- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP) (12th : 2015) /
- Hierachical modeling of systems with similar components
Open Collections
International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP) (12th : 2015)
Hierachical modeling of systems with similar components Memarzadeh, Milad; Pozzi, Matteo; Kolter, J. Zico
Abstract
Identifying optimal management policies for systems made up by similar components is a challenging task, due to dependence in the components’ behavior. In this setting, observations collected on one component are also relevant for learning the behavior of others. Probabilistic graphical models allow for consistent inference using all available data, taking dependence among components into account, while optimizing system operation. In this paper we propose a framework for management of systems made by similar components based on hierarchical Bayesian modeling, called Multiple Uncertain Partially Observable Markov Decision Processes (MU-POMDP), that overcomes some limitations of a previously proposed approaches. We describe a detailed numerical algorithm to learn the system parameters within this framework and we investigate its performance with an example of management of a wind farm (i.e., the system) made up by turbines of the same type (i.e., the components).
Item Metadata
Title |
Hierachical modeling of systems with similar components
|
Creator | |
Contributor | |
Date Issued |
2015-07
|
Description |
Identifying optimal management policies for systems made up by similar components is
a challenging task, due to dependence in the components’ behavior. In this setting, observations
collected on one component are also relevant for learning the behavior of others. Probabilistic graphical
models allow for consistent inference using all available data, taking dependence among components
into account, while optimizing system operation. In this paper we propose a framework for
management of systems made by similar components based on hierarchical Bayesian modeling, called
Multiple Uncertain Partially Observable Markov Decision Processes (MU-POMDP), that overcomes
some limitations of a previously proposed approaches. We describe a detailed numerical algorithm to
learn the system parameters within this framework and we investigate its performance with an example
of management of a wind farm (i.e., the system) made up by turbines of the same type (i.e., the
components).
|
Genre | |
Type | |
Language |
eng
|
Notes |
This collection contains the proceedings of ICASP12, the 12th International Conference on Applications of Statistics and Probability in Civil Engineering held in Vancouver, Canada on July 12-15, 2015. Abstracts were peer-reviewed and authors of accepted abstracts were invited to submit full papers. Also full papers were peer reviewed. The editor for this collection is Professor Terje Haukaas, Department of Civil Engineering, UBC Vancouver.
|
Date Available |
2015-05-25
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivs 2.5 Canada
|
DOI |
10.14288/1.0076244
|
URI | |
Affiliation | |
Citation |
Haukaas, T. (Ed.) (2015). Proceedings of the 12th International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP12), Vancouver, Canada, July 12-15.
|
Peer Review Status |
Unreviewed
|
Scholarly Level |
Faculty; Researcher
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivs 2.5 Canada