The Open Collections site will be undergoing maintenance 8-11am PST on Tuesday Dec. 3rd. No service interruption is expected, but some features may be temporarily impacted.
- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP) (12th : 2015) /
- Reliability-based seismic harzard analysis
Open Collections
International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP) (12th : 2015)
Reliability-based seismic harzard analysis Rahimi, Hossain; Mahsuli, Mojtaba; Bakhshi, Ali
Abstract
This paper presents a new approach to probabilistic seismic hazard analysis. Hazard in this context means the probability of exceeding a measure of earthquake intensity. The main components of the proposed approach are twofold: 1) Reliability methods compute the exceedance probabilities; 2) Multiple probabilistic models compute the earthquake intensity. These two components are presented in details. The proposed methodology is employed in a comprehensive seismic hazard analysis of Iran with an area of nearly 1.65 million square kilometers and 112 sources of seismicity. In this analysis, a grid of 2045 points is chosen to produce a high resolution hazard map. The analysis consists of 861 random variables and 57,615 model instances. The primary results are seismic zonation maps. The results are compared to other studies that employed the conventional seismic hazard analysis for this region. This paper concludes with a discussion on the advantages and practical differences between the results of the reliability-based approach and those of the conventional probabilistic seismic hazard analysis.
Item Metadata
Title |
Reliability-based seismic harzard analysis
|
Creator | |
Contributor | |
Date Issued |
2015-07
|
Description |
This paper presents a new approach to probabilistic seismic hazard analysis. Hazard in this context means the probability of exceeding a measure of earthquake intensity. The main components of the proposed approach are twofold: 1) Reliability methods compute the exceedance probabilities; 2) Multiple probabilistic models compute the earthquake intensity. These two components are presented in details. The proposed methodology is employed in a comprehensive seismic hazard analysis of Iran with an area of nearly 1.65 million square kilometers and 112 sources of seismicity. In this analysis, a grid of 2045 points is chosen to produce a high resolution hazard map. The analysis consists of 861 random variables and 57,615 model instances. The primary results are seismic zonation maps. The results are compared to other studies that employed the conventional seismic hazard analysis for this region. This paper concludes with a discussion on the advantages and practical differences between the results of the reliability-based approach and those of the conventional probabilistic seismic hazard analysis.
|
Genre | |
Type | |
Language |
eng
|
Notes |
This collection contains the proceedings of ICASP12, the 12th International Conference on Applications of Statistics and Probability in Civil Engineering held in Vancouver, Canada on July 12-15, 2015. Abstracts were peer-reviewed and authors of accepted abstracts were invited to submit full papers. Also full papers were peer reviewed. The editor for this collection is Professor Terje Haukaas, Department of Civil Engineering, UBC Vancouver.
|
Date Available |
2015-05-25
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivs 2.5 Canada
|
DOI |
10.14288/1.0076261
|
URI | |
Affiliation | |
Citation |
Haukaas, T. (Ed.) (2015). Proceedings of the 12th International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP12), Vancouver, Canada, July 12-15.
|
Peer Review Status |
Unreviewed
|
Scholarly Level |
Faculty; Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivs 2.5 Canada