) over correlated multiple–input multiple–

output (MIMO) fading channels and the performance analysis of differential

phase shift keying (DPSK) and non–coherent frequency shift keying (FSK) in

generalized K–fading.

For DSTM over spatially correlated MIMO channels, we derive a multiple–

symbol differential detection (MSDD) and a novel MSDD–based decision–

feedback differential detection (MS–DFDD) receiver. We show that MS–

DFDD outperforms previously proposed decision–feedback differential detec-

tion (DFDD) schemes that are based on scalar and vector prediction. In

addition, we prove that at high signal–to–noise ratio (SNR) vector prediction

decision–feedback differential detection (VP–DFDD) is equivalent to scalar

prediction decision–feedback differential detection (SP–DFDD) and thus fails

to properly exploit the spatial fading correlations.

Furthermore, we derive closed–form expressions for the bit error probabil-

ity (BEP) of two non–coherent transmission schemes over L diversity branches

being subject to generalized K–fading. Specifically, focus is on binary DPSK

(DBPSK) and binary non–coherent FSK modulation with equal–gain com-

bining (EGC) at the receiver. We also discuss the extension of our results

to M–ary modulation schemes. Considering both independent and correlated

fading across the L branches, we derive expressions for the asymptotic diver-

sity order, which reveal an interesting interplay between the two parameters,
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k and m, of the generalized K–distribution. Moreover, we show that the di-

versity order of the considered non–coherent transmission schemes is the same

as in the case of coherent transmission. Finally, numerical performance re-

sults are presented, and our analytical results are corroborated by means of

Monte–Carlo simulation.
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Chapter 1

1 Introduction

The following section provides an overview of the background information and

motivation for this work in detail. We also review the related work that has

been reported by other researchers in this field. The contributions of this work

are briefly summarized in the second section of this chapter, and the concluding

section outlines the organization of this thesis.

1.1 Background and Motivation

In recent years, the application of multiple antennas in different wireless com-

munication environments has received considerable interest from academia and

industry. In particular, in practical cases where accurate channel knowledge

at the receiver is not available, differential and non–coherent transmission

schemes eliminate the need for channel estimation at the receiver and are

thus attractive for high–mobility and low SNR scenarios as well as for low–

cost receiver implementations. DPSK and DSTM [1] are popular modulation

schemes if channel state information (CSI) is not available at the receiver

side. Since conventional differential detection (CDD) causes significant per-

formance degradations compared to coherent detection (CD) in time–variant

fading channels, in the last few years various DFDD and MSDD schemes have

been proposed for performance improvement, cf. e.g. [2, 3]. However, while
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in practice the fading gains may be spatially correlated due to insufficient an-

tenna spacing, [2, 3] only considered the spatially uncorrelated case. The per-

formance of DSTM and beamforming for DSTM in spatially correlated fading

were considered in [4] and [5, 6], respectively. However, the detection scheme

applied in [4, 5, 6] was simple CDD which does not take into account spatial

correlations. A sequence–detection based non–coherent detection scheme tak-

ing into account spatial fading correlations was proposed in [7]. Interestingly,

if the number of trellis states of the sequence–detection based scheme in [7] is

reduced to zero, it can be interpreted as DFDD for correlated fading, where

the DFDD coefficients are the coefficients of a scalar predictor (SP) or a vec-

tor predictor (VP) for the fading–plus–noise process. Thus, we refer to the

corresponding detectors as SP–DFDD and VP–DFDD, respectively.

Since the transmission environment is essential to a wireless communica-

tion system, we also investigate the generalized K–fading model. The perfor-

mance of wireless communication systems is largely governed by shadowing

and multipath fading effects [8, Ch. 2]. While major obstacles between trans-

mitter and receiver cause macroscopic fading effects, i.e., fluctuations in the

average received SNR, scatterers in the vicinity of transmitter and receiver en-

tail microscopic fading effects, i.e., fluctuations in the instantaneous received

SNR. The generalized K–fading model is characterized by two parameters,

k > 0 and m > 0, which accurately capture the effects of composite shadowing

and multipath fading. In particular, it comprises a large variety of channel

conditions, ranging from severe shadowing (small values of k) to mild shadow-

ing (large values of k) and from severe multipath fading (small values of m) to

mild multipath fading (large values of m). Moreover, the generalized K–fading

model can also be employed to model cascade multipath fading, which occurs,

e.g., in keyhole and in mobile–to–mobile communication scenarios [9], [10].

For the special case where k = m = 1, the generalized K–fading model re-

duces to the double Rayleigh–fading model. By varying the fading parameters

accordingly, more or less severe cascade multipath fading can be modeled.
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A favorable property of the generalized K–fading model is that it allows

for a closed–form expression for the probability density function (PDF) of the

instantaneous received SNR, which is in contrast to, e.g., competing composite

shadowing/multipath fading models that are based on the lognormal PDF.

As a result, several analytical performance results for generalized K–fading

and ordinary K–fading (when m = 1) have been reported in the literature.

Moreover, analytical performance results for the special case of double Rayleigh

fading were presented in [10, 11, 12].

Most of the papers mentioned above have focused on coherent transmission

schemes, which rely on the availability of accurate channel knowledge at the

receiver side. However, since non–coherent transmission schemes eliminate the

need for channel estimation at the receiver, we derive closed–form expressions

for the BEP of two non–coherent transmission schemes over L generalized

K–fading branches with (post–detection) EGC at the receiver. Specifically,

focus is on DBPSK modulation with CDD at the receiver (i.e., based on two

subsequent received symbols) and orthogonal binary frequency–shift keying

(FSK) modulation with non–coherent detection at the receiver [13, Ch. 9.4].

We also discuss the extension of our results to M–ary modulation schemes.

Concerning the K–fading model we consider two scenarios. First, we focus on

the case of independent fading across the L branches. This scenario appears to

be relevant for cascade multipath fading, if the underlying assumption is a rich–

scattering radio environment (see [10] for examples). Here, the assumption of

uncorrelated diversity branches – created, e.g., by multiple receive antennas

with sufficiently large antenna spacing – appears to be reasonable. Afterwards,

we turn to the case of composite shadowing and multipath fading. Here, we

consider the scenario where the shadowing part is fully correlated across links,

whereas the multipath fading is independent and identically distributed (i.i.d.)

across the L branches. Since shadowing represents a large–scale fading effect,

it can be expected to affect all diversity branches simultaneously, while in a

rich–scattering environment the multipath fading part can again be considered

3



independent across links. For both scenarios, we present a high–SNR analysis

and provide expressions for the resulting asymptotic diversity orders, which

reveal an interesting interplay between the two fading parameters k and m. It

is worth noting that the existing papers on non–coherent transmission schemes

over generalized K–fading or double Rayleigh–fading links [10]-[14, 15] are

all restricted to a single branch (L = 1). In particular, to the best of our

knowledge closed–form expressions for the BEP and the asymptotic diversity

order of the considered non–coherent transmission schemes in generalized K–

fading have not yet been presented in the literature.

1.2 Contributions

The main contributions of the present research work are as follows:

• We derive an MSDD and a low-complexity MS–DFDD receiver for DSTM

transmitted over spatially correlated MIMO fading channels. The pro-

posed DFDD scheme is obtained by introducing decision-feedback sym-

bols into the MSDD metric. We show that MS-DFDD outperforms both

SP–DFDD and VP–DFDD. Furthermore, we prove that at high SNR SP–

DFDD and VP–DFDD are equivalent. Thus, at high SNR VP-DFDD

does not result in performance gains compared to the simpler SP-DFDD.

• We also derive closed–form expressions for the BEP of two non–coherent

transmission schemes over L generalized K–fading branches with EGC

at the receiver. Specifically, focus is on DBPSK and binary non–coherent

FSK modulation. Note that the existing papers on non-coherent trans-

mission schemes over (generalized) K–fading or double Rayleigh–fading

links are all restricted to the case of a single link (L = 1).

– First, we focus on the case of i.i.d. fading across the L branches,

which appears to be relevant for the case of cascade multipath fad-
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ing.

– We then turn to the case of composite shadowing and multipath

fading. Here, we consider the scenario where the shadowing part is

fully correlated across links, whereas the multipath fading is i.i.d.

across the L branches. For both cases, we present a high–SNR

analysis and state expressions for the resulting asymptotic diversity

order, which reveal an interesting interplay between the two fading

parameters k and m.

The results of our work are summarized in the following papers:

• C. Zhu, S. Yiu, and R. Schober. On Noncoherent Receivers for DSTM

in Spatially Correlated Fading. Accepted for publication in the IEEE

Transactions on Communications, December 2008.

• C. Zhu, J. Mietzner, and R. Schober. On the Performance of Non–

Coherent Transmission Schemes over Multiple Generalized K–Fading

Links. Submitted to the IEEE Transaction of Wireless Communications,

February 2009.

• C. Zhu, J. Mietzner, and R. Schober. On the Performance of Non–

Coherent Transmission Schemes with Equal–Gain Combining in Cor-

related Generalized K–Fading. Accepted for presentation at the IEEE

Vehicular Technology Conference, Anchorage, Alaska, USA, September

2009.

1.3 Thesis Organization

To explain the above findings in detail, this thesis is organized as follows. In

Chapter 2, we will describe DSTM in detail. The proposed differential detec-

tors for DPSK and DSTM are also discussed in this chapter. The simulations

results for the improved differential detectors are also provided. In Chapter

5



3, the generalized K–fading model is introduced. The performance analysis

of both binary and M–ary modulation over generalized K–fading channels is

discussed in Chapters 4 and 5, respectively. The simulation results for the

generalized K–fading channels are provided also included in Chapter 5, and

some conclusions are given in Chapter 6.
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Chapter 2

1 Non–Coherent Detectors

for DPSK and DSTM

In this section, we first give a brief introduction to DSTM followed by the

derivation of the optimum MSDD decision rule and the related MS–DFDD

scheme for spatially correlated fading channels. We also compare MS–DFDD

with SP–DFDD and VP–DFDD.

2.1 System Model

In this section, we assume a MIMO channel with NT transmit and NR receive

antennas. In DSTM, the data–carrying NT × NT matrix symbols V [k] are

taken from a suitable alphabet V of unitary matrices [1]. Here, k denotes the

matrix symbol index and the NT ×NT transmit symbol S[k] is obtained from

V [k] via differential encoding S[k] = V [k]S[k − 1]. For the special case when

NT = 1, DSTM simplifies to DPSK.

The signals received at the NR receive antennas in NT consecutive symbol

intervals are collected in a column vector

r[k] = B[k]h[k] + n[k], (2.1)

where r[k] , [r11[k] . . . rNT 1[k] r12[k] . . . rNTNR
[k]]T , h[k] , [h11[k] . . . hNT 1[k]

h12[k] . . . hNTNR
[k]]T , n[k] , [n11[k] . . . nNT 1[k] n12[k] . . . nNTNR

[k]]T , and
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B[k] , INR
⊗ S[k]. rntnr

[k], hntnr
[k], and nntnr

[k] denote the received sig-

nal, the fading gain, and the noise, respectively, corresponding to transmit

antenna nt, 1 ≤ nt ≤ NT , and receive antenna nr, 1 ≤ nr ≤ NR. The Rayleigh

fading component h[k] is modeled as a zero–mean Gaussian random vector

with correlation matrix E{h[k]hH [k]} = Rrx ⊗ Rtx, where Rrx and Rtx de-

note the NR × NR receive and the NT × NT transmit correlation matrices

respectively and E {·} denotes statistical expectation. The temporal fading

correlation is modeled as Rt[λ] , E{hntnr
[k + λ]h∗ntnr

[k]} = J0(2πBfTNTλ)

[16], where J0(·), Bf , and T denote the zeroth order Bessel function of the first

kind, the Doppler bandwidth, and the symbol interval, respectively. nntnr
[k]

is spatially and temporally i.i.d. additive white Gaussian noise (AWGN) with

variance σ2
n , E{|nntnr

[k]|2}.

2.2 Noncoherent Detectors

2.2.1 MSDD

To derive the MSDD decision rule we first collect N received vectors r[k] in a

new vector r , [rT [k] rT [k− 1] . . . rT [k−N + 1]]T which can be modeled as

r = Bh + n, (2.2)

with B , diag{B[k] . . . B[k −N + 1]}, h , [hT [k] . . . hT [k −N + 1]]T , and

n , [nT [k] . . . nT [k −N + 1]]T . From (2.2) we observe that the PDF p(r|B)

of r conditioned on B is a zero–mean Gaussian PDF with covariance matrix

BRBH , where R , E{hhH}+ E{nnH} = Rt ⊗Rrx ⊗Rtx + σ2
nINNRNT

with

[Rt]i,j = Rt[i − j], 0 ≤ i, j ≤ N − 1. Thus, performing maximum–likelihood

detection leads to the MSDD decision rule

8



V̂ = argmax
V ∈VN−1, [k−N+1]∈S

{p (r|B)} (2.3)

= argmin
V ∈VN−1, [k−N+1]∈S

{rHBR−1BHr},

where V , [V [k] . . . V [k − N + 2]], V̂ is the estimate of V , and S is the

alphabet of the transmit symbols S[k]. We note that for DSTM constellations

that form a group S = V holds [1]. For further development of (2.3) , the

Cholesky factorization of R−1 = UHU is introduced. We partition the upper

triangular matrix U into NTNR ×NTNR sub–matrices U i,j, 0 ≤ i, j ≤ N − 1

[17]. Thus, (2.3) can be rewritten as

V̂ = argmin
V ∈VN−1,[k−N+1]∈S




N−1∑

i=0

∥∥∥∥∥
N−1∑

j=i

U i, jB
H [k − j]r[k − j]

∥∥∥∥∥

2


 . (2.4)

For spatially uncorrelated fading we can show that U i,j , ut
i,jINTNR

with ut
i,j , [U t]i,j where U t denotes an upper triangular matrix obtained

by Cholesky factorization of Rt + σ2
nIN . Therefore, in this special case, (2.4)

is the well–known MSDD decision rule for uncorrelated fading, cf. e.g. [16, 18].

Since the complexity of MSDD grows exponentially with the observation win-

dow sizeN , in the next section, we will introduce MS–DFDD whose complexity

grows only linearly with N .

2.2.2 MS–DFDD

The fundamental idea of MS–DFDD is to replace V [k − j], 1 ≤ j ≤ N − 2,

and S[k − N + 1] in (2.4) by the corresponding previously decided symbols

V̂ [k− j] and Ŝ[k−N + 1]. After all irrelevant terms are neglected, this leads

to the MS–DFDD decision rule given by

V̂ [k] = argmin
V [k]∈V





∥∥∥∥∥E
(

B̃
H

[k]r[k] +
N−1∑

j=1

P jB̂
H

[k − j]r[k − j]

)∥∥∥∥∥

2


 , (2.5)
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where E , U 0,0, P j , U−1
0,0 U 0,j, 1 ≤ j ≤ N − 1, B̂[k] , INR

⊗ Ŝ[k],

Ŝ[k] = V̂ [k]Ŝ[k − 1], and B̃[k] , INR
⊗ (V [k]Ŝ[k − 1]). Since the U i,j are

obtained through Cholesky factorization of R−1, it can be shown that the P j

are the coefficients of the optimum linear (N − 1)th order VP for the fading–

plus–noise process f [k] , h[k]+n[k] [17], i.e., the P j minimize the prediction

error variance σ2
e , E{||e[k]||2} with

e[k] , f [k] −
N−1∑

j=1

P jf [k − j]. (2.6)

Furthermore, (EHE)−1 = (UH
0,0U 0,0)

−1 can be shown to be the covariance

matrix of the prediction error, i.e., Ree , E{e[k]eH [k]} = (UH
0,0U 0,0)

−1. Con-

sequently, (2.5) can be interpreted as temporal linear vector prediction with

subsequent spatial prediction error whitening. We note that for the special case

of spatially uncorrelated fading E = ut
0,0INTNR

and P j = (ut
0,j/u

t
0,0)INTNR

,

where (ut
0,0)

−2 and ut
0,j/u

t
0,0, 1 ≤ j ≤ N − 1, denote the error variance and the

coefficients of the optimum (N−1)th order SP for the scalar fading–plus–noise

process fntnr
[k] , hntnr

[k] + nntnr
[k]. Thus, in this case, (2.5) is equivalent to

the DFDD scheme proposed in [16] for spatially independent fading.

2.2.3 The Relationship between MS–DFDD and SP–

/VP–DFDD

It is of interest to compare the MS–DFDD decision rule in (2.5) with SP–

DFDD and VP–DFDD, which can be obtained as special cases of the sequence

detection scheme in [7] if the number of trellis states is reduced to zero. In

particular, by letting E = INTNR
and P j = (ut

0,j/u
t
0,0)INTNR

, 1 ≤ j ≤ N −
1, (2.5) simplifies to the SP–DFDD metric in [7, Eq. (5)]. Obviously, SP–

DFDD completely ignores the fading correlations. The VP–DFDD metric in [7,

Eq. (10)] is obtained by letting E = INTNR
and P j , U−1

0,0 U 0,j, 1 ≤ j ≤ N−1,

in (2.5). Thus, similar to MS–DFDD, VP–DFDD contains an optimum linear

VP. However, in contrast to MS–DFDD, spatial whitening of the prediction

10



error is not performed in VP–DFDD. We will show in Section 2.4 that this

might have some unexpected consequences. It is also worth noting that, similar

to the schemes in [7, 19], the metric in (2.5) can also be used as branch metric

in a Viterbi algorithm. This leads to an improved performance as compared to

DFDD since error propagation is mitigated but increases receiver complexity.

For this purpose, we compare all three DFDD schemes for the case σ2
n → 0.

Define R̃t as the (N−1)×(N−1) lower sub–block matrix of N×N matrix Rt,

rt , [Rt[−1] . . . Rt[−(N − 1)]]T , and P , [P T
1 . . . P T

N−1]
T . The Yule–Walker

equation for the optimum VP is given by

(R̃t ⊗ Rrx ⊗ Rtx + σ2
nI(N−1)NTNR

)P = rt ⊗ Rrx ⊗ Rtx. (2.7)

We observe from (2.7) that for σ2
n → 0 the optimum VP coefficients are given

by P = (R̃
−1

t rt) ⊗ INTNR
. Since vector R̃

−1

t rt contains the coefficients of

the optimum scalar predictor of length N − 1, we conclude that surprisingly

for σ2
n → 0 VP–DFDD simplifies to SP–DFDD. Similarly, it can be shown

that for σ2
n → 0 the prediction error covariance matrix becomes Ree = (1 −

rHt R̃
−1

t rt)(Rrx ⊗ Rtx), i.e., E = (Rrx ⊗ Rtx)
−1/2/

√
1 − rHt R̃

−1

t rt. Therefore,

unlike VP–DFDD, MS–DFDD exploits spatial fading correlations also for high

SNR.

As mentioned before, the complexity of all considered DFDD schemes is

linear in N . However, for metric calculation SP–DFDD requires the smallest

number of multiplications, whereas MS–DFDD requires the most. In partic-

ular, for SP–DFDD all predictor coefficients are scalars and E can be omit-

ted in (2.5), while for MS–DFDD, in general, all predictor coefficients are

NTNR × NTNR matrices and E cannot be omitted. The complexity of VP–

DFDD is between that of SP–DFDD and MS–DFDD since the predictor coef-

ficients are matrices but E can be omitted in (2.5).
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2.3 Performance Analysis

The performance analysis of MSDD and DFDD in correlated fading closely

follows the corresponding analyses for the uncorrelated case in [16, 18]. There-

fore, we only give a brief sketch of the analysis here. To simplify our exposition,

we assume group codes in which case the elements V l, 0 ≤ l ≤ L− 1, of V are

diagonal matrices [1].

The BEP of DFDD can be approximated as

Pb ≈ xe

RNT

∑L−1
l=1 Pe(V l → V 0) [16, Eqs. (45)–(47)], where R and Pe(V l → V 0)

are the rate of the considered DSTM scheme and the pairwise error probability

(PEP) assuming Ŝ[k − j] = S[k − j], 1 ≤ j ≤ N − 1 (genie–aided DFDD),

respectively. If decision feedback is not required, xe = 1, otherwise xe = 2.

Based on (2.5) it can be shown that since the V l, 0 ≤ l ≤ L− 1, are diagonal

matrices, feedback is not needed for N = 2 for SP–DFDD. In contrast, for VP–

DFDD and MS–DFDD feedback in form of Ŝ[k−1] is required even for N = 2

except for the special case of DPSK (NT = 1). The PEP Pe(V l → V 0) itself

can be obtained using standard tools, cf. e.g. [16, 18] and references therein,

since the corresponding metric difference is a quadratic form of Gaussian ran-

dom variables.

Similarly, for MSDD the metric difference is also a Gaussian quadratic

form and the approach outlined in [18, Section IV] can be used to compute an

approximation for the BEP based on the PEPs.

2.4 Simulation and Numerical Results

In this section, we compare optimum MSDD, MS–DFDD, SP–DFDD, and VP–

DFDD based on simulations and numerical results. For all results a normalized

Doppler bandwidth of BfT = 0.05 is assumed.

In Fig. 2.1, we show the BEP of the considered detection strategies for diag-

onal DSTM [1] vs. Eb/N0 (Eb: received energy per bit, N0: single–sided power

spectral density of the underlying continuous–time noise process). NT = 2,
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NR = 1, R = 2 bit/(channel use), and the correlation between both transmit

antennas is ρ = 0.9.1 For N = 2 we observe from Fig. 2.1 that while MSDD

leads to substantial performance gains compared to SP- and VP–DFDD, this is

not true for the proposed MS–DFDD. For N = 2 MS–DFDD is negatively af-

fected by error propagation negating any potential performance gains over SP-

and VP–DFDD which both do not suffer from error propagation in this case.

In contrast, for N = 3 all DFDD schemes are affected by error propagation

and MS–DFDD yields substantial gains compared to SP- and VP–DFDD, espe-

cially in the error floor region. For low–to–medium SNRs (e.g. Eb/N0 = 15 dB)

all considered DFDD schemes have a comparable performance, while MSDD

still yields considerable gains. For N = 10, where simulation of MSDD is too

time consuming because of its high complexity, MS–DFDD achieves a gain of

approximately 0.6 dB at BEP = 10−6 compared to VP–DFDD. However, even

for N = 10 the performance gap between MS–DFDD and CD is quite large

because of the relatively large normalized Doppler bandwidth. For N = 2

and N = 3 SP–DFDD and VP–DFDD achieve a similar performance in the

considered range of SNRs. In contrast, for N = 10 VP–DFDD outperforms

SP–DFDD, especially for Eb/N0 ≥ 20 dB. We note that the theoretical results

(solid lines) obtained with the methods outlined in Section 2 agree well with

the simulation results (markers) at high SNR.

In Fig. 2.2, we consider the same detection schemes as in Fig. 2.1. How-

ever, now quaternary DPSK (DQPSK) transmission with NT = 1 and NR = 2

is assumed, and the two receive antennas have correlation ρ = 0.9. We ob-

serve that both MS–DFDD and MSDD yield substantial performance gains

compared to SP- and VP–DFDD, especially in the error floor region. Since

unlike for DSTM with NT ≥ 2, for single–antenna transmission feedback is

not required for MS–DFDD with N = 2, MS–DFDD also outperforms SP-

and VP–DFDD in this case.

1We note that experiments have shown that antenna correlations of ρ = 0.9 and more

can occur for example in small handsets accommodating multiple antennas [20].
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Figure 2.1: BEP of SP–DFDD, VP–DFDD, MS–DFDD (proposed), and

MSDD (proposed) vs. Eb/N0 for diagonal DSTM with R = 2 bit/(channel

use), NT = 2, NR = 1, ρ = 0.9, and BfT = 0.05. Numerical results: Solid

lines. Simulation results: Markers.

In Figs. 2.3 and 2.4, we show the simulated error floor (Eb/N0 → ∞) of

diagonal DSTM (NT = 2, NR = 1, R = 2 bit/(channel use)) and DQPSK

(NT = 1, NR = 2) caused by the various considered receivers as a func-

tion of the transmit/receive antenna correlation ρ, respectively. As expected,

for ρ = 0 SP-, VP-, and MS–DFDD yield the same performance as these

schemes are identical in this case. However, as ρ increases, both MS–DFDD

and MSDD outperform SP–DFDD and VP–DFDD, which yield identical per-

formance, cf. Section 2.2.3. Interestingly, Fig. 2.3 shows that the performance

of MS–DFDD and MSDD may even improve with increasing ρ, whereas that

of SP–DFDD and VP–DFDD always deteriorates. In order to explain this

observation, two different effects have to be taken into account. On the one

hand, the spatial diversity, and thus the performance, is negatively affected
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Figure 2.2: BEP of SP–DFDD, VP–DFDD, MS–DFDD (proposed), and

MSDD (proposed) vs. Eb/N0 for DQPSK, NT = 1, NR = 2, ρ = 0.9, and

BfT = 0.05. Numerical results: Solid lines. Simulation results: Markers.

by increasing ρ. On the other hand, spatial fading correlations lead to spatial

correlations in the prediction error vector e[k], which constitutes the effective

noise vector for detection purpose, cf. Section 2.2.3, (2.5), (2.6). These corre-

lations in the prediction error are beneficial if they are properly exploited by

the detector. Since both MS–DFDD and MSDD exploit the spatial correla-

tion in the prediction error vector, their performance improves with increasing

ρ if this positive effect of spatial correlation outweighs the negative effect of

the decreased diversity. In contrast, the performance of SP–DFDD and VP–

DFDD always deteriorates with increasing spatial fading correlation since these

schemes do not exploit the resulting spatial correlation of the prediction error

vector.

In Figs. 2.1 to 2.4, we have assumed that the spatial and temporal correla-

tions as well as the operating SNR are perfectly known for DFDD and MSDD
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Figure 2.3: BEP of SP–DFDD, VP–DFDD, MS–DFDD (proposed), and

MSDD (proposed) vs. transmit antenna correlation ρ for diagonal DSTM with

R = 2 bit/(channel use), NT = 2, NR = 1, Eb/N0 → ∞, and BfT = 0.05.

Simulation results.

design. In a practical scenario, these parameters are not known a priori and

have to be estimated by the receiver which may lead to a mismatch between the

estimated channel parameters and the true channel parameters. The effects

of such a mismatch are investigated in Fig. 2.5 for diagonal DSTM (NT = 2,

NR = 1, R = 2 bit/(channel use)). In Fig. 2.5, we show the BEP as a function

of BfT for different ρ and Eb/N0 adopting mismatched estimated channel pa-

rameters of B̂fT = 0.05, ρ̂ = 0.6, and Êb/N0 = 35 dB for receiver design. In

Fig. 2.5a), the performance of VP–DFDD (solid lines) and MS–DFDD (dashed

lines) are compared under these conditions for N = 3. As can be observed,

even for mismatched channel parameters MS–DFDD outperforms VP–DFDD

in all cases for the considered parameter range. In Fig. 2.5b), the performances

of MS–DFDD with mismatched (solid lines) and matched (dashed lines) chan-
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Figure 2.4: BEP of SP–DFDD, VP–DFDD, MS–DFDD (proposed), and

MSDD (proposed) vs. receive antenna correlation ρ for DQPSK, NT = 1,

NR = 2, Eb/N0 → ∞, and BfT = 0.05. Simulation results.

nel parameters are compared forN = 5. In the mismatched case, the estimated

channel parameters (B̂fT = 0.05, ρ̂ = 0.6, and Êb/N0 = 35 dB) were used for

MS–DFDD design, whereas in the matched case the true channel parameters

were employed. As expected, Fig. 2.5b) shows that mismatch causes a certain

performance degradation.

We note that in practice the predictor coefficients P j, 1 ≤ j ≤ N − 1, and

the prediction error covariance matrix Ree may be directly computed using

an adaptive algorithm, which would avoid the need for explicit estimation of

the channel parameters. For this purpose, the approach presented in [21] for

scalar DFDD may be extended to the vector case.
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Figure 2.5: BEP vs. BfT for diagonal DSTM with R = 2 bit/(channel use),

NT = 2, and NR = 1 under various channel conditions. a) MS–DFDD (pro-

posed) and VP–DFDD designed for B̂fT = 0.05, ρ̂ = 0.6, and Êb/N0 = 35 dB;

b) MS–DFDD (proposed) designed for matched and mismatched (B̂fT = 0.05,

ρ̂ = 0.6, and Êb/N0 = 35 dB) channel parameters.
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Chapter 3

1 The Generalized K–Fading

Model

In this section, a brief review of the PDF of the instantaneous received SNR

for generalized K–fading is introduced. Subsequently, certain moment gener-

ating functions (MGFs) for the case of cascade multipath fading and the case

of composite shadowing/multipath fading are also derived. For the remainder

of this thesis, we assume quasi–static channel conditions, i.e., the instanta-

neous SNRs of all fading branches remain constant over an entire block of

data symbols and change randomly from one block to the next.

3.1 PDF of the Instantaneous Received SNR

In order to derive the generalized K–distribution, we first consider the case of

composite shadowing and multipath fading [22]. In this case, the generalized

K–fading model describes a composite Gamma–shadowing/Nakagami–m fad-

ing process. The PDF of the instantaneous SNR γ, conditioned on the average

SNR γ̄, is given by

pγ|γ̄(γ|γ̄) =
mmγm−1

Γ(m)γ̄m
exp

(
−mγ

γ̄

)
, m > 0, γ ≥ 0, (3.1)

where Γ(x) denotes the Gamma function. The average SNR γ̄ itself is a random

variable with PDF given by
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pγ̄(γ̄) =
γ̄k−1

Γ (k) ¯̄γk
exp

(
− γ̄

¯̄γ

)
, k > 0, γ̄ ≥ 0, (3.2)

where ¯̄γ , E {γ̄}. By combining the above two equations we obtain the PDF

of the instantaneous SNR γ given by

pγ(γ) =
aβ+1

Γ(k)Γ(m)2β
γ

β−1

2 Kα(a
√
γ), (3.3)

where a , 2
√

m
¯̄γ
, α , k −m, β , k +m− 1, and Kv(x) denotes the modified

Bessel function of the second kind and order v. This instantaneous SNR may

also be used to model cascade multipath fading. As an example, the case of

double Rayleigh–fading [9, 10] is obtained when k = m = 1, where

pγ(γ) =
2
¯̄γ
K0

(
2

√
m
¯̄γ

)
. (3.4)

More or less severe cascade multipath fading can be modeled by varying

the parameters k and m accordingly. In particular, for the special case where

k = 1, we obtain a cascade multipath fading model composed of a Rayleigh

fading process and a Nakagami–m fading process. Finally, it is worth noting

that in the case of cascade multipath fading, γ̄ is a deterministic quantity and

¯̄γ = γ̄.

In the following, we consider transmission over L generalized K–fading

branches and derive expressions for the MGF of the instantaneous sum SNR

γt ,

L∑

l=1

γl, (3.5)

where γl is the instantaneous SNR associated with the lth branch

(l ∈ {1, . . . , L}). These expressions will later be utilized in Section 4.3 to

determine the diversity order of coherent transmission with maximum–ratio

combining (MRC) at the receiver, and in Section 5 to extend our performance

analysis for DBPSK/non–coherent FSK modulation with EGC at the receiver

(Section 4) to the case of DQPSK and M–ary non–coherent FSK modula-

tion. We note that the derived MGF expressions could also be useful for other

performance analyses (e.g., outage analysis) and are thus of general interest.
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We start with the case of independent but not necessarily identically dis-

tributed (i.n.d.) fading across branches, which is relevant for the case of cas-

cade multipath fading. Subsequently, we address the case of composite shad-

owing and multipath fading.

3.2 MGF of Sum SNR for the Case of I.N.D.

Fading

Let ¯̄γl , E{γl} denote the average SNR associated with the lth branch

(l ∈ {1, . . . , L}). Moreover, we define θ ,minl∈{1,...,L}{ ¯̄γl}, i.e., the average

SNR ¯̄γl can be written as ¯̄γl , δl · θ with constant δl ≥ 1 for all indices

l ∈ {1, . . . , L}. In the following, the individual branches are assumed to be

characterized by independent generalized K–fading, where for the lth branch

the parameters of the PDF (3.3) are given by al , 2
√

ml
¯̄γl

, αl , kl −ml, and

βl , kl +ml − 1.

The MGF of the instantaneous branch SNR γl, Mγl
(x) , E{exγl}, can

be derived based on (3.3) by employing [§6.643, no. 3] from [23]. Using the

relation [24, Ch. 13]

Wµ,ν (x) = e−x/2xν+1/2U (1/2 + ν − µ, 1 + 2ν;x) (3.6)

between the Whittaker function Wµ,ν (x) and the confluent hypergeometric

function of the second kind U (a, b;x), one obtains the following closed-form

expression:

Mγl
(x) =

(−ml

xδlθ

)kl

U

(
kl, 1 + αl;

−ml

xδlθ

)
. (3.7)

Note that U (a, b;x) is also known as Kummer’s function of the second kind

or Tricomi’s confluent hypergeometric function. In addition, for numerical

evaluation, the representation [24, Ch. 13]
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U (a, b;x) =
Γ (1 − b)

Γ (a− b+ 1)
1F1 (a, b;x) (3.8)

+ x1−b Γ (b− 1)

Γ (a)
1F1 (a− b+ 1, 2 − b;x)

of U (a, b;x) in terms of the Kummer confluent hypergeometric function

1F1 (a, b;x) is sometimes preferable, which leads to the following expression

for Mγl
(x):

Mγl
(x) =

(−ml

xδlθ

)kl Γ (−αl)
Γ (ml)

1F1

(
kl, 1 + αl;

−m
xδlθ

)
(3.9)

+

(−ml

xδlθ

)ml Γ (αl)

Γ (kl)
1F1

(
ml, 1 − αl;

−m
xδlθ

)
.

Due to the assumption of independent fading, the MGF of the instantaneous

sum SNR γt according to (3.5), Mγt
(x) , E{exγt}, is given by

Mγt
(x) =

L∏

l=1

(−ml

xδlθ

)kl

U

(
kl, 1 + αl;

−ml

xδlθ

)
. (3.10)

In the case of i.i.d. fading, the above expression reduces to

Mγt
(x) =

(−ml

xθ

)kL [
U

(
k, 1 + α;

−m
xθ

)]L
(3.11)

(
k1 = . . . = kL , k,m1 = . . . = mL , m, δ1 = . . . = δL , 1

)
.

3.3 MGF of Sum SNR for Correlated Com-

posite Shadowing and Multipath Fading

In the case of composite shadowing and multipath fading, it is assumed that

the shadowing part is fully correlated across links, whereas the multipath fad-

ing is i.i.d. across the L branches
(
k1 = . . . = kL , k,m1 = . . . = mL , m

)
.

Correspondingly, all branches are characterized by the same average SNR, γ̄,

which itself is a random variable with PDF given by (3.2). Moreover, we
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have ¯̄γ1 = . . . = ¯̄γL , θ. The joint PDF of the instantaneous branch SNRs

γl (l ∈ {1, . . . , L}), conditioned on the average SNR γ̄, is given by

pγ1,...,γL|γ̄ (γ1, . . . , γL|γ̄) =
L∏

l=1

pγl|γ̄ (γl|γ̄) , (3.12)

due to the assumption of independent multipath fading across the L branches.

Correspondingly, the conditional MGF of the instantaneous sum SNR γt,

Mγt|γ̄ (x) ,
∫∞

0
exγtpγt|γ̄ (γt|γ̄) dγt, is given by

Mγt|γ̄ (x) =
L∏

l=1

Mγl|γ̄ (x) . (3.13)

Based on (3.1) and [§3.381, no. 4] from [23], the conditional MGF of the instan-

taneous branch SNR γl, Mγl|γ̄ (x) ,
∫∞

0
exγlpγl|γ̄ (γl|γ̄) dγl, can be calculated

as

Mγl|γ̄ (x) =

(
m

m− xγ̄

)m
, ℜ{x} < 0, (3.14)

which is the well-known MGF for Nakagami-m fading [13, Ch. 2.2]. Based on

(3.2), (3.13) and (3.14), the (unconditional) MGF of γt can be written as

Mγt
(x) =

1

Γ (k) θk

∫ ∞

0

γ̄k−1

(
1 − x

m
γ̄
)mL · e−γ̄/θdγ̄. (3.15)

As will be seen in Section 5.3, error probabilities for values m ∈ N, where

N denotes the set of all integers greater than zero, can typically be evaluated

with a high accuracy by replacing m with a slightly different value m± ǫ /∈ N,

where ǫ > 0 is a small perturbation value. Therefore, assuming that m is a

finite non-integer value and employing [§3.383, no. 5] from [23], we find the

following closed-form expression for the MGF of γt:
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Mγt
(x) = (k)−mL · (mL)1−k (3.16)

×
[(−m

xθ

)mL
Γ(mL) Γ(1−mL)

Γ(1−k) · L−∆k,m

−mL

(−m
xθ

)

−
(−m
xθ

)k
Γ(k) Γ(1−k)
Γ(1−mL)

· L∆k,m

−k

(−m
xθ

)]
, θ<∞, ℜ{x}<0.

where (x)ν , Γ (x+ ν) /Γ (x) denotes the Pochhammer symbol and Lba (x) de-

notes the generalized Laguerre function. Moreover, the identity Γ (x) Γ (1 − x) =

π/ sin (πx) is used for the Gamma function and the short-hand notation ∆k,m ,

k−mL is introduced. Finally, similar to Section 3.2, the MGF (3.16) can be ex-

pressed in terms of the Kummer confluent hypergeometric function 1F1 (a, b;x):

Mγt
(x) = γ (∆k,m) ·

[(−m
xθ

)mL
1

Γ (k)
1F1

(
mL, 1 − ∆k,m;

−m
xθ

)
(3.17)

−
(−m
xθ

)k
1

Γ (mL)

Γ (1 − ∆k,m)

Γ (1 + ∆k,m)
1F1

(
k, 1 + ∆k,m;

−m
xθ

)]
,

where we have used the relation [24, Ch. 13]

Lba (x) =
(b+ 1)a
γ (a+ 1)

1F1 (−a, b+ 1;x) . (3.18)

for non-integer values of b.
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Chapter 4

1 Generalized K–Fading:

Binary Modulation Scenario

In this section, closed–form BEP expressions for DBPSK/non–coherent FSK

modulation over L generalized K–fading branches with EGC at the receiver

are derived. We start with the case of i.n.d. fading across branches. Further-

more, we will derive the expressions for the case of composite shadowing and

multipath fading.

4.1 BEP for I.N.D. Fading

In this section, we consider the case of DPSK/non–coherent FSK modulation

over L branches with EGC at the receiver, the instantaneous EGC output

SNR is given by γt ,
∑L

l=1 γl [13, Ch. 9.4], where γl denotes the instantaneous

SNR associated with the lth branch. For a fixed value of γt, the BEP of

DBPSK/non–coherent FSK modulation over L branches with EGC at the

receiver is given by [25, Ch. 14.4]

Pb(γt) =
1

22L−1
exp(−gγt)

L−1∑

l=0

cl(gγt)
l, (4.1)

cl ,
1

l!

L−1−l∑

κ=0

(
2L− 1

κ

)
, (4.2)
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where g , 1 for DBPSK and g , 1/2 for binary non–coherent FSK mod-

ulation. In order to derive a closed–form expression for the average BEP

P̄b(θ) , Eγt {Pb(γt)}, we first note that the joint PDF of the instantaneous

branch SNRs γl (l ∈ {1, . . . , L}) is given by

pγ1,...,γL
(γ1, . . . , γL) =

L∏

l=1

pγl
(γl), (4.3)

due to the assumption of independent fading across the L branches. Further-

more, we define the index vector κ , [κ1, . . . , κL] ∈ NL
0 and the index set

Kl ,
{
κ ∈ N

L
0 | κ1 + . . .+ κL = l

}
, (4.4)

where N0 denotes the set of all integers greater than or equal to zero. We also

note that γlt can be expressed as [24, Ch. 24]

γlt = (γ1 + . . .+ γL)l =
∑

κ∈Kl

(
l

κ

)
γκ1

1 . . . γκL

L , (4.5)

where
(
l
κ

)
, l!/(κ1! . . . κL!). Based on the above findings, the average BEP

P̄b(θ) can be expressed as

P̄b(θ) =
1

22L−1

L−1∑

l=0

clg
l
∑

κ∈Kl

(
l

κ

)( L∏

λ=1

∫ ∞

0

exp(−gγλ)γκλ

λ pγλ
(γλ) dγλ

)
. (4.6)

Plugging in (3.3) for the PDFs pγl
(γl), l ∈ {1, . . . , L}, and employing [§6.643,

no. 3] from [23] in conjunction with (3.6), we obtain for the average BEP the

following closed–form expression:

P̄b(θ) =
1

22L−1

L−1∑

l=0

cl
∑

κ∈Kl

(
l

κ

)
(4.7)

×
(

L∏

λ=1

(kλ)κλ
(mλ)κλ

gkλ

(
mλ

δλθ

)kλ

U

(
kλ + κλ, 1 + αλ;

mλ

gδλθ

))
.

For the special case of i.i.d. fading, where k1 = . . . = kL , k, m1 = . . . =

mL , m, α , k −m, and δ1 = . . . = δL , 1, (4.7) simplifies to

P̄b (θ) =
1

22L−1

(
m

gθ

)kL L−1∑

l=0

cl
∑

κ∈Kl

(
l

κ

)
(4.8)

×
(

L∏

λ=1

(k)κλ
(m)κλ

U

(
k + κλ, 1 + α;

m

gθ

))
.
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Finally, for the special case L = 1, (4.1) reduces to Pb (γt) = Pb (γ1) = 1
2
e−gγ1 ,

and P̄b (θ) can be evaluated as

P̄b (θ) =
1

2

(
m

gθ

)k
U

(
k, 1 + α;

m

gθ

)
. (4.9)

For comparison, in the case of i.i.d. Rayleigh fading the average BEP P̄b (θ) is

given by [25, Ch. 14.4]

P̄b (θ) =
1

22L−1 (L− 1)! (1 + gθ)L

L−1∑

l=0

cl (L− 1 + l)!

(
gθ

1 + gθ

)l
, (4.10)

and we have

P̄b (θ) =
1

2 (1 + gθ)
, (4.11)

for the special case L = 1.

4.2 BEP for Correlated Composite Shad-

owing and Multipath Fading

In the case of composite shadowing and multipath fading, we again assume

that the shadowing part is fully correlated across links, whereas the multipath

fading is i.i.d. across the L branches. In or to arrive at a closed–form expression

for the average BEP P̄b (θ), we first average (4.1) over the instantaneous branch

SNRs γl, while conditioning on γ̄. In the final step, the resulting conditional

BEP, denoted as P̄b (γ̄), is then averaged over γ̄.

Similar to (4.6), the conditional BEP P̄b (γ̄) can be written as

P̄b (γ̄) =
1

22L−1

L−1∑

l=0

clg
l
∑

κ∈Kl

(
l

κ

)( L∏

λ=1

∫ ∞

0

e−gγλγκλ

λ pγλ|γ̄ (γλ|γ̄) dγλ
)
, (4.12)

where we have used the joint PDF pγ1,...,γL|γ̄ (γ1, . . . , γL|γ̄), conditioned on

the average SNR γ̄, can be written as the product of the conditional PDFs
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pγl|γ̄ (γl|γ̄) of the instantaneous branch SNRs γl (l ∈ {1, . . . , L}), cf. (3.12).

Plugging in (3.1) for the conditional PDFs pγl|γ̄ (γl|γ̄) and employing [§3.381,

no.4] from [23], we find the following expression for P̄b (γ̄):

P̄b (γ̄) =
1

22L−1

(
mm

Γ (m)

)L L−1∑

l=0

clg
l
∑

κ∈Kl

(
l

κ

)
(4.13)

×
(

L∏

λ=1

Γ (m+ κλ)
¯γκλ

(gγ̄ +m)m+κλ

)
,

(
m1 = . . . = mL , m

)
. Based on the PDF (3.2) of the average SNR γ̄, the

average BEP P̄b
(
θ̄
)

, Eγ̄{P̄b (γ̄)} can be written as

P̄b
(
θ̄
)

=
1

22L−1

1

Γ (k) (Γ (m))L θk

L−1∑

l=0

clg
l (4.14)

×
∑

κ∈Kl

(
l

κ

)∏L
λ=1 Γ (m+ κλ)

ml

∫ ∞

0

γ̄k+l−1 · e−γ̄/θ
(
g
m
γ̄ + 1

)mL+l
dγ̄.

Employing [§3.383, no. 5] from [23] and assuming that m is a finite non-integer

value and k 6= mL, we find the following closed–form expression for the average

BEP P̄b (θ):

P̄b (θ) =
1

22L−1

1

Γ (k)

π

sin (π∆k,m)
(4.15)

×
L−1∑

l=0

cl

[∑

κ∈Kl

(
l

κ

)( L∏

λ=1

(m)κλ

)]

×
[(

m

gθ

)mL
Γ (1 − ϕm,l)

Γ (1 − ψk,l)
L
−∆k,m

−ϕm,l

(
m

gθ

)

−
(
m

gθ

)k
sin (πϕm,l)

sin (πψk,l)
L

∆k,m

−ψk,l

(
m

gθ

)]
,

where we have introduced the short–hand notations ψk,l , k + l and ϕm,l ,

mL+ l.
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4.3 Asymptotic Analysis and Diversity Or-

der

Since the closed–form BEP expressions (4.8) and (4.12) involve non–standard

functions and the primary behavior of the resulting BEP curves is not obvious,

in this section, we will investigate the behavior of (4.8) and (4.12) for high

SNR values (θ → ∞). In particular, we derive expressions for the resulting

(asymptotic) diversity order1.

d , lim
θ→∞

d (θ) , d (θ) , −∂ log
(
P̄b (θ)

)

∂ log (θ)
. (4.16)

In particular, we show that the diversity order of DBPSK/non-coherent FSK

modulation is, in fact, the same as that in the case of coherent transmission.

4.3.1 The Case of Independent Fading

For the ease of exposition, we focus on the case of i.i.d. fading here, i.e.,

¯̄γ1 = . . . = ¯̄γL = θ, m1 = . . . = mL , m, k1 = . . . = kL , k. An extension

to the case of i.n.d fading is, however, straightforward. In the following, we

derive approximate expressions for the average BEP (4.9), by employing corre-

sponding approximations of the confluent hypergeometric function U (a, b;x).

Consider first the case where the two fading parameters k and m are dif-

ferent, i.e., α = k −m 6= 0. For the ease of exposition, we assume that α is

a non–integer value. For x → ∞ and non–integer values of b, the confluent

hypergeometric function U (a, b;x) can be approximated as [24, Ch. 13]

U (a, b;x) =̇
Γ (1 − b)

Γ (1 − b+ a)
+

Γ (b− 1)

Γ (a)
x1−b, (4.17)

1The (asymptotic) diversity order is the negative slope of the BEP curve for high SNR

values on a log–log scale. It has been shown to be a useful measure for characterizing

the principal behavior of digital transmission schemes over various fading channels [25, Ch.

14.4].
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where =̇ denotes asymptotic equality. For θ → ∞ and non–integer values of

α, the average BEP (4.8) can thus be approximated as

P̄b (θ) =̇
1

22L−1

(
m

gθ

)ξ1L L−1∑

l=0

cl
∑

κ∈Kl

(
l

κ

)( L∏

λ=1

(k)κλ
(m)κλ

Γ (|α|)
Γ (k + κλ) Γ (ξ2 + κλ)

)
. (4.18)

where ξ1 ,min{k,m} and ξ2 ,max{k,m}. In the case k < m, (4.18) simplifies

to

P̄b (θ) =̇
1

22L−1

(
m

gθ

)ξ1L( Γ (|α|)
Γ (k) Γ (m)

)L L−1∑

l=0

cl
∑

κ∈Kl

(
l

κ

)
. (4.19)

From (4.18) and (4.19) we find

d = ξ1L = min{k,m} · L. (4.20)

Interestingly, the smaller of the two fading parameters, k and m, limits the

asymptotic diversity order. For example, in the case of cascade Rayleigh/

Nakagami–m fading with k = 1 and m ≥ 1 the asymptotic diversity order is

always given by d = L, just as in the case of pure Rayleigh fading, where [25,

Ch. 14.4]

P̄b (θ) =̇

(
1

2gθ

)L(
2L− 1

L

)
. (4.21)

Next, consider the case α = 0, i.e., k = m. For x → 0 and b = 1, the

confluent hypergeometric function U (a, b;x) can be approximated as [24, Ch.

13]

U (a, b;x) =̇ − 1

Γ (a)
(ln (x) + Ψ (a) + 2γ′) , (4.22)

where Ψ (x) ,
(
∂
∂x

Γ (x)
)
/Γ (x) denotes the Digamma function and γ′ the

Euler–Mascheroni constant. For θ → ∞ and α = 0, the average BEP (4.9)

can thus be approximated as
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P̄b (θ) =̇
1

22L−1

[
−
(
m

gθ

)k
ln

(
m

gθ

)]L
(4.23)

×
L−1∑

l=0

cl
∑

κ∈Kl

(
l

κ

)( L∏

λ=1

(k)κλ
(m)κλ

Γ (k + κλ)

)
.

Correspondingly, we find

d (θ) =

(
k − 1

ln (θ)

)
L =

(
m− 1

ln (θ)

)
L, (4.24)

i.e., the asymptotic diversity order is given by

d = kL = mL. (4.25)

This result is in accordance with [10], where the diversity order of various

coherent modulation schemes was determined for the special case of a sin-

gle branch (L = 1) being subject to double Rayleigh fading (k = m = 1).

Moreover, note that (4.25) is also in accordance with (4.20).

Finally, we compare the above results for DBPSK/non–coherent FSK mod-

ulation to the asymptotic diversity order obtained in the case of a coherent

transmission scheme. As an example, we consider a binary phase shift keying

(BPSK) scheme over L i.i.d. generalized K–fading links with MRC at the

receiver. The corresponding average BEP can be determined via the following

finite–range integral [26]:

P̄b (θ) =
1

π

∫ π/2

0

Mγt

(
− 1

sin2 (φ)

)
dφ, (4.26)

where the MGF Mγt(x) of the instantaneous MRC output SNR γt =
∑L

l=1 γl

is given by (3.11). As earlier, we assume for simplicity that α is a non–integer

value. Based on (4.17) and employing [§3.621, no. 1] from [23], the average

BEP (4.26) for high SNR values θ → ∞ can be approximated as

P̄b (θ) =̇
1

2π

(
Γ (|α|)
Γ (ξ2)

)L(
4m

θ

)ξ1L
B (ξ1L+ 1/2, ξ1L+ 1/2) , (4.27)
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where B(x, y) denotes the Beta function. Correspondingly, the diversity order

of BPSK modulation over L i.i.d. generalized K–fading links with MRC at

the receiver is given by

d = ξ1L = min{k,m} · L, (4.28)

just as in the case of the considered non–coherent transmission schemes, cf.

(4.20).

4.3.2 Correlated Composite Shadowing and Multipath

Fading

In this section, we derive an approximate expression for the average BEP (4.15)

for high SNR values θ → ∞, by employing a corresponding approximation of

the generalized Laguerre function Lba (x). For x→ ∞, the generalized Laguerre

function Lba (x) can be approximated as [27, Ch. 13.2]

Lba(x)
.
=

(b+1)a
Γ(a+1)

. (4.29)

For θ → ∞, the average BEP (4.15) can thus be approximated as

P̄b (θ)
.
=

1

22L−1

sign (∆k,m)

Γ (k)

π

sin (π∆k,m)

(
m

gθ

)ζ1 L−1∑

l=0

clΞl (4.30)

×
[∑

κ∈Kl

(
l

κ

)( L∏

λ=1

(m)κλ

)]
(1 − |∆k,m|)−ζ1−l

Γ(1 − ψk,l)
,

where ζ1 , min{k,mL}, sign(x) denotes the sign function (i.e., sign(x)=+1

for all x ≥ 0 and sign(x)= -1 otherwise), and2

2As earlier, we assume that k 6= mL, since otherwise (4.15) is not valid. However, it

turns out that (4.30) yields nearly identical results for k = mL + ǫ and k = mL − ǫ, if ǫ is

chosen sufficiently small.

32



Ξl ,





sin(πϕm,l)/ sin(πψk,l) for k<mL

1 for k>mL
. (4.31)

Correspondingly, the asymptotic diversity order in the case of correlated com-

posite shadowing and multipath fading is obtained as

d = ζ1 = min{k,mL}. (4.32)

This result reveals an interesting interplay between macroscopic diversity

due to shadowing effects and microscopic diversity due to multipath fading:

the asymptotic diversity order is always limited by either the shadowing effect

(k≤mL) or the multipath fading (mL<k), depending on which one of the two

fading effects is more severe.

In order to arrive at (4.30) , we have utilized that for θ→∞ only one of the

two Lba(x)–terms in (4.15) dominates, namely the one which is associated with

the term ( m
g θ

)ζ1 . Correspondingly, if k≈mL the convergence of the asymptotic

solution (4.30) to the exact expression (4.15) can be expected to be rather slow,

since the dominant term will only emerge for very large values of θ. However,

if k and mL are sufficiently different, the convergence of (4.30) is typically

quite fast, as will be seen from the numerical performance results presented in

Section 5.3.

In order to compare the asymptotic diversity order (4.32) for DBPSK/non–

coherent FSK modulation to that in the case of BPSK modulation, we first

note that (4.26) is valid for arbitrary fading correlations (if an expression for

the MGF Mγt
(x) of the instantaneous MRC output SNR γt is available). In

the case of correlated composite shadowing and multipath fading, the MGF

Mγt
(x) is given by (3.16). Based on (4.29) and employing [§3.621, no. 1] from

[23], the average BEP (4.26) for θ → ∞ can be approximated as
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P̄b (θ)
.
=

sign (∆k,m) (k)−mL (mL)1−k

2π
(4.33)

×
Γ (ζ1) (1 − |∆k,m|)−ζ1

Γ (1 − ζ2)

(
4m

θ

)ζ1
B (ζ1 + 1/2, ζ1 + 1/2) ,

where ζ2 ,max{k,mL}. Correspondingly, the diversity order of BPSK mod-

ulation over L correlated composite shadowing/multipath fading links with

MRC at the receiver is given by

d = ζ1 = min{k,mL}, (4.34)

just as in the case of the non–coherent transmission schemes, cf. (4.32).
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Chapter 5

1 Generalized K–Fading:

Extensions to M–ary

Modulation

The closed-form expressions (3.10) and (3.16) for the MGF of the instan-

taneous sum SNR γt in the case of i.n.d. fading and correlated composite

shadowing/multipath fading, respectively, can be utilized to extend our per-

formance analysis in Section 4 to the case of non–binary transmission. As an

example, we will focus on the average BEP of DQPSK modulation with Gray

mapping, the average BEP of M–ary orthogonal FSK modulation, and the

average symbol error probability (SEP) of coherent M–ary phase shift keying

(PSK) modulation.

5.1 BEP for I.N.D. Fading

In the case of i.n.d. fading, the average BEP of DQPSK modulation with Gray

mapping over L branches with EGC at the receiver is given by [13, Ch. 9.4]

P̄b (θ) =
1

π22L

∫ π

−π

f (L, ρ;φ)

1 + 2ρ sin (φ) + ρ2

L∏

l=1

Mγl

(
−2 −

√
2 sin (φ)

)
dφ, (5.1)

where
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f (L, ρ;φ) ,

L∑

l=1

c′l · [a1 (ρ) cos ((l − 1) (φ+ π/2)) (5.2)

− a2 (ρ) cos (l (φ+ π/2))] ,

c′l ,

(
2L− 1

L− l

)
, a1 (ρ) , ρ−l+1 − ρl+1, a2 (ρ) , ρ−l+2 − ρl, (5.3)

ρ ,

√
2 −

√
2

2 +
√

2
, (5.4)

and Mγl
(x) is given by (3.7). Thus, the average BEP (5.1) for the case of

i.n.d. generalized K–fading can be evaluated numerically via a single finite–

range integral over known functions. Similarly, the average BEP for M–ary

orthogonal FSK over L branches with non–coherent detection and EGC at the

receiver can be evaluated numerically based on the single finite–range integral

expression (9.130) in [13, Ch. 9.4], which again depends on the product of the

MGFs Mγl
(x), l ∈ {1, . . . , L}. Finally, the average SEP for coherent M–ary

PSK modulation over L branches with MRC at the receiver can be calculated

via the finite–range integral1 [26]

P̄S (θ) =
1

π

∫ (M−1)π/M

0

L∏

l=1

Mγl

(
−sin2 (π/M)

sin2 (φ)

)
dφ. (5.5)

For the special case L = 1, there is also a finite–range integral expression for

the average SEP of M–ary DPSK modulation [13, Ch. 8.2.5]:

P̄S (θ) =
1

π

∫ (M−1)π/M

0

Mγt

(
− sin2 (π/M)

1 +
√

1 − sin2 (π/M) cos (φ)

)
dφ. (5.6)

Next, we consider the case of correlated composite shadowing and multipath

fading.

1Similar expressions can also be stated for M–ary amplitude–shift–keying (ASK) modu-

lation and M–ary quadrature–amplitude modulation (QAM) [26].
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5.2 BEP for Correlated Composite Shad-

owing and Multipath Fading

Since (5.1) is also valid for the case of fully correlated shadowing/i.i.d. multi-

path fading (proof is given at the end of the section), we have

P̄b (θ) =
1

π22L

∫ π

−π

f (L, ρ;φ)

1 + 2ρ sin (φ) + ρ2
Mγt

(
−2 −

√
2 sin (φ)

)
dφ, (5.7)

where Mγt
(x) is given by (3.16) .2 Similarly, (5.5) again holds for arbitrary

fading correlations, i.e., we have

P̄S (θ) =
1

π

∫ (M−1)π/M

0

Mγt

(
−sin2 (π/M)

sin2 (φ)

)
dφ. (5.8)

Based on (3.16) , the average SEP (5.8) for correlated composite shadowing

and multipath fading can thus be evaluated numerically via a single finite–

range integral over known functions.

To prove the validity of (5.7) for the case of fully correlated shadowing/i.i.d.

multipath fading, we extend the derivation of (5.1) presented in [13, Ch. 9.4]

accordingly. Given a fixed value of the instantaneous EGC output SNR γt, the

BEP of DQPSK modulation with Gray mapping over L branches with EGC

at the receiver can be written as

P̄b (γt) =
1

π22L

∫ π

−π

f (L, ρ;φ)

1 + 2ρ sin (φ) + ρ2
(5.9)

×
L∏

l=1

exp

(
−b

2γl
2

(
1 + 2ρ sin (φ) + ρ2

))
dφ,

where f (L, ρ;φ) and ρ are given by (5.2) and (5.4), respectively, and b ,
√

2 +
√

2 [13, Ch. 9.4]. The average BEP P̄b (θ) can thus be written as

P̄b (θ) =

∫ ∞

0

· · ·
∫ ∞

0

P̄b (γt)

∫ ∞

0

L∏

l=1

pγl|γ̄ (γl|γ̄) pγ̄ (γ̄) dγ̄dγ1 · · · γL, (5.10)

2Note that (5.7) is not valid for arbitrary fading correlations.
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where we have used that the joint PDF pγ1···γL|γ̄ (γ1 · · · γL|γ̄), conditioned on

the average SNR γ̄, can be written as the product of the conditional PDFs

pγl|γ̄ (γl|γ̄) of the instantaneous branch SNRs γl (l ∈ {1, . . . , L}), cf. (3.12).

Using (5.8) one obtains

P̄b (θ) =
1

π22L

∫ π

−π

f (L, ρ;φ)

1 + 2ρ sin (φ) + ρ2

×
∫ ∞

0

[
L∏

l=1

∫ ∞

0

exp

(
−b

2γl
2

(
1 + 2ρ sin (φ) + ρ2

))

× pγl|γ̄ (γl|γ̄) dγl
]
pγ̄ (γ̄) dγ̄ dφ

(5.11)
=

1

π22L

∫ π

−π

f (L, ρ;φ)

1 + 2ρ sin (φ) + ρ2

×
∫ ∞

0

[
Mγl|γ̄

(
−b

2

2

(
1 + 2ρ sin (φ) + ρ2

))]L
pγ̄ (γ̄) dγ̄dφ

=
1

π22L

∫ π

−π

f (L, ρ;φ)

1 + 2ρ sin (φ) + ρ2
Mγt

(
−b

2

2

(
1 + 2ρ sin (φ) + ρ2

))
dφ

where we have used that the multipath fading is i.i.d., i.e., the conditional

MGFs Mγl|γ̄ (x) are identical for all branches l ∈ {1, . . . , L} and the (uncondi-

tional) MGF Mγt
(x) is given by Mγt

(x) =
∫∞

0

[
Mγl|γ̄ (x)

]L
pγ̄ (γ̄) dγ̄. Combin-

ing (5.11) with the values for ρ and b, we finally arrives at (5.7).

5.3 Simulation and Numerical Results

In the following, numerical performance results are presented which illustrate

our findings in Section 4 and Section 5. In particular, we will present Monte–

Carlo simulation results, so as to corroborate our analytical performance re-

sults.

5.3.1 The Case of Independent Fading

In this section, we investigate the BEP performance of DBPSK modulation

over L independent generalized K–fading branches with EGC at the receiver
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(cf. Section 4.1 and 4.3.1). As an example, we focus on the case of i.i.d.

cascade Rayleigh/Nakagami–m fading with k = 1 and m ≥ 1.

Figure 5.1: Average BEP P̄b (θ) versus average SNR Lθ in dB for the case of

i.i.d. double Rayleigh fading (k = 1,m = 1). Solid lines represent analytical

results for DBPSK modulation with EGC at the receiver evaluated based on

(4.8) /(4.9) using the values k = 1.01 and m = 0.99. Dashed lines represent

corresponding analytical results for the case of i.i.d. Rayleigh fading evaluated

based on (4.10)/(4.11). Corresponding simulation results for Rayleigh fading

and double Rayleigh fading (k = 1,m = 1) are indicated by markers ‘◦’.

Fig. 5.1 shows the average BEP P̄b (θ) for DBPSK versus the overall average

received SNR Lθ in dB for the case of i.i.d. double Rayleigh fading (k =

1,m = 1). The solid lines represent analytical results for L ∈ {1, . . . , 4}
evaluated based on (4.8) and (4.9) using the values k = 1.01 and m = 0.99.

Corresponding simulation results (for k = 1 and m = 1), obtained by Monte–
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Carlo simulations over a large number of independent channel realizations, are

indicated by markers ‘◦’. As a reference, we have also included corresponding

performance results for i.i.d. Rayleigh fading (L ∈ {1, . . . , 4}). As can be seen,

the relative performance gains obtained for L > 1 diversity branches are quite

similar for double Rayleigh fading and conventional Rayleigh fading. However,

in comparison the BEP performance for double Rayleigh fading is significantly

worse than that for Rayleigh fading (for all values of L).3 For example, in the

case of L = 4 diversity branches, the performance difference between double

Rayleigh fading and conventional Rayleigh fading at a BEP of 10−4 is about

5.3 dB. Vice versa, in order to achieve a BEP of less than 3 × 10−4 at an

overall SNR of 20 dB, one requires L = 4 diversity branches in the case of

double Rayleigh fading, whereas in the case of conventional Rayleigh fading

L = 2 diversity branches are sufficient. Finally, we note that the analytical

results and the simulation results are in good agreement, which corroborates

our analysis in Section 4.1.

In Fig. 5.2, the average P̄b (θ) of DBPSK modulation with EGC at the

receiver is compared to that of coherent BPSK modulation with MRC at the

receiver. As an example, we consider again the case of i.i.d. double Rayleigh

fading (k = 1,m = 1). The analytical curves for BPSK modulation were

obtained based on (3.11) and (4.26) using numerical integration. As can be

seen, the general behavior of the curves for growing values of L is quite similar

in the case of DBPSK and BPSK modulation. In particular, the asymptotic

slopes of the curves are identical in both cases, as predicted by our asymptotic

analysis in Section 4.3.1. Interestingly, the performance difference between

DBPSK and BPSK modulation at high SNR values is about 3.8 dB (for all

values of L), which is slightly larger than the well–known 3 dB difference in

the case of conventional Rayleigh fading.

Finally, Fig. 5.3 compares the average BEP P̄b (θ) of DBPSK with EGC

3For the special case L = 1 and coherent PSK modulation, this observation was already

made in [10].
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Figure 5.2: Average BEP P̄b (θ) versus overall average SNR Lθ in dB for the

case of i.i.d. double Rayleigh fading (k = 1,m = 1). Solid lines represent

analytical results for DBPSK modulation with EGC at the receiver evaluated

based on (4.8) /(4.9) using the values k = 1.01 and m = 0.99. Dashed lines

represent corresponding analytical results for coherent BPSK modulation with

MRC at the receiver evaluated based on (3.11), (4.26) using numerical inte-

gration. Corresponding simulation results for k = 1 and m = 1 are indicated

by markers ‘◦’ (both for DPSK and PSK modulation).

at the receiver for various examples of i.i.d. cascade Rayleigh/Nakagami–m

fading (k = 1,m ∈ {1, 3, 5}, L ∈ {1, 3}). For the example m = 3, we have

also included the average BEP of coherent BPSK modulation with MRC at

the receiver. Moreover, for the example m = 3, L = 3 we have included the

asymptotic BEP curves as a reference (dotted lines), which were evaluated

based on (4.18)/(4.19) and (4.27) for DBPSK and BPSK modulation, respec-
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Figure 5.3: Average BEP P̄b (θ) versus overall average SNR Lθ in dB for dif-

ferent cases of cascade fading (k = 1 and m ∈ {1, 3, 5}). Solid lines represent

analytical results for DBPSK modulation with EGC at the receiver evaluated

based on (4.8) /(4.9) using the values k = 1.01 and m ∈ {0.99, 2.99, 4.99}, re-

spectively. Dashed lines represent corresponding analytical results for coherent

BPSK modulation with MRC at the receiver evaluated based on (3.11), (4.26)

using numerical integration. Corresponding simulation results for k = 1 and

m ∈ {1, 3, 5} are indicated by markers ‘◦’ (both for DPSK and PSK modula-

tion). The dotted lines represent asymptotic BEP curves for the case m = 3,

L = 3 evaluated based on (4.18)/(4.19) for DPSK modulation and based on

(4.27) for PSK modulation.

tively. As can be seen, the performance of DBPSK improves significantly, if

the fading parameter m is increased from m = 1 to m = 3. As opposed to this,

increasing m further to m = 5 yields comparatively small additional perfor-
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mance gains, which indicates that the BEP performance is somewhat limited

by the small value of the fading parameter k. Another interesting observation

is that the performance difference between DBPSK and BPSK modulation at

high SNR values is slightly reduced if the fading parameter m is increased.

For example, in the case m = 3 the performance difference is about 3.3 dB, as

opposed to 3.8 dB in the case of double Rayleigh fading, cf. Fig. 5.2. Finally,

we again note that the analytical results (evaluated based on (4.8) and (4.9)

using the values k = 1.01 and m ∈ {0.99, 2.99, 4.99}) and the simulation re-

sults for k = 1 and m ∈ {1, 3, 5} are in good agreement for all considered cases.

Moreover, the asymptotic BEP curves accurately represent the behavior of the

BEP curves at high SNR values, which corroborates our asymptotic analysis

in Section 4.3.1.

5.3.2 Correlated Composite Shadowing and Multipath

Fading

Next, we consider the BEP performance of DBPSK modulation over L diversity

branches that are subject to correlated composite shadowing and multipath

fading (cf. Section 4.2 and 4.3.2). Fig. 5.4 presents numerical results for the

average BEP P̄b (θ) as a function of the overall average received SNR Lθ in

dB for the case k = 3 and m = 1 (mild shadowing) and L ∈ {1, . . . , 4}.
Solid lines represent analytical results evaluated based on (4.15) , using the

values k = 3.01 and m = 0.99. Dashed lines represent analytical results

for coherent BPSK modulation with MRC at the receiver (for the cases L ∈
{1, 3, 4}), evaluated based on (3.16) and (4.26) using the same values k =

3.01 and m = 0.99. Corresponding simulation results for k = 3 and m =

1, obtained by Monte–Carlo simulations over a large number of independent

channel realizations, are indicated by markers ‘◦’ (both for DPSK and PSK

modulation). As can be seen, the analytical results and the simulation results

are in good agreement, which corroborates our analysis in Section 4.2. Note
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Figure 5.4: Average BEP P̄b (θ) versus overall average SNR Lθ in dB for the

case k=3 and m=1 (mild shadowing). Solid lines represent analytical results

for DBPSK modulation with EGC at the receiver evaluated based on (4.15)

using the values k=3.01 and m=0.99. Dashed lines represent corresponding

analytical results for coherent BPSK modulation with MRC at the receiver

evaluated based on (3.16) , (4.26) using numerical integration. Corresponding

simulation results for k=3 and m=1 are indicated by markers ‘o’ (both for

DPSK and PSK modulation).

that significant diversity gains are accomplished in the case L > 1, both in the

case of DPSK and PSK modulation. As can be seen, the general behavior of the

BEP curves is the same for coherent and non–coherent transmission (similar

to the case of i.i.d. cascade Rayleigh/Nakagami–m fading). The asymptotic

advantage of BPSK over DBPSK modulation is about 3 dB, similar to the case

of pure Rayleigh fading.
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Figure 5.5: Average BEP P̄b (θ) versus overall average SNR Lθ in dB for the

case k=3 and m=1 (mild shadowing). Solid lines represent analytical results

for DBPSK modulation with EGC at the receiver, evaluated based on (4.15)

using the values k=3.01 and m=0.99. Dashed lines represent corresponding

asymptotic results evaluated based on (4.30) .

In Fig. 5.5, we compare the exact analytical BEPs for DPSK modulation

according to (4.15) with the asymptotic BEPs according to (4.30) .4 As earlier,

the values k = 3.01 and m = 0.99 were employed for evaluating the expressions

(4.15) and (4.30) . It can be seen that convergence is comparatively fast for the

cases L = 2 and L = 4. In particular, the BEP curves exhibit the predicted

diversity orders of d = 2m = 2 and d = k = 3, respectively. However, as

4For BPSK modulation with MRC at the receiver we have obtained very similar results

(not depicted) by evaluating asymptotic BEPs according to (4.33) and comparing them with

the corresponding analytical BEPs according to (3.16) and (4.26).
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discussed in Section 4.3.2, in the case L = 3 convergence is very slow, since

k ≈ mL. In this example, SNR values on the order of 100 dB are required,

until the exact analytical BEP (4.15) approaches the asymptotic BEP (4.30)

and assumes the predicted asymptotic diversity order of d = 3m ≈ k ≈ 3.

Note that since the maximum diversity order is accomplished for L = 3, the

relative performance advantage of L > 3 branches is comparatively small in

this example.

Finally, in Fig. 5.6 numerical performance results for the case k = 1 and

m = 3 (severe shadowing) and L ∈ {1, 4} are presented. Again it can be seen

that the analytical results (solid lines for DBPSK and dashed lines for BPSK

modulation) and the simulation results (markers ‘◦’) are in good agreement.

The analytical results for DBPSK and BPSK modulation were again evaluated

based on (4.15) and (3.16) , (4.26), respectively, using the values k = 1.01 and

m = 2.99. Interestingly, in contrast to the case of mild shadowing, L >

1 branches offer no diversity benefit at all. As can be seen, in the case of

DBPSK modulation the BEP curve for L = 4 is even slightly worse than the

BEP curve for L = 1 (due to the SNR normalization). The BEP curves for

L = 2 and L = 3 (not depicted) lie in between the curves for L = 1 and

L = 4. As predicted by the asymptotic BEP (4.30) , included here for the case

L = 4 (dotted line), the BEP curves of DBPSK for L ≥ 1 branches are all

characterized by the same asymptotic diversity order of d = k = 1. Also note

that the convergence of the asymptotic BEP (4.30) to the exact BEP (4.15) is

comparatively fast in this example. Finally, we note that while in the case of

BPSK modulation the asymptotic diversity order is the same as for DBPSK

modulation, the order of the curves is swapped here, i.e., L = 4 offers a slight

performance advantage over L = 1 (the BEP curves for L = 2 and L = 3 were

again found in between the curves for L = 1 and = 4).
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Figure 5.6: Average BEP P̄b (θ) versus overall average SNR Lθ in dB for the

case k=1 and m=3 (severe shadowing). Solid lines represent analytical results

for DBPSK modulation with EGC at the receiver evaluated based on (4.15)

using the values k=1.01 and m=2.99. Dashed lines represent corresponding

analytical results for coherent BPSK modulation with MRC at the receiver

evaluated based on (3.16) , (4.26) using numerical integration. Corresponding

simulation results for k=1 and m=3 are indicated by markers ‘o’ (both for

DPSK and PSK modulation). The dotted lines represent asymptotic BEP

curves for the case L=4 evaluated based on (4.30) for DPSK modulation and

based on (4.33) for PSK modulation.

5.3.3 Performance of M–ary Modulation Schemes

Finally, we present some numerical performance results for M–ary modulation.

As an example, we focus on the case of DQPSK and coherent quaternary
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Figure 5.7: Average BEP P̄b (θ) versus overall average SNR per bit Lθ/2 in

dB for the case of cascade fading with k = 1 and m = 3. Solid lines represent

analytical results for DQPSK modulation with EGC at the receiver evaluated

based on (3.11) and (5.1) using the values k = 1.01 and m = 2.99. Dashed

lines represent corresponding analytical results for coherent QPSK modulation

with MRC at the receiver evaluated based on (3.11) and (4.26) using numer-

ical integration. Corresponding simulation results for k = 1 and m = 3 are

indicated by markers ‘o’ (both for DPSK and PSK modulation).

PSK (QPSK) modulation over L i.i.d. cascade Rayleigh/ Nakagami–m fading

branches with k = 1 and m = 3. Fig. 5.7 displays the corresponding average

BEPs P̄b (θ) versus the overall average received SNR per bit Lθ/2 in dB for L ∈
{1, . . . , 4} diversity branches. The analytical results for DQPSK modulation

with EGC at the receiver (solid lines) were evaluated based on (3.11) and

(5.1) via numerical integration using the values k = 1.01 and m = 2.99. The
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analytical results for coherent QPSK modulation with MRC at the receiver

(dashed lines) were evaluated based on (3.11) and (4.26), exploiting the fact

that the average BEP of QPSK with Gray mapping is identical to that of

BPSK modulation. As can be seen, the basic behavior of the BEP curves

is very similar to the case of DBPSK/BPSK modulation.5 In particular, the

asymptotic slope of the BEP curves as well as the performance difference

between DQPSK and QPSK modulation is the same as in the case of binary

transmission (cf. Fig. 5.3). Again, we note that the analytical results and the

simulation results are in good agreement, which corroborates our analysis in

Section 5.

5We have made the same observation for the case of correlated composite shadowing and

multipath fading (not depicted).
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Chapter 6

1 Conclusion

In this thesis, we have focused on the receiver design for DSTM over correlated

MIMO channels. In addition, the performance analysis of DPSK and non–

coherent FSK over generalized fading channels is considered.

For DSTM receiver design, we have derived novel MSDD and low–complexity

MS–DFDD receivers for DSTM in spatially correlated fading. We have com-

pared MS–DFDD with previously proposed SP- and VP–DFDD, and shown

that SP- and VP–DFDD are equivalent at high SNR. In contrast to VP–DFDD,

MS–DFDD performs spatial whitening of the prediction error and thus exploits

spatial fading correlations in an optimum manner.

The generalized K–fading model, which is characterized by two fading

parameters, k > 0 and m > 0, is versatile enough to cover both scenarios

with cascade multipath fading and scenarios with composite shadowing and

multipath fading. In this thesis, we have derived closed–form expressions for

the BEP of DBPSK modulation and binary non–coherent FSK modulation

over L generalized K–fading links. In particular, we have considered the case

of independent fading across links, which is relevant for cascade multipath

fading scenarios, and the case of correlated composite shadowing and multipath

fading. Moreover, we have conducted an asymptotic performance analysis for

high SNR values and have studied the resulting diversity orders for various

cases. We have also discussed the extension of our results toM–ary modulation
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schemes. Our results have shown that there is an interesting interplay between

the two fading parameters k and m. In the case of independent fading, the

smaller of the two fading parameters limits the asymptotic diversity order.

Similarly, in the case of correlated composite shadowing and multipath fading,

the asymptotic diversity order is always limited by either the shadowing effect

or the multipath fading, depending on which one of the two fading effects is

more severe. Moreover, for both scenarios we have shown that the diversity

order of the considered non–coherent transmission schemes is, in fact, the same

as in the case of coherent transmission. Finally, numerical performance results

were presented, in order to illustrate the above findings, and our analytical

performance results were corroborated by means of Monte–Carlo simulations.

Some recommendations for future work may include the study of amplify–

and–forward and/or decode–and–forward relaying under general K–fading (on

each link). One could again study the interplay of shadowing and multipath

fading. Since the individual nodes are spatially distributed on a larger scale,

the assumption of independent fading on each link would apply.
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